Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
A LOW VOLTAGE, LOW POWER BANDGAP CIRCUIT
Document Type and Number:
WIPO Patent Application WO/2013/066583
Kind Code:
A2
Abstract:
A bandgap voltage generating circuit for generating a bandgap voltage has an operational amplifier that has two inputs and an output. A current mirror circuit has at least two parallel current paths. Each of the current paths is controlled by the output from the operational amplifier. One of the current paths is coupled to one of the two inputs to the operational amplifier. A resistor divide circuit is connected to the other current path. The resistor divide circuit provides the bandgap voltage of the circuit.

Inventors:
TRAN HIEU VAN (US)
LY ANH (US)
VU THUAN (US)
NGUYEN HUNG QUOC (US)
Application Number:
PCT/US2012/059617
Publication Date:
May 10, 2013
Filing Date:
October 10, 2012
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SILICON STORAGE TECH INC (US)
TRAN HIEU VAN (US)
LY ANH (US)
VU THUAN (US)
NGUYEN HUNG QUOC (US)
International Classes:
G05F3/16
Foreign References:
US6590372B12003-07-08
US20070126495A12007-06-07
US20050140428A12005-06-30
Other References:
See references of EP 2774013A4
Attorney, Agent or Firm:
LIMBACH, Alan, A. (2000 University AvenueEast Palo Alto, CA, US)
Download PDF:
Claims:
What Is Claimed Is:

1. A bandgap voltage generating circuit for generating a bandgap voltage, said circuit comprising:

an operational amplifier having two inputs and an output;

a current mirror circuit having at least two parallel current paths; each of said current paths controlled by said output from said operational amplifier;

one of said current paths coupled to one of said two inputs to the operational amplifier; and

a resistor divide circuit connected to the other current path, said resistor divide circuit providing said bandgap voltage.

2. The voltage generating circuit of claim 1 wherein each of said two current paths has a PMOS transistor controlling the current between the source and the drain with its gate coupled to the output of the operational amplifier.

3. The voltage generating circuit of claim 1 wherein said one of said two current paths has two parallel subpaths with each subpath connected to a different one of the two inputs of the operational amplifier. 4. The voltage generating circuit of claim 3 wherein one of the subpaths has a resistor connected in the subpath.

5. The voltage generating circuit of claim 3 wherein said resistor divide circuit comprises a first resistor and a second resistor connected in series at a node, with said node providing the bandgap voltage.

6. The voltage generating circuit of claim 5 wherein said first resistor and second resistor have substantially equal resistance values.

7. The voltage generating circuit of claim 4 wherein each current path comprises a PMOS transistor controlling the current between the source and the drain with its gate coupled to the output of the operational amplifier;

a bipolar transistor having an emitter/collector connected in series with the source/drain of the PMOS transistor.

8. The voltage generating circuit of claim 7 wherein each of the subpaths has a current source.

9. The voltage generating circuit of claim 8 wherein the current source in each subpath comprises a PMOS transistor and a native MOS transistor connected in parallel.

10. The voltage generating circuit of claim 9 wherein each of said PMOS transistor and native NMOS transistor has a gate with a control bias to simulate a pre-determined resistance value.

11. The voltage generating circuit of claims 8 wherein the current source in each subpath comprises a resistor.

12. The voltage generating circuit of claim 7 wherein each of the subpaths is connected to one of the two inputs to the operational amplifier.

13. The voltage generating circuit of claim 1 further comprising a bipolar transistor connected in parallel with the resistor divide circuit. 14. The voltage generating circuit of claim 1 further comprising a second resistor divide circuit.

15. The voltage generating circuit of claim 14 wherein one of the inputs to the operational amplifier is from said second resistor divide circuit.

16. The voltage generating circuit of claim 1 further comprising a third current path having a PMOS transistor connected to the bandgap voltage, with said PMOS transistor coupled to the output of the operational amplifier.

17. The voltage generating circuit of claim 16, wherein said resistor divide circuit comprises a first resistor connected in series with a second resistor at an output node with the output node providing the bandgap voltage, and with the output node connected to the PMOS transistor of the third current path.

18. The voltage generating circuit of claim 1 further comprising an operational amplifier bias current circuit connected to receive the output of the operational amplifier and for providing an operational biasing current to the operational amplifier.

19. The voltage generating circuit of claim 18 wherein said operational amplifier bias current circuit comprises a PMOS transistor having a gate connected to the output of the operational amplifier, and serially connected to a NMOS transistor connected to ground.

20. The voltage generating circuit of claim 18 further comprising an initial bias current circuit connected to the operational amplifier for reducing the bias current to the operational amplifier as the operational amplifier bias current circuit provides the operational bias current to the operational amplifier.

21. The voltage generating circuit of claim 1 wherein the operational amplifier is a two stage operational amplifier. 22. The voltage generating circuit of claim 21 wherein one of the two stages of the operational amplifier comprises native MOS transistors.

23. The voltage generating circuit of claim 22 wherein said native MOS transistors are in the input to the operational amplifier.

24. The voltage generating circuit of claim 22 wherein said native MOS transistors are in the output of the operational amplifier.

25. The voltage generating circuit of claim 22 wherein said operational amplifier is a cascade operational amplifier.

26. The voltage generating circuit of claim 22 wherein a first stage of the operational amplifier is a folded cascode operational amplifier.

27. The voltage generating circuit of claim 26 wherein a second stage of the operational amplifier is a common source amplifier.

Description:
A LOW VOLTAGE, LOW POWER BANDGAP CIRCUIT

TECHNICAL FIELD

[0001] The present invention relates to a bandgap voltage generating circuit, and more particularly to a low power circuit for generating a low bandgap voltage. BACKGROUND OF THE INVENTION

[0002] Bandgap voltage generating circuits are well known in the art. See for example USP 6,943,617. Referring to Figure 1 there is shown a bandgap voltage generating circuit 10 of the prior art. The circuit 10 comprises two parallel current paths, marked as II and 12. The current in the path 12 is 12 = ( Vbel- Vbe2) / R0 = dVbe / R0 (where Vbel is the voltage across the base-emitter of the bipolar transistor 12 in current path II and Vbe2 is the voltage across the base-emitter of the bipolar transistor 14 of current path 12). dVbe = VT * In (N), where VT is thermal voltage k*T/q, k = Boltzmann constant, q = electron charge; hence is proportional to absolute temperature (PTAT). Vbe is complementary ( or negative) to absolute temperature ( CTAT). The output bandgap voltage Vbg = (Rl / R0) dVbe + Vbe3 (where Vbe3 is the voltage across the base-emitter of the bipolar transistor 16 in current path 13). The size of the emitter of the bipolar transistor 12 and the bipolar transistor 16 are substantially the same, while the size of the emitter of the bipolar transistor 14 is approximately N times the size of the emitter of the bipolar transistor 12. In general, the disadvantage of the circuit 10 is that the minimum bandgap voltage is high, (on the order of >2 volts).

[0003] Referring to Figure 2 there is shown another bandgap voltage generating circuit 20 of the prior art. The circuit 20 is similar to the circuit 10 shown in Figure 1 except with the addition of a charge pump as shown. However, the result is similar to the circuit 10 shown in Figure 1 in that the minimum bandgap voltage is on the order of >2 volts.

[0004] Referring to Figure 3 there is shown yet another bandgap voltage generating circuit 30 of the prior art. The circuit 30 comprises an operational amplifier 32 with two inputs and one output. The operational amplifier 32 receives inputs from a current mirror (34a & 34b). The output of the operational amplifier 32 is used to control a PMOS transistor 36 (two are shown which is equivalent to one PMOS transistor 36, circuit wise) connected in series with a resistor 38, with the output of the bandgap voltage taken from the connection of the PMOS transistor 36 with the resistor 38. Although the output of the bandgap voltage can be as low as 1.0 volts, the circuit 30 requires multiple precise circuits resulting in potential mismatches.

[0005] Referring to Figure 4 there is shown yet another bandgap voltage generating circuit 40 of the prior art. The circuit 40 comprises an operational amplifier 42 with two inputs and one output. One of the input is taken from a resistor divide circuit (comprising resistors Rl and R2), while the other is from a parallel circuit. The output is used to control the current path through the two circuits. The output of the bandgap voltage is on the order of 1.25 volts.

[0006] As more and more electronic devices become portable and use battery as a source of power, this requires the bandgap circuit to have low power consumption as well as being able to generate a low voltage. Hence there is a need for a low voltage, low power bandgap circuit.

SUMMARY OF THE INVENTION [0007] A bandgap voltage generating circuit for generating a bandgap voltage comprises an operational amplifier that has two inputs and an output. A current mirror circuit has at least two parallel current paths. Each of the current paths is controlled by the output from the operational amplifier. One of the current paths is coupled to one of the two inputs to the operational amplifier. A resistor divide circuit is connected to the other current path. The resistor divide circuit provides said bandgap voltage.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] Figure 1 is a circuit diagram of a bandgap circuit of the prior art. [0009] Figure 2 is a circuit diagram of another bandgap circuit of the prior art. [0010] Figure 3 is a circuit diagram of yet another bandgap circuit of the prior art. [0011] Figure 4 is a circuit diagram of yet another bandgap circuit of the prior art. [0012] Figure 5 is a circuit diagram of a first embodiment of the bandgap circuit of the present invention.

[0013] Figure 6 is a circuit diagram of a second embodiment of the bandgap circuit of the present invention.

[0014] Figure 7 is a circuit diagram of a third embodiment of the bandgap circuit of the present invention.

[0015] Figure 8 is a circuit diagram of a fourth embodiment of the bandgap circuit of the present invention.

[0016] Figure 9 is a circuit diagram of a fifth embodiment of the bandgap circuit of the present invention. [0017] Figure 10 is a circuit diagram of a sixth embodiment of the bandgap circuit of the present invention.

[0018] Figure 11 is a circuit diagram of a seventh embodiment of the bandgap circuit of the present invention.

[0019] Figure 12 is a circuit diagram of a eighth embodiment of the bandgap circuit of the present invention.

[0020] Figure 13 is a circuit diagram of a ninth embodiment of the bandgap circuit of the present invention.

[0021] Figure 14 is a circuit diagram of a tenth embodiment of the bandgap circuit of the present invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

[0022] Referring to Figure 5 there is shown a first embodiment of the bandgap circuit 50 of the present invention. The circuit 50 comprises an operational amplifier (op amp) 52, which has a first non-inverting input 54, an inverting second input 56, and an output 58. The output 58 is connected to the gate of three PMOS transistors: PI, P2 and P3. Each of the transistors PI, P2 and P3 is connected in series with a current path II, 12 and 13, which are all in parallel. The output 58 controls the flow of current in the current paths II, 12 and 13. The current path II is connect to parallel current subpaths: 14 and 15. Each of the current subpaths 14 and 15 has a equivalent current source (In and Ir respectively) connected in series. The output of the current sources In and Ir, respectively, is connected to the inputs 54 and 56 to the operational amplifier 52 respectively. The current source In is connected to the emitter of a PNP bipolar transistor 60, whose base and collector are connected to each other, and to ground. The current source Ir is connected to a resistor Rl, which is then connected to the emitter of a PNP bipolar transistor 62, whose base and collector are connected to each other, and to ground. The emitter of the transistor 62 has a ratio of N times that of the emitter of the transistor 60. The current Ir is determined by the current 15 which is dVbe/Rl (dVbe = Vbe of PNP 60 - Vbe of PNP 64). The current 14 is determined by the current In, which is determined by a current mirro ratio In/Ir. The current II , 14, 15 are hence proportional to absolute temperature (PTAT). The third MOS transistor P3 is connected in the current path 13, (which mirrors from transistor PI and hence PTAT), which is connected to the emitter of a PNP bipolar transistor 64, whose base and collector are connected to each other, and to ground. The emitter of transistor 64 has substantially the same area as that of bipolar transistor 60. A resistor divide circuit comprising of resistors R3 connected in series with resistor R2 is connected in parallel to the emitter/collector of transistor 64. The resistors R2 and R3 and the Vbe of the bipolar transistor 64 provide a fractional Vbe (a ratio of Vbe < Vbe at the junction of the resistor R2 and R3. The node at the junction of the resistor R2 and R3 is connected to the current path 12 and to the MOS transistor P2, and provides the output bandgap voltage Vbg.

[0023] In the operation of the circuit 50, the resistor Rl can be trimmed to compensate for temperature coefficient (TC) of the output voltage Vbg. Further the resistors R2, R3 can also be trimmed for the TC of the output voltage Vbg. The MOS transistors PI , P2 and P3 act as a current mirror for the current paths II, 12 and 13. Further, the current subpaths 14 and 15 act as a current mirror with the current being provided in the ratio of In/Ir. As a result, the output Vbg = Kl *Vbe (Vbe of transistor 64) + K2*deltaVbe. With Kl = R2/(R2+R3), e.g. 0.5. And with deltaVbe = ((Vbe of transistor 60) - (Vbe of transistor 62)) with K2 = R2eq/ Rl, R2eq is the parallel combination of R2 and R3. Thus, by appropriate trimming of the resistors Rl, R2 and R3, the output bandgap voltage Vbg can be made temperature independent and very small, e.g. <0.6V. Further ratio In/Ir or P2/P1 transistor sizes can be trimmed for TC of the Vbg.

[0024] Referring to Figure 6 there is shown a second embodiment of a circuit 80 of the present invention for the generation of a bandgap voltage. The circuit 80 is similar to the circuit 50 shown in Figure 5. Thus, like numerals will be used for like parts. The only change between the circuit 80 and the circuit 50 is that the (equivalent) current source In shown in Figure 5 is shown in Figure 6 as comprising a PMOS transistor 82a connected in parallel with a native transistor 84a, with the gate of the PMOS transistor 82a connected to ground. The source/drain of the transistors 82a and 84a are connected together and are in series with the current path 14. The (equivalent) current source Ir shown in Figure 5 is shown in Figure 6 as comprising a PMOS transistor 82b connected in parallel with a native transistor 84b, with the gate of the PMOS transistor 82b connected to ground. The source/drain of the transistors 82b and 84b are connected together and are in series with the current path 15. The gates of the native transistors 84a and 84b are connected together and to a voltage source, Vdd. For low voltage operation, such as battery operation, Vdd may be on the order of 1.0-1.2 volts. In all other aspects, the circuit 80 is identical to the circuit 50 and the operation of the circuit 80 is also identical to the operation of the circuit 50. The ratio of In/Ir is determined by the ratio of the size of transistors 82a and 84a over that of transistors 82b and 84b. An alternative embodiment for In and Ir is the PMOS transistors 82a and 82b respectively without the native transistors 84a and 84b. Further gates of PMOS 82a and 82b may be biased at a control bias to simulate an equivalent resistor value (a pre-determined value) such as 100K or IK ohms. Another alternative embodiment for In and Ir is the native transistors 84a and 84b respectively without the PMOS transistors 82a and 82b. Further gates of the native transistors 84a and 84b may be biased at a control bias to simulate an equivalent resistor value (a pre-determined value) such as 100K or IK ohms. [0025] Referring to Figure 7 there is shown a third embodiment of a circuit 90 of the present invention for the generation of a bandgap voltage. The circuit 90 is similar to the circuit 50 shown in Figure 5, and to the circuit 80 shown in Figure 6. Thus, like numerals will be used for like parts. The only change between the circuit 90 and the circuit 50 is that the current source In shown in Figure 5 is shown in Figure 7 as comprising a resistor 92a. The current source Ir shown in Figure 5 is shown in Figure 7 as comprising a resistor 92b. In all other aspects, the circuit 90 is identical to the circuit 50 and the operation of the circuit 90 is also identical to the operation of the circuit 50.

[0026] Referring to Figure 8 there is shown a fourth embodiment of a circuit 100 of the present invention for the generation of a bandgap voltage. The circuit 100 is similar to the circuit 90 shown in Figure 7. Thus, like numerals will be used for like parts. The only change between the circuit 100 and the circuit 90 is that the operational amplifier 52 is shown in greater detail. As shown in Figure 8, the operational amplifier 52 comprises two stages of two cascading differential stages. The first stage consists of two native NMOS transistors 53(a-b) whose gates are supplied with the inputs 56 and 54, respectively. A native NMOS transistor has a threshold voltage substantially close to zero volt. An enhanced NMOS transistor has a threshold voltage around 0.3-1.0 volt. The drain of these native NMOS transistors 53(a-b) (which make a differential input pair) are connected to a pair of two series connected (cascoding load) native NMOS transistors 55(a-b) and 57(a-b) (which make up the output load for the input differential pair), with the two pair of transistors 55(a-b) and 57(a-b) connected to a positive power supply. Since only native transistors are used for the first stage, the circuit 100 operates at a very low voltage power supply, e.g. IV Vdd, as well as low voltage input common mode range, e.g. 0.1V on the nodes 56/54. The drain of the input differential pair transistors 53(a-b) of the first stage are connected to the gate of a second stage enhancement NMOS differential input pair transistors 61(a-b). A pair of PMOS transistors 59(a-b) are connected to the drain of the second input differential pair transistors 61(a-b) and act as the output load for the second stage. An output signal from the second stage (connected to drain of the NMOS transistor 61a which has its gate connected to the drain of the native transistor 53a (of the first input differential pair) is the output of the operational amplifier. A resistor 63 connected to a positive power supply is connected to a diode-connected NMOS transistor 65 to provide a fixed bias current via two NMOS transistors 67(a-b) to supply the bias currents for the input differential pairs 53(a-b) for the operational amplifier 52. The fixed bias current is approximately proportional to power supply, = (Vdd-VT)/R, VT is NMOS threshold voltage.

[0027] Referring to Figure 9 there is shown a fifth embodiment of a circuit 110 of the present invention for the generation of a bandgap voltage. The circuit 110 is similar to the circuit 100 shown in Figure 8. Thus, like numerals will be used for like parts. The only change between the circuit 110 and the circuit 100 is the addition of a IBoa (opamp bias current) circuit 112, and an IB-init (initial bias current) circuit 114, connected to the operational amplifier 52. The IBoa circuit 112 consists of a PMOS transistor 113 with its gate connected to the output of the operational amplifier 52. The PMOS transistor 113 is connected to a diode connected NMOS transistor 115. Once the operational amplifier 52 is operational, meaning its output provides a correct operating bias voltage on node 58, (to the gates of PMOS transistors P1/P2/P3), this bias voltage will cause a bias current (proportional to dVbe/Rl, voltage difference between Vbe on nodes 54 and 56 divided by Rl) to conduct in the IBoa circuit 112. In turn the diode connected NMOS transistor 115 in the circuit 112 will provide a bias voltage connecting to gates of additional bias transistors 117(a-b) of the input differential pairs ( in parallel to the original bias transistors 67(a-b) to the input differential pairs). The additional bias transistors 117(a-b) provide bias current (controlled from the IBoa 112 circuit) to the operational amplifier 52. This bias voltage also causes the original bias current to reduce to a minimum, e..g, Oua, via the IB-init circuit 114 by pulling the gates of the original bias transistors 67(a-b) to low level, e.g. 0V. The IB-init circuit 114 reduces the bias current from the fixed bias current to the operational amplifier 52 as the IBoa circuit 112 provide the (operational) bias current to the operational amplifier 52. The IBoa circuit 112 comes up to a final bias operating current as the IB-init circuit 114 comes to an IB-init minimum.

[0028] Referring to Figure 10 there is shown a sixth embodiment of a circuit 120 of the present invention for the generation of a bandgap voltage. The circuit 120 is similar to the circuit 110 shown in Figure 9. Thus, like numerals will be used for like parts. The only change between the circuit 120 and the circuit 110 is the addition of a start-up circuit 122, connected to the IBoa circuit 112. The IBoa circuit 112 functions as a self bias circuit to provide a self biasing voltage to the operational amplifier 52. The start up circuit 122 senses the output at node 58 of the op amp 52 to monitor if it is operational, meaning whether its value is low (less than Vcc), to determine whether PMOS transistor 123 is drawing current. If the PMOS transistor 123 is not drawing current, then a small amount of fixed current is provided by NMOS transistor 124 which is mirrored by PMOS transistors 125 and 126 and NMOS transistor 127 to NMOS transistor 128 to pull the output node 58 to a low value to inject a bias current into the PMOS transistors P1/P2/P3 which in turn pulls the input nodes 54/56 to the op amp 52 to a high value to start up the circuit. This starts the operational amplifier 52 and makes it operational.

[0029] Referring to Figure 11 there is shown a seventh embodiment of a circuit 130 of the present invention for the generation of a bandgap voltage. The circuit 130 is similar to the circuit 120 shown in Figure 10. Thus, like numerals will be used for like parts. The only change between the circuit 130 and the circuit 120 is that the operational amplifier 132 shown in Figure 11 is the same as the operational amplifier 52 shown in Figure 10 but with a folded cascode structure. The folded cascode structure allows the op amp 132 to operate at a lower power supply voltage (since there is no diode connected PMOS load in the input differential stage). PMOS transistors 134(a-b) acts as load (current mirror load) for the input differential pair 133(a-b) which shows two pair of native NMOS transistors connected (cascoding) in series. Native NMOS transistors 136(a-b) (each one consists of two native NMOS transistors connected in series) (cascoding) acts as NMOS current load for the current difference (from the input stage) which is folded through PMOS transistors 135(a-b). The drain of the transistor 136b is the output node of this NMOS current load. VB 1 and VB2 supply appropriate bias voltage for the transistors 134(a-b) and 135(a-b) respectively. The output voltage of the transistor load 136(a-b) is then amplified by the final stage a common source amplifier) native transistor NMOS 137 and PMOS 138 to provide the output voltage node 58 of the op amp 132. Thus the operational amplifier 132 shown in Figure 11 allows the circuit to operate at a lower power supply Vdd. [0030] Referring to Figure 12 there is shown an eighth embodiment of a circuit 140 of the present invention for the generation of a bandgap voltage. The circuit 140 is similar to the circuit 60 shown in Figure 6. Thus, like numerals will be used for like parts. The circuit 140 comprises an operational amplifier 52 (which can also be the operational amplifier 132 shown in Figure 11), which has a first non-inverting input 54, an inverting second input 56, and an output 58. The output 58 is connected to the gate of two PMOS transistors: PI and P2. Each of the transistors PI and P2 is connected in series with a current path II and 12, which are all connected in parallel. The output 58 controls the flow of current in the current paths II and 12. The current II and 12 are temperature independent currents (ZTC). The current path II is connected to parallel current subpaths: 14 and 15. Each of the current subpaths 14 and 15 has an equivalent current source connected in series. .The current source are identical to the current sources shown in Figure 6, comprising of a PMOS transistor connected in parallel with a native MOS transistor. The output of the current sources In and Ir, respectively, is connected to the inputs 54 and 56 to the operational amplifier 52 respectively. The current ratio of In/Ir is determined by the ratio of the size of transistors 82a and 84a over that of transistors 82b and 84b. The current source In is connected to the emitter of a PNP bipolar transistor 60, whose base and collector are connected to each other, and to ground. The current source Ir is connected to a resistor Rl, which is then connected to the emitter of a PNP bipolar transistor 62, whose base and collector are connected to each other, and to ground. The current source Ir is also connected to a resistor, comprising of resistor R2a and resistor R2b, which collectively form a total resistance of R2, and then to ground. The emitter of the transistor 62 has a ratio of N times that of the emitter of the transistor 60. The second MOS transistor P2 is connected in series with the current path 12, which is connected to a resistor R3, and then to ground. At the connection to the resistor R3 is the output for the bandgap voltage.

[0031] In the operation of the circuit 140, the circuit 140 can be used with a very low voltage source of Vdd. The output bandgap voltage produced by the circuit 140 is

Vbg= (R3/R2)* Vbe (of transistor PNP 60) + (R3/R1)* delta Vbe

Where delta Vbe = Vbe of transistor 60 - Vbe of transistor 62

[0032] Referring to Figure 13 there is shown a ninth embodiment of a circuit 150 of the present invention for the generation of a bandgap voltage. The circuit 150 is similar to the circuit 140 shown in Figure 12. Thus, like numerals will be used for like parts. The circuit 150 has another resistor R4 connected in parallel with the bipolar transistor 60, in the same way resistor R2, which comprises resistors R2a and R2b, is connected in parallel with bipolar transistor 62. For illustration purpose, resistor R4 is shown as comprising two resistors R4a and R4b connected in series, and whose sum of the resistance equals R4, The resistor R4 is added in the current path 14 to balance the current flow of the resistor R2 in the current path 15. In all other aspects, the circuit 150 is identical to the circuit 140 and the operation of the circuit 150 is also identical to the operation of the circuit 140. [0033] Referring to Figure 14 there is shown a tenth embodiment of a circuit 160 of the present invention for the generation of a bandgap voltage. The circuit 160 is similar to the circuit 150 shown in Figure 13. Thus, like numerals will be used for like parts. The circuit 160 has the non-inverting input 54 to the operational amplifier 52 connected to the connection of the resistor R4a and resistor R4b. In addition, the inverting input 56 is connected to the connection of the resistor R2a and resistor R2b. In all other aspects, the circuit 160 is identical to the circuit 150 and the operation of the circuit 160 is also identical to the operation of the circuit 150.

[0034] From the foregoing it can be seen that a low power bandgap circuit for generating a low voltage is disclosed, which is suitable for any electronic devices that uses battery for operation.