Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
MAGNETIC DIELECTRIC DIPOLE ANTENNA
Document Type and Number:
WIPO Patent Application WO/2021/015641
Kind Code:
A1
Abstract:
The invention relates to antenna technology, and more particularly to electrically small transceiving antennae for operating at frequencies of from 30 to 100 000 000 Hz. A magnetic dielectric dipole antenna matched to a resonant frequency f is characterized in that it is comprised of an antenna element formed by an induction winding, capable of being connected to an electric power supply, and an elongate core which passes through the inside of the induction winding and is made of a ferrite material having a mass and parameters at which said ferrite material maintains its magnetic properties in a magnetic field induced by the induction winding when the latter is fed with an electric current having an equivalent power of 0.0001 W or more at a resonant frequency f to which the magnetic dielectric dipole antenna is matched. Using the invention makes it possible to improve the mobility and operating characteristics of an antenna assembly when used in mobile radio stations on board fast-moving objects or in the open air in the case of strong gusts of wind.

Inventors:
LASKO PAUL (RU)
Application Number:
PCT/RU2019/000987
Publication Date:
January 28, 2021
Filing Date:
December 20, 2019
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
LYASKO RADIOELECTRONIC TECH LIMITED LIABILITY COMPANY (RU)
International Classes:
H01Q7/06
Foreign References:
RU2428774C12011-09-10
RU2693556C12019-07-03
RU2466483C12012-11-10
EP3506427A12019-07-03
RU181783U12018-07-26
RU2428774C12011-09-10
US5495259A1996-02-27
Other References:
See also references of EP 3799208A4
Attorney, Agent or Firm:
KOTLOV, Dmitry Vladimirovich (RU)
Download PDF:
Claims:
Формула изобретения

1. Магнитно-диэлектрический диполь, согласованный на резонансную частоту f, характеризующийся тем, что представлен антенным элементом, образованным выполненной с возможностью соединения с источником электрического питания обмоткой индуктивности, и сердечником продолговатой формы, который продет через внутреннее пространство обмотки индуктивности, и объем которого выполнен из ферритового материала, обладающего массой и параметрами, при которых данный ферритовый материал сохраняет магнитные свойства в индуцируемом обмоткой индуктивности магнитном поле, при запитывании на нее электрического тока, эквивалентного мощности 0,0001 ватт и более, на резонансной частоте f, на которую согласован магнитно-диэлектрический диполь.

2. Магнитно-диэлектрический диполь по п.1 , отличающийся тем, что содержит в собственном внутреннем объеме электрически проводящее тело, выполненное с возможностью соединения с иным проводником и/или с заземлением.

3. Магнитно-диэлектрический диполь по п.1 , отличающийся тем, что ферритовый материал в объеме сердечника выполнен в виде полого удлиненного тела, при этом внутренняя полость содержит диэлектрический материал или вещество.

4. Магнитно-диэлектрический диполь по п.1 , отличающийся тем, что внешняя поверхность сердечника покрыта слоем диэлектрического материала или вещества.

5. Магнитно-диэлектрический диполь по п.1 , отличающийся тем, что сердечник антенного элемента выполнен из множества деталей, зафиксированных неподвижно относительно друг друга.

6. Магнитно-диэлектрический диполь по п.1 , отличающийся тем, что сердечник антенного элемента выполнен из множества деталей между которыми выполнена прослойка из диэлектрического материала или вещества.

7. Магнитно-диэлектрический диполь по п.1 , отличающийся тем, что обмотка индуктивности выполнена с возможностью электромеханического изменения числа витков влияющих на конечное значение индуктивности обмотки.

8. Магнитно-диэлектрический диполь по п.1 , отличающийся тем, что обмотка индуктивности соединена с источником напряжения через согласующий тракт.

9. Магнитно-диэлектрический диполь по п.1 , отличающийся тем, что обмотка индуктивности и сердечник выполнены со степенью свободы перемещения вдоль продольной оси друг друга, посредством ручного или электромеханического приспособления, обеспечивающего независимое перемещение и фиксацию обмотки индуктивности в желаемой позиции по длине тела сердечника.

10. Магнитно-диэлектрический диполь по п.1 , отличающийся тем, что образован множеством антенных элементов, выполненных с возможностью соединения друг с другом параллельно или последовательно или комбинированным параллельным и последовательным способом, образуя единый резонансный контур, выполненный с возможностью соединения с выходом общего источника питания, при этом антенные элементы расположены таким образом, что каждый из антенных элементов находится на расстоянии d относительно всех остальных элементов на порядки меньше одной длины волны для заданной резонансной частоты f, на которую согласован антенный узел.

Description:
Магнитно-диэлектрический диполь

Область техники

Изобретение относится к антенной технике, а именно, - к приемопередающим, электрически малым, антеннам для работы на частотах от 30 до 100 000 000 Гц.

Уровень техники

Из уровня техники известна многоэлементная магнитная антенна ДВ и СДВ диапазона частот (полезная модель PONs 181783. Недостатком такой антенны является техническая сложность проектирования антенного узла, в силу того, что воплощение такого решения на практике невозможно без проектирования и изготовления механических приспособлений, неподвижно фиксирующих антенные элементы относительно друг друга.

Из уровня техники известны также магнитные антенны, предназначенные для передачи и приема электромагнитных сигналов ДВ и СДВ диапазона - передающая линейная магнитная антенна (RU 2428774 С1 МПК H01Q 7/06 опуб. 10.09.2011), и компактная параметрическая антенна (US 5495259А опуб. 27.02.1996, H01Q 7/06). Эти антенны, относящиеся к классу магнитных диполей Герца, объединяет наличие внешней обмотки соленоида, намотанной на поверхность диэлектрического каркаса, внутри которого по всей его длине располагается магнитопровод, выполненный из ферритового материала. Магнитопровод антенн исполняется с заданным значением магнитной и диэлектрической проницаемости, для достижения искомой резонансной частоты изготавливаемой антенны.

Недостатком передающей линейной магнитной антенны (RU 2428774 С1 МПК H01Q 7/06 опуб. 10.09.2011), является зависимость от наличия серийно изготавливаемых ферритовых чашечек (на сегодняшний день представленных в виде ферритов типа Р и РМ), а также неизбежности наличия зазоров между названными чашечками и полых областей в объеме составленного магнитопровода, что не позволяет добиться однородности структуры магнитопровода, что приводит к снижению эффективности приемопередачи и уменьшению сопротивления излучения. Кроме того, использование чашечек для формирования магнитопровода обязывает к поиску средств их неподвижной фиксации относительно друг друга, и в данном случае, поскольку не предусмотрено альтернативы, это может быть достигнуто лишь за счет применения клеевого вещества. Использование клеевого раствора, имеющего большое значение тангенса угла электрических потерь, так же негативно сказывается на качестве работы антенны в режиме передачи.

Недостатком компактной параметрической антенны (US 5495259А опуб. 27.02.1996, H01Q 7/06), является то, что использование жидкой диэлектрической и магнитной субстанции в качестве магнитопровода, приводит к нестабильности параметров антенны при оказании на неё вибрационных воздействий, а также в результате термического воздействия на жидкую среду при нагревании обмотки соленоида, что делает непрактичным ее использование для радиопередач повышенной мощности.

Недостатком, общим для всех вышеназванных решений и их аналогов, является крайне низкая эффективность трансляции электромагнитного сигнала, поскольку применяемый в них ферритовый сердечник (или магнитное вещество) не рассчитывается на сохранение полезных магнитных свойств в индуцируемом их обмоткой соленоида магнитном поле. То есть, не обладает совокупной массой и собственными параметрами, при которых используемый ферритовый материал способен реализовывать своё техническое предназначение при подаче на вход антенны электрического тока, эквивалентного мощности 0,0001 ватт и более, на резонансной частоте f, на которую согласован резонансный контур такой антенны.

Сущность изобретения :

Задачей заявленного технического решения является миниатюризация приемопередающего антенного элемента на основе магнитного диполя Герца для заданной резонансной частоты из диапазона 30 - 100 000 000 Гц, способного осуществлять трансляцию на частоте из указанного диапазона при значительных для радиосвязи мощностях, при одновременном сохранении эффективности излучения такого малогабаритного диполя.

Технический результат заявленного решения заключается в улучшении приемопередающих и эксплуатационных качеств антенного узла, при использовании в составе подвижных радиостанций на борту быстродвижущихся объектов или под открытым небом при резких порывах ветра, при возможности размещения такого антенного узла тангенсально к проводящей поверхности, например, крыше автомобиля.

Технический результат заявленного решения достигается за счет того, что магнитно-диэлектрический диполь, согласованный на резонансную частоту f, характеризуется тем, что представлен антенным элементом, образованным выполненной с возможностью соединения с источником электрического питания обмоткой индуктивности, и сердечником продолговатой формы, который продет через внутреннее пространство обмотки индуктивности, и объем которого выполнен из ферритового материала, обладающего массой и параметрами, при которых данный ферритовый материал сохраняет магнитные свойства в индуцируемом обмоткой индуктивности магнитном поле, при запитывании на нее электрического тока, эквивалентного мощности 0,0001 ватт и более, на резонансной частоте f, на которую согласован магнитно- диэлектрический диполь. В частном случае реализации заявленного технического решения содержит в собственном внутреннем объеме электрически проводящее тело, выполненное с возможностью соединения с иным проводником и/или с заземлением.

В частном случае реализации заявленного технического решения ферритовый материал в объеме сердечника выполнен в виде полого удлиненного тела, при этом внутренняя полость заполнена диэлектрическим материалом или веществом.

В частном случае реализации заявленного технического решения внешняя поверхность сердечника покрыта слоем диэлектрического материала или вещества.

В частном случае реализации заявленного технического решения сердечник антенного элемента выполнен из множества деталей, зафиксированных неподвижно относительно друг друга.

В частном случае реализации заявленного технического решения сердечник антенного элемента выполнен из множества деталей между которыми выполнена прослойка из диэлектрического материала или вещества.

В частном случае реализации заявленного технического решения обмотка индуктивности выполнена с возможностью электромеханического изменения числа витков влияющих на конечное значение индуктивности обмотки.

В частном случае реализации заявленного технического решения обмотка индуктивности соединена с источником напряжения через согласующий тракт.

В частном случае реализации заявленного технического решения обмотка индуктивности и сердечник выполнены со степенью свободы перемещения относительно вдоль продольной оси друг друга, посредством ручного или электромеханического приспособления, обеспечивающего независимое перемещение и фиксацию обмотки индуктивности в желаемой позиции по длине тела сердечника.

В частном случае реализации заявленного технического решения диполь, согласованный на резонансную частоту f, образован множеством антенных элементов, выполненных с возможностью соединения друг с другом параллельно или последовательно или комбинированным параллельным и последовательным способом, образуя единый резонансный контур, выполненный с возможностью соединения с выходом общего источника питания, при этом антенные элементы расположены таким образом, что каждый из антенных элементов находится на расстоянии d относительно всех остальных элементов на порядки меньше одной длины волны для заданной резонансной частоты f, на которую согласован антенный узел.

Более подробно технический результат заявленного изобретения достигается за счет уменьшения размера магнитной антенны (представленной обмоткой индуктивности) посредством использования сердечника, целиком или преимущественно составленного из ферритового материала, и возможности применения такой антенны в качестве передающей на заданной резонансной частоте f при значительных для радиосвязи мощностях, за счет использования в своем составе ферритового материала, подобранного со значением собственной массы и макрофизических параметров, благодаря которым указанный ферритовый материал сохраняет полезные магнитные свойства в магнитном поле, индуцируемом обмоткой индуктивности антенного элемента, при подаче на неё электрического тока эквивалентного мощности 0,0001 ватт на резонансной частоте f (из вышеназванного диапазона частот), с целью осуществления трансляции электромагнитных волн.

Для того чтобы добиться большего значения допустимой подводимой мощности на антенну, избегая при этом значительного проявления нелинейных эффектов в ферритовом материале, возможно увеличение массы ферритового материала в пределах индуцируемого обмоткой индуктивности магнитного поля.

Это может быть достигнуто несколькими способами, раздельно либо одновременно:

а) увеличением диаметра и/или длины сердечника, при пропорциональном увеличении доли, занимаемой ферритовым материалом в указанном сердечнике;

б) изготовлением многоэлементного антенного узла, составленного из множества антенных элементов, которые при параллельном, последовательном или комбинированном параллельном и последовательном включении образуют единую двухмерную или трехмерную антенную систему, содержащую в пределах излучаемого ей магнитного поля большую совокупную массу ферритового материала, в сравнении с антенным узлом, составленным из одного такого элемента.

С учетом этого, а также того обстоятельства, что выбранный ферритовый материал подобран в соответствии с оптимальными параметрами для резонансной частоты f, на которую согласован антенный узел (в том числе, при необходимости - при помощи согласующего тракта), становится возможным использовать заявленное изобретение в качестве эффективной передающей антенны, имеющей физический размер на порядки меньший длины излучаемых волн на диапазонах ОНЧ - ОВЧ.

Краткое описание чертежей

Детали, признаки, а также преимущества настоящего изобретения следуют из нижеследующего описания вариантов реализации заявленного технического решения с использованием чертежей, на которых показано:

Фиг.1 - базовое исполнение магнитно-диэлектрического диполя, при котором его резонансный контур образован одним антенным элементом; Фиг.2 - исполнение антенного элемента магнитно-диэлектрического диполя, при котором сердечник выполнен из множества деталей, зафиксированных неподвижно относительно друг друга;

Фиг.З - исполнение антенного элемента магнитно-диэлектрического диполя, при котором в сердечнике помещено тело, выполненное из электрически проводящего материала или вещества, и выполненное с возможностью соединения с другим проводником;

Фиг.4 - вариант исполнения антенного элемента магнитно-диэлектрического диполя, в котором часть массы сердечника помимо ферритового материала, выполнена из диэлектрического материала или вещества.

Фиг.5 - вариант исполнения магнитно-диэлектрического диполя, при котором он образован множеством антенных элементов при их параллельной схеме подключения;

Фиг.б - вариант исполнения магнитно-диэлектрического диполя, при котором он образован множеством антенных элементов, при их последовательной схеме подключения;

Фиг.7 - вариант исполнения магнитно-диэлектрического диполя, при котором он образован множеством антенных элементов, при их комбинированной схеме подключения параллельным и последовательным способом;

Фиг.8 - иллюстрация взаимного расположения антенных элементов при многоэлементном варианте исполнения магнитно-диэлектрического диполя, при котором антенные элементы расположены на расстоянии на порядки меньшем длины волны для резонансной частоты f, на которую согласован магнитно-диэлектрический диполь;

Фиг.9 - вариант исполнения антенного элемента магнитно-диэлектрического диполя, в котором обмотка индуктивности и сердечник выполнены со степенью свободы перемещения вдоль продольной оси друг друга, посредством ручного или электромеханического приспособления, обеспечивающего независимое перемещение и фиксацию обмотки индуктивности в желаемой позиции по длине тела сердечника.

На фигурах цифрами обозначены следующие позиции:

1 сердечник; 2 обмотка индуктивности; 3 магнитное поле, индуцируемое обмоткой индуктивности, при подаче на нее электрического тока, эквивалентного мощности 0,0001 ватт и более; 4 источник питания; 5 согласующий тракт; 6 деталь, из которой составлен сердечник; 7 электрически проводящее тело; 8 часть объема сердечника, содержащая диэлектрический материал или вещество; 9 объем сердечника, выполненный из ферритового материала; 10 - антенный элемент; 11 приспособление, обеспечивающее перемещение и фиксацию обмотки индуктивности в желаемой позиции по длине тела сердечника. Раскрытие изобретения:

Магнитный диэлектрический диполь представляет собой резонансный контур, согласованный на заданную резонансную частоту f, будучи представлен антенным элементом (10), содержащим обмотку индуктивности (2), один из концов которой выполнен с возможностью соединения с выходом источника питания (4).

Сердечник (1), продет через внутреннее пространство, охватываемое обмоткой индуктивности (2) и выполнен таким образом, что его объем содержит в себе ферритовый материал, то есть, сердечник полностью или преимущественно состоит из ферритового материала. При этом, сердечник (1) выполнен таким образом, что составляющий его объем ферритовый материал (9) выполнен с такой собственной массой и одновременно, значениями макрофизических параметров, при которых данный ферритовый материал (9) способен сохранять полезные магнитные свойства, находясь в магнитном поле (3), индуцируемом обмоткой индуктивности (2) при подаче на вход обмотки индуктивности (2) электрического тока, эквивалентного мощности равной или более 0,0001 ватт с выхода источника питания (4) на резонансной частоте f, на которую согласован магнитный диэлектрический диполь.

Сердечник (1) продет через внутреннее пространство, охватываемое обмоткой индуктивности (2), и имеет продолговатую форму, то есть обладает длинной (L) на несколько порядков превышающей собственное поперечное сечение (S). Такая геометрия сердечника (1) обусловлена тем, что является наиболее оптимальной для увеличения массы ферритового материала при проектировании антенного узла, с учетом минимизации парусности и ветровой нагрузки.

Данная компоновка также позволяет максимально увеличить путь прохождения по телу сердечника (1) силовых линий магнитного поля (3), индуцируемого обмоткой индуктивности (2), одновременно добиваясь увеличения максимального значения допустимой мощности (Р) на вход обмотки индуктивности (2), при котором сохраняются полезные магнитные свойства содержащегося в сердечнике (1) ферритового материала (9) в индуцируемом магнитном поле (3) на резонансной частоте f, на которую согласован магнитно-диэлектрический диполь.

Благодаря этому, становится возможным практическое применение заявленного изобретения в составе передающей или приемопередающей радиостанции.

Ниже, на фиг.1 , приведено описание варианта реализации магнитно- диэлектрического диполя:

через внутреннее пространство, охватываемое пространство обмотки индуктивности (2) продет сердечник (1),

один из концов обмотки индуктивности (2) подключен к выходу источника питания (4), в качестве которого может выступать серийный радиолюбительский трансивер, при этом, данное подключение при необходимости осуществляется через согласующий тракт (5). С выхода источника питания (4) на вход обмотки индуктивности (2) (который с сущности, представляет собой непосредственно вход антенного элемента (10)) подается электрический ток с целью осуществления трансляции электромагнитного сигнала. Стрелками обозначено направление электрического тока.

Второй конец обмотки индуктивности (2) выведен на землю. Сердечник (1) имеет собственную длину (I) на порядки превышающий собственный диаметр (d).

Объем сердечника (1) состоит из ферритового материала, подобранного с такой совокупной массой и одновременно с этим, собственными макрофизическими параметрами, при которых данная масса ферритового материала (9), из которого составлен объем сердечника (1), сохраняет полезные магнитные свойства, оказываясь под воздействием магнитного поля, индуцируемого обмоткой соленоида (2) магнитного- диэлекгрического диполя, при подаче на нее с целью осуществления радиотрансляции, электрического тока с выхода источника питания (4) на резонансной частоте f, на которую согласован магнитный-диэлектрический диполь.

Далее приведен вариант реализации (Фиг.2) антенного элемента (10) магнитно- диэлектрического диполя, при котором сердечник (1) выполнен из множества деталей (6), зафиксированных неподвижно относительно друг друга, для создания единого сердечника (1).

Фиг.З иллюстрирует вариант реализации антенного элемента (10), при котором во внутреннем объеме антенного элемента (10) помещено электрически проводящее тело (7), выполненное с возможностью подключения к иному проводнику, в данном случае, как показано на Фиг.З, - одному из концов обмотки индуктивности (2). Данное тело (7), может быть выполнено, в том числе в виде несущего стержня, на который будут нанизываться детали (6), представленные в частном случае в виде серийных ферритовых сердечников, специально отобранных по их параметрам, и составляющих суммарную массу ферритового материала сердечника (1).

Фиг.4 иллюстрирует исполнение антенного элемента (10), при котором, помимо ферритового материала, сердечник (1) частично изготовлен с применением диэлектрического материала или вещества (8), и не являющегося ферритовым. В данном частном примере реализации, показано, как одно из составных веществ сердечника (1), а именно, ферритовый материал (9), представленный в виде полого удлиненного тела, с внутренней стороны вмещает диэлектрический материал или вещество (8), а также покрыт слоем диэлектрического материала или вещества (8) с внешней стороны, который при этом может выступать в роли слоя защитного кожуха для сердечника, во избежание физического ущерба (например сколы, нарушение геометрии и иное) ферритовым деталям, из которых составлен сердечник (1).

Диэлектрический материал или вещество (8) в данном варианте реализации заявленного технического решения может быть реализовано в виде твердотельных деталей. В частных случаях диэлектрический материал или вещество (8) может быть выполнен в виде порошка, а также жидкости, такой как, но не ограничиваясь этим - этиловый спирт, или в виде газа, такого как, но не ограничиваясь этим - воздух (только если рассматривается заполнение внутреннего пространства объема сердечника).

Фиг. 5 иллюстрирует вариант реализации магнитно-диэлектрического диполя, в котором он представлен резонансным контуром, состоящим из множества антенных элементов (10), чьи входы соединены параллельно, и подведены к общему источнику питания (4), при необходимости - через согласующий тракт (5).

Фиг. 6 иллюстрирует альтернативный вариант исполнения такой многоэлементной компоновки, - при котором магнитно-диэлектрический диполь представлен резонансным контуром, состоящим из множества антенных элементов (10), соединенных последовательно. Такой вариант подразумевает соединение входа обмотки индуктивности (2) первого в резонансном контуре антенного элемента (10) с выходом источника питания (4) (при необходимости, - через согласующий тракт (5)), при этом выход его обмотки индуктивности (2) соединен со входом обмотки индуктивности (2) следующего очередного антенного элемента (10), и так до последнего антенного элемента (10), выход обмотки индуктивности (2) которого выведен на землю.

Фиг. 7 иллюстрирует альтернативный вариант исполнения такой многоэлементной компоновки, - при котором магнитно-диэлектрический диполь представлен резонансным контуром, состоящим из множества антенных элементов (10), соединенных комбинированным способом параллельно и последовательно.

В рассматриваемом случае, магнитно-диэлектрический диполь содержит антенные элементы (10) в количестве 3 штук, при этом входы обмоток индуктивности (2) двоих из них соединены параллельно и подключены к выходу общего источника напряжения (4), а выходы их обмоток индуктивности (2) также соединены параллельно, и к ним последовательно соединен вход обмотки индуктивности (2) третьего антенного элемента (10), выход обмотки индуктивности (2) которого выведен на землю.

Фиг. 8 иллюстрирует взаимное расположение антенных элементов (10) при многоэлементном варианте исполнения магнитно-диэлектрического диполя, при котором антенные элементы (10) расположены на расстоянии на порядки меньшем длины волны (<<l/2) для резонансной частоты f, на которую согласован магнитно-диэлектрический диполь.

Фиг. 9 иллюстрирует исполнение антенного элемента (10), при котором обмотка индуктивности (2) и сердечник (1) выполнены со степенью свободы перемещения вдоль продольной оси друг друга, посредством ручного или электромеханического приспособления (11), в данном частном случае, представленного в виде скользящей по длинному телу сердечника (1) полой болванке, которая при целенаправленном ручном или электромеханическом воздействии на себя увлекает за собой обмотку индуктивности (2), обеспечивая независимое перемещение и фиксацию обмотки индуктивности (2) в желаемой позиции на длине тела сердечника (1).

Практические результаты продемонстрировали, что при использовании ферритовых деталей специально подобранной высокочастотной марки, для составления 90% от массы сердечника цилиндрической формы с габаритами (L) = 1 метр, (D) = 0.04 м и весом 2,5 кг, обеспечивается стабильная радиопередача на частоте 10.1 10 МГц, с КСВ не хуже 1.2: 1 , при подводимой мощности на обмотку индуктивности с выхода серийного трансивера ICOM-7300 100% (порядка 120 ватт). При этом уровень излученного сигнала сопоставим с сигналом, излученным популярной мобильной штыревой антенной высотой 270 см.

Параметры экспериментально полученного магнитопровода вышеупомянутой модели антенны позволяют получать аналогичное согласование и эффективность излучения (при подборе соответствующего согласующего элемента или использовании автоматического согласующего устройства) также и на верхних частотах ВЧ диапазона, а именно 27 - 30 МГц. То есть, в соответствии с заявленным изобретением возможна разработка полноценной мобильной ферритовой передающей антенны с согласующим устройством, позволяющим её динамическую настройку и практичное использование на передачу в пределах достаточно широкого диапазона частот.

В частности, при использовании вышеупомянутой модели антенны, при подаче на её резонансный контур с выхода серийного трансивера ICOM-7300 100% мощности (порядка 120 ватт), на частоте 28.250 МГц, при значении КСВ не хуже 1.2 : 1 , на дистанции 40 метров (3.7l) был зарегистрирован сигнал при помощи пеленгационной антенны MDF930X равный 36.5 мА/м. Таким образом, на дистанции 40 метров получен сигнал с уровнем 0.1 *36.5*377*10 Л (-3) = 1.38 В/м, что означает что излученная мощность Prad равна 49.38 ватт (41.15% от поданной мощности с выхода трансивера).

Это свидетельствует о достаточно высокой эффективности излучения антенны для ее габаритов с учетом используемой частоты, и об успешном достижении технического результата по заявленному изобретению. В случае, если бы модель антенны была изготовлена с использованием ферритового материала с неподходящими значениями собственных параметров (например, несоответствующих частоте, на которой осуществлялась трансляция), или недостаточной массой, - ферритовый материал сердечника вошел бы в насыщение, что приводит к росту величины сопротивления потерь и уменьшению сопротивления излучения. Что привело бы к низкой эффективности излучения антенны и неприменимости для дальней радиопередачи.

Данное обстоятельство раскрывает существенный потенциал для промышленного проектирования, производства и применения антенн на основе заявленного изобретения.

Современная порошковая металлургия уже достаточно давно обеспечивает мировой и отечественный рынок широким ассортиментом серийных ферритовых сердечников различных заданных параметров, которые могут быть использованы для экспериментального моделирования и последующего создания полнофункциональных передающих антенн и антенных систем для ОНЧ - ОВЧ диапазонов частот на основе использования ферритовых стержней (цельных или составленных из комплекта идентичных деталей). Возможность реализации и эффективного применения таких антенн в режиме передачи подтверждена экспериментально в лабораторных условиях и трассовых испытаниях. Ферритовый материал имеет зависимость собственных параметров от частоты переменного магнитного поля и собственной температуры. С учетом данной зависимости, подбирается масса, при которой выбранный ферритовый материал способен сохранять полезные магнитные свойства, на выбранном частотном диапазоне при желаемых подводимых мощностях.

В сравнении с распространенными магнитными приемопередающими антеннами, представленными в виде одновитковой или многовитковой рамки, заявленное изобретение обладает улучшенными мобильными характеристиками, а именно, возможностями применения на борту быстродвижущегося объекта.

В силу значительно меньшего поперечного сечения возбуждающего контура (обмотки индуктивности) для частот метровых волн и ниже, упрощается конструкция поддерживающего каркаса обмотки и внешнего защитного корпуса антенны, и обеспечивается возможность более жесткой фиксации обмотки возбуждения, для её защиты от воздействия ветровой нагрузки и вибраций, причиняющих ущерб стабильности настройки антенны на искомую частоту.

В сравнении с магнитными антеннами, выполненными на основе использования сердечника, состоящего из ферритового материала, заявленное изобретение обладает улучшенными передающими характеристиками, в силу использования продолговатого сердечника, содержащего специально подобранный ферритовый материал, обладающий макрофизическими параметрами и массой, которые в своей совокупности позволяют сердечнику сохранять магнитные свойства в магнитном поле, индуцируемом обмоткой индуктивности антенны на её резонансной частоте f, при подведении на её вход электрического тока, эквивалентного мощности равной или более 0,0001 ватт.

В сравнении с распространенными мобильными штыревыми антеннами, заявленное изобретение обладает существенно улучшенными мобильными и эксплуатационными характеристиками, в силу того, что представляет собой (в наиболее распространенном сценарии) горизонтально расположенное тело, не требующее физических манипуляций для приведения возбуждающего контура в состояние рабочей готовности. Данный результат обеспечивается тем, что физическое положение элементов антенны по заявленному изобретению, необходимое для оптимальной работы в режиме приема/передачи, не отличается от их положения, оптимального для перевозки на борту быстродвижущегося объекта, при соблюдении всех нижеследующих условий: а) минимизация механического воздействия (вибрация, сопротивление воздуха) на излучающие элементы антенны;

б) исключение физического столкновения с внешними объектами (мосты, транспорт и др.);

в) обеспечение максимальной визуальной скрытности.

В частном варианте заявленное изобретение образовано множеством антенных элементов, выполненных с возможностью соединения друг с другом параллельно или последовательно или комбинированным параллельным и последовательным способом, образуя единый резонансный контур, выполненный с возможностью соединения с выходом общего источника питания, при этом антенные элементы расположены таким образом, что каждый из антенных элементов находится на расстоянии относительно ближайшего антенного элемента меньше одной длины волны для заданной резонансной частоты f, на которую согласован антенный узел. Такое расстояние между антенными элементами обусловлено тем, что разность фаз на излучающих элементах должна быть близкой к нулю.

В частном варианте заявленное изобретение реализовано таким образом, что обмотка индуктивности и сердечник выполнены со степенью свободы перемещения вдоль продольной оси друг друга, посредством ручного или электромеханического приспособления, обеспечивающего независимое перемещение и фиксацию обмотки индуктивности в желаемой позиции по длине тела сердечника. Такая компоновка может быть использована с целью дополнительной, плавной динамической настройки антенны на искомую резонансную частоту f.