BECKER ANKE
PETZOLD KARL-HEINZ
PETERS JOACHIM
BLOCHWITZ OLAF
WO1997003165A1 | 1997-01-30 | |||
WO1995014519A1 | 1995-06-01 |
EP0859048A2 | 1998-08-19 | |||
EP0799884A2 | 1997-10-08 | |||
EP0639638A1 | 1995-02-22 | |||
EP0618290A1 | 1994-10-05 |
1. | Verfahren zur Herstellung von Zuckertensidgranulaten, bei dem man wäßrige Pasten von a) Alkylund/oder Alkenyloligoglykosiden und/oder b) FettsaureNalkylpolyhydroxyalkylamiden in Gegenwart von Zeolithen und/oder Wassergläsern einer Granulierung gegebenenfalls unter anschließender Abtrockung unterwirft, dadurch gekennzeichnet, daß die Granulate während der Granulation mit Stäuben abgepudert werden. |
2. | Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß Alkylund Alkenyl oligoglykoside der Formel R'O [G] p eingesetzt werden, in der R'für einen Alkylund/oder Alkenylrest mit 4 bis 22 Kohlenstoffatomen, G für einen Zuckerrest mit 5 oder 6 Kohlenstoffatomen und p für Zahlen von 1 bis 10 steht. |
3. | Verfahren nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß FettsäureNalkylpolyhydroxyalkylamide der Formel eingesetzt werden, in der R2CO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R3 für Wasserstoff, einen Alkyloder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 12 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. |
4. | Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß die FettsäureNalkylpolyhydroxyalkylamide bevorzugt FettsäureN alkylglucamide sind, die durch die Formel wiedergegeben werden, wobei vorzugsweise R3 für Wasserstoff oder eine Alkylgruppe steht und R2CO für den Acylrest der Capronsäure, Caprylsäure, Caprinsäure, Laurinsäure, Myristinsäure, Pa, mitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsaure, Olsäure, Etaidinsäure, Petroselinsäure, Li nolsäure, Linolensäure, Arachinsäure, Gado, einsäure, Behensäure oder Erucasäure bzw. derer technischer Mischungen steht, und wobei FettsäureN alkylglucamide, die durch reduktive Aminierung von Glucose mit Methylamin und anschließende Acylierung mit Laurinsäure oder Ci2/i4Kokosfettsäure bzw. einem entsprechenden Derivat erhalten werden, besonders bevorzugt sind. |
5. | Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß Wassergläser der Formeln (Si02) m (M22O) nr und/oder (Si02) m (M220) n2 (H20) x2 eingesetzt werden, in denen M für Lithium, Natrium oder Kalium, m und n1 für ganze oder gebrochene Zahlen größer 0, n2 für 1 und x2 für 0 oder ganze Zahlen von 1 bis 20 steht. |
6. | Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß die Granulation in einem Mischer durchgeführt wird. |
7. | Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß die Granulierung in einer Wirbelschichtapparatur durchgeführt wird. |
8. | Verfahren nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß die Stäube aus einer oder mehrern Substanzen bestehen, die ausgewahit sind aus der Gruppe die gebildet wird von feinteiligen Trägersubstanzen, wie feinteiligen Salzen, vorzugsweise Alkalicarbonat, oder silicatischen Trägern, wie beispielsweise kristallinen oder amorphen Silikaten, insbesondere übertrockneten Silikaten oder Zeolithen, und festen Aniontensiden, insbesondere den Alkylsulfaten, vorzugsweise solchen von C822 Fettalkoholen. |
9. | Verfahren nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß die Stäube in solchen Mengen eingesetzt, daß sie in den fertigen Granulaten einen Anteil zwischen 0,5 und 20 Gew.%, vorzugsweise zwischen 2 und 10 Gew.%, bezogen auf das Gesamtgewicht der Granulate, ausmachen. |
10. | Waschoder Reinigungsmittel, dadurch gekennzeichnet, daß es Zuckertensidgranulate, die nach einem der Ansprüche 1 bis 9 hergestellt wurden, enthalt. |
Zuckertenside, wie beispielsweise Alkyloligoglucoside oder Fettsäure-N-alkylglucamide, zeichnen sich durch ausgezeichnete Detergenseigenschaften und hohe ökotoxikologische Verträglichkeit aus. Aus diesem Grund gewinnen diese Klassen nichtionischer Tenside in zunehmendem Maße an Bedeutung. Während die Einarbeitung dieser Tenside in flüssigen Formulierungen, wie beispielsweise Geschirrspülmittel oder Haarshampoos, üblich ist, bereitet die Einarbeitung in festen, wasserfreien Anbietungsformen, wie beispielsweise Pulverwaschmittel nach wie vor Schwierigkeiten.
Die Trocknung flüssiger Tensidzubereitungen erfolgt großtechnisch in der Regel durch konventionelle Sprühtrocknung, bei der man die wäßrige Tensidpaste am Kopf eines Turmes in Form feiner Tröpfchen versprüht, denen heiße Trocknungsgase entgegengeführt werden. Diese Technologie ist auf Zuckertensidpasten jedoch nicht ohne weiteres anwendbar, da die für die Trocknung erforderlichen Temperaturen oberhalb der Karamelisierungs-d. h. Zersetzungstemperatur der Zuckertenside liegen.
Kurz gesagt : Bei konventioneller Trocknung von Zuckertensidpasten werden verkohlte Produkte erhalten, zudem kommt es zu Anbackungen an der Turmwandung, die in kurzen Abständen eine aufwendige Reinigung erforderlich machen. n der Vergangenheit hat man versucht, dieses Problem zu umgehen. Aus der Deutschen Patentanmeldung DE-A1 41 02 745 (Henkel) ist z. B. ein Verfahren bekannt, bei dem man Fettalkoholpasten eine geringe Menge von 1 bis 5 Gew.-% Alkylglucosiden zusetzt und einer konventionellen Sprühtrocknung unterwirft. Allerdings läßt sich der Prozeß nur in Gegenwart einer großen Menge anorganischer Salze durchführen. In der Deutschen Patentan-meldung DE-A1 41 39 551 (Henkel) wird vorgeschlagen, Pasten von Alkylsulfaten und Al-kylglucosiden, die jedoch maximal 50 Gew.-% des Zuckertensids enthalten können, in Ge-genwart von Mischungen aus Soda und Zeolithen zu versprühen. Hier werden jedoch nur Compounds erhalten, die eine geringe Tensidkonzentration und ein unzureichendes Schüttge-wicht aufweisen. Schließlich wird in der Internationalen Patentanmeldung WO 95/14519 (Henkel) darüber berichtet, Zuckertensidpasten einer Trocknung mit überhitztem Wasser-dampf zu unterwerfen.
Dieses Verfahren ist jedoch technisch sehr aufwendig.
In der Internationalen Patentanmeldung WO 97/03165 wird ein Verfahren zur Herstellung von Zuckertensidgranulaten beschrieben, bei dem man wäßrige Pasten von Alkyl-und/oder Alkenyloligoglykosiden und/oder Fettsäure-N-alkylpolyhydroxyalkyl- amiden in Gegenwart von Zeolithen und/oder Wassergläsern einer Granulierung, gegebenenfalls unter anschließender Abtrockung unterwirft. Dabei ermöglicht die Verwendung der Silicium-verbindungen als Trägermaterialien Granulate mit einem hohem Schütt-gewicht im Bereich von 500 bis 1000 gui sowie eine Zuckertensidbeladung von 30 bis 80 Gew.-%. Die Granulate sind selbst im Fall eines Restwassergehaltes von bis zu 20 Gew.-% äußerlich staubtrocken, so daß eine nachträgliche Abtrocknung nicht erforderlich ist. Sie sind rieselfähig, lagerstabil, zeigen keine Tendenz zur Verklumpung und sind auch in kaltem Wasser leicht und praktisch ohne Rückstand löslich. Zudem weisen sie eine ausgezeichnete Farbqualität auf. Allerdings zeigte sich, daß bei Anwendung diesen Verfahrens immer wieder Probleme mit Anbackungen in der Anlage und insbesondere an den Abluftfiltern auftraten. Daher bestand weiterhin bedarf das Herstellverfahren zu verbessern.
Die Aufgabe der Erfindung hat somit darin bestanden, ein verbessertes Verfahren zur Herstellung von Zuckertensidgranulaten zur Verfügung zu stellen, das die Vorteile des in der WO 97/03165 beschriebenen Verfahrens aufweist und zusätzlich Probleme mit Anbackungen der Produkte in der Anlage vermeidet.
Es wurde überraschend gefunden, daß diese Aufgabe durch ein Verfahren zur Herstellung von Zuckertensidgranulaten gelöst wird, bei dem man wäßrige Pasten von a) Alkyl-und/oder Alkenyloligoglykosiden und/oder b) Fettsäure-N-alkylpolyhydroxy- alkylamiden in Gegenwart von Zeolithen und/oder Wassergläsern einer Granulierung, gegebenenfalls unter anschließender Abtrockung unterwirft, welches dadurch gekennzeichnet ist, daß die Granulate während der Granulation mit Stäuben abgepudert werden.
Die so erhaltenen Granulate weisen die schon aus der WO 97/03165 bekannten Vorteile auf. Sie sind rieselfähig, lagerstabil, zeigen keine Tendenz zur Verklumpung und sind auch in kaltem Wasser leicht und praktisch ohne Rückstand löslich. Zudem weisen sie eine ausge-zeichnete Farbqualität auf. Darüberhinaus vermeidet dieses Verfahren auch die oben diskutierten Probleme mit Anbackungen während der Granulation.
Dementsprechend ermöglicht dieses verbesserte Verfahren eine unterbrechungslose Produktion der Granulate ; teure Standzeiten der Granulationsanlagen zur Filterreinigung können so vermieden werden.
Alkyl-und Alkenyloligoglykoside im Sinne der vorliegenden Erfindung stellen bekannte nichtionische Tenside dar, die der Formel R'O- [G] p folgen, in der R'für einen Alkyl- und/oder Alkenylrest mit 4 bis 22 Kohlenstoffatomen, G für einen Zuckerrest mit 5 oder 6 Kohlenstoffatomen und p für Zahlen von 1 bis 10 steht. Sie können nach den einschlägigen Verfahren der präparativen organischen Chemie erhalten werden. Stell- vertretend für das umfangreiche Schrifttum sei hier auf die Schriften EP-A1-0 301 298 und WO 90/03977 verwiesen.
Die Alkyl-und/oder Alkenyloligoglykoside können sich von Aldosen bzw. Ketosen mit 5 oder 6 Kohlenstoffatomen, vorzugsweise der Glucose ableiten. Die bevorzugten Alkyl- und/oder Alkenyloligoglykoside sind somit Alkyl-und/oder Alkenyloligoglucoside.
Die Indexzahl p in der allgemeinen Formel gibt den Oligomerisierungsgrad (DP-Grad), d. h. die Verteilung von Mono-und Oligoglykosiden an und steht für eine Zahl zwischen 1 und 10. Während p in einer gegebenen Verbindung stets ganzzahlig sein muß und hier vor allem die Werte p = 1 bis 6 annehmen kann, ist der Wert p für ein bestimmtes Alkyloligoglykosid eine analytisch ermittelte rechnerische Größe, die meistens eine ge- brochene Zahl darstellt. Vorzugsweise werden Alkyl-und/oder Alkenyloligoglykoside mit einem mittleren Oligomerisierungsgrad p von 1,1 bis 3,0 eingesetzt. Aus anwendungs- technischer Sicht sind solche Alkyl-und/oder Aikenyloligoglykoside bevorzugt, deren Oligomerisierungsgrad kleiner als 1,7 ist und insbesondere zwischen 1,2 und 1,4 liegt.
Der Alkyl-bzw. Alkenylrest R'kann sich von primären Alkoholen mit 4 bis 11, vor- zugsweise 8 bis 10 Kohlenstoffatomen ableiten. Typische Beispiele sind Butanol, Capron-alkohol, Caprylalkohol, Caprinalkohoi und Undecylalkohol sowie deren technische Mischungen, wie sie beispielsweise bei der Hydrierung von technischen Fettsäuremethylestern oder im Verlauf der Hydrierung von Aldehyden aus der Roelen'schen Oxosynthese erhalten werden. Bevorzugt sind Alkyloligoglucoside der Ketteniänge Cs-Cio (DP = 1 bis 3), die als Vorlauf bei der destillativen Auftrennung von technischem C8-C, 8-Kokosfettalkohol anfallen und mit einem Anteil von weniger als 6 Gew.-% C, 2-Alkohol verunreinigt sein können sowie Alkyloligoglucoside auf Basis tech- nischer Cg/n-Oxoatkohote (DP = 1 bis 3).
Der Alkyl-bzw. Alkenylrest R'kann sich ferner auch von primären Alkoholen mit 12 bis 22, vorzugsweise 12 bis 14 Kohlenstoffatomen ableiten. Typische Beispiele sind Lauryl- alkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol,<BR> Isostearylalkohol, Oleyl-alkohol, Elaidylalkohol, Petroselinylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol, Brassidylalkohol sowie deren technische Gemische, die wie oben beschrieben erhalten werden können. Bevorzugt sind Alkyloligoglucoside auf Basis von gehärtetem C, v, 4-Kokosalkohol mit einem DP von 1 bis 3.
Fettsäure-N-alkylpolyhydroxyalkylamide im Sinne dieser Erfindung stellen nichtionische Tenside dar, die der Formel folgen, in der R2CO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R3 für Wasserstoff, einen Alkyl-oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 12 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht.
Bei den Fettsäure-N-alkylpolyhydroxyalkylamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können. Hinsichtlich der Verfahren zu ihrer Herstellung sei auf die US-Patentschrift US 2, 703,798 sowie die Internationale Patentanmeldung WO 92/06984 verwiesen. Eine Übersicht zu diesem Thema von H. Kelkenberg findet sich in Tens. Surf. Det. 25, 8 (1988).
Vorzugsweise leiten sich die Fettsäure-N-alkylpolyhydroxyalkylamide von reduzierenden Zuckern mit 5 oder 6 Kohlenstoffatomen, insbesondere von der Glucose ab. Die bevorzugten Fettsäure-N-alkylpolyhydroxyalkylamide stellen daher Fettsäure-N-alkylglu- camide dar, wie sie durch die Formel wiedergegeben werden : Vorzugsweise werden als Fettsäure-N-alkylpolyhydroxyalkylamide Glucamide einge- setzt, bei denen R3 für Wasserstoff oder eine Alkylgruppe steht und R2CO für den Acylrest der Capronsäure, Caprylsäure, Caprinsäure, Laurinsäure, Myristinsäure, Palmi- tinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petrose- linsäure, Linolsäure, Linolensäure, Arachinsäure, Gadoleinsaure, Behensäure oder Erucasäure bzw. derer technischer Mischungen steht. Besonders bevorzugt sind Fettsäure-N-alkyl-glucamide), die durch reduktive Aminierung von Glucose mit Methylamin und anschließende Acylierung mit Laurinsäure oder Ci2/i4-Kokosfettsäure bzw. einem entsprechenden Derivat erhalten werden. Weiterhin können sich die Polyhy- droxyalkylamide auch von Maltose und Palatinose ableiten.
Als Träger für diese Tenside werden erfindungsgemäß Zeolithe und/oder Wassergläser eingesetzt. Als Zeolithe werden erfindungsgemäß allgemein Aluminosilicate bezeichnet.
Unter den Aluminosilicaten wiederum werden bevorzugt kristalline Aluminosilicate-die eigentlichen Zeolithe-eingesetzt. Ais Träger bevorzugte Zeolithe sind dabei die Zeolithe A, P, X, Y und Mischungen davon. Der Einsatz von Zeolith A als Träger ist dabei aus zahlreichen Publikationen bekannt. Zeolith P und die Zeolithe vom Faujasit-Typ besitzen jedoch ein im Vergleich zu Zeolith A erhöhtes Ölabsorptionsvermögen und können daher in Granulaten bevorzugt sein. Dabei besteht in einer vorteilhaften Ausführungsform der Erfindung zumindest ein Teil des eingesetzten Zeoliths, vorzugsweise mindestens 20 Gew.-% und bevorzugt sogar der gesamte Zeolith aus Zeolith vom Faujasit-Typ. Im Rahmen der vorliegenden Erfindung kennzeichnet der Begriff"Zeolith vom Faujasit-Typ" alle drei Zeolithe, die die Faujasit-Untergruppe der Zeolith-Strukturgruppe 4 bilden.
Neben dem Zeolith X sind erfindungsgemäß also auch Zeolith Y und Faujasit sowie Mischungen dieser Verbindungen erfindungsgemäß einsetzbar, wobei der reine Zeolith X bevorzugt ist. Im Rahmen des erfindungsgemäßen Verfahrens bevorzugt einsetzbar ist beispielsweise auch der in der europäischen Patentanmeldung EP-A-816 291 beschriebene Zeolith A-LSX, der einem Co-Kristallisat aus Zeolith X und Zeolith A entspricht und in seiner wasserfreien Form die Formel (M2XnO + M2XnO) AI203zSiO2 besitzt, wobei M und M'Alkali-oder Erdalkalimetalle sein können und z eine Zahl zwischen 2,1 und 2,6 ist. Kommerziell erhältlich ist dieses Produkt unter dem Markennamen VEGOBOND AX von der Firma CONDEA Augusta S. p. A. Wird Zeolith P eingesetzt, so kann es bevorzugt sein, einen Zeolith MAP, wie er in dem Europäischen Patent EP-B-380 070 beschrieben ist, einzusetzen. Die Teilchengrößen der erfindungsgemäß eingesetzten Zeolithe liegt vorzugsweise im Bereich von 0,1 bis zu 100 um, vorzugsweise zwischen 0,5 und 50 um und insbesondere zwischen 1 und 30 um, jeweils mit Standard-Teilchengrößebestimmungsmethoden gemessen.
Unter dem Begriff"Wasserglas"sind amorphe Alkalisilicate der Formel (Si02) m (Mz20) n, und/oder kristalline Alkalisilicate der Formel (Si02) m (M220) n2 (H20) x2 zu verstehen, in denen M2 für Lithium, Natrium oder Kalium, m und n1 für ganze oder gebrochene Zahlen größer 0, n2 für 1 und x2 für 0 oder ganze Zahlen von 1 bis 20 stehen.
Bei den amorphen Alkalisilicaten handelt es sich um aus dem Schmeizfluß erstarrte, glasige, wasserlosliche Salze der Kieselsäure. Ihre Herstellung ist beispielsweise im RÖMPP Chemie Lexikon, 9. Aufl., Thieme Verlag, Stuttgart, Bd. 6, S. 5003 beschrieben.
Im Sinne des erfindungsgemäßen Verfahrens können sowohl Alkalisilicate mit niedrigem Si02 : M2O-, beziehungsweise m : n-Verhältnis ("basische"Wassergläser), als auch solche mit hohem m : n-Verhältnis ("neutrale"oder"saure"Wassergläser") eingesetzt werden. Das Verhältnis Si02 : M2O wird auch als"Modul"des Silicats bezeichnet. Eine Übersicht findet sich zudem in Z. Chem. 28,41 (1988).
Auch die kristallinen Alkalisilicate stellen bekannte Stoffe dar. Sie besitzen einen schichtförmigen Aufbau und sind beispielsweise durch Sintern von Alkaliwasserglas oder durch hydrothermale Reaktionen zugänglich [Glastechn. Ber., 37 194 (1964)]. Als kri- stalline Alkalisilicate kommen z. B. Makatit (Na2Si4Og 5 H2O), Kenyait (Na2Si22045 10 H2O) oder ierit (Na2Si8O, 7 9 H2O) in Betracht [Amer. Mineral. 38,163 (1953)] in Betracht. Als Träger für die Granulierung haben sich insbesondere Wassergiäser bewährt, bei denen M für Natrium und x für 0 steht und deren Modul, d. h. deren m : n- Verhältnis, 1,9 bis 4, vorzugsweise 1,9 bis 2,5 beträgt. Die Wassergläser können als Feststoffe oder auch in Form wäßriger Lösungen mit Feststoffgehalten von 1 bis 80, vorzugsweise 30 bis 60 Gew.-%-bezogen auf die Silicatverbindung-eingesetzt werden.
Die Granulierung kann in jeder beliebigen, dazu geeigneten Anlage erfolgen. Bevorzugt ist es jedoch, wenn die Paste durch Sprühagglomeration granuliert und vorzugsweise gleichzeitig oder anschließend getrocknet wird.
Dabei kann die Granulation in jedem beliebigen zur Sprühagglomeration geeigneten Mischer/Granulator stattfinden ; bevorzugt wird die Granulation jedoch in einer batchweise oder kontinuierlich laufenden Wirbelschicht durchgeführt. Es ist insbesondere bevorzugt, das Verfahren kontinuierlich in der Wirbelschicht durchzuführen. Dabei werden die flüssigen Zubereitungen über Ein-oder Mehrwegdüsen oder über mehrere Düsen in die Wirbelschicht eingebracht.
Dabei kann die Herstellung, wie in dem europäischen Patent EP-B-603 207 beschrieben, erfolgen. Gemäß der Lehre des Patents wird eine Tensidzubereitung, die eine nicht-tensidische Ftüssigkomponente aufweist und unter Normaldruck bei 20-40 °C in flüssiger bis pastöser Form vorliegt, granuliert und gleichzeitig getrocknet. Vorteile dieses Verfahrens zur Herstellung rieselfähiger Granulate von unterschiedlichen Tensidtypen ist die Vermeidung der Verbräunung der Tenside infolge schonender Trocknung und das Fehlen von Staubanteilen in den Granulaten.
Bei den verwendeten Trägermaterialien handelt es sich um die bereits oben beschriebenen Träger. Die Trägerkomponente, sowie gegebenenfalls vorhandene weitere Feststoffe, werden entweder pneumatisch über Blasleitungen eingestaubt, wobei die Zugabe entweder vor der Verdüsung der flüssigen Komponenten oder gleichzeitig mit diesen erfolgt, oder als Lösung bzw. Suspension im Gemisch mit den Flüssigkeiten.
Dabei erfolgt die Mischung der flüssigen Bestandteile entweder vor der Verdüsung oder unmittelbar in der Düse. Die Anordnung der Düse bzw. der Düsen und die Sprührichtung kann beliebig sein, solange eine im wesentlichen gleichmäßige Verteilung der flüssigen Komponenten in der Wirbelschicht erreicht wird.
Bevorzugt eingesetzte Wirbelschicht-Apparate besitzen Bodenplatten mit Abmessungen von mindestens 0,4 m. insbesondere sind Wirbelschicht-Apparate bevorzugt, die eine Bodenplatte mit einem Durchmesser zwischen 0,4 und 5 m, beispielsweise 1,2 m oder 2,5 m besitzen. Es sind jedoch auch Wirbelschicht-Apparate geeignet, die eine Bodenplatte mit einem größeren Durchmesser als 5 m aufweisen. Als Bodenplatte wird vorzugsweise eine Lochbodenplatte oder eine Conidurplatte (Handelsprodukt der Firma Hein & Lehmann, Bundesrepublik Deutschland) eingesetzt. Vorzugsweise wird das erfindungsgemäße Verfahren bei Wirbelluftgeschwindigkeiten zwischen 1 und 8 m/s und insbesondere zwischen 1,5 und 5,5 m/s durchgeführt.
Der Austrag der Granulate aus der Wirbelschicht erfolgt vorteilhafterweise über eine Größenktassierung der Granulate. Diese Klassierung kann beispielsweise mit einer Siebvorrichtung oder durch einen entgegengeführten Luftstrom (Sichterluft) erfolgen, der so reguliert wird, daß erst Teilchen ab einer bestimmten Teilchengröße aus der Wirbelschicht entfernt und kleinere Teilchen in der Wirbelschicht zurückgehalten werden.
In einer bevorzugten Ausführungsform setzt sich die einströmende Luft aus der beheizten oder unbeheizten Sichterluft und der beheizten Bodenluft zusammen. Die Bodenlufttemperatur liegt dabei vorzugsweise zwischen 80 und 400°C, insbesondere zwischen 90 und 350°C. Die Wirbelluft kühlt sich durch Wärmeverluste und durch die Verdampfungswärme der Bestandteile des Lösungsmittels ab. In einer besonders bevorzugten Ausführungsform beträgt die Temperatur der Wirbelluft etwa 5 cm oberhalb der Bodenplatte 60 bis 120°C, vorzugsweise 70 bis 100°C. Die Luftaustrittstemperatur liegt vorzugsweise zwischen 60 und 120°C, insbesondere unterhalb 100°C.
Erfolgt der Austrag aus der Wirbelschicht, wie in der EP-B-0 603 207 beschrieben, gegen einen Sichterluftstrom, so werden durch diese Klassierung staubfreie Granulate erhalten, d. h. die Korngrößen der Teilchen liegen über 0,2 mm. Erfindungsgemäß bevorzugte Granulate haben einen d5o-Wert zwischen 0,4 und 2,0 mm. In einer besonders bevorzugten Ausführungsform wird der Kornanteil, der größer 2,0 mm ist, zurückgeführt. Dieser Grobkornanteil kann entweder nach Mahlen der Wirbelschicht als feste Komponente zugesetzt werden oder er wird erneut gelöst und in die Wirbelschicht eingesprüht.
Weiter kann die Wirbelschichtapparatur eine Vorrichtung zur Erzeugung einer Luftrotation um die senkrechte Achse eines Wirbelschichtapparates, wie sie beispielsweise in der älteren Anmeldung DE 19850099.8 beschrieben wird, enthalten, die so gestaltet ist, daß eine Luftzufuhr oberhalb des horizontal verlaufenden Wirbelbodens angebracht ist, die über mindestens zwei Einblaskanäle verfügt, die in gleichmäßigem Abstand voneinander und in gleicher Höhe über dem Wirbelboden in einem Anstellwinkel von mindestens 30° und maximal 90° angebracht sind. Diese Vorrichtung führt in einer runden Wirbelschichtapparatur mit aufsteigender Außenströmung zu einer homogenen Temperaturverteilung. In einer solchen Apparatur können darüber hinaus besonders kugelförmige Granulaten hergestellt werden, da die vertikale Strömung im Außenbereich der Wirbelschichtapparatur eine höhere Geschwindigkeit hat als im Zentrum der Apparatur und über eine Luftzuführung oberhalb des Wirbelbodens eine Wirbelströmung um die senkrechte Achse der Apparatur erzeugt wird.
Bei der erfindungsgemäßen Granulation wird während der Granulation ein Staub als Abpuderungsmittel zugegeben. Dieser Staub kann aus den verschiedensten Substanzen bestehen. Erfindungsgemäß bevorzugt ist es, wenn als Staub eine feinteilige Trägersubstanz, wie beipielsweise ein feinteiliges Salz, vorzugsweise ein Alkalicarbonat, oder ein silicatischer Träger, wie beispielsweise kristalline oder amorphe Silikate, insbesondere übertrocknete Silikate oder Zeolith eingesetzt wird. In einer anderen erfindungsgemäß ebenfalls bevorzugten Variante wird als Staub ein festes Aniontensid eingesetzt. Als besonders geeignet haben sich hier Alkylsulfate, insbesondere solche von C822-Fettalkoholen erwiesen. Dabei werden diese Abpuderungsmittel ("Stäube") in solchen Mengen eingesetzt, daß sie in den fertigen Granulaten einen Anteil zwischen 0,5 und 20 Gew.-%, vorzugsweise zwischen 2 und 10 Gew.-%, bezogen auf das Gesamtgewicht der Granulate, ausmachen.
Ein weiterer Gegenstand der vorliegenden Erfindung sind Wasch-oder Reinigungsmittel, die neben anderen Bestandteilen mindestens ein Zuckertensid-Granulat, das Produkt des erfindungsgemäßen Verfahrens ist, enthalten.
Die erfindungsgemäßen Wasch-und Reinigungsmittel, die als Granulate, pulver-oder tablettenförmige Feststoffe oder sonstige Formkörper vorliegen können, können außer den erfindungsgemäßen Granulaten im Prinzip alle bekannten und in derartigen Mitteln üblichen Inhaltsstoffe enthalten. Bevorzugte Mittel im Sinne der Erfindung sind granulare Mittel, insbesondere solche, die durch Mischen verschiedener Granulate von Wasch- und/oder Reinigungsmittelkomponenten entstehen.
Als wesentliche Inhaltsstoffe der erfindungsgemäßen Waschmittel können in erster Linie anionische, nichtionische, kationische, amphotere und/oder zwitterionische Tenside ge- nannt werden.
Geeignete anionische Tenside sind insbesondere Seifen und soiche, die Sulfat-oder Sulfonat-Gruppen enthalten. Als Tenside vom Sulfonat-Typ kommen vorzugsweise Cg- C, 3-Alkylbenzolsulfonate, Olefinsulfonate, das heißt Gemische aus Alken-und Hydroxy- alkansulfonaten sowie Disulfonaten, wie man sie beispielsweise aus C, 2-C18- Monoolefinen mit end-oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus C, 2-C, 8-Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse beziehungsweise Neutralisation gewonnen werden. Geeignet sind auch die Ester von a-Sulfofettsäuren (Estersulfonate), zum Beispiel die a-sulfo- nierten Methylester der hydrierten Kokos-, Palmkern-oder Talgfettsäuren, die durch a- Sulfonierung der Methylester von Fettsäuren pflanzlichen und/oder tierischen Ursprungs mit 8 bis 20 C-Atomen im Fettsäuremolekül und nachfolgende Neutralisation zu wasserlöslichen Mono-Salzen hergestellt werden, in Betracht. Vorzugsweise handelt es sich hierbei um die a-sulfonierten Ester der hydrierten Kokos-, Palm-, Palmkern-oder Talgfettsäuren, wobei auch Sulfonierungsprodukte von ungesättigten Fettsäuren, beispielsweise Ölsäure, in geringen Mengen, vorzugsweise in Mengen nicht oberhalb etwa 2 bis 3 Gew.-%, vorhanden sein können. Insbesondere sind a- Sulfofettsäurealkylester bevorzugt, die eine Alkylkette mit nicht mehr als 4 C-Atomen in der Estergruppe aufweisen, beispielsweise Methylester, Ethylester, Propylester und Butylester. Mit besonderem Vorteil werden die Methylester der a-Sulfofettsäuren (MES), aber auch deren verseifte Disalze eingesetzt.
Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester, welche Mono-, Di- und Triester sowie deren Gemische darstellen, wie sie bei der Herstellung durch Veresterung durch ein Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden.
Als Alk (en) ylsulfate werden die Alkali-und insbesondere die Natriumsalze der Schwefelsåurehalbester der C, 2-C, 8-Fettalkohole beispielsweise aus Kokosfettalkohol, Talgfettalkohol, Lauryl-, Myristyl-, Cetyl-oder Stearylalkohol oder der C, 0-C20- Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlänge bevorzugt. Weiterhin bevorzugt sind Alk (en) ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der Basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind Ci2- C, 6-Alkylsulfate und C, 2-C, 5-Alkylsulfate sowie C, 4-C, 5-Alkylsulfate insbesondere bevorzugt. Auch 2,3-Alkylsulfate, welche beispielsweise gemäß den US-amerikanischen Patentschriften US 3 234 258 oder US 5 075 041 hergestellt werden und als Handelsprodukte der Shell Oil Company unter dem Namen DAN@ erhalten werden können, sind geeignete Aniontenside.
Geeignet sind auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C7-C2,-Alkohole, wie 2-Methylverzweigte Cg-C"-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder C, 2-C18-Fettalkohole mit 1 bis 4 EO. Sie werden in Wasch-und Reinigungsmitteln aufgrund ihres hohen Schaumverhaltens normalerweise nur in relativ geringen Mengen, beispielsweise in Mengen von 1 bis 5 Gew.-%, eingesetzt.
Zu den bevorzugten Aniontensiden gehören auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden, und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten C8-bis C, 8-Fettalkoholreste oder Mischungen aus diesen. insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkohofrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen. Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk (en) ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk (en) ylkette oder deren Salze einzusetzen.
Als weitere anionische Tenside kommen Fettsäure-Derivate von Aminosäuren, beispiels- weise von N-Methyltaurin (Tauride) und/oder von N-Methylglycin (Sarkoside) in Betracht.
Insbesondere bevorzugt sind dabei die Sarkoside beziehungsweise die Sarkosinate und hier vor allem Sarkosinate von höheren und gegebenenfalls einfach oder mehrfach ungesättigten Fettsäuren wie Oleylsarkosinat.
Als weitere anionische Tenside kommen insbesondere Seifen, beispielsweise in Mengen von 0,2 Gew.-% bis 5 Gew.-%, in Betracht. Geeignet sind insbesondere gesättigte Fett- säureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrierten Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, zum Beispiel Kokos-, Palmkern-oder Talgfettsäuren, abgeleitete Seifengemische.
Die anionischen Tenside, einschließlich der Seifen, können in Form ihrer Natrium-, Kalium-oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di-oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium-oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.
Anionische Tenside sind in erfindungsgemäßen Waschmitteln vorzugsweise in Mengen von 1 Gew.-% bis 35 Gew.-% und insbesondere in Mengen von 5 Gew.-% bis 30 Gew.- % enthalten.
Als nichtionische Tenside werden neben den, in den erfindungsgemäß, hergestellten Granulaten enthaltenen Tensiden, vorzugsweise auch alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkohofrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann beziehungsweise lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkohoiresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C- Atomen, z. B. aus Kokos-, Palm-, Talgfett-oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C, 2-C, 4-Alkohole mit 3 EO oder 4 EO, Cg-C-Alkohole mit 7 EO, Cis-Cis- Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C, 2-C, 8-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C, 2-C, 4-Alkohol mit 3 EO und Cis-Cis- Alkohol mit 7 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können.
Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow range ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind (Talg-) Fettalkohole mit 14 EO, 16 EO, 20 EO, 25 EO, 30 EO oder 40 EO.
Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbesondere Fettsäure- methylester, wie sie beispielsweise in der japanischen Patentanmeldung JP 58/217598beschrieben sind oder die vorzugsweise nach dem in der internationalen Patentanmeldung WO 90/13533beschriebenen Verfahren hergestellt werden.
Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N, N- dimethylaminoxid und N-Talgalkyl-N, N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr a : s die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hä ! fte davon. Erfindungsgemäß) bevorzugt ist es, wenn die nichtionischen Tenside in Form der erfindungsgemäßen Granulate eingesetzt werden. es kann jedoch auch bevorzugt sein, wenn nur ein teil oder nur bestimmte nichtionische Tenside über die erfindungsgemäßen Granulate in das Mittel eingebracht werden.
Als weitere Tenside kommen sogenannte Gemini-Tenside in Betracht. Hierunter werden im allgemeinen solche Verbindungen verstanden, die zwei hydrophile Gruppen pro Molekül besitzen. Diese Gruppen sind in der Regel durch einen sogenannten"Spacer" voneinander getrennt. Dieser Spacer ist in der Regel eine Kohlenstoffkette, die lang genug sein sollte, daß die hydrophilen Gruppen einen ausreichenden Abstand haben, damit sie unabhängig voneinander agieren können. Derartige Tenside zeichnen sich im allgemeinen durch eine ungewöhnlich geringe kritische Micelikonzentration und die Fähigkeit, die Oberflächenspannung des Wassers stark zu reduzieren, aus. In Aus- nahmefällen werden unter dem Ausdruck Gemini-Tenside nicht nur derartig"dimere", sondern auch entsprechend"trimere"Tenside verstanden. Geeignete Gemini-Tenside sind beispielsweise sulfatierte Hydroxymischether oder Dimeralkohol-bis-und Trimeralkohol-tris-sulfate und-ethersulfate. Endgruppenverschlossene dimere und trimere Mischether zeichnen sich insbesondere durch ihre Bi-und Multifunktionalität aus.
So besitzen die genannten endgruppenverschlossenen Tenside gute Netzeigenschaften und sind dabei schaumarm, so daß sie sich insbesondere für den Einsatz in maschinellen Wasch-oder Reinigungsverfahren eignen. Eingesetzt werden können aber auch Gemini-Polyhydroxyfettsäureamide oder Poly-Polyhydroxyfettsäureamide.
Die erfindungsgemäßen Mittel enthalten üblicherweise ein Buildersystem, das aus mindestens einem organischen und/oder anorganischen Builder besteht.
Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wobei unter Polycarbonsäuren solche Carbonsäuren verstanden werden, die mehr als eine Säurefunktion tragen.
Beispielsweise sind dies Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Äpfelsäure, Weinsäure, Maleinsäure, Fumarsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäu, e, Zuckersäuren und Mischungen aus diesen.
Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Builderwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH-Wertes von Wasch-oder Reinigungsmitteln. insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.
Als Builder sind weiter polymere Polycarboxylate geeignet, dies sind beispielsweise die Alkalimetallsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 500 bis 70000 g/mol.
Bei den für polymere Polycarboxylate angegebenen Molmassen handelt es sich im Sinne dieser Schrift um gewichtsmittlere Molmassen Mw der jeweiligen Säureform, die grundsätzlich mittels Gelpermeationschromatographie (GPC) bestimmt wurden, wobei ein UV-Detektor eingesetzt wurde. Die Messung erfolgte dabei gegen einen externen Polyacrylsäure-Standard, der aufgrund seiner strukturellen Verwandtschaft mit den untersuchten Polymeren realistische Molgewichtswerte liefert. Diese Angaben weichen deutlich von den Molgewichtsangaben ab, bei denen Polystyrolsulfonsäuren als Standard eingesetzt werden. Die gegen Polystyrolsulfonsäuren gemessenen Molmassen sind in der Regel deutlich höher als die in dieser Schrift angegebenen Molmassen.
Geeignete Polymere sind insbesondere Polyacrylate, die bevorzugt eine Molekülmasse von 2000 bis 20000 g/mol aufweisen. Aufgrund ihrer überlegenen Löslichkeit können aus dieser Gruppe wiederum die kurzkettigen Polyacrylate, die Molmassen von 2000 bis 10000 g/mol, und besonders bevorzugt von 3000 bis 5000 g/mol, aufweisen, bevorzugt sein.
Geeignet sind weiterhin copolymere Polycarboxylate, insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure.
Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 2000 bis 70000 g/mol, vorzugsweise 20000 bis 50000 g/mol und insbesondere 30000 bis 40000 g/mol.
Die (co-) polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Lösung eingesetzt werden. Der Gehalt der Mittel an (co-) polymeren Polycarboxylaten beträgt vorzugsweise 0,5 bis 20 Gew.-%, insbesondere 3 bis 10 Gew.-%.
Zur Verbesserung der Wasserlöslichkeit können die Polymere auch Ally'sulfonsäuren, wie beispielsweise Allyloxybenzolsulfonsäure und Methallylsulfonsäure, als Monomer enthalten.
Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Monomereinheiten, beispielsweise solche, die als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder die als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker- Derivate enthalten.
Weitere bevorzugte Copolymere sind solche, die in den deutschen Patentanmeldungen DE-A-43 03 320 und DE-A-44 17 734 beschrieben werden und als Monomere vorzugsweise Acrolein und Acrylsäure/Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen.
Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Saize oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyasparaginsäuren bzw. deren Salze und Derivate, von denen in der deutschen Patentanmeldung DE-A-195 40 086 offenbart wird, daß sie neben Cobuilder- Eigenschaften auch eine bleichstabilisierende Wirkung aufweisen.
Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure-oder enzymkatalysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500000 g/mol. Dabei ist ein Polysaccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2000 bis 30000 g/mol.
Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren. Derartige oxidierte Dextrine und Verfahren ihrer Herstellung sind aus zahlreichen Veröffentlichungen bekannt. Ebenfalls geeignet ist ein oxidiertes Oligosaccharid gemäß der deutschen Patentanmeldung DE-A-196 00 018. Ein an C6 des Saccharidrings oxidiertes Produkt kann besonders vorteilhaft sein.
Auch Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendiamindisuccinat, sind weitere geeignete Cobuilder. Dabei wird Ethylendiamin- N, N'-disuccinat (EDDS) bevorzugt in Form seiner Natrium-oder Magnesiumsalze verwendet. Weiterhin bevorzugt sind in diesem Zusammenhang auch Glycerindisuccinate und Glycerintrisuccinate. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silicathaltigen Formulierungen bei 3 bis 15 Gew.-%.
Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbonsäuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten. Derartige Cobuilder werden beispielsweise in der internationalen Patentanmeldung WO 95/20029 beschrieben.
Eine weitere Substanzklasse mit Cobuildereigenschaften stellen die Phosphonate dar.
Dabei handelt es sich insbesondere um Hydroxyalkan-bzw. Aminoalkanphosphonate.
Unter den Hydroxyalkanphosphonaten ist das 1-Hydroxyethan-1,1-diphosphonat (HEDP) von besonderer Bedeutung als Cobuilder. Es wird vorzugsweise als Natriumsalz eingesetzt, wobei das Di-Natriumsalz neutral und das Tetra-Natriumsalz alkalisch (pH 9) reagiert. Als Aminoalkanphosphonate kommen vorzugsweise Ethylendiamin- tetramethylenphosphonat (EDTMP), Diethylentriaminpentamethylenphosphonat (DTPMP) sowie deren höhere Homologe in Frage. Sie werden vorzugsweise in Form der neutral reagierenden Natriumsalze, z. B. als Hexa-Natriumsalz der EDTMP bzw. als Hepta-und Octa-Natriumsalz der DTPMP, eingesetzt. Als Builder wird dabei aus der Klasse der Phosphonate bevorzugt HEDP verwendet. Die Aminoalkanphosphonate besitzen zudem ein ausgeprägtes Schwermetallbindevermögen. Dementsprechend kann es, insbesondere wenn die Mittel auch Bleiche enthalten, bevorzugt sein, Aminoalkanphosphonate, insbesondere DTPMP, einzusetzen, oder Mischungen aus den genannten Phosphonaten zu verwenden.
Darüber hinaus können alle Verbindungen, die in der Lage sind, Komplexe mit Erdalkaliionen auszubilden, als Cobuilder eingesetzt werden.
Ein bevorzugt eingesetzter anorganischer Builder ist feinkristalliner, synthetischer und gebundenes Wasser enthaltender Zeolith, vorzugsweise Zeolith A, X und/oder P.
Geeignet sind jedoch auch Mischungen aus A, X und/oder P. Als Zeolith P wird beispielsweise Zeolith MAP (z. B. Doucil A24 ; Handelsprodukt der Firma Crosfield) besonders bevorzugt. Von besonderem Interesse ist auch ein cokristallisiertes Natrium/Kalium-Aluminiumsilicat aus Zeolith A und Zeolith X, welches als VEGOBOND AX (Handelsprodukt der Firma Condea Augusta S. p. A.) im Handel erhältlich ist. Der Zeolith kann als sprühgetrocknetes Pulver oder auch als ungetrocknete, von ihrer Herstellung noch feuchte, stabilisierte Suspension zum Einsatz kommen. Für den Fall, daß der Zeolith als Suspension eingesetzt wird, kann diese geringe Zusätze an nichtionischen Tensiden als Stabilisatoren enthalten, beispielsweise 1 bis 3 Gew.-%, bezogen auf Zeolith, an ethoxylierten C, 2-C, 8-Fettalkoholen mit 2 bis 5 Ethylenoxidgruppen, C, 2-C, 4-Fettalkoholen mit 4 bis 5 Ethylenoxidgruppen oder ethoxylierten Isotridecanolen. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 im (Volumenverteilung ; Meßmethode : Coulter Counter) auf und enthalten vorzugsweise 10 bis 22 Gew.-%, insbesondere 15 bis 22 Gew.-% an gebundenem Wasser.
Geeignete Substitute bzw. Teilsubstitute für den Zeolith sind Schichtsilicate natürlichen und synthetischen Ursprungs. Ihre Verwendbarkeit ist nicht auf eine spezielle Zusammensetzung bzw. Strukturformel beschränkt. Bevorzugt sind hier jedoch Smectite, insbesondere Bentonite. Auch kristalline, schichtförmige Natriumsilicate der allgemeinen Formel NaMSixO2x+, yH2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2,3 oder 4 sind, eigenen sich zur Substitution von Zeolithen oder Phosphaten. Derartige kristalline Schichtsilicate werden beispielsweise in der europäischen Patentanmeldung EP-A-0 164 514 beschrieben. Bevorzugte kristalline Schichtsilicate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl ß-als auch 6-Natriumdisilicate Na2Si2O5-yH20 bevorzugt.
Zu den bevorzugten Builder-Substanzen gehören auch amorphe Natriumsilicate mit einem Modul Na2O : Si02 von 1 : 2 bis 1 : 3,3, vorzugsweise von 1 : 2 bis 1 : 2,8 und insbesondere von 1 : 2 bis 1 : 2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilicaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflachenbehandlung, Compoundierung, KompaktierungNer- dichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff"amorph"auch"röntgenamorph"verstanden. Dies heißt, daß die Silicate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silicatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamorphe Silicate, welche ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Wassergläsern aufweisen, werden beispielsweise in der deutschen Patentanmeldung DE-A-44 00 024 beschrieben. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Silicate, compoundierte amorphe Silicate und übertrocknete röntgenamorphe Silicate.
Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersubstanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Geeignet sind insbesondere die Natriumsalze der Orthophosphate, der Pyrophosphate und insbesondere der Tripolyphosphate. Ihr Gehalt im allgemeinen nicht mehr als 25 Gew.-%, vorzugsweise nicht mehr als 20 Gew.-%, jeweils bezogen auf das fertige Mittel. In einigen Füllen hat es sich gezeigt, daß insbesondere Tripolyphosphate schon in geringen Mengen bis maximal 10 Gew.-%, bezogen auf das fertige Mittel, in Kombination mit anderen Buildersubstanzen zu einer synergistischen Verbesserung des Sekundärwaschvermögens führen.
Unter den als Bleichmittel dienenden, in Wasser HZOZ liefernden Verbindungen haben Natriumperboratmonohydrat bzw.-tetrahydrat und Natriumpercarbonat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Peroxypyrophosphate, Citratperhydrate sowie H202 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandisäure.
Der Gehalt der Mittel an Bleichmitteln beträgt 0 bis 30 Gew.-% und insbesondere 5 bis 25 Gew.-%, wobei vorteilhafterweise Perboratmonohydrat oder Percarbonat eingesetzt wird.
Um beim Waschen oder Reinigen bei Temperaturen von 60 °C und darunter eine verbesserte Bleichwirkung zu erreichen, können Bleichaktivatoren eingearbeitet werden.
Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O-und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen.
Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1,5-Diacetyl- 2,4-dioxohexahydro-1,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl-oder Isononanoyloxybenzolsulfonat (n-bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acy- lierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat und 2,5- Diacetoxy-2,5-dihydrofuran.
Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch sogenannte Bleichkatalysatoren eingearbeitet werden. Bei diesen Stoffen handelt es sich um bleichverstärkende Übergangsmetallsalze bzw. Übergangsmetallkomplexe wie beispielsweise Mn-, Fe-, Co-, Ru-oder Mo-Salenkomplexe oder-Carbonylkomplexe.
Auch Mn-, Fe-, Co-, Ru-, Mo-, Ti-, V-und Cu-Komplexe mit N-haltigen Tripod-Liganden sowie Co-, Fe-, Cu-und Ru-Amminkomplexe sind als Bleichkatalysatoren verwendbar.
Als Enzyme kommen solche aus der Klasse der Proteasen, Lipasen, Amylasen, Cellulasen bzw. deren Gemische in Frage. Besonders gut geeignet sind aus Bak- terienstämmen oder Pilzen, wie Bacillus subtilis, Bacillus licheniformis und Streptomyces griseus gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Dabei sind Enzymmischungen, beispielsweise aus Protease und Amylase oder Protease und Lipase oder Protease und Cellulase oder aus Cellulase und Lipase oder aus Protease, Amylase und Lipase oder Protease, Lipase und Cellulase, insbesondere jedoch Cellulase-haltige Mischungen von besonderem Interesse. Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als geeignet erwiesen. Die Enzyme können an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen.
Zusätzlich können auch Komponenten eingesetzt werden, welche die Öl-und Fettauswaschbarkeit aus Textilien positiv beeinflussen (sogenannte soil repellents).
Dieser Effekt wird besonders deutlich, wenn ein Textil verschmutzt wird, das bereits vorher mehrfach mit einem erfindungsgemäßen Waschmittel, das diese öl-und fettlösende Komponente enthält, gewaschen wurde. Zu den bevorzugten öl-und fettlösenden Komponenten zählen beispielsweise nichtionische Celluloseether wie Methylcellulose und Methylhydroxy-propylcellulose mit einem Anteil an Methoxy- Gruppen von 15 bis 30 Gew.-% und an Hydroxypropoxyl-Gruppen von 1 bis 15 Gew.-%, jeweils bezogen auf den nichtionischen Celluloseether, sowie die aus dem Stand der Technik bekannten Polymere der Phthalsäure und/oder der Terephthalsäure bzw. von deren Derivaten, insbesondere Polymere aus Ethylenterephthalaten und/oder Poiyethylenglykolterephthalaten oder anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Besonders bevorzugt von diesen sind die sulfonierten Derivate der Phthalsäure-und der Terephthalsäure-Polymere.
Die Wasch-und Reinigungsmittel können als optische Aufheller Derivate der Diaminostilbendisulfonsäure bzw. deren Alkalimetallsalze enthalten. Geeignet sind z. B.
Salze der 4,4'-Bis (2-anilino-4-morpholino-1, 3,5-triazinyl-6-amino) stilben-2, 2'-disulfo- nsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpholino-Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2- Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylstyryle anwesend sein, z. B. die Alkalisalze des 4,4'-Bis (2-sulfo- styryl)-diphenyls, 4,4'-Bis (4-chlor-3-sulfostyryl) diphenyls, oder 4- (4-Chlorstyryl)-4'- (2- sulfostyryl) diphenyls. Auch Gemische der vorgenannten Aufheller können verwendet werden.
Farb-und Duftstoffe werden Wasch-und Reinigungsmitteln zugesetzt, um den ästhetischen Eindruck der Produkte zu verbessern und dem Verbraucher neben der Weichheitsleistung ein visuell und sensorisch"typisches und unverwechselbares" Produkt zur Verfügung zu stellen. Als Parfümöle bzw. Duftstoffe können einzelne Riechstoffverbindungen, z. B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden.
Riechstoffverbindungen vom Typ der Ester sind z. B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzyl- carbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenyl- glycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z. B. die linearen Alkanale mit 8-18 C-Atomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z. B. die Jonone, oc- isomethylionon und Methyl-cedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene wie Limonen und Pinen. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z. B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen-oder Ylang-Ylang-ÖI. Ebenfalls geeignet sind Muskateller, Salbeiöl, Kamillenöl, Nelkenöl, Metissenöt, Minzöl, Zimtblätteröl, Lindenblütenöl, Wachoiderbeeröl, Vetiveröl, O ! ibanumöl, Galbanumöl und Labdanum61 sowie Orangenbtütenöt, Neroliol, Orangenschalenöl und Sandelholzöl. Üblicherweise liegt der Gehalt von Wasch-und Reinigungsmitteln an Farbstoffen unter 0,01 Gew.-%, während Duftstoffe bis zu 2 Gew.- % der gesamten Formulierung ausmachen können.
Die Duftstoffe können direkt in die Wasch-und Reinigungsmittel eingearbeitet werden, es kann aber auch vorteilhaft sein, die Duftstoffe auf Träger aufzubringen, die die Haftung des Parfüms auf der Wäsche verstärken und durch eine langsamere Duftfreisetzung für langanhaltenden Duft der Textilien sorgen. Als solche Trägermaterialien haben sich beispielsweise Cyclodextrine bewährt, wobei die Cyclodextrin-Parfüm-Komplexe zusätzlich noch mit weiteren Hilfsstoffen beschichtet werden können.
Um den ästhetischen Eindruck von Wasch-und Reinigungsmitteln zu verbessern, können sie mit geeigneten Farbstoffen eingefärbt werden. Bevorzugte Farbstoffe, deren Auswahl dem Fachmann keinerlei Schwierigkeit bereitet, besitzen eine hohe Lagerstabilität und Unempfindlichkeit gegenüber den übrigen Inhaltsstoffen der Mittel und gegen Licht sowie keine ausgeprägte Substantivität gegenüber Textilfasern, um diese nicht anzufärben.
Das Schüttgewicht der vorteilhafterweise granularen Wasch-und/oder Reinigungsmittel beträgt vorzugsweise mindestens etwa 600 g/I, insbesondere 650 bis 1100 g/I. Es kön- nen jedoch durchaus auch Mittel hergestellt werden, welche ein niedrigeres Schüttgewicht aufweisen. insbesondere kann es bevorzugt sein, die Mittel aus granularen Einzelkomponenten, in einer Art Baukastensystem, zusammenzustellen.
Die vorliegende Erfindung wird an Hand der folgenden Beispiele näher erläutert.
Beispiele Bei der Herstellung eines Granuiates der Zusammensetzung V in einer Wirbelschicht- Granulationsanlage (bei Bedingungen, wie sie in der Patentanmeldung WO 97/03165 angegeben sind) kam es wiederholt zu Produktionsstörungen, da sich in der Anlage und insbesondere an den Filtern Anbackungen bildeten.
Die Granulate mit der Zusammensetzung B konnten bei analogen Herstellbedingungen störungsfrei hergestellt werden, nachdem das Verfahren so modifiziert wurde, daß während der Granulation kontinuierlich Fettalkoholsulfat-Staub zugegeben wurde. V B APG [Gew.-%] 50 50 Natriumsilicat [Gew.-%] 14 14 Natriumsulfat [Gew.-%] 32 27 Wasser [Gew.-%] 4 4 FASGew.-%-5 APG : Alkylpolyglucosid ; APG 6000, Fa. Cognis Natriumsilicat : Natriumwasserglas mit Modul 2,4 FAS : Fettalkylsulfat ; Sulfopon 1218GO ; Fa. Cognis Das erfindungsgemäß hergestellte Granulat B ist gut rieselfähig und verklebt beim lagern nicht.