Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
LINEAR DRIVE APPARATUS
Document Type and Number:
WIPO Patent Application WO/2017/162672
Kind Code:
A1
Abstract:
The present device relates to a linear drive apparatus comprising the following structure: a housing (1); and, located inside the housing (1): an electric motor (2), a transmission gear (3) which meshes with an output gear on an output shaft of the electric motor (2), and a gear shaft (4) and a linear motion assembly (5); the transmission gear (3) is mounted on the gear shaft (4), the linear motion assembly (5) is mounted in such a way as to cooperate with the transmission gear (3), and converts rotational motion of the transmission gear (3) to linear motion; wherein an axis of the linear motion assembly is arranged in the same plane as an axis of the electric motor output shaft and an axis of the gear shaft. The linear drive apparatus provided by the present device has the advantages of a compact structure, small volume, light weight and good heat dissipation effect.

Inventors:
TANG RUNQIU (CN)
DU XIAOLIN (CN)
CAO XIANGGUANG (CN)
TANG CHUNYAN (CN)
LI QIANG (CN)
Application Number:
PCT/EP2017/056694
Publication Date:
September 28, 2017
Filing Date:
March 21, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
CONTINENTAL AUTOMOTIVE GMBH (DE)
International Classes:
F16H25/18; F02M26/48; F02M26/54; F02M26/67; F16K31/524; F16K31/528
Domestic Patent References:
WO2015036329A12015-03-19
Foreign References:
EP2884086A22015-06-17
EP2650524A22013-10-16
KR20100042779A2010-04-27
US20140034029A12014-02-06
Other References:
None
Download PDF:
Claims:
Patent claims

A linear drive apparatus, comprising:

a housing and, located inside the housing: an electric motor;

a transmission gear meshed with an output gear on an output shaft of the electric motor, the transmission gear being mounted on a gear shaft located inside the housing; and

a linear motion assembly, which is fitted to the transmission gear and converts rotational motion of the transmission gear to linear motion;

characterized in that

an axis of the linear motion assembly is arranged in the same plane as an axis of the electric motor output shaft and an axis of the gear shaft.

The linear drive apparatus as claimed in claim 1, char¬ acterized in that the transmission gear is a cam gear.

The linear drive apparatus as claimed in claim 2, char¬ acterized in that the cam gear comprises a cam gear part and a cam groove part; the cam gear part meshes with the output gear of the electric motor.

The linear drive apparatus as claimed in claim 3, char¬ acterized in that the cam gear part has a weight-saving hole.

The linear drive apparatus as claimed in claim 3, char¬ acterized in that the cam groove part has a groove inner wall close to a central axis of the cam gear and a groove outer wall remote from the central axis of the cam gear.

6. The linear drive apparatus as claimed in claim 3, char¬ acterized in that one end of the cam groove part is an open groove, while the other end is a closed groove. The linear drive apparatus as claimed in claim 3, char¬ acterized in that the linear motion assembly comprises an adjusting rod, a connecting rod structure, a bearing, a magnet assembly and a sensor;

the connecting rod structure is mounted on the ad¬ justing rod;

the bearing, the magnet assembly and the sensor are all mounted on the connecting rod structure;

and the bearing is located in the cam groove part, so as to convert rotational motion of the cam gear to linear motion of the linear motion assembly.

The linear drive apparatus as claimed in claim 7, char¬ acterized in that an axis of the adjusting rod is arranged in the same plane as the axis of the electric motor output shaft and the axis of the gear shaft.

The linear drive apparatus as claimed in claim 8, char¬ acterized in that an axis of the bearing is arranged in the same plane as the axis of the adjusting rod, the axis of the electric motor output shaft, and the axis of the gear shaft.

The linear drive apparatus as claimed in claim 1, char¬ acterized in that the axis of the bearing is arranged in the same plane as the axis of the linear motion assembly, the axis of the electric motor output shaft, and the axis of the gear shaft .

The linear drive apparatus as claimed in claim 7, char¬ acterized in that the sensor is a non-contact sensor.

The linear drive apparatus as claimed in claim 1, char¬ acterized in that the linear drive apparatus also comprises a cooling water path which surrounds the linear motion assembly .

13. The linear drive apparatus as claimed in claim 12, char¬ acterized in that the cooling water path is located in the housing .

14. The linear drive apparatus as claimed in claim 1, char¬ acterized in that the linear drive apparatus also comprises a limiting pin disposed inside the housing; the transmission gear will abut the limiting pin upon rotation to a certain angle, thereby realizing mechanical stoppage.

15. The linear drive apparatus as claimed in claim 1, char¬ acterized in that the linear drive apparatus also comprises: a return spring mounted on the gear shaft, the return spring being used for return of the transmission gear; an end cover fitted to the housing, and an adjusting head fixed to one end of the linear motion assembly.

Description:
Description

Linear drive apparatus Technical field

The present device relates to a motor vehicle component product, in particular to a linear drive apparatus for use in a motor vehicle driving force assembly.

Background art

In the motor vehicle industry, in order to increase the air intake efficiency and reduce the emission of pollutants, it is often necessary for a valve apparatus capable of precisely controlling intake and exhaust to be used in the driving force assembly system, e.g. an apparatus such as an exhaust gas recirculation control valve used in an engine's exhaust gas recirculation system. The majority of such valve apparatuses are linear drive apparatuses, which use an electric motor as a source of driving force, and then convert a rotational output of the electric motor to linear motion of a linear motion assembly (e.g. a valve rod) .

In linear drive apparatuses currently on the market, the electric motor, transmission gears and valve rod are in most cases arranged in both transverse and longitudinal directions, and the transmission gears are not of a weight-saving design; the result is that the overall volume and weight of the linear drive apparatus are relatively large.

Content of the invention

The object of the present device is to provide a linear drive apparatus, which solves the problems affecting existing linear drive apparatuses, namely that their structure is not compact, and they have a large volume, a heavy weight, and a poor heat dissipation effect. The linear drive apparatus provided by the present device comprises : a housing and, located inside the housing: an electric motor; a transmission gear meshed with an output gear on an output shaft of the electric motor, the transmission gear being mounted on a gear shaft located inside the housing; and a linear motion assembly, which is fitted to the transmission gear and converts rotational motion of the transmission gear to linear motion; wherein an axis of the linear motion assembly is arranged in the same plane as an axis of the electric motor output shaft and an axis of the gear shaft. Furthermore, the transmission gear is a cam gear.

Furthermore, the cam gear comprises a cam gear part and a cam groove part; the cam gear part meshes with the output gear of the electric motor.

Furthermore, the cam gear part has a weight-saving hole.

Furthermore, the cam groove part has a groove inner wall close to a central axis of the cam gear and a groove outer wall remote from the central axis of the cam gear.

Furthermore, one end of the cam groove part is an open groove, while the other end is a closed groove. Furthermore, the linear motion assembly comprises an adjusting rod, a connecting rod structure, a bearing, a magnet assembly and a sensor; the connecting rod structure is mounted on the adjusting rod; the bearing, the magnet assembly and the sensor are all mounted on the connecting rod structure; and the bearing is located in the cam groove part, so as to convert rotational motion of the cam gear to linear motion of the linear motion assembly. Furthermore, an axis of the adjusting rod is arranged in the same plane as the axis of the electric motor output shaft and the axis of the gear shaft. Furthermore, an axis of the bearing is arranged in the same plane as the axis of the adjusting rod, the axis of the electric motor output shaft, and the axis of the gear shaft.

Furthermore, the axis of the bearing is arranged in the same plane as the axis of the linear motion assembly, the axis of the electric motor output shaft, and the axis of the gear shaft.

Furthermore, the sensor is a non-contact sensor. Furthermore, the linear drive apparatus also comprises a cooling water path which surrounds the linear motion assembly.

Furthermore, the cooling water path is located in the housing. Furthermore, the linear drive apparatus also comprises a limiting pin disposed inside the housing; the transmission gear will abut the limiting pin upon rotation to a certain angle, thereby realizing mechanical stoppage. Furthermore, the linear drive apparatus also comprises: a return spring mounted on the gear shaft, the return spring being used for return of the transmission gear; an end cover fitted to the housing, and an adjusting head fixed to one end of the linear motion assembly.

Compared with the prior art, the linear drive apparatus provided by the present device has the advantages of a compact structure, small volume, light weight and good heat dissipation effect. Description of the accompanying drawings The accompanying drawings, which form part of this application, are intended to furnish further understanding of the present device. The schematic embodiments of the present device and the explanations thereof are intended to explain the present device, but do not constitute an inappropriate limitation thereof. Drawings :

Fig. 1 is an exploded schematic view of the linear drive apparatus of the present device;

Fig. 2 is a three-dimensional perspective drawing of the linear drive apparatus shown in Fig. 1 after assembly (excluding the end cover) ; Fig. 3 is a perspective front view of the linear drive apparatus shown in Fig. 2 (excluding the end cover);

Fig. 4 is a sectional left view of the linear drive apparatus shown in Fig. 3 (including the end cover);

Fig. 5 is a three-dimensional schematic view of the linear motion assembly;

Fig. 6 is an enlarged schematic view of the transmission gear;

Fig. 7 is a schematic drawing of the arrangement of the cooling water path.

Particular embodiments

The linear drive apparatus of the present device is described below by means of embodiments, with reference to the accompanying drawings . Fig. 1 is an exploded schematic view of the linear drive apparatus of the present device. Fig. 2 is a three-dimensional perspective drawing of the linear drive apparatus shown in Fig. 1 after assembly (excluding the end cover) . As shown in Figs. 1 and 2, the linear drive apparatus comprises the following structure: a housing 1; and, located inside the housing 1: an electric motor 2, a transmission gear 3 which meshes with an output gear on an output shaft of the electric motor 2, and a gear shaft 4 and a linear motion assembly 5; the transmission gear 3 is mounted on the gear shaft 4, the linear motion assembly 5 is mounted in such a way as to cooperate with the transmission gear 3, and converts rotational motion of the transmission gear 3 to linear motion; to reduce the overall width of the linear drive apparatus, be conducive to the center of gravity layout and increase the conversion efficiency of linear motion, the following special design is implemented in this embodiment: the axis of the linear motion assembly 5 is arranged in the same plane as the axis of the output shaft of the electric motor 2 and the axis of the gear shaft 4.

Preferably, to better realize transmission and reduce the weight of the linear drive apparatus, the transmission gear 3 may be designed as a cam gear, specifically as shown in Fig. 6. The cam gear comprises a cam gear part 31 and a cam groove part 32; the cam gear part 31 meshes with the output gear of the electric motor to realize rotational motion and perform torque transfer, and the cam gear part 31 also has one or more holes 33; in this embodiment, there are two weight-saving holes. The cam groove part 32 also has a groove inner wall 34 close to a central axis of the cam gear and a groove outer wall 35 remote from the central axis of the cam gear. Moreover, one end of the cam groove part 32 is an open groove, while the other end is a closed groove.

Preferably, as shown in Figs. 1 to 5, in order to cooperate with the transmission gear 3 (cam gear 3) described above and convert rotational motion of the gear to linear motion, the linear drive apparatus in this embodiment also comprises an adjusting rod 51, a connecting rod structure 52, a bearing 53, a magnet assembly 54 and a sensor 55; wherein the connecting rod structure 52 is mounted on the adjusting rod 51; the bearing 53, the magnet assembly 54 and the sensor 55 are all mounted on the connecting rod structure 52; and the bearing 53 is located in a groove of the cam groove part 32, so as to convert rotational motion of the cam gear 3 to linear motion of the linear motion assembly 5. Specifically, when the cam gear 3 moves in one of the directions (e.g. when the linear drive apparatus executes a valve opening motion) , the linear motion assembly 5 is in contact with the groove inner wall 34, and moves downward under the action of the groove inner wall 34; conversely, when the cam gear 3 moves in the opposite direction (e.g. when the linear drive apparatus executes a valve closing motion) , the linear motion assembly 5 is in contact with the groove outer wall 35, and moves upward under the action of the groove outer wall 35. Preferably, a cam curve of the cam groove part 32 is divided into three sections: a lead-in section, a motion section and a lifting section (not marked with numerical labels in the figures) . The lead-in section is the open groove mentioned previously, the design objective thereof being to enable the bearing 53 to slide smoothly into the cam groove part 32. Such an open cam groove design facilitates assembly of components, and enables the linear motion assembly to slide in through an opening.

Preferably, the axis of the adjusting rod 51 is arranged in the same plane as the axis of the output shaft of the electric motor 2 and the axis of the gear shaft 4; more preferably, the axis of the bearing 53 is arranged in the same plane as the axis of the adjusting rod 51, the axis of the output shaft of the electric motor 2, and the axis of the gear shaft 4, as the longitudinal arrangement shown by the figure direction; or the axis of the bearing 53 is arranged in the same plane as the axis of the linear motion assembly 5, the axis of the output shaft of the electric motor 2, and the axis of the gear shaft 4. Such a design has the following advantages: 1) three or four components sharing a common plane can effectively reduce the transverse dimension of the linear motion apparatus (valve body) , to meet special requirements of a customer regarding dimension; 2) four com- ponents sharing a common plane facilitates arrangement of the center of gravity of the linear motion apparatus, thereby increasing the performance stability thereof under vibrating conditions; 3) with the central axes of the gear shaft 4, bearing 53 and linear motion assembly 5 sharing a common plane, the efficiency of conversion of rotational motion to linear motion can also be increased effectively.

Preferably, the sensor 55 is a non-contact sensor, e.g. may be a magnetoresistive sensor, an inductive sensor or a Hall sensor, and has the following operating principles: when a drive transmission system drives a change in position of the linear motion assembly 5, the position of an inductive element (such as a magnet assembly 54, inductive pointer, etc.) connected to the linear motion assembly 5 also changes accordingly; at this time, the sensor 55 can sense a change in the magnetic field of the inductive element, and convert this into a change in a voltage signal, which is outputted to an engine control unit or an electronic control unit; then, by comparing differences between an actual voltage signal and a target voltage signal, the engine control unit or electronic control unit continuously adjusts an instruction until the linear drive apparatus reaches a target position . Preferably, as shown in Figs. 1 to 4 and Fig. 7, the linear drive apparatus of this embodiment also comprises a cooling water path 6 which surrounds the linear motion assembly 5. Specifically, the water path described in this embodiment is an integral water path located in the housing 1, as shown in Fig. 7; the letter A indicates a water inlet, the letter B indicates a water outlet, and the black arrows mark the water flow directions. The ar ¬ rangement of the cooling system has the following characteristics: 1) the water path is arranged between exhaust gas and the transmission system, so can effective reduce the amount of heat transferred from exhaust gas to the transmission system part, and in turn reduce the effect of exhaust gas temperature on the performance and lifespan of the linear drive apparatus, 2) the water path is arranged all around the linear motion assembly 5, so on the one hand the volume of the linear drive apparatus can be reduced, and on the other hand the area of contact with exhaust gas can be increased so as to ensure the cooling effect.

Preferably, as shown in Figs. 1 to 3, the linear drive apparatus also comprises a limiting pin 7 disposed in the housing 1; the transmission gear 3 will come into striking contact with the limiting pin 7 upon rotation to a certain angle, thereby realizing mechanical stoppage of motion through a stroke.

Preferably, as shown in Figs. 1 to 5, the linear drive apparatus also comprises a return spring 8 mounted on the gear shaft, the return spring 8 being used for return of the transmission gear 3; an end cover 9 fitted to the housing 1, and an adjusting head 56 fixed to one end of the linear motion assembly 5. When mounted (with the linear drive apparatus in a closed state) , the return spring 8 is in a preloaded state, so that it can be ensured that in case of a power cut, the linear drive apparatus can return to an initial position (closed state) , and when the linear drive apparatus is in an operational state, the return spring 8 will be further preloaded, thereby ensuring that it has a sufficient return force in case of no power. In summary, the operating modes of the linear drive apparatus in this embodiment are roughly as follows: 1) When the linear drive apparatus is energized, the output gear of the electric motor 2 rotates clockwise, driving the cam gear 3 (transmission gear 3) to rotate anticlockwise; the rotation of the cam groove part 32 of the cam gear 3 drives the bearing 53 to move downwards along the cam groove part 32, in turn pushing the linear motion assembly 5 to move downwards; in this way, a valve of the linear drive apparatus is opened, and exhaust gas enters through a valve opening. 2) When the supply of power to the linear drive apparatus is cut, since the return spring 8 was already preloaded at the time of mounting, the preload of the return spring 8 is transferred to the gear shaft 4 through a spring bush, the gear shaft 4 rotates clockwise, driving the cam gear 3 to rotate clockwise, and under the action of the cam groove outer wall 35 the bearing 53 is driven to move upwards along the cam groove part 32, in turn pulling the linear motion assembly 5 to move upwards until the valve closes. During the process of opening and closing of the valve mentioned above, the position of the magnet assembly 54 mounted on the linear motion assembly 5 is an input signal of the sensor 55; after receiving the signal, the sensor 55 learns the extent to which the valve is opened, and transmits this to the engine control unit; the engine control unit then controls the on/off switching of a power supply, thereby realizing control of opening/closing of the valve.

Although the present device has been disclosed above by means of preferred embodiments, it is by no means limited to this. Various changes and amendments made by any person skilled in the art within the spirit and scope of the present device shall be included in the scope of protection thereof. Thus, the scope of protection of the present device should be regarded as the scope defined by the claims.