Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR ESTIMATING THE EFFECTIVENESS OF A TREATMENT BY AN ANTI-TNF ALPHA AGENT IN A PATIENT SUFFERING FROM RHEUMATOID ARTHRITIS AND HAVING AN INADEQUATE RESPONSE TO AT LEAST ONE BIOTHERAPY
Document Type and Number:
WIPO Patent Application WO/2020/128335
Kind Code:
A1
Abstract:
The present invention relates to a method for estimating the effectiveness of a treatment by an anti-TNFα agent in a patient suffering from rheumatoid arthritis and having an inadequate response to at least one prior biotherapy, consisting in analyzing a biological sample of said patient for the expression of a set of biomarkers, the results of which allowing to determine whether said agent is a treatment which will engender a beneficial response for said patient. The present invention also relates to a system for estimating the effectiveness of said treatment in said patient, comprising means for measuring or receiving data concerning the level of expression of said biomarkers and means for processing said data, which are configured to estimate the effectiveness of said treatment in said patient.

Inventors:
GAUDIN PHILIPPE (FR)
BAILLET ATHAN (FR)
COURTIER ANAÏS (FR)
NGUYEN CHUONG (FR)
GUIGUE LISA (FR)
GOTTENBERG JACQUES-ERIC (FR)
Application Number:
PCT/FR2019/053166
Publication Date:
June 25, 2020
Filing Date:
December 18, 2019
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SINNOVIAL (FR)
International Classes:
G16B40/00; G01N33/564
Foreign References:
Other References:
RENDAS-BAUM REGINA ET AL: "Evaluating the efficacy of sequential biologic therapies for rheumatoid arthritis patients with an inadequate response to tumor necrosis factor-Î inhibitors", ARTHRITIS RESEARCH AND THERAPY, BIOMED CENTRAL, LONDON, GB, vol. 13, no. 1, 16 February 2011 (2011-02-16), pages R25, XP021091613, ISSN: 1478-6354, DOI: 10.1186/AR3249
C TROCME ET AL: "Apolipoprotein A-I and platelet factor 4 are biomarkers for infliximab response in rheumatoid arthritis", ANNALS OF THE RHEUMATIC DISEASES, vol. 68, no. 8, 29 July 2008 (2008-07-29), pages 1328 - 1333, XP055021751, ISSN: 0003-4967, DOI: 10.1136/ard.2008.093153
MOROZZI G ET AL: "Low serum level of COMP, a cartilage turnover marker, predicts rapid and high ACR70 response to adalimumab therapy in rheumatoid arthritis", CLINICAL RHEUMATOLOGY ; JOURNAL OF THE INTERNATIONAL LEAGUE OF ASSOCIATIONS FOR RHEUMATOLOGY, SPRINGER-VERLAG, LO, vol. 26, no. 8, 7 February 2007 (2007-02-07), pages 1335 - 1338, XP019494606, ISSN: 1434-9949
NGUYEN MINH VU CHUONG ET AL: "Prealbumin, platelet factor 4 and S100A12 combination at baseline predicts good response to TNF alpha inhibitors in rheumatoid arthritis", JOINT BONE SPINE, ELSEVIER, AMSTERDAM, NL, vol. 86, no. 2, 6 June 2018 (2018-06-06), pages 195 - 201, XP085617884, ISSN: 1297-319X, DOI: 10.1016/J.JBSPIN.2018.05.006
MINH VU CHUONG NGUYEN ET AL: "Identification of cartilage oligomeric matrix protein as biomarker predicting abatacept response in rheumatoid arthritis patients with insufficient response to a first anti-TNF[alpha] treatment", JOINT BONE SPINE, 1 September 2018 (2018-09-01), AMSTERDAM, NL, XP055539839, ISSN: 1297-319X, DOI: 10.1016/j.jbspin.2018.09.005
CRNKIC MELIHA ET AL: "Serum cartilage oligomeric matrix protein (COMP) decreases in rheumatoid arthritis patients treated with infliximab or etanercept", ARTHRITIS RESEARCH AND THERAPY, BIOMED CENTRAL, LONDON, GB, vol. 5, no. 4, 29 April 2003 (2003-04-29), pages R181 - R185, XP021020701, ISSN: 1478-6354, DOI: 10.1186/AR760
B CYLWIK ET AL: "Relationship between serum acute-phase proteins and high disease activity in patients with rheumatoid arthritis", ADVANCES IN MEDICAL SCIENCES, vol. 55, no. 1, 1 January 2010 (2010-01-01), PL, pages 80 - 85, XP055623098, ISSN: 1896-1126, DOI: 10.2478/v10039-010-0006-7
BLASCHKE, S.RINKE, K.MARING, M.FLAD, T.PATSCHAN, S.JAHN, O.MUELLER, C.A.MUELLER, G.A.DIHAZI, H.: "Haptoglobin-a1, -a2, vitamin D-binding protein and apolipoprotein C-III as predictors of etanercept drug response in rheumatoid arthritis", ARTHRITIS RES. THER., 2015, pages 17
BURK, R.F.HILL, K.E.: "Selenoprotein P - Expression, Functions, and Rôles in Mammals", BIOCHIM. BIOPHYS. ACTA, vol. 1790, 2009, pages 1441 - 1447, XP026688174, DOI: 10.1016/j.bbagen.2009.03.026
CANTATORE, F.P.ACQUISTA, C.A.PIPITONE, V.: "Evaluation of bone turnover and osteoclastic cytokines in early rheumatoid arthritis treated with alendronate", J. RHEUMATOL., vol. 26, 1999, pages 2318 - 2323
CHANG, X.ZHAO, Y.WANG, Y.CHEN, Y.YAN, X.: "Screening citrullinated proteins in synovial tissues of rheumatoid arthritis using 2-dimensional western blotting", J. RHEUMATOL., vol. 40, 2013, pages 219 - 227, XP009174066, DOI: 10.3899/jrheum.120751
CHARLES-SCHOEMAN, C.GUGIU, G.B.GE, H.SHAHBAZIAN, A.LEE, Y.Y.WANG, X.FURST, D.E.RANGANATH, V.K.MALDONADO, M.LEE, T. ET AL.: "Remodeling of the HDL proteome with treatment response to abatacept or adalimumab in the AMPLE trial of patients with rheumatoid arthritis", ATHEROSCLEROSIS, vol. 275, 2018, pages 107 - 114, XP085465995, DOI: 10.1016/j.atherosclerosis.2018.04.003
CONIGLIARO, P.TRIGGIANESE, P.CHIMENTI, M.S.LUCCHETTI, R.KROEGLER, B.PERRICONE, R.: "Serological markers associated with disease activity in patients with rheumatoid arthritis treated with rituximab", J. INT. MED. RES., vol. 44, 2016, pages 53 - 57
CONNOLLY, M.MULLAN, R.H.MCCORMICK, J.MATTHEWS, C.SULLIVAN, O.KENNEDY, A.FITZGERALD, O.POOLE, A.R.BRESNIHAN, B.VEALE, D.J. ET AL.: "Acute-phase sérum amyloid A regulates tumor necrosis factor a and matrix turnover and predicts disease progression in patients with inflammatory arthritis before and after biologie therapy", ARTHRITIS RHEUM., vol. 64, 2012, pages 1035 - 1045
COX, D.W.HUBER, O.: "Rheumatoid arthritis and alpha-1-antitrypsin", LANCET LOND. ENGL., vol. 1, 1976, pages 1216 - 1217
CRNKIC, M.MÂNSSON, B.LARSSON, L.GEBOREK, P.HEINEGÂRD, D.SAXNE, T.: "Sérum cartilage oligomeric matrix protein (COMP) decreases in rheumatoid arthritis patients treated with infliximab or etanercept", ARTHRITIS RES. THER., vol. 5, 2003, pages R181 - 185, XP021020701, DOI: 10.1186/ar760
CYLWIK, B.CHROSTEK, L.GINDZIENSKA-SIESKIEWICZ, E.SIERAKOWSKI, S.SZMITKOWSKI, M.: "Relationship between sérum acute-phase proteins and high disease activity in patients with rheumatoid arthritis", ADV. MED. SCI., vol. 55, 2010, pages 80 - 85, XP055623098, DOI: 10.2478/v10039-010-0006-7
GABAY, C.MCLNNES, I.B.KAVANAUGH, A.TUCKWELL, K.KLEARMAN, M.PULLEY, J.SATTAR, N.: "Comparison of lipid and lipid-associated cardiovascular risk marker changes after treatment with tocilizumab or adalimumab in patients with rheumatoid arthritis", ANN. RHEUM. DIS., vol. 75, 2016, pages 1806 - 1812
HARROLD, L.R.REED, G.W.KREMER, J.M.CURTIS, J.R.SOLOMON, D.H.HOCHBERG, M.C.GREENBERG, J.D.: "The comparative effectiveness of abatacept versus anti-tumour necrosis factor switching for rheumatoid arthritis patients previously treated with an anti-tumour necrosis factor", ANN. RHEUM. DIS., vol. 74, 2015, pages 430 - 436
HWANG, Y.G.BALASUBRAMANI, G.K.METES, I.D.LEVESQUE, M.C.BRIDGES, S.L.MORELAND, L.W.: "Differential response of sérum amyloid A to différent therapies in early rheumatoid arthritis and its potential value as a disease activity biomarker", ARTHRITIS RES. THER., 2016, pages 18
KAWASHIRI, S.-Y.KAWAKAMI, A.UEKI, Y.IMAZATO, T.IWAMOTO, N.FUJIKAWA, K.ARAMAKI, T.TAMAI, M.NAKAMURA, H.ORIGUCHI, T. ET AL.: "Decrement of sérum cartilage oligomeric matrix protein (COMP) in rheumatoid arthritis (RA) patients achieving remission after 6 months of etanercept treatment: comparison with CRP, IgM-RF, MMP-3 and anti-CCP Ab. Jt. Bone Spine", REV. RHUM., vol. 77, 2010, pages 418 - 420
KIM, D.MUN, S.LEE, J.PARK, A.SEOK, A.CHUN, Y.-T.KANG, H.-G.: "Proteomics analysis reveals differential pattern of widespread protein expression and novel rôle of histidine-rich glycoprotein and lipopolysaccharide-binding protein in rheumatoid arthritis", INT. J. BIOL. MACROMOL., vol. 109, 2018, pages 704 - 710, XP085346818, DOI: 10.1016/j.ijbiomac.2017.12.075
KIM, M.CAI, Q.OH, Y.: "Therapeutic potential of alpha-1 antitrypsin in human disease", ANN. PEDIATR. ENDOCRINOL. METAB., vol. 23, 2018, pages 131 - 135
KRINTEL, S.B.PALERMO, G.JOHANSEN, J.S.GERMER, S.ESSIOUX, L.BENAYED, R.BADI, L.OSTERGAARD, M.HETLAND, M.L.: "Investigation of single nucleotide polymorphisms and biological pathways associated with response to TNFa inhibitors in patients with rheumatoid arthritis. Pharmacogenet", GENOMICS, vol. 22, 2012, pages 577 - 589
LI, L.DONG, M.WANG, X.-G.: "The Implication and Significance of Beta 2 Microglobulin: A Conservative Multifunctional Regulator", CHIN. MED. J. (ENGL., vol. 129, 2016, pages 448 - 455, XP055642991, DOI: 10.4103/0366‑6999.176084
NGUYEN, M.V.C.BAILLET, A.ROMAND, X.TROCMÉ, C.COURTIER, A.MAROTTE, H.THOMAS, T.SOUBRIER, M.MIOSSEC, P.TÉBIB, J. ET AL.: "Prealbumin, platelet factor 4 and S100A12 combination at baseline predicts good response to TNF alpha inhibitors in Rheumatoid Arthritis", JT. BONE SPINE REV. RHUM., 2018
NORATA, G.D.TSIMIKAS, S.PIRILLO, A.CATAPANO, A.L.: "Apolipoprotein C-III: From Pathophysiology to Pharmacology", TRENDS PHARMACOL. SCI., vol. 36, 2015, pages 675 - 687, XP055301744, DOI: 10.1016/j.tips.2015.07.001
OHYAMA, K.UEKI, Y.KAWAKAMI, A.KISHIKAWA, N.TAMAI, M.OSAKI, M.KAMIHIRA, S.NAKASHIMA, K.KURODA, N.: "Immune complexome analysis of sérum and its application in screening for immune complexantigens in rheumatoid arthritis", CLIN. CHEM., vol. 57, 2011, pages 905 - 909
PREVOO, M.L.VAN 'T HOF, M.A.KUPER, H.H.VAN LEEUWEN, M.A.VAN DE PUTTE, L.B.VAN RIEL, P.L.: "Modified disease activity scores that include twenty-eight-joint counts. Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis", ARTHRITIS RHEUM., vol. 38, 1995, pages 44 - 48, XP009092594, DOI: 10.1002/art.1780380107
PRUCHA, M.HEROLD, I.ZAZULA, R.DUBSKA, L.DOSTAL, M.HILDEBRAND, T.HYANEK, J.: "Significance of lipopolysaccharide-binding protein (an acute phase protein) in monitoring critically ill patients", CRIT. CARE LOND. ENGL., vol. 7, 2003, pages R154 - 159, XP021012216, DOI: 10.1186/cc2386
RENDAS-BAUM, R.WALLENSTEIN, G.V.KONCZ, T.KOSINSKI, M.YANG, M.BRADLEY, J.ZWILLICH, S.H.: "Evaluating the efficacy of sequential biologie therapies for rheumatoid arthritis patients with an inadéquate response to tumor necrosis factor-a inhibitors", ARTHRITIS RES. THER., vol. 13, 2011, pages R25, XP021091613, DOI: 10.1186/ar3249
RICKLIN, D.LAMBRIS, J.D.: "Complement in immune and inflammatory disorders: therapeutic interventions", J. IMMUNOL. BALTIM. MD 1950, vol. 190, 2013, pages 3839 - 3847, XP055246659, DOI: 10.4049/jimmunol.1203200
ROMANO, C.DEL MASTRO, A.SELLITTO, A.SOLARO, E.ESPOSITO, S.CUOMO, G.: "Tocilizumab reduces complement C3 and C4 sérum levels in rheumatoid arthritis patients", CLIN. RHEUMATOL., vol. 37, 2018, pages 1695 - 1700, XP036501183, DOI: 10.1007/s10067-018-3992-7
SCHUMANN, R.R.LEONG, S.R.FLAGGS, G.W.GRAY, P.W.WRIGHT, S.D.MATHISON, J.C.TOBIAS, P.S.ULEVITCH, R.J.: "Structure and function of lipopolysaccharide binding protein", SCIENCE, vol. 249, 1990, pages 1429 - 1431, XP001122318, DOI: 10.1126/science.2402637
SKOUMAL, M.KOLARZ, G.KLINGLER, A.: "Sérum levels of cartilage oligomeric matrix protein. A predicting factor and a valuable parameter for disease management in rheumatoid arthritis", SCAND. J. RHEUMATOL., vol. 32, 2003, pages 156 - 161
SMOLEN, J.S.LANDEWÉ, R.BIJLSMA, J.BURMESTER, G.CHATZIDIONYSIOU, K.DOUGADOS, M.NAM, J.RAMIRO, S.VOSHAAR, M.VAN VOLLENHOVEN, R. ET A: "EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2016 update", ANN. RHEUM. DIS., vol. 76, 2017, pages 960 - 977
SOUTO, A.MANEIRO, J.R.GÔMEZ-REINO, J.J.: "Rate of discontinuation and drug survival of biologie therapies in rheumatoid arthritis: a systematic review and meta-analysis of drug registries and health care databases", RHEUMATOL. OXF. ENGL., vol. 55, 2016, pages 523 - 534
TAKEUCHI, T.NAKANISHI, T.TABUSHI, Y.HATA, A.SHODA, T.KOTANI, T.SHIMIZU, A.TAKUBO, T.MAKINO, S.HANAFUSA, T.: "Sérum protein profile of rheumatoid arthritis treated with anti-TNF therapy (infliximab", J. CHROMATOGR. B ANALYT. TECHNOL. BIOMED. LIFE. SCI., vol. 855, 2007, pages 66 - 70, XP022162167, DOI: 10.1016/j.jchromb.2007.02.028
TROCMÉ, C.MAROTTE, H.BAILLET, A.PALLOT-PRADES, B.GARIN, J.GRANGE, L.MIOSSEC, P.TEBIB, J.BERGER, F.NISSEN, M.J. ET AL.: "Apolipoprotein A-I and platelet factor 4 are biomarkers for infliximab response in rheumatoid arthritis", ANN. RHEUM. DIS., vol. 68, 2009, pages 1328 - 1333, XP055021751, DOI: 10.1136/ard.2008.093153
VISVANATHAN, S.WAGNER, C.ROJAS, J.KAY, J.DASGUPTA, B.MATTESON, E.L.MACK, M.BAKER, D.G.RAHMAN, M.U.: "E-selectin, interleukin 18, sérum amyloid a, and matrix metalloproteinase 9 are associated with clinical response to golimumab plus methotrexate in patients with active rheumatoid arthritis despite methotrexate therapy", J. RHEUMATOL., vol. 36, 2009, pages 1371 - 1379, XP009181251, DOI: 10.3899/jrheum.080755
XU, Y.YAMADA, T.SATOH, T.OKUDA, Y.: "Measurement of sérum amyloid A1 (SAA1 ), a major isotype of acute phase SAA", CLIN. CHEM. LAB. MED. CCLM, vol. 44, 2005, pages 59 - 63
YEO, L.ADLARD, N.BIEHL, M.JUAREZ, M.SMALLIE, T.SNOW, M.BUCKLEY, C.D.RAZA, K.FILER, A.SCHEEL-TOELLNER, D.: "Expression of chemokines CXCL4 and CXCL7 by synovial macrophages defines an early stage of rheumatoid arthritis", ANN. RHEUM. DIS., vol. 75, 2016, pages 763 - 771
Attorney, Agent or Firm:
REGIMBEAU (FR)
Download PDF:
Claims:
REVENDICATIONS

1. Procédé d’estimation de l’efficacité de traitement par un agent anti-TNFa chez un patient atteint de polyarthrite rhumatoïde et qui a été en réponse inadéquate à au moins un traitement antérieur par biothérapie, ledit procédé comprenant : a) la mesure in vitro du niveau d’expression d’au moins deux biomarqueurs choisis dans le groupe constitué de :

Alphal antitrypsine (A1AT), Béta-2-microglobuline (B2M), Sérum amyloïde A-2 (SAA2), Sélénoproteine P (SeleP), Lipopolysaccharide-Binding Protein (LBP), Complément C3 (C3), Apolipoprotéine C-lll (APOC3), Sérum amyloïde A-1 (SAA1 ), Platelet Factor 4 (PF4) et Cartilage Oligomeric Matrix Protein (COMP), dans un échantillon biologique issu dudit patient,

b) l’estimation de ladite efficacité de traitement par ledit agent anti-TNFa chez ledit patient en fonction de chaque niveau d’expression mesuré pour un biomarqueur choisi dans ledit groupe.

2. Procédé d’estimation de l’efficacité de traitement par un agent anti-TNFa selon la revendication 1 , caractérisé en ce que l’étape b) comprend :

b1 ) la comparaison du niveau d’expression mesuré à l’étape a) par rapport à celui mesuré dans une pluralité d’échantillons de patients atteints de polyarthrite rhumatoïde et ayant reçu un traitement par ledit agent anti-TNFa pour lequel l’efficacité de traitement est connue ; ladite comparaison étant réalisée à l’aide d’un modèle d’apprentissage statistique en utilisant comme données d’entrées les niveaux d’expression d’au moins deux des biomarqueurs mesurés à l’étape a),

b2) l’estimation de ladite efficacité de traitement par ledit agent anti-TNFa chez ledit patient en fonction des résultats déterminés par le modèle défini à l’étape b1 ).

3. Procédé d’estimation de l’efficacité de traitement par un agent anti-TNFa selon l’une quelconque des revendications 1 ou 2, caractérisé en ce que les niveaux d’expression de chaque biomarqueur mesuré à l’étape a) sont utilisés pour obtenir un score relié à l’estimation de l’efficacité de traitement chez ledit patient, ledit score étant comparé avec au moins un seuil prédéterminé de sorte à classifier le pronostic parmi une pluralité de classes.

4. Procédé d’estimation de l’efficacité de traitement par un agent anti-TNFa selon la revendication 3, caractérisé en ce que ladite pluralité de classe comprend au moins deux classes dont une classe de non réponse au traitement par ledit agent anti-TNFa. 5. Procédé d’estimation de l’efficacité de traitement par un agent anti-TNFa selon l’une quelconque des revendications 3 à 4, caractérisé en ce que l’estimation de ladite efficacité de traitement chez ledit patient comprend la comparaison dudit score avec un seuil prédéterminé au-dessous duquel une mauvaise efficacité est prédite et au-dessus duquel une bonne efficacité est prédite.

6. Procédé d’estimation de l’efficacité de traitement par un agent anti-TNFa selon l’une quelconque des revendications 2 à 5, dans lequel le modèle d’apprentissage est basé sur une analyse préalable d'échantillons d'une cohorte comprenant des patients traités par ledit agent anti-TNFa présentant des bonnes réponses au traitement et des patients traités par ledit agent anti-TNFa présentant des mauvaises réponses au traitement.

7. Procédé d’estimation de l’efficacité de traitement par un agent anti-TNFa selon la revendication 6, dans lequel ladite analyse préalable comprend l'application d'une méthode d’apprentissage et de sélection de variables.

8. Procédé d’estimation de l’efficacité de traitement par un agent anti-TNFa selon la revendication 7, dans lequel ladite méthode d’apprentissage et de sélection de variables est la régression logistique.

9. Procédé d’estimation de l’efficacité de traitement par un agent anti-TNFa selon l’une quelconque des revendications 6 à 8, dans lequel lesdits niveaux d'expression sont pondérés en fonction de l'analyse préalable de ladite cohorte pour dériver ledit score.

10. Procédé d’estimation de l’efficacité de traitement par un agent anti-TNFa selon l’une quelconque des revendications 7 à 9, dans lequel ladite méthode d’apprentissage comprend un arbre de décision dans lequel chaque nœud correspond à une comparaison du niveau d’expression mesuré à l’étape a) à une valeur de référence.

1 1 . Procédé d’estimation de l’efficacité de traitement par un agent anti-TNFa selon l’une quelconque des revendications précédentes, caractérisé en ce que ledit agent est capable de bloquer, voire d’inhiber, directement ou indirectement, l’action du TNFa, en particulier en empêchant ou bloquant ou inhibant, directement ou indirectement, l’interaction entre le TNFa et son récepteur, et de préférence ledit agent est l’Adalimumab.

12. Procédé d’estimation de l’efficacité de traitement par un agent anti-TNFa selon l’une quelconque des revendications précédentes, caractérisé en ce que ledit patient a été en réponse inadéquate à au moins un traitement antérieur choisi parmi Etanercept, Abatacept, Infliximab, Tocilizumab, Rituximab, Certolizumab et Golimumab. 13. Procédé d’estimation de l’efficacité de traitement par un agent anti-TNFa selon l’une quelconque des revendications précédentes, caractérisé en ce que l’échantillon biologique est constitué d’un échantillon de fluide biologique, et de préférence le sérum.

14. Procédé d’estimation de l’efficacité de traitement par un agent anti-TNFa selon l’une quelconque des revendications précédentes, caractérisé en ce que le ou les biomarqueurs dont le niveau d’expression est mesuré à l’étape a) est un/sont des biomarqueur(s) protéique(s).

15. Système d’estimation de l’efficacité de traitement par un agent anti-TNFa chez un patient atteint de polyarthrite rhumatoïde et qui a été en réponse inadéquate à au moins un traitement antérieur par biothérapie, ledit système comprenant :

- des moyens de mesure ou de réception des données de mesure du niveau d’expression d’au moins deux biomarqueurs choisis dans un groupe constitué de :

Alphal antitrypsine (A1AT), Béta-2-microglobuline (B2M), Sérum amyloïde A-2 (SAA2), Sélénoproteine P (SeleP), Lipopolysaccharide-Binding Protein (LBP), Complément C3 (C3), Apolipoprotéine C-lll (APOC3), Sérum amyloïde A-1 (SAA1 ), Platelet Factor 4 (PF4) et Cartilage Oligomeric Matrix Protein (COMP), dans un échantillon biologique issu dudit patient,

- des moyens de traitement de données de mesure configurés pour estimer ladite efficacité de traitement chez ledit patient en fonction de chaque niveau d’expression mesuré pour un biomarqueur choisi dans ce groupe.

Description:
PROCEDE D’ESTIMATION DE L’EFFICACITE DE TRAITEMENT PAR UN AGENT ANTI- TNF ALPHA CHEZ UN PATIENT ATTEINT DE POLYARTHRITE RHUMATOÏDE ET EN REPONSE INADEQUATE A AU MOINS UNE BIOTHERAPIE

DOMAINE DE L'INVENTION

La présente invention concerne le traitement de la polyarthrite rhumatoïde. Elle concerne plus particulièrement un procédé d’estimation de l’efficacité de traitement par un agent anti- TNFa, en particulier par l’Adalimumab (ADA), chez un patient atteint de polyarthrite rhumatoïde (PR) et ayant eu une réponse inadéquate à un ou plusieurs traitement(s) antérieur(s) par biothérapie, consistant à analyser un échantillon biologique dudit patient vis- à-vis de l’expression d’un ensemble de biomarqueurs, la corrélation des résultats obtenus pour cet ensemble de biomarqueurs permettant, notamment par comparaison avec des valeurs de références, de déterminer si l’agent anti-TNFa est un traitement prometteur permettant de conduire à une réponse bénéfique pour ledit patient.

La présente invention concerne également un système d’estimation de l’efficacité dudit traitement chez ledit patient comprenant des moyens de mesure ou de réception des données du niveau d’expression desdits biomarqueurs et des moyens de traitement de ces données configurés pour estimer ladite efficacité dudit traitement chez ledit patient.

ARRIERE PLAN DE L'INVENTION

La polyarthrite rhumatoïde (PR) est une maladie inflammatoire chronique caractérisée par une synovite, des lésions articulaires, un handicap fonctionnel et une augmentation significative de la mortalité.

L'intervention précoce à l'aide de sDMARD (synthetic Disease-Modifying Anti- Rheumatic Drug) est maintenant reconnue comme étant essentielle pour prévenir les dommages structurels articulaires et la perte progressive de la fonction. Pour les patients qui ne répondent pas au traitement par sDMARD ou qui développent une réponse inadéquate à ces médicaments au fil du temps, les bDMARDs (biological DMARD) sont une option de traitement additif efficace (Smolen et al., 2017). En pratique clinique, le premier choix de la thérapie biologique est habituellement un inhibiteur du TNFa (Tumor Necrosis Factor alpha). La réponse à un traitement peut varier de manière très importante d’un patient à un autre. Environ 30% à 40% des patients qui commencent un traitement par un inhibiteur du TNFa développent par la suite une réponse insuffisante ou inadéquate à ces médicaments (Souto et al., 2016). Les options pour la continuation du traitement chez les patients insuffisants du TNFa incluent l'utilisation d'un deuxième agent biologique. Compte tenu du nombre d'options de traitement bDMARD disponibles pour les cliniciens et de leur efficacité dans le traitement de la PR, le passage entre les différents bDMARDs est une pratique courante. C’est pourquoi à l’heure actuelle, le praticien préconise, pour la plupart des maladies, un traitement de première intention, puis en cas de réponse insuffisante ou inadéquate, un traitement de seconde intention, et ainsi de suite. Cependant, au sein de cette stratégie globale, il existe un débat sur l'efficacité relative de l'utilisation d'un autre inhibiteur du TNFa (cycle) ou d'un agent biologique avec un mode d'action différent (commutation). De plus, la probabilité pour le patient ayant déjà reçu un anti-TNFa de répondre à un autre traitement biologique diminue progressivement en fonction du nombre croissant d’échecs de traitements antérieurs (Rendas-Baum et al., 201 1 ). Ainsi, les données de la littérature indiquent que toute intervention précoce permet de mieux contenir la progression de la maladie.

En effet, le temps perdu à la mise en évidence d’un éventuel échec thérapeutique se fait au détriment de l’efficacité de l’action thérapeutique et du bien-être du patient, qui dans certains cas peut avoir abouti à de nouveaux symptômes ou conséquences préjudiciables et irréversibles en termes d’état général. De plus, il peut s’agir de traitements coûteux et qui peuvent être lourds à mettre en place, ce qui est tout à fait insatisfaisant lors d’un constat d’échec thérapeutique.

D’importants progrès ont été réalisés ces dernières années concernant le diagnostic, la prise en charge, le traitement et le suivi des patients atteints de maladies inflammatoires chroniques.

En termes de traitements des maladies inflammatoires chroniques, et notamment les rhumatismes inflammatoires chroniques, il existe notamment des biothérapies qui consistent en des molécules biologiques, telles que des protéines, des anticorps, ayant une action thérapeutique. Certaines d’entre elles, sont déjà utilisées et d’autres en cours de développement.

Parmi les maladies inflammatoires chroniques, la polyarthrite rhumatoïde est un trouble auto-immun de la synovie qui se caractérise par la prolifération des synoviocytes et l'infiltration des cellules inflammatoires dans l'articulation. Diverses cytokines jouent un rôle important dans la régulation des maladies inflammatoires.

Les bDMARDs ciblant le facteur de nécrose tumorale (TNF) ou la co-stimulation des cellulles lymphocytaires T par exemple ont permis un progrès considérable pour le traitement de la PR. Actuellement, 9 bDMARDs incluant le modulateur de la co-stimulation de cellules lymphocytaires T Abatacept (ABA), l’anti-IL-6 Tocilizumab (TCZ), l’anti-CD20 Rituximab (RTX), ranti-lnterleukine-1 (IL- 1 ) Anakinra (ANK) et les anti-TNFa Adalimumab (ADA), Etanercept (ETN), Infliximab (IFX), Golimumab (GOL) et Certolizumab Pegol (CTP), sont approuvés pour le traitement de la polyarthrite rhumatoïde. Cependant, les réponses à chaque agent biologique varient pour chaque individu. Par conséquent, faire un choix optimal de ou d’un bDMARD(s) au sein d’une fenêtre d'opportunité thérapeutique est essentiel pour obtenir une efficacité du traitement qui s’avère très coûteux. En effet, les chances de réussite d’un traitement biologique s’amenuisent en fonction du nombre croissant d’échecs thérapeutiques par biothérapie (Rendas-Baum ét al., 201 1 ).

Le praticien manque cependant d’éléments à sa disposition pour l’aider dans son choix thérapeutique. Un outil capable d’apporter au clinicien un score de probabilité de réponse ou de non-réponse à un traitement serait assurément le bienvenu.

En particulier, il manque actuellement des biomarqueurs très précoces pouvant, entre autres, donner des orientations quant à la possible réponse ou non-réponse à un traitement de fond biologique ou conventionnel.

Ces biomarqueurs font appel à la biologie moléculaire et à la biochimie. L’approche hypothético-déductive a réduit la médecine personnalisée à quelques biomarqueurs dont l’intérêt a été fixé a priori et qui n’a pas permis d’épuiser les questions du diagnostic précoce ou de l’approche théranostique. Ainsi, la quête DU biomarqueur permettant de prédire LA réponse à un traitement biologique dans les maladies inflammatoires chroniques, et donc dans la PR, est une illusion. La multiplicité des biomarqueurs génétiques ou biochimiques associés à la bonne réponse ou la non-réponse clinique à un traitement biologique rend la tâche ardue.

La génomique, la transcriptomique, l’épigénétique et la protéomique sont des piliers complémentaires et non redondants dans cette perspective.

Une approche prédictive de type médecine personnalisée ou stratifiée est très novatrice dans le domaine des rhumatismes inflammatoires chroniques et permettrait de prescrire le bon traitement au bon patient au bon moment, de limiter la progression du handicap en orientant le patient le plus rapidement possible vers le traitement auquel il a la plus grande chance de répondre, et d’éviter de prescrire des traitements qui, au contraire, sont associés à une faible probabilité de réponse.

Adalimumab est un anticorps monoclonal intégralement humain, neutralisant de façon spécifique le TNFa (Tumor Necnosis Factor alpha ou facteur de nécrose tumorale alpha). En se combinant avec cette cytokine pro-inflammatoire, l’adalimumab empêche son interaction avec son récepteur, et module ainsi les processus inflammatoires TNFa dépendants.

Quelques études se sont focalisées sur la mise en lumière de biomarqueurs permettant de prédire la réponse au traitement ADA chez des patients atteints de PR. Ces études se portent essentiellement sur la caractérisation de biomarqueurs d’ADN et d’ARN (Krintel et al., 2012), l’ADN et l’ARN sont assujettis à d’éventuelles modifications (épigénétique, régulation de l’expression des gènes, épissage) liées à l’environnement avant d’être traduits en protéines qui sont les effecteurs finaux. L’approche protéomique permet donc de minimiser les variations possibles entre le niveau d’expression des biomarqueurs et les résultats cliniques observés. Cependant ces études se focalisent sur des patients PR naïfs de toutes biothérapies ou une population indifférenciée de patients naïfs et en rotation, c’est-à-dire en réponse insuffisante ou inadéquate à au moins une biothérapie. La distinction entre les populations dîtes naïves et celles ayant déjà reçu une ou plusieurs biothérapies est très importante car de nombreuses études ont démontré un changement du protéome après traitement par les biothérapies comme les anti-TNF (Takeuchi et al., 2007) ou autres (abatacept (Charles-Schoeman et al., 2018), tociluzimab (Gabay et al., 2016). Ainsi, les biomarqueurs prédictifs de réponse chez des patients naïfs de toutes biothérapies sont susceptibles d’être modifiés et ne plus être pertinents chez les patients ayant déjà reçu une ou plusieurs biothérapies. Aussi, la distinction de la situation thérapeutique du patient (naïf ou en rotation) est un critère essentiel dans le choix du biomarqueurs prédictifs. Jusqu’à maintenant les études sur ADA portant sur des patients en situation de rotation se concentrent essentiellement sur la mesure de l’efficacité après administration de cette molécule, en comparaison à d’autres bDMARDs (Harrold et al., 2015) et non sur la caractérisation de biomarqueurs spécifiques et prédictifs de réponse à ADA.

Il existe donc un besoin d’identifier de nouvelles méthodes et/ou biomarqueurs permettant d’orienter de manière personnalisée le praticien vers le traitement qui est le plus prometteur en termes d’efficacité pour un patient donné atteint d’une maladie inflammatoire chronique, en particulier pour les patients souffrant de polyarthrite rhumatoïde, et notamment pour ceux qui sont en situation de réponse inadéquate à un ou plusieurs traitements par biothérapie.

La présente invention vient répondre à ce problème technique vis-à-vis de la réponse à un traitement par un agent anti-TNFa pour un patient atteint de polyarthrite rhumatoïde n’ayant pas eu de réponse thérapeutique suffisante à un ou plusieurs traitement(s) antérieur(s) par biothérapie ; les inventeurs ayant identifié un ensemble de biomarqueurs biologiques dont le niveau d’expression détecté dans un échantillon biologique prélevé chez un tel patient permet d’estimer l’efficacité de ce traitement chez ce patient.

RESUME DE L'INVENTION

La présente invention concerne un procédé d’estimation de l’efficacité de traitement par un agent anti-TNFa chez un patient atteint de polyarthrite rhumatoïde et n’ayant pas eu de réponse thérapeutique adéquate à un ou plusieurs traitement(s) antérieur(s) par biothérapie, ledit procédé comprenant :

a) la mesure in vitro du niveau d’expression d’au moins deux biomarqueurs choisis dans le groupe constitué de Alphal antitrypsine (A1AT), Béta-2-microglobuline (B2M), Sérum amyloïde A-2 (SAA2), Sélénoproteine P (SeleP), Lipopolysaccharide-Binding Protein (LBP), Complément C3 (C3), Apolipoprotéine C-lll (APOC3), Sérum amyloïde A-1 (SAA1 ), Platelet Factor 4 (PF4) et Cartilage Oligomeric Matrix Protein (COMP), dans un échantillon biologique issu dudit patient,

b) l’estimation de ladite efficacité de traitement par ledit agent anti-TNFa chez ledit patient en fonction de chaque niveau d’expression mesuré pour un biomarqueur choisi dans ledit groupe.

En particulier, le procédé d’estimation de l’efficacité de traitement par un agent anti- TNFa selon l’invention comprend :

a) la mesure in vitro du niveau d’expression d’au moins deux biomarqueurs choisis dans le groupe constitué de : Alphal antitrypsine (A1AT), Béta-2-microglobuline (B2M), Sérum amyloïde A-2 (SAA2), Sélénoproteine P (SeleP), Lipopolysaccharide-Binding Protein (LBP), Complément C3 (C3), Apolipoprotéine C-lll (APOC3), Sérum amyloïde A-1 (SAA1 ), Platelet Factor 4 (PF4) et Cartilage Oligomeric Matrix Protein (COMP), dans un échantillon biologique issu dudit patient,

b1 ) la comparaison du niveau d’expression mesuré à l’étape a) par rapport à celui mesuré dans une pluralité d’échantillons de patients atteints de polyarthrite rhumatoïde et ayant reçu un traitement par ledit agent anti-TNFa pour lequel l’efficacité de traitement est connue ; ladite comparaison étant réalisée à l’aide d’un modèle d’apprentissage statistique en utilisant comme données d’entrées les niveaux d’expression d’au moins deux des biomarqueurs mesurés à l’étape a),

b2) l’estimation de ladite efficacité de traitement par ledit agent anti-TNFa T chez ledit patient en fonction des résultats déterminés par le modèle défini à l’étape b1 ). L’ensemble des biomarqueurs identifiés par les inventeurs est donc particulièrement adapté pour estimer l’efficacité de traitement par un agent anti-TNFa chez un patient atteint de polyarthrite rhumatoïde.

La présente invention concerne par ailleurs un système d’estimation de l’efficacité de traitement par un agent anti-TNFa chez un patient atteint de polyarthrite rhumatoïde et qui a été en réponse inadéquate à au moins un traitement antérieur par biothérapie, ledit système comprenant :

- des moyens de mesure ou de réception des données de mesure du niveau d’expression d’au moins deux biomarqueurs choisis dans un groupe constitué de : Alphal antitrypsine (A1AT), Béta-2-microglobuline (B2M), Sérum amyloïde A-2 (SAA2),

Sélénoproteine P (SeleP), Lipopolysaccharide-Binding Protein (LBP), Complément C3 (C3), Apolipoprotéine C-lll (APOC3), Sérum amyloïde A-1 (SAA1 ), Platelet Factor 4 (PF4) et Cartilage Oligomeric Matrix Protein (COMP), dans un échantillon biologique issu dudit patient,

- des moyens de traitement de données de mesure configurés pour estimer ladite efficacité de traitement chez ledit patient en fonction de chaque niveau d’expression mesuré pour un biomarqueur choisi dans ce groupe.

De manière préférée, le procédé d’estimation et le système d’estimation selon l’invention permettent d’estimer la réponse à un agent anti-TNFa alpha, en particulier en empêchant/bloquant ou inhibant, directement ou indirectement, l’interaction entre le TNF alpha et son récepteur. De manière avantageuse, le procédé d’estimation et le système d’estimation selon l’invention permettent d’estimer la réponse à un agent qui se fixe au TNF alpha, et en particulier d’estimer la réponse à l’Adalimumab.

BREVE DESCRIPTION DES FIGURES

La figure 1 représente la courbe ROC ( Receiver Operating Characteristic) obtenue lors de l’évaluation des performances du procédé selon l’invention avec l’étude des 3 biomarqueurs A1AT, B2M et SeleP pour la prédiction de la réponse à ADA. Elle représente un exemple de la sensibilité du test (en ordonnées) en fonction du complémentaire de la spécificité du test : 1 - spécificité (en abscisses).

La figure 2 représente la courbe ROC ( Receiver Operating Characteristic) obtenue lors de l’évaluation des performances du procédé selon l’invention avec l’étude des 3 variables A1AT, B2M et SeleP pour la prédiction de la rémission suite à ADA. Elle représente un exemple de la sensibilité du test (en ordonnées) en fonction du complémentaire de la spécificité du test : 1 - spécificité (en abscisses).

DESCRIPTION DETAILLEE DE L'INVENTION

Le problème rencontré dans le domaine de l’invention pour la mise au point d’un test prédictif robuste consiste tout d’abord à identifier les biomarqueurs qui, pris ensemble, permettent d’obtenir une prédiction pertinente avec à la fois une spécificité et une sensibilité élevées.

C’est ainsi que selon un premier aspect, la présente invention concerne un procédé d’estimation de l’efficacité de traitement par un agent anti-TNFa chez un patient atteint de polyarthrite rhumatoïde et qui a été en réponse inadéquate à au moins un traitement antérieur par biothérapie, ledit procédé comprenant, voire consistant en :

a) la mesure in vitro du niveau d’expression d’au moins deux biomarqueurs choisis dans le groupe constitué de Alphal antitrypsine (A1AT), Béta-2-microglobuline (B2M), Sérum amyloïde A-2 (SAA2), Sélénoproteine P (SeleP), Lipopolysaccharide-Binding Protein (LBP), Complément C3 (C3), Apolipoprotéine C-lll (APOC3), Sérum amyloïde A-1 (SAA1 ), Platelet Factor 4 (PF4) et Cartilage Oligomeric Matrix Protein (COMP), dans un échantillon biologique issu dudit patient,

b) l’estimation de ladite efficacité de traitement par ledit agent anti-TNFa chez ledit patient en fonction de chaque niveau d’expression mesuré pour un biomarqueur choisi dans ledit groupe.

Les inventeurs ont en effet identifié des ensembles ou combinaisons de biomarqueurs pertinents pour estimer l’efficacité de traitement par un agent anti-TNFa chez un patient atteint de polyarthrite rhumatoïde et qui a été en réponse inadéquate à au moins un traitement antérieur par biothérapie, à savoir au moins deux biomarqueurs choisis dans le groupe constitué Alphal antitrypsine (A1AT), Béta-2-microglobuline (B2M), Sérum amyloïde A-2 (SAA2), Sélénoproteine P (SeleP), Lipopolysaccharide-Binding Protein (LBP), Complément C3 (C3), Apolipoprotéine C-lll (APOC3), Sérum amyloïde A-1 (SAA1 ), Platelet Factor 4 (PF4) et Cartilage Oligomeric Matrix Protein (COMP).

De manière particulière, le procédé d’estimation de l’efficacité de traitement par un agent anti-TNFa selon l’invention comprend : a) la mesure in vitro du niveau d’expression d’au moins deux biomarqueurs choisis dans le groupe constitué de : Alphal antitrypsine (A1AT), Béta-2-microglobuline (B2M), Sérum amyloïde A-2 (SAA2), Sélénoproteine P (SeleP), Lipopolysaccharide-Binding Protein (LBP), Complément C3 (C3), Apolipoprotéine C-lll (APOC3), Sérum amyloïde A-1 (SAA1 ), Platelet Factor 4 (PF4) et Cartilage Oligomeric Matrix Protein (COMP), dans un échantillon biologique issu dudit patient,

b1 ) la comparaison du niveau d’expression mesuré à l’étape a) par rapport à celui mesuré dans une pluralité d’échantillons de patients atteints de polyarthrite rhumatoïde et ayant reçu un traitement par ledit agent anti-TNFa pour lequel l’efficacité de traitement est connue ; ladite comparaison étant réalisée à l’aide d’un modèle d’apprentissage statistique en utilisant comme données d’entrées les niveaux d’expression d’au moins deux des biomarqueurs mesurés à l’étape a),

b2) l’estimation de ladite efficacité de traitement par ledit agent anti-TNFa chez ledit patient en fonction des résultats déterminés par le modèle défini à l’étape b1 ).

La mesure du niveau d’expression des combinaisons particulières de ces biomarqueurs particuliers et leur analyse notamment à l’aide d’un modèle d’apprentissage statistique permet d’obtenir une estimation pertinente de la prédiction de réponse à un agent anti-TNFa pour un patient atteint de polyarthrite rhumatoïde.

La présente invention concerne donc un procédé de prédiction personnalisée de réponse à un agent anti-TNFa, en particulier à l’Adalimumab d’un patient donné, atteint de polyarthrite rhumatoïde et qui a été en réponse inadéquate à au moins un traitement antérieur par biothérapie. Elle permet de déterminer, chez un patient atteint de polyarthrite rhumatoïde et qui a été en réponse inadéquate à au moins un traitement antérieur par biothérapie, un niveau d’efficacité basé sur une probabilité de bonne réponse et de non- réponse à cet agent anti-TNFa ou de rémission et de non-rémission suite au traitement par cet agent anti-TNFa. Le procédé selon l’invention permet ainsi d’identifier des patients répondeurs et en particulier des patients non-répondeurs à l’agent anti-TNFa dont il est question.

S’agissant de l’étape a) du procédé selon l’invention, les biomarqueurs pertinents identifiés par les inventeurs sont définis ci-après.

L'alpha-1 -antitrypsine (A1AT) (Kim et al., 2018b), glycoprotéine synthétisée par le foie, est présente dans la plupart des liquides biologiques et dans les selles. Elle appartient à la famille des serpines (inhibiteur de protéases à sérine) et est en grande partie responsable du pouvoir inhibiteur du sérum sanguin vis-à-vis de nombreuses protéases comme élastase, chymotrypsine, trypsine, cathepsine. La synthèse de l'alpha-1 -antitrypsine augmente lors de tout processus inflammatoire. En 1976, Cox et al. suggère qu’une réduction de la concentration de IΆ1AT contribue au développement de la PR notamment à la destruction tissulaire (Cox and Huber, 1976). Une baisse de A1AT a été également observée chez des patientes PR (Cylwik et al., 2010). Une étude chez la souris a montré que la thérapie génique ou protéique de A1AT humaines retarde significativement le développement de l'arthrite dans un modèle de souris arthritique induite par le collagène. Des complexes non immuns entre l'IgA et l'alpha-l-antitrypsine (IgA-AT) ont été détectés à de faibles niveaux dans les sérums de volontaires sains mais ont été trouvés à des niveaux accrus dans les sérums des patients atteints de polyarthrite rhumatoïde et est corrélée à la progression radiologique de la maladie dans des cas de PR précoce. La présence spécifique de de la forme citrullinée A1AT a été décrite dans le sérum de patients atteints de PR (Chang et al., 2013). A la connaissance des inventeurs, l’aspect prédictif de A1AT en tant que biomarqueur dans le traitement de la PR par les bDMARDs n’a pas été rapporté dans la littérature.

La bêta 2 microglobuline (B2M) (Li et al., 2016) est une petite protéine qui fait partie du complexe HLA (chaîne légère) sur la surface des cellules nuclées mais peut aussi exister sous forme libre dans la plupart des liquides biologiques, y compris le sérum, l'urine et le liquide synovial. Ce polypeptide joue un rôle important dans les défenses immunitaires et peut être utilisée pour évaluer la fonction rénale Une élévation plasmatique, sérique et urinaire de la B2M a été décrite chez les patients PR. Il a été rapporté une baisse significative de niveau de B2M chez des patients PR traités pendant 6 mois par auranofine (Crisp et al., 1983). On observe une diminution de la B2M chez des patients PR traité contre l’ostéoporose par l’alendronate comparé aux placébo (Cantatore et al., 1999). Cependant, à la connaissance des inventeurs, aucune étude récente ne décrit le rôle de la B2M dans la PR et son potentiel prédictif dans la réponse aux traitements bMARDs.

Les protéines sérum amyloïde A1 (SAA1 ) et A2 (SAA2) (Xu et al., 2005) appartiennent à une famille de protéines affiliées à la phase aiguë de l’inflammation appelée sérum amyloïde A (SAA). Exprimé à un taux basal, elles sont synthétisées au cours de phase aiguë, à des taux de 100 à 1 000 fois sa valeur normale, majoritairement produite par le foie sous l’action de cytokines pro-inflammatoires. Il en existe 2 classes : i) de la phase aiguë (A-SAA: SAA1 , SAA2 et SAA3) et ii) constitutive (C-SAA: SAA4). Ainsi, la synthèse hépatique des A-SAA est fortement augmentée en réponse aux cytokines inflammatoires (IL-1 , IL-6 et TNFa), alors que les C-SAA sont exprimées de manière constitutive en absence d’inflammation. Les gènes SAA1 et SAA2 sont régulés dans les cellules hépatiques par les cytokines pro- inflammatoires. Il a été suggéré que les niveaux de SAA reflètent mieux l'activité de la maladie dans les maladies inflammatoires articulaires que la vitesse de sédimentation et la CRP traditionnellement utilisé pour estimer le score de l’activité de la maladie dans la PR. Une étude montre que la concentration de la SAA demeure élevé durant un traitement par DMARD contrairement aux indicateurs classiques de la PR (CRP et la vitesse de sédimentation) et qu’elle pourrait donc être un biomarqueur plus sensible pour déterminer l’activité de la maladie. Une corrélation entre le niveau basal de A-SAA et l’activité de la PR a été décrite avec une diminution du taux de A-SAA un an après traitement par un bDMARD (adalimumab, infliximab, etanercept ou anakinra (Connolly et al., 2012) ; etanercept (Hwang et al., 2016) ; golimumab (Visvanathan et al., 2009). Ces études mettent en avant la relation entre la diminution du taux de SAA au cours du traitement et la réponse clinique associée mais ne se focalise pas sur la valeur prédictive du taux de SAA basale en lui-même.

La sélénoprotéine P (SeleP) (Burk and Hill, 2009) est une glycoprotéine extracellulaire dont le rôle est de transporter et de délivrer le sélénium, qui est un oligo-élément essentiel, dans les différents tissus du corps. D’autres fonctions ont été décrites notamment dans l’infection parasitaire, dans la spermatogénèse, comme marqueur du statut nutritif ou encore comme agent antioxydant. Très peu d’étude mettent en lien direct la sélénoprotéine P avec la polyarthrite rhumatoïde. A la connaissance des inventeurs, aucune étude ne décrit le rôle de la SeleP dans la PR et son potentiel prédictif dans la réponse aux traitements bMARDs.

La Lipopolysaccharide Binding Protein (LBP) est une protéine de phase aiguë qui se lie à diverses molécules de LPS et au lipide A (Schumann et al., 1990). LBP est constitutivement produite par des hépatocytes dans le foie. Elle se lie au LPS (lipopolysaccharide) et le présente aux récepteurs CD14 présents sur les cellules monocytaires. Ainsi, la fonction principale de LBP est d'améliorer la capacité de l'hôte à détecter le LPS au début de l'infection. Dans le sérum normal, LBP est constitutivement présent et sa concentration peut augmenter de 10 fois en réponse de phase aiguë (Prucha et al., 2003). Peu d’études relatent la relation entre LBP et la polyarthrite rhumatoïde. Deux études suggèrent cependant que la LBP est un marqueur de l’inflammation chez des patients PR, son expression est plus faible chez les patients PR vs. sujets sains et peut représenter un nouveau marqueur de l'activité de la maladie dans la PR. Une baisse de l’expression de la LBP a été observé durant un traitement par ADA et abatacept (Charles-Schoeman et al., 2018). En utilisant une approche protéomique, Kim et al. (Kim et al., 2018a) ont récemment montré que l'expression de la LBP était corrélée aux niveaux de Facteur Rhumatoïde (RF) et pourrait servir de marqueur de diagnostic complémentaire à la RF de maladies auto-immunes telles que la PR. A la connaissance des inventeurs, l’aspect prédictif de la LBP en tant que biomarqueur dans le traitement de la PR par les bDMARDs n’a pas été rapporté dans la littérature.

L'apolipoprotéine C-lll (ou apo C-lll, ou apo-C3) (Norata et al., 2015) est une lipoprotéine impliquée dans le métabolisme des triglycérides. Les fonctions physiologiques de lApoC-lll comprennent l'inhibition de la lipoprotéine lipase et de la lipase hépatique. ApoC-lll représente donc un important régulateur de la lipolyse. En conséquence, des taux élevés d'ApoC-lll ont été détectés chez des patients présentant une hypertriglycéridémie. Par une approche protéomique, Blaschke ét al ont montré que ApoCIII semble être un prédicteur de la réponse à 6 mois à l’etanercept chez des patients PR. En effet, celle-ci est significativement sous exprimée avant initiation du traitement chez les patients qui présentent une réponse suffisante (Blaschke et al., 2015). Cependant, cette étude n’utilise pas de combinaison de biomarqueurs pour construire un modèle prédictif.

Le système du complément (Ricklin and Lambris, 2013) est un des mécanismes de défense qui intervient dans la destruction des agents infectieux, dans l’élimination des complexes immuns, mais aussi dans le contrôle des réponses inflammatoires et la modulation des réponses immunes spécifiques. C’est une cascade d’activation et la fraction C3 joue un rôle central dans l'activation du complément puisque l’ensemble des voies d'activation du complément aboutissent à son clivage par des systèmes protéolytiques spécifiques en C3a et C3b. Un lien entre le système du complément et la PR a été mis en évidence. La présence de C3 a été retrouvée dans le liquide synovial chez des patients PR. Après 12 mois de traitement par tocilizumab, une baisse du taux sérique de C3 en corrélation avec le score d’activité de la maladie a été observé chez de patients PR (Romano et al., 2018). Une autre étude rapporte une expression plus élevée de C3 chez les patients PR comparés au sujets sains et une baisse de C3 spécifiquement chez les répondeurs à 12 mois au rituximab (Conigliaro et al., 2016).

Le facteur plaquettaire 4 (PF4 pour Platelet Factor 4 ou encore appelé CXCL4 pour chemokine (C-X-C motif) ligand 4) est une chimiokine libérée par des plaquettes activées et se lie avec une forte affinité à l'héparine. Son rôle physiologique majeur semble être la neutralisation de molécules de type héparine sur la surface endothéliale des vaisseaux sanguins, inhibant ainsi l'activité locale d'antithrombine III et favorisant la coagulation. En tant que chimio-attractant fort pour les neutrophiles et les fibroblastes, le PF4 a probablement un rôle dans l'inflammation et la cicatrisation. Dans la PR, plusieurs études ont signalé une augmentation de PF4 dans le liquide synovial et une élévation des taux plasmatiques chez les patients présentant une vascularite cutanée. Une augmentation de l’ARNm de PF4 a été observée dans la phase précoce de la PR (Yeo et al., 2016). Des complexes immunologiques contenant la PF4 a été trouvé spécifiquement dans le sérum de patients PR suggérant un usage diagnostic pour la PR (Ohyama et al., 201 1 ). Le PF4 a été caractérisé comme biomarqueur de réponse dans le traitement de la polyarthrite rhumatoïde par Infliximab (Trocmé et al., 2009) et par les anti-TNFa (etanercept, infliximab et adalimumab) (Nguyen et al., 2018) chez des patients naïfs de toute biothérapie. Cependant, à la connaissance des inventeurs, l’aspect prédictif du PF4 en tant que biomarqueur dans le traitement de la PR spécifiquement chez des patients n’ayant pas eu de réponse thérapeutique adéquate à un ou plusieurs traitement(s) antérieur(s) par biothérapie n’a pas été rapporté dans la littérature.

COMP ( cartilage oligomeric matrix protein ), qui est également connu sous le nom de thrombospondine 5 (TSP 5), est une glycoprotéine et un membre de la famille des thrombospondines extracellulaires. Cette protéine liant le calcium se trouve principalement dans le cartilage articulaire, nasal et trachéal et, dans une moindre mesure, dans les ligaments, les ménisques et les tendons normaux. Il est considéré comme un marqueur de la dégradation du cartilage sérique dans les maladies articulaires et en particulier dans la PR. Le niveau sérique de COMP pouvait être considéré comme un biomarqueur potentiel pour différencier les patients atteints de PR et les individus sains, avec une spécificité comparable aux biomarqueurs standard généralement utilisés pour estimer l'activité de la maladie, tels que CRP. Le COMP, et plus spécifiquement les anticorps monoclonaux spécifiques de COMP, ont été impliqués dans l'induction de l'arthrite chez des souris naïves. Les niveaux de COMP étaient également corrélés au score de lésions articulaires de Larsen au début de la PR. De plus, les taux de sérum et de liquide synovial COMP chez les patients atteints de PR reflètent non seulement la dégradation du cartilage, mais aussi les taux de Vitesse de Sédimentation (VS) et de CRP, qui sont des indicateurs de la phase aiguë. Un niveau plus élevé de COMP a également été lié à l'agressivité de la maladie dans la PR. De même, une corrélation positive significative a été trouvée entre les niveaux de COMP et la sévérité de la maladie dans la PR précoce et tardive. Après traitement par infliximab et étanercept, Crnkic et al. (Crnkic et al., 2003) ont rapporté une diminution de la concentration sérique de COMP à 3 mois qui est restée faible à 6 mois pour les répondeurs autant que les non-répondeurs. Une autre étude a observé une diminution des concentrations sériques de COMP à 6 mois de traitement par étanercept, mais seulement dans le groupe de rémission (Kawashiri et al., 2010). Les patients ayant des taux sériques élevés de COMP étaient plus susceptibles de présenter une détérioration de leur score de Larsen (Skoumal et al., 2003).

De manière préférée, le procédé d’estimation de l’efficacité de traitement selon l’invention est basé sur la mesure in vitro du niveau d’expression d’au moins trois des dix biomarqueurs susmentionnés, d’au moins quatre, d’au moins cinq, d’au moins six, d’au moins sept, d’au moins huit, d’au moins neuf, ou des dix biomarqueurs du groupe constitué de Alphal antitrypsine (A1AT), Béta-2-microglobuline (B2M), Sérum amyloïde A-2 (SAA2), Sélénoproteine P (SeleP), Lipopolysaccharide-Binding Protein (LBP), Complément C3 (C3), Apolipoprotéine C-lll (APOC3), Sérum amyloïde A-1 (SAA1 ), Platelet Factor 4 (PF4) et Cartilage Oligomeric Matrix Protein (COMP).

Les modes de réalisation préférés du procédé d’estimation de l’efficacité de traitement selon l’invention comprennent la mesure in vitro du niveau d’expression des combinaisons particulières des biomarqueurs suivants parmi la liste des dix biomarqueurs susmentionnés :

- au moins A1AT et SAA1 ou au moins A1AT et SAA2, de manière plus préférée au moins A1AT et B2M ;

- au moins A1AT, B2M et LBP ou au moins A1AT, SAA2 et APOC3, ou encore et de manière plus préférée au moins A1 AT, B2M et SAA1 ou au moins A1 AT, B2M et SeleP.

Ces ensembles permettent d’obtenir les résultats les plus pertinents en termes d’estimation de l’efficacité de traitement.

Avec ces combinaisons de deux ou trois biomarqueurs préférées susmentionnées, on peut en particulier également mesurer in vitro le niveau d’expression d’au moins un autre biomarqueur choisi parmi les huit ou sept restants dans la liste des dix biomarqueurs décrits dans la présente description, à savoir Alphal antitrypsine (A1AT), Béta-2-microglobuline (B2M), Sérum amyloïde A-2 (SAA2), Sélénoproteine P (SeleP), Lipopolysaccharide-Binding Protein (LBP), Complément C3 (C3), Apolipoprotéine C-lll (APOC3), Sérum amyloïde A-1 (SAA1 ), Platelet Factor 4 (PF4) et Cartilage Oligomeric Matrix Protein (COMP).

Le procédé selon l’invention permet d’estimer l’efficacité de traitement par un agent anti-TNFa chez un patient atteint de polyarthrite rhumatoïde qui a été en réponse inadéquate à au moins un traitement antérieur par une biothérapie.

Par « patient atteint de polyarthrite rhumatoïde qui a été en réponse inadéquate », on entend un patient atteint de polyarthrite rhumatoïde qui a été en réponse insuffisante à au moins un traitement antérieur par une biothérapie, mais également un patient atteint de polyarthrite rhumatoïde qui a été en réponse satisfaisante à au moins un traitement antérieur par une biothérapie mais qui a présenté au moins un événement indésirable d’intensité modérée à sévère lors du(des) traitement(s) antérieur(s) nécessitant l’arrêt de traitement.

Par « réponse insuffisante à au moins un traitement antérieur par une biothérapie », on entend désigner un patient n’ayant pas présenté de réponse thérapeutique positive à un ou plusieurs traitement(s) antérieur(s) par un bDMARD (biological Disease-Modifying Anti- Rheumatic Drug). Dans le cadre du traitement des maladies inflammatoires chroniques, les stratégies thérapeutiques actuelles sont conduites pour réduire l’activité du rhumatisme et la réponse au traitement se juge au cours de la première année, généralement à 6 mois. Concernant la polyarthrite rhumatoïde, la réponse au traitement est déterminée par l’évolution de l’activité du rhumatisme selon la réponse EULAR ( Européen League Against Rheumatism). La réponse EULAR prend en compte l’activité du rhumatisme qui est évaluée par le DAS28 (Disease Activity Score 28) ainsi que sa variation. Le DAS est un score composite calculé sur la base du nombre d’articulations douloureuses sur 28 articulations, l’EVA (Echelle Visuelle Analogique), et un paramètre inflammatoire biologique : VS (vitesse de sédimentation) ou CRP (Prevoo et al., 1995). La réponse EULAR à un temps T est définie en fonction du score DAS28 au temps T et de la différence entre le DAS28 au temps T et le DAS28 initial, c’est-à-dire avant traitement. Dans le cadre de la présente invention, on entend en particulier par « réponse insuffisante à un traitement », une réponse EULAR avec un DAS28 au temps T supérieur à 3.2 ou une variation de DAS28 entre le temps T et le DAS28 avant traitement inférieure ou égale à 1.2.

A l’inverse, on entend par « réponse suffisante à un traitement », une réponse EULAR avec un DAS28 au temps T inférieur ou égal à 3.2 associé à une variation de DAS28 entre le temps T et avant traitement supérieure à 1.2.

Par « rémission » au temps T, on entend désigner un patient présentant un DAS28 inférieur à 2,6 au temps T.

Par biothérapie, on entend une thérapie faisant appel à l’utilisation d’un bDMARD. Les DMARDs sont une catégorie de médicaments définis par leur utilisation dans la polyarthrite rhumatoïde pour ralentir la progression de la maladie. Il existe plusieurs types de DMARDs classés de la manière suivante :

- synthétiques (sDMARDs) qui comprennent les conventionnels synthétiques (csDMARDs) et les synthétiques ciblés (targeted) (tsDMARDs). Les csDMARDs sont les médicaments traditionnels comme le méthotrexate, la sulfasalazine, le leflunomide, l'hydroxychloroquine, les sels d'or etc. Les tsDMARDs sont des médicaments qui ont été développés pour cibler une structure moléculaire particulière.

- biologiques (bDMARDs) qui comprennent les DMARDs biologiques originaux (boDMARDs) et biosimilaires (bsDMARDs). Les bsDMARDs sont ceux qui ont la même structure primaire, secondaire et tertiaire que le traitement biologique original (boDMARD) et possèdent une efficacité et une sécurité similaires à celles de la protéine originale.

On entend par « évènement indésirable », ou El, toute manifestation nocive survenant chez un patient, que cette manifestation soit liée ou non au traitement par biothérapie. Si cet évènement indésirable est considéré par le médecin comme ayant un lien de causalité scientifiquement raisonnable avec la procédure, la méthode, l’acte ou le traitement, il est qualifié d’effet indésirable. L’expression « lien de causalité scientifiquement raisonnable » signifie qu’il existe une preuve ou un argument permettant de suggérer, sur le plan scientifique, une relation de cause à effet entre la réaction nocive et non désirée observée et la procédure, la méthode, l’acte ou le traitement.

L’intensité des événements indésirables est évaluée par le médecin en s’aidant de la classification suivante, bien connue dans le domaine :

- intensité légère de grade 1 : événement indésirable généralement transitoire et sans retentissement sur les activités normales

- intensité modérée de grade 2 : événement indésirable suffisamment gênant pour retentir sur les activités normales

- intensité sévère de grade 3 : événement indésirable modifiant considérablement le cours normal des activités du sujet, ou invalidant, ou constituant une menace pour la vie du sujet.

Les grades de tous les évènements indésirables connus en fonction des pathologies sont répertoriés par le National Cancer Institute et accessible sur le site web du National Institutes of Health (Common Terminology Criteria for Adverse Events (CTCAE) ; https://safetyprofiler-ctep.nci.nih.gov/CTC/CTC.aspx). Les différents évènements indésirables liés à un traitement par biothérapie sont notamment classés dans le Résumé des Caractéristiques du Produit (RCP).

De manière préférée, le procédé selon l’invention permet d’estimer l’efficacité de traitement par un agent anti-TNFa qui est l’Adalimumab chez un patient atteint de polyarthrite rhumatoïde et qui a été en réponse inadéquate à au moins un traitement antérieur par une biothérapie anti-TNFa. De manière encore plus préférée, le procédé selon l’invention permet d’estimer l’efficacité de traitement par un agent anti-TNFa chez un patient atteint de polyarthrite rhumatoïde qui a été en réponse inadéquate à au moins un traitement antérieur choisi parmi Etanercept, Abatacept, Infliximab, Tocilizumab, Rituximab, Certolizumab et Golimumab, et de préférence à un seul de ces traitements.

Selon l’invention, le procédé permet d’estimer l’efficacité de traitement par un agent anti-TNFa. Un tel agent peut être défini comme étant un agent qui est capable de bloquer, voire d’inhiber, directement ou indirectement, l’action du TNF alpha, en particulier en empêchant ou bloquant ou inhibant, directement ou indirectement, l’interaction entre le TNF alpha et son récepteur. Parmi ces agents, on peut notamment citer le bDMARD Adalimumab.

De manière particulièrement avantageuse, le procédé selon l’invention permet d’estimer l’efficacité de traitement par un agent anti-TNFa qui est l’Adalimumab.

Tout échantillon biologique constitué d’un fluide biologique peut être utilisé dans le cadre de l’invention pour mesurer in vitro le niveau d’expression des biomarqueurs et combinaisons de biomarqueurs mentionnés ci-dessus, et parmi lesquels on peut notamment citer le liquide synovial, le sérum, le plasma, la salive, l’urine, etc., de préférence le sérum.

Selon un mode de réalisation préféré, le niveau d’expression des biomarqueurs et combinaisons de biomarqueurs mentionnés ci-dessus est mesuré in vitro sur un échantillon de sérum issu du patient pour qui on cherche à estimer l’efficacité de traitement par un agent anti-TNFa qui est l’Adalimumab.

De manière avantageuse, le procédé d’estimation de l’efficacité de traitement selon l’invention comprend à l’étape a) la mesure in vitro du niveau d’expression des biomarqueurs ou combinaisons de biomarqueurs protéiques.

Des modes de réalisation particulièrement préférés du procédé selon l’invention sont les suivants, chacun étant à appliquer aux combinaisons de biomarqueurs définies précédemment, à savoir au moins deux biomarqueurs choisis dans le groupe constitué de : Alphal antitrypsine (A1AT), Béta-2-microglobuline (B2M), Sérum amyloïde A-2 (SAA2), Sélénoproteine P (SeleP), Lipopolysaccharide-Binding Protein (LBP), Complément C3 (C3), Apolipoprotéine C-lll (APOC3), Sérum amyloïde A-1 (SAA1 ), Platelet Factor 4 (PF4) et Cartilage Oligomeric Matrix Protein (COMP) :

L’estimation de l’efficacité de traitement par l’Adalimumab, chez un patient atteint de polyarthrite rhumatoïde ;

L’estimation de l’efficacité de traitement par l’Adalimumab, chez un patient atteint de polyarthrite rhumatoïde comprenant la mesure du niveau d’expression protéique d’au moins deux marqueurs choisis parmi les dix mentionnés dans la présente description ;

L’estimation de l’efficacité de traitement par l’Adalimumab, chez un patient atteint de polyarthrite rhumatoïde et qui a été en réponse inadéquate à au moins un traitement antérieur par une biothérapie choisie parmi Etanercept, Infliximab, Tocilizumab, Abatacept, Rituximab, Certolizumab et Golimumab, de préférence à un seul de ces traitements ;

L’estimation de l’efficacité de traitement par l’Adalimumab, chez un patient atteint de polyarthrite rhumatoïde et qui a été en réponse inadéquate à au moins un traitement antérieur par une biothérapie choisie parmi Etanercept, Tocilizumab, Infliximab, Abatacept, Rituximab, Certolizumab et Golimumab, comprenant la mesure du niveau d’expression protéique d’au moins deux marqueurs choisis parmi les dix mentionnés dans la présente description, de préférence à un seul de ces traitements ;

L’estimation de l’efficacité de traitement par l’Adalimumab, chez un patient atteint de polyarthrite rhumatoïde et qui a été en réponse insuffisante à au moins un traitement antérieur par une biothérapie choisie parmi Etanercept, Infliximab, Tocilizumab, Abatacept, Rituximab, Certolizumab et Golimumab, de préférence à un seul de ces traitements ;

L’estimation de l’efficacité de traitement par l’Adalimumab, chez un patient atteint de polyarthrite rhumatoïde et qui a été en réponse insuffisante à au moins un traitement antérieur par une biothérapie choisie parmi Etanercept, Tocilizumab, Infliximab, Abatacept, Rituximab, Certolizumab et Golimumab, comprenant la mesure du niveau d’expression protéique d’au moins deux marqueurs choisis parmi les dix mentionnés dans la présente description, de préférence à un seul de ces traitements.

A l’étape b1 ) du procédé d’estimation selon l’invention, le niveau d’expression des biomarqueurs ou combinaisons de biomarqueurs mesuré à l’étape a) décrite ci-dessus est comparé à celui mesuré dans une pluralité d’échantillons de patients atteints de polyarthrite rhumatoïde et ayant reçu un traitement par un agent anti-TNFa pour lequel l’efficacité de traitement est connue.

Cette comparaison est réalisée à l’aide d’un modèle d’apprentissage statistique en utilisant comme données d’entrées les niveaux d’expression d’au moins deux des biomarqueurs mesurés à l’étape a). Pour ce faire, n’importe quel modèle d’apprentissage statistique peut être utilisé, et notamment les modèles obtenus par des méthodes de régression logistique, d’analyse discriminante, de réseaux de neurones, d’apprentissage par arbres de décision, de machines à vecteurs supports (SVM), ou d’agrégation de modèles.

De manière préférée, dans le procédé d’estimation de l’efficacité de traitement par un agent anti-TNFa selon l’invention, les niveaux d’expression de chaque biomarqueur mesuré à l’étape a) sont utilisés pour obtenir un score relié à l’estimation de l’efficacité de ce traitement chez ledit patient, ledit score étant comparé avec au moins un seuil prédéterminé de sorte à classifier le pronostic parmi une pluralité de classes. Dans ce mode de réalisation, on peut notamment utiliser une pluralité de classes qui comprend au moins deux classes dont une classe de non réponse au traitement par ledit agent anti-TNFa. Les deux classes peuvent par exemple être issues des patients dits « non répondeurs », qui présentent une réponse insuffisante au traitement et des patients dits « répondeurs » qui présentent une réponse suffisante au traitement. Toujours dans ce mode de réalisation, l’estimation de l’efficacité de traitement chez le patient atteint de polyarthrite rhumatoïde et qui a été en réponse inadéquate à au moins un traitement antérieur par biothérapie comprend la comparaison dudit score avec un seuil prédéterminé au-dessous duquel une mauvaise efficacité est prédite et au-dessus duquel une bonne efficacité est prédite.

De manière préférée, le procédé d’estimation de l’efficacité de traitement par un agent anti-TNFa selon l’invention utilise à l’étape b1 ) un modèle d’apprentissage basé sur une analyse préalable d'échantillons d'une cohorte comprenant des patients traités par ledit agent anti-TNFa présentant des bonnes réponses au traitement et des patients traités par ledit agent anti-TNFa présentant des mauvaises réponses au traitement. Dans ce mode de réalisation, le modèle d’apprentissage est de préférence basé sur une analyse préalable qui comprend l'application d'une méthode d’apprentissage et de sélection de variables. De manière avantageuse, on utilisera la régression logistique en tant que méthode d’apprentissage et de sélection de variables.

Toujours dans ce mode de réalisation basé sur une analyse préalable qui comprend l'application d'une méthode d’apprentissage et de sélection de variables, les niveaux d’expression des biomarqueurs ou combinaisons de biomarqueurs mesurés à l’étape a) sont pondérés en fonction de l'analyse préalable de la cohorte comprenant des patients traités par ledit agent anti-TNFa présentant des bonnes réponses au traitement et des patients traités par ledit agent anti-TNFa présentant des mauvaises réponses au traitement pour dériver le score relié à l’estimation de l’efficacité de traitement. Toujours dans ce mode de réalisation basé sur une analyse préalable qui comprend l'application d'une méthode d’apprentissage et de sélection de variables, le procédé d’estimation de l’efficacité de traitement selon l’invention peut utiliser une méthode d’apprentissage par arbre de décision. Selon ce mode de réalisation, les niveaux d’expression des biomarqueurs ou combinaisons de biomarqueurs mesurés à l’étape a) sont comparés à une valeur de référence à chaque nœud de l’arbre.

Les valeurs de référence peuvent être obtenues par l’analyse du niveau d’expression des biomarqueurs ou combinaisons de biomarqueurs dans des échantillons biologiques d’un ensemble de patients atteints de polyarthrite rhumatoïde avant traitement de manière à disposer d’un ensemble de données sur les niveaux d’expression des biomarqueurs associés à chaque échantillon biologique de chaque patient.

Ces valeurs de référence peuvent évoluer au cours du temps en fonction des résultats obtenus avec d’autres patients qui viennent compléter le nombre de résultats servant à définir la valeur seuil.

Selon un deuxième aspect, l’invention concerne également un système d’estimation de l’efficacité de traitement par un agent anti-TNFa chez un patient atteint de polyarthrite rhumatoïde et qui a été en réponse inadéquate à au moins un traitement antérieur par biothérapie, ledit système comprenant :

- des moyens de mesure ou de réception des données de mesure du niveau d’expression d’au moins deux biomarqueurs choisis dans un groupe constitué de : Alphal antitrypsine (A1AT), Béta-2-microglobuline (B2M), Sérum amyloïde A-2 (SAA2),

Sélénoproteine P (SeleP), Lipopolysaccharide-Binding Protein (LBP), Complément C3 (C3), Apolipoprotéine C-lll (APOC3), Sérum amyloïde A-1 (SAA1 ), Platelet Factor 4 (PF4) et Cartilage Oligomeric Matrix Protein (COMP), dans un échantillon biologique issu dudit patient,

- des moyens de traitement de données de mesure configurés pour estimer ladite efficacité de traitement chez ledit patient en fonction de chaque niveau d’expression mesuré pour un biomarqueur choisi dans ce groupe.

Parmi les moyens de mesure du niveau d’expression des biomarqueurs ou combinaisons de biomarqueurs choisis, on peut notamment citer des réactifs spécifiques de chacun des biomarqueurs tels que des enzymes, substrats ou anticorps qui peuvent être utilisés dans des méthodes, telles qu’entre autres la néphélométrie, la chimiluminescence, l’immunoturbidimétrie, la cytométrie en flux, l’ELISA, etc, mais également des moyens physiques tels que les méthodes d’analyse en spectrométrie de masse par exemple. Le système selon l’invention peut par ailleurs contenir des moyens de réception des données de mesure, permettant ainsi d’estimer, pour ledit patient, l’efficacité de réponse au traitement par l’agent anti-TNFa, à partir de données fournies par exemple par un praticien ayant fait mesurer le niveau d’expression des biomarqueurs biologiques tels que décrits précédemment.

Les moyens de réception peuvent notamment comprendre des moyens d’émission/réception pour échanger avec un serveur distant par l’intermédiaire d’un réseau de communication tel qu’un réseau intranet ou le réseau internet sécurisé. Le dispositif peut également comprendre des moyens de saisie tels qu’un clavier.

Les moyens de traitement des données peuvent notamment faire appel à de la gestion de base de données, à des instructions de code, au développement d’un logiciel comprenant une brique algorithmique, à une interface pour permettre à l’utilisateur de consulter les résultats, etc. Ces différents éléments peuvent être enregistrés sur un support de stockage tel qu’un disque dur, un CD ROM, une clé USB, ou tout autre support de stockage connu de l’homme du métier.

Ils peuvent être mis en oeuvre par un dispositif qui peut être fixe ou mobile. Le dispositif est par exemple un ordinateur personnel, un téléphone portable, une tablette électronique, ou tout autre type de terminal connu de l’homme du métier.

En variante, le système peut également comprendre des moyens d’émission pour transmettre, toujours via intranet ou internet par exemple, les résultats de l’estimation de l’efficacité du traitement chez le patient concerné.

Selon une autre variante avantageuse, le système selon l’invention comprend des moyens de réception des données d’efficacité obtenue, et ce afin de compléter et d’enrichir les valeurs de référence au vu du résultat de traitement obtenu au regard du niveau d’expression des biomarqueurs choisis.

EXEMPLES

Matériels & Méthodes

Développement du modèle prédictif

Le lien entre la réponse à la biothérapie, ou la rémission, et chaque variable est analysé au travers d’un modèle de régression logistique sur un jeu de données. La variable à expliquer est dans le premier cas la bonne réponse au cours de la première année de traitement, et dans le second la rémission au cours de la première année de traitement. Tout d’abord, une pré-sélection des variables à inclure dans le modèle multivarié est réalisée. Pour cela, la capacité prédictive de chaque variable explicative est analysée individuellement. Les biomarqueurs sont analysés de façon quantitative et qualitative. Une méthode de sélection de variables est mise en place pour conserver uniquement les variables pertinentes qui seront ensuite introduites dans un modèle multivarié. Les bbmarqueurs sont

présélectionnés s’ils présentent :

o Sous forme quantitative, une p-value<0.20 ou un AUC > 0.60

o Sous forme qualitative, une p-value<0.05 et un AUC>0.65

Les critères choisis sont volontairement larges pour inclure les variables significatives, mais également les variables présentant des tendances dans le modèle multivarié.

Les biomarqueurs présélectionnés présentent des tendances pertinentes à analyser. Les modèles multivariés avec les différentes combinaisons possibles de ces biomarqueurs sont construits, et les AUC calculés. Les modèles présentant un AUC>0.70 sont considérés comme pertinents et sont conservés.

Les modèles ainsi construits permettent de pondérer les résultats de dosage de chacun des biomarqueurs spécifiques pour obtenir une probabilité de réponse ou de rémission. Les coefficients de chaque modèle permettent de calculer à partir des valeurs de dosage de chaque patient une probabilité de réponse, ou de rémission, associée. Les caractéristiques de performance (AUC (aire sous la courbe), sensibilité et spécificité, VPP (valeur prédictive positive) et VPN (valeur prédictive négative)) de chaque modèle sont calculées pour définir sa pertinence.

Un AUC > 0.70 est considéré comme une discrimination acceptable, un AUC > 0.80 démontre une très bonne capacité de discrimination. Un niveau de probabilité seuil est fixé pour calculer la spécificité et la sensibilité. Ce seuil optimal est déterminé en se basant sur l’indice de Youden. A ce seuil, les patients peuvent être classifiés en fonction du tableau 1 suivant :

Tableau 1

• VP (vrais positifs) représente le nombre d'individus répondeurs avec un test positif,

• FP (faux positifs) représente le nombre d'individus non répondeurs avec un test positif,

• FN (faux négatifs) représente le nombre d'individus répondeurs avec un test négatif,

• VN (vrais négatifs) représente le nombre d'individus non répondeurs avec un test négatif. La sensibilité, ou la probabilité que le test soit positif si le patient est répondeur, se mesure chez les malades seulement. Elle est donnée par :

VP

VP + FN

La spécificité se mesure chez les non-malades seulement. La spécificité, ou la probabilité d'obtenir un test négatif chez les non-répondeurs est donné par :

VN

VN + FP

La sensibilité du test mesure sa capacité à donner un résultat positif lorsque le patient est répondeur. La spécificité mesure la capacité du test à donner un résultat négatif lorsque le patient est non répondeur.

La valeur prédictive positive (VPP) est la probabilité que le patient soit répondeur lorsque le test est positif.

VP

VPP =

VP + FP

La valeur prédictive négative (VPN) est la probabilité que le patient ne soit pas répondeur lorsque le test est négatif.

VN

VPN =

VN + FN

Résultats :

Sur une cohorte d’apprentissage constituée de 54 patients atteints de PR), les modèles construits présentent les caractéristiques présentées dans le tableau 2 ci-dessous qui présente les combinaisons de 2 ou 3 biomarqueurs avec les AUOO.75. Toutes les combinaisons incluant au moins 2 des 10 biomarqueurs parmi A1AT, B2M, SAA2, SeleP, LBP, C3, APOC3, SAA1 , PF4, COMP apportent des résultats pertinents.

Tableau 2

En prenant par exemple le modèle à 3 variables A1AT, B2M et SeleP, les caractéristiques obtenues sont présentées dans le tableau 3 ci-dessous.

Tableau 3

Les courbes ROC correspondantes sont représentées dans les figures 1 et 2 annexées.

REFERENCES

Blaschke, S., Rinke, K., Maring, M., Flad, T., Patschan, S., Jahn, O., Mueller, C.A., Mueller, G.A., and Dihazi, H. (2015). Haptoglobin-a1 , -a2, vitamin D-binding protein and apolipoprotein C-lll as predictors of etanercept drug response in rheumatoid arthritis. Arthritis Res. Ther. 17.

Burk, R.F., and FINI, K.E. (2009). Selenoprotein P - Expression, Functions, and Rôles in Mammals. Biochim. Biophys. Acta 1790, 1441-1447.

Cantatore, F. P., Acquista, C.A., and Pipitone, V. (1999). Evaluation of bone turnover and osteoclastic cytokines in early rheumatoid arthritis treated with alendronate. J. Rheumatol. 26, 2318-2323.

Chang, X., Zhao, Y., Wang, Y., Chen, Y., and Yan, X. (2013). Screening citrullinated proteins in synovial tissues of rheumatoid arthritis using 2-dimensional western blotting. J. Rheumatol. 40, 219- 227.

Charles-Schoeman, C., Gugiu, G. B., Ge, Fl., Shahbazian, A., Lee, Y. Y., Wang, X., Furst, D.E., Ranganath, V.K., Maldonado, M., Lee, T., et al. (2018). Remodeling of the HDL proteome with treatment response to abatacept or adalimumab in the AMPLE trial of patients with rheumatoid arthritis. Atherosclerosis 275, 107-1 14.

Conigliaro, P., Triggianese, P., Chimenti, M.S., Lucchetti, R., Kroegler, B., and Perricone, R. (2016). Serological markers associated with disease activity in patients with rheumatoid arthritis treated with rituximab. J. Int. Med. Res. 44, 53-57.

Connolly, M., Mullan, R.H., McCormick, J., Matthews, C., Sullivan, O., Kennedy, A., FitzGerald, O., Poole, A.R., Bresnihan, B., Veale, D.J., et al. (2012). Acute-phase sérum amyloid A régulâtes tumor necrosis factor a and matrix turnover and predicts disease progression in patients with inflammatory arthritis before and after biologie therapy. Arthritis Rheum. 64, 1035-1045.

Cox, D.W., and Huber, O. (1976). Rheumatoid arthritis and alpha-1 -antitrypsin. Lancet Lond. Engl. 1 , 1216-1217.

Crnkic, M., Mânsson, B., Larsson, L., Geborek, P., Heinegârd, D., and Saxne, T. (2003). Sérum cartilage oligomeric matrix protein (COMP) decreases in rheumatoid arthritis patients treated with infliximab or etanercept. Arthritis Res. Ther. 5, R181-185.

Cylwik, B., Chrostek, L., Gindzienska-Sieskiewicz, E., Sierakowski, S., and Szmitkowski, M. (2010). Relationship between sérum acute-phase proteins and high disease activity in patients with rheumatoid arthritis. Adv. Med. Soi. 55, 80-85.

Gabay, C., Mclnnes, I.B., Kavanaugh, A., Tuckwell, K., Klearman, M., Pulley, J., and Sattar, N. (2016). Comparison of lipid and lipid-associated cardiovascular risk marker changes after treatment with tocilizumab or adalimumab in patients with rheumatoid arthritis. Ann. Rheum. Dis. 75, 1806-1812.

Harrold, L.R., Reed, G.W., Kremer, J.M., Curtis, J. R., Solomon, D.H., Hochberg, M.C., and Greenberg, J.D. (2015). The comparative effectiveness of abatacept versus anti-tumour necrosis factor switching for rheumatoid arthritis patients previously treated with an anti-tumour necrosis factor. Ann. Rheum.

Dis. 74, 430-436. Hwang, Y. G., Balasubramani, G. K., Metes, I.D., Levesque, M.C., Bridges, S.L., and Moreland, L.W. (2016). Differential response of sérum amyloid A to different thérapies in early rheumatoid arthritis and its potential value as a disease activity biomarker. Arthritis Res. Ther. 18.

Kawashiri, S.-Y., Kawakami, A., Ueki, Y., Imazato, T., Iwamoto, N., Fujikawa, K., Aramaki, T., Tamai, M., Nakamura, H., Origuchi, T., et al. (2010). Décrément of sérum cartilage oligomeric matrix protein (COMP) in rheumatoid arthritis (RA) patients achieving remission after 6 months of etanercept treatment: comparison with CRP, IgM-RF, MMP-3 and anti-CCP Ab. Jt. Bone Spine Rev. Rhum. 77, 418-420.

Kim, D., Mun, S., Lee, J., Park, A., Seok, A., Chun, Y.-T., and Kang, H.-G. (2018a). Proteombs analysis reveals differential pattern of widespread protein expression and novel rôle of histidine-rich glycoprotein and lipopolysaccharide-binding protein in rheumatoid arthritis. Int. J. Biol. Macromol. 109, 704-710.

Kim, M., Cai, Q., and Oh, Y. (2018b). Therapeutic potential of alpha-1 antitrypsin in human disease. Ann. Pediatr. Endocrinol. Metab. 23, 131-135.

Krintel, S. B., Palermo, G., Johansen, J. S., Germer, S., Essioux, L., Benayed, R., Badi, L., Ostergaard, M., and Hetland, M.L. (2012). Investigation of single nucléotide polymorphisms and biological pathways associated with response to TNFa inhibitors in patients with rheumatoid arthritis.

Pharmacogenet. Genomics 22, 577-589.

Li, L., Dong, M., and Wang, X.-G. (2016). The Implication and Significance of Beta 2 Microglobulin: A Conservative Multifunctional Regulator. Chin. Med. J. (Engl.) 129, 448^155.

Nguyen, M.V.C., Baillet, A., Romand, X., Trocmé, C., Courtier, A., Marotte, H., Thomas, T., Soubrier, M., Miossec, P., Tébib, J., ét al. (2018). Prealbumin, platelet factor 4 and S100A12 combination at baseline predicts good response to TNF alpha inhibitors in Rheumatoid Arthritis. Jt. Bone Spine Rev. Rhum.

Norata, G.D., Tsimikas, S., Pirillo, A., and Catapano, A.L. (2015). Apolipoprotein C-lll: From

Pathophysiology to Pharmacology. Trends Pharmacol. Sci. 36, 675-687.

Ohyama, K., Ueki, Y., Kawakami, A., Kishikawa, N., Tamai, M., Osaki, M., Kamihira, S., Nakashima, K., and Kuroda, N. (2011 ). Immune complexome analysis of sérum and its application in screening for immune complex antigens in rheumatoid arthritis. Clin. Chem. 57, 905-909.

Prevoo, M.L., van’t Hof, M.A., Kuper, H. H., van Leeuwen, M.A., van de Putte, L.B., and van Riel, P.L. (1995). Modified disease activity scores that include twenty-eight-joint counts. Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum. 38, 44-48.

Prucha, M., Herald, I., Zazula, R., Dubska, L., Dostal, M., Hildebrand, T., and Hyanek, J. (2003). Significance of lipopolysaccharide-binding protein (an acute phase protein) in monitoring critically ill patients. Crit. Care Lond. Engl. 7, R154-159.

Rendas-Baum, R., Wallenstein, G.V., Koncz, T., Kosinski, M., Yang, M., Bradley, J., and Zwillich, S. H. (201 1 ). Evaluating the efficacy of sequential biologie thérapies for rheumatoid arthritis patients with an inadéquate response to tumor necrosis factor-a inhibitors. Arthritis Res. Ther. 13, R25.

Ricklin, D., and Lambris, J.D. (2013). Complément in immune and inflammatory disorders: therapeutic interventions. J. Immunol. Baltim. Md 1950 190, 3839-3847. Romano, C., Del Mastro, A., Sellitto, A., Solaro, E., Esposito, S., and Cuomo, G. (2018). Tocilizumab reduces complément C3 and C4 sérum levels in rheumatoid arthritis patients. Clin. Rheumatol. 37, 1695-1700.

Schumann, R. R., Leong, S. R., Flaggs, G.W., Gray, P.W., Wright, S.D., Mathison, J.C., Tobias, P. S., and Ulevitch, R.J. (1990). Structure and function of lipopolysaccharide binding protein. Science 249 1429-1431 .

Skoumal, M., Kolarz, G., and Klingler, A. (2003). Sérum levels of cartilage oligomeric matrix protein. A predicting factor and a valuable parameter for disease management in rheumatoid arthritis. Scand. J. Rheumatol. 32, 156-161 .

Smolen, J. S., Landewé, R., Bijlsma, J., Burmester, G., Chatzidionysiou, K., Dougados, M., Nam, J ., Ramiro, S., Voshaar, M., van Vollenhoven, R., et al. (2017). EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2016 update. Ann. Rheum. Dis. 76, 960-977.

Souto, A., Maneiro, J. R., and Gômez-Reino, J.J. (2016). Rate of discontinuation and drug survival of biologie thérapies in rheumatoid arthritis: a systematic review and meta-analysis of drug registries and health care databases. Rheumatol. Oxf. Engl. 55, 523-534.

Takeuchi, T., Nakanishi, T., Tabushi, Y., Hata, A., Shoda, T., Kotani, T., Shimizu, A., Takubo, T., Makino, S., and Hanafusa, T. (2007). Sérum protein profile of rheumatoid arthritis treated with anti-TNF therapy (infliximab). J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci. 855, 66-70.

Trocmé, C., Marotte, H., Baillet, A., Pallot-Prades, B., Garin, J., Grange, L., Miossec, P., Tebib, J., Berger, F., N issen, M.J., et al. (2009). Apolipoprotein A-l and platelet factor 4 are biomarkers for infliximab response in rheumatoid arthritis. Ann. Rheum. Dis. 68, 1328-1333.

Visvanathan, S., Wagner, C., Rojas, J., Kay, J., Dasgupta, B., Matteson, E.L., Mack, M., Baker, D.G., and Rahman, M.U. (2009). E-selectin, interleukin 18, sérum amyloid a, and matrix metalloproteinase 9 are associated with clinical response to golimumab plus methotrexate in patients with active rheumatoid arthritis despite methotrexate therapy. J. Rheumatol. 36, 1371-1379.

Xu, Y., Yamada, T., Satoh, T., and Okuda, Y. (2005). Measurement of sérum amyloid A1 (SAA1 ), a major isotype of acute phase SAA. Clin. Chem. Lab. Med. CCLM 44 59-63.

Yeo, L., Adlard, N., Biehl, M., Juarez, M., Smallie, T., Snow, M., Buckley, C.D., Raza, K., Filer, A., and Scheel-Toellner, D. (2016). Expression of chemokines CXCL4 and CXCL7 by synovial macrophages defines an early stage of rheumatoid arthritis. Ann. Rheum. Dis. 75, 763-771 .