Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHODS AND SYSTEMS TO DECARBONIZE NATURAL GAS USING SULFUR TO PRODUCE HYDROGEN AND POLYMERS
Document Type and Number:
WIPO Patent Application WO/2020/132546
Kind Code:
A1
Abstract:
Methods and systems to decarbonize natural gas using sulfur to produce hydrogen and polymers are provided. Sulfur can be introduced in elemental form or as hydrogen sulfide, as may be desired. Decarbonization of natural gas involves introducing natural gas and H2S to a first reactor to produce first reactor products including CS2 and H2. The CS2 can subsequently be polymerized and the H2 recovered in a purified form with little or no carbon emissions.

Inventors:
STANIS RONALD (US)
Application Number:
PCT/US2019/068016
Publication Date:
June 25, 2020
Filing Date:
December 20, 2019
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
GAS TECHNOLOGY INST (US)
International Classes:
C07C1/12; C07C2/76; C10G1/04
Domestic Patent References:
WO2014087433A12014-06-12
Foreign References:
US4816547A1989-03-28
US2708154A1955-05-10
US20130217938A12013-08-22
US20160289142A12016-10-06
US9115047B22015-08-25
Other References:
ANONYMOUS: "Scan and Evaluation of Natural Gas Decarbonization Technologies", COSIA- GTI, vol. 22095, 9 May 2017 (2017-05-09), pages 1 - 81, XP055721248
Attorney, Agent or Firm:
ERICKSON, Kevin, D. et al. (US)
Download PDF:
Claims:
What is claimed includes:

1. A method using sulfur to decarbonize natural gas, the method comprising:

introducing natural gas and FhS to a first reactor to produce first reactor products including CS2 and Bh; and

introducing at least a portion of the CS2 into a polymerization reactor to produce polymerized CS2.

2. The method of claim 1 wherein prior to said step of introducing natural gas and H2S to the first reactor, the method additionally comprises:

introducing solid sulfur and natural gas into a hydrogen sulfide-forming reactor to at least in part produce the H2S.

3. The method of claim 1 wherein the polymerized CS2 is produced via application of one or more techniques selected from the group consisting of: heat and pressure (with or without catalyst), ultrasonic treatment, gamma-ray irradiation, plasma, anionic polymerization using sodium initiators, UV irradiation, shockwaves, electric discharges, and high energy radiation.

4. The method of claim 1 wherein prior to said step of introducing at least a portion of the CS2 into a polymerization reactor, the method additionally comprises:

separating CS2 from ¾ in the first reactor products.

5. The method of claim 4 wherein said separating the CS2 from the ¾ in the first reactor products comprises:

introducing the first reactor products into an oil absorption separation system to separate CS2 as a liquid stream and ¾ as portion of a gas stream;

separating ¾ from other gaseous species in the gas stream, the other gaseous species comprising H2S and CH4; and

recycling at least a portion of the other gaseous species to the first reactor.

6. The method of claim 5 additionally comprising:

recovering CS2 from the oil absorption separation system and conveying at least a portion of the recovered CS2 to the polymerization reactor.

7. The method of claim 5 wherein the step of separating ¾ from other gaseous species in the gas stream comprises introducing the gas stream into a pressure swing absorption system to produce a stream of ¾.

8. The method of claim 1 wherein the step of introducing at least a portion of the CS2 also comprises introducing at least a portion of the ¾ into the polymerization reactor.

9. The method of claim 8 wherein the polymerization reactor discharges ¾ in addition to polymerized CS2, the method additionally comprising recovering at least a portion of the ¾ discharged from the polymerization reactor.

10. A method using sulfur to produce hydrogen and polymers from natural gas, the method comprising:

introducing natural gas and ¾S to a reactor to produce first reactor products including CS2 and ¾;

introducing the first reactor products into an oil absorption separation system to separate CS2 as a liquid stream and ¾ as portion of a gas stream;

introducing at least a portion of the separated CS2 into a polymerization reactor to produce polymerized CS2

separating ¾ from other gaseous species in the gas stream, the other gaseous species comprising H2S and CHU; and

recycling at least a portion of the other gaseous species to the first reactor.

11. The method of claim 10 wherein prior to said introducing step of natural gas and H2S, said method additionally comprises:

introducing solid sulfur and natural gas into a hydrogen sulfide-forming reactor to at least in part produce the H2S.

12. The method of claim 10 wherein the polymerized CS2 is produced via application of one or more techniques selected from the group consisting of: heat and pressure (with or without catalyst), ultrasonic treatment, gamma-ray irradiation, plasma, anionic polymerization using sodium initiators, UV irradiation, shockwaves, electric discharges, and high energy radiation.

13. The method of claim 10 additionally comprising:

recovering CS2 from the oil absorption separation system and

conveying at least a portion of the recovered CS2 to the polymerization reactor.

14. The method of claim 11 wherein the step of separating ¾ from other gaseous species in the gas stream comprises introducing the gas stream into a pressure swing absorption system to produce a stream of ¾.

15. A system for producing hydrogen and polymers from natural gas using sulfur, the system comprising:

a first reactor wherein natural gas and H2S are introduced to produce first reactor product stream including CS2 and ¾;

a separator wherein the first reactor product stream is introduced to form a CS2 stream and a gaseous species stream including H2, CH4, and H2S;

a polymerization reactor wherein at least a portion of the CS2 stream is introduced to produce polymerized CS2;

a ¾ separator wherein at least a portion of the gaseous species stream is introduced to separate ¾ from other gaseous species to form an H2 stream and a recycle stream of other gaseous species including CH4, and ¾S; and

a recycle line to introduce the recycle stream to the first reactor.

16. The system of claim 15 wherein the ¾ separator comprises a pressure swing absorption (PSA) system.

17. The system of claim 15 additionally comprising:

a reactor upstream of the first reactor, wherein natural gas and solid sulfur are introduced to the upstream reactor to produce upstream reactor products including CS2 and H2S;

a feed line to introduce at least a portion of the upstream reactor products to the first reactor;

a gas-liquid separator downstream of the first reactor a separate molten sulfur from the first reactor product stream; and

a molten sulfur recycle line to recycle separated molten sulfur from the first reactor product stream to the upstream reactor.

18. The system of claim 15 wherein the separator to form a CS2 stream and a gaseous species stream comprises:

an oil absorption system.

Description:
METHODS AND SYSTEMS TO DECARBONIZE NATURAL GAS USING

SULFUR TO PRODUCE HYDROGEN AND POLYMERS BACKGROUND OF THE INVENTION

Field of the Invention

This invention relates generally to natural gas utilization and, more particularly, to processing and systems to decarbonize natural gas using sulfur to produce hydrogen and polymers.

Description of Related Art

Currently, hydrogen is typically or commonly produced from natural gas by steam methane reforming (SMR). Unfortunately, such processing also result in the production of the greenhouse gas pollutant carbon dioxide (CO2).

Methane pyrolysis or non-oxidative coupling technologies are available to produce hydrogen and carbon black from natural gas. The market for carbon black, however, is saturated. Without new business opportunities for carbon black, these routes are not economically competitive.

Decarbonization of natural gas can be utilized in or for the conversion of natural gas to hydrogen gas and solid or liquid carbon or hydrocarbon products. Normal burning of natural gas results in carbon dioxide emissions. An effective decarbonization process should preferably convert natural gas to hydrogen and other carbon-containing products while resulting in CO2 emissions less than those produced via the burning of natural gas. Furthermore, to be an effective CO2 emissions-reducing alternative to SMR processing, decarbonization processing must also produce less CO2 per hydrogen than the SMR process. Such decarbonization processing routes that produce solid carbon are technically mature. The value of the carbon black, however, does not make such processing cost competitive with SMR processing. Such decarbonization processing routes that produce liquid hydrocarbon and hydrogen while not technically mature, are economically challenged, and can result in undesired coke formation.

Elemental sulfur and hydrogen sulfide are typically produced or result as byproducts of or in bitumen and oil refining and natural gas processing. When supply exceeds demand for these byproducts, these materials must be otherwise properly disposed or stored.

Various sources and uses of sulfur in the U.S. exist. As of the year 2000, sources of sulfur in the U.S. include: petroleum refining, natural gas productions, byproduct sulfuric acid, imported sulfur and imported sulfuric acid, for example. As of the year 2000, uses of sulfur in the U.S. include: phosphate fertilizers, petroleum refining, nitrogen fertilizers, other agricultural chemicals, ore leaching and exports, for example.

Globally there is typically a surplus of sulfur as sulfur productions exceeds sulfur demand. The yearly global surplus can be as high as 3.5 million metric tons.

Elemental sulfur is commonly produced by petroleum refineries, natural gas processing plants, and coking companies. Global sulfur production in 2016 was 63.4 million metric tonnes with about 95% of the global sulfur production originating from oil and natural gas. Sulfur inventories may increase due to increasing sulfur content in sour gas and heavy oils combined in increasingly strict fuel quality standards. The USA EPA tier 3 standards require that federal gasolines meet an average annual standard of 10 ppm sulfur starting in 2017. China and Europe have similar standards. The International Maritime Organizations 2020 regulation requires the shipping industry to reduce sulfur gas emission from 3.5% to 0.5%.

Over 85% of the total world production of sulfur is converted to sulfuric acid, at least 50% of which is used for the production of fertilizers, other agricultural uses include pesticides, insecticides, and fungicides. Sulfur is the 4 th major plant nutrient, after nitrogen, phosphorous, and potassium, it is essential for crop growth. About 35% of sulfuric acid produced goes into the production of detergents, pharmaceuticals, petroleum catalysts, synthetic resins, titanium pigments, viscose, acetates, pickling agents in steel production, and leaching of nonferrous ores.

In 2016, the global sulfur demand was 61.8 million metric tons. There is a general market imbalance that depends on geographic regions. In 2016 there was a global surplus of 1.6 million metric tons. Presently the U.S. is a net importer of sulfur. In 2017 the U.S. produced 9,660,000 metric tons of sulfur, imported 2,950,000 metric tons, and exported 2,326,000 metric tons, resulting in net imports of 624,000 metric tons or 6% of apparent consumption. The import sources of sulfur are: Canada 76%, Mexico 14%, Venezuela 2% and other 8%.

Thus, there is a need and a demand for processing and systems that produce clean hydrogen fuel from natural gas while emitting very little carbon emissions. There is also a need and a demand for processing and systems that desirably utilize what has normally or previously been viewed as waste H2S or sulfur streams.

SUMMARY OF THE INVENTION

In accordance with selected aspects of the invention, methods and systems are identified and provided for the production of clean hydrogen fuel from natural gas with very little or no carbon emissions. In one embodiment, the carbon is desirably sequestered in or as a polymer.

Another aspect of the invention is the desirable utilization of what has heretobefore been normally deemed waste H 2 S or sulfur streams.

In accordance with one embodiment, a method to decarbonize natural gas involves introducing natural gas (e.g., methane) and solid sulfur into a first reactor to produce first reactor products including CS 2 and EhS. The first reactor products together with additional natural gas (e.g., methane) are introduced into a second reactor to produce second reactor products including CS 2 and Eh- At least a portion of the CS 2 can subsequently be introduced into a polymerization reactor to produce polymerized CS 2 . If desired, the Eh can be separated from the CS 2 prior to introduction of the CS 2 into the polymerization reactor. Alternatively, such as where, for example, Eh is inert in the polymerization reactor or where the presence of H2 does not cause or result in undesired reactions or processing complications, the Eh can be introduced into the polymerization reactor as hydrogen gas may more easily be separated from the solid CS 2 polymer rather than vapor phase CS 2 .

In accordance with another embodiment, a method to decarbonize natural gas involves introducing natural gas (e.g., methane) and H 2 S into a reactor to produce reactor products including CS 2 and Eh, followed by introducing at least a portion of the CS 2 into a polymerization reactor to produce polymerized CS 2 . If desired, at least a portion of the CS 2 introduced into the polymerization reactor can be separated from the Eh prior to its introduction into the polymerization reactor. In another embodiment, both CS 2 and Eh can be introduced into the polymerization reactor. Gaseous Eh can subsequently be separated or recovered from the polymerized CS 2 .

In accordance with one aspect of the invention, a method using sulfur to decarbonize natural gas is provided.

In one embodiment, such method involves introducing natural gas and H 2 S to a first reactor to produce first reactor products including CS 2 and Eh and then polymerizing at least a portion of the CS 2 to produce polymerized CS 2 . If one particular embodiment, the CS 2 for polymerization can be separated from Eh prior to said polymerization. In an alternative embodiment, Eh is separated or recovered from the polymerized CS 2 .

In accordance with one aspect of the invention, a method using sulfur to produce hydrogen and polymers from natural gas is provided.

In one embodiment, such method involves introducing natural gas and EhS to a reactor to produce first reactor products including CS 2 and Eh- The first reactor products are subsequently introduced into an oil absorption separation system to separate CS2 as a liquid stream and ¾ as portion of a gas stream. At least a portion of the separated CS2 is subsequently introduced into a polymerization reactor to produce polymerized CS2. Eh is separated and desirably recovered from other gaseous species (e.g., H2S and CH 4 ) in the gas stream, with at least a portion of the other gaseous species desirably being recycled to the first reactor.

In accordance with another aspect of the invention, a system for producing hydrogen and polymers from natural gas using sulfur is provided.

In one embodiment, such a system includes a first reactor wherein natural gas and ¾S are introduced to produce first reactor product stream including CS 2 and ¾. The system further includes a separator wherein the first reactor product stream is introduced to form a CS2 stream and a gaseous species stream including Eh, CH 4 , and H 2 S. A polymerization reactor is provided wherein at least a portion of the CS 2 stream is introduced to produce polymerized CS2. A Eh separator is provided wherein at least a portion of the gaseous species stream is introduced to separate Eh from other gaseous species to form an ¾ stream and a recycle stream of other gaseous species including CH 4 , and H 2 S. A recycle line is provided to introduce the recycle stream to the first reactor.

As used herein, references to“natural gas” (sometimes also referred to as“fossil gas”) are to be understood to generally refer to the naturally occurring hydrocarbon gas mixtures comprising or consisting primarily of methane, but commonly also including varying amounts of other higher alkanes, and sometimes a small percentage of carbon dioxide, nitrogen, hydrogen sulfide, or helium. A typical composition of natural gas is set forth in the TABLE below:

TABLE

TYPICAL NATURAL GAS COMPOSITION

Moreover, while natural gas typically includes or contains 40-100% methane, those skilled in the art and guided by the teaching herein provided are to understand and appreciate that, if desired, the invention can be practiced with gases having 25% or less methane.

Other objects and advantages will be apparent to those skilled in the art from the following detailed description taken in conjunction with the appended claims and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a simplified conceptual process flow diagram of processing to decarbonize natural gas using sulfur to produce hydrogen and polymers, the processing starting with elemental sulfur in accordance one embodiment of the invention.

FIG. 2 is a simplified process flow diagram of processing to decarbonize natural gas using sulfur to produce hydrogen and polymers, the processing starting with elemental sulfur in accordance one embodiment of the invention.

FIG. 3 is a simplified process flow diagram of processing to decarbonize natural gas using sulfur to produce hydrogen and polymers, the processing starting with ¾S as a sulfur input source in accordance one embodiment of the invention.

DETAILED DESCRIPTION

As detailed further below, one aspect of the subject development relates to the conversion of natural gas and waste sulfur or hydrogen sulfide (H2S) to hydrogen gas and polymers.

In one embodiment, with H2S as a feed stream, natural gas is reacted with hydrogen sulfide (H2S) in a first reactor to produce hydrogen gas and carbon disulfide (CS2). The product gas is cooled to a temperature sufficient to condense the CS2 to a liquid (e.g., 46 °C at atmospheric pressure) to allow hydrogen to be separated as a gas stream. The resulting liquid CS2 is sent to a second reactor where it is polymerized. Some hydrogen may be blended with the CS2 feedstock to adjust the properties of the CS2 polymer. If ¾S is available from nearby sources or economically imported it may be used as is. If ¾S is not readily available it may be produced from elemental sulfur by reaction with a natural gas according to the reaction (where natural gas is represented by its majority component, CH4): 2CH 4 + Ss -> 2CS 2 + 4H 2 S.

The CS 2 polymer may be used on its own or as a filler and/or strengthening agent in rubber or concrete or other materials, for example.

Polymerization of CS 2 can be performed using various techniques known in the art including and not necessarily limited to: heat and pressure (with or without catalyst), ultrasonic treatment, gamma-ray irradiation, plasma, anionic polymerization using sodium initiators, UV irradiation, shockwaves, electric discharges, and high energy radiation, for example.

As will be appreciated by those skilled in the art and guided by the teachings herein provided, the subject invention allows for the decarbonizaton of natural gas together with a utilization of waste sulfur streams from other processes. The resulting carbon sulfide polymer can be used for making a variety of products or materials, including but not necessarily limited to: filler in plastics, rubber, or concrete. Moreover, the carbon in the natural gas can desirably be sequestered in a solid product form. The hydrogen can be used as fuel, as feed for fertilizer production, employed in industrial uses or otherwise appropriately utilized as may be desired.

In accordance with one preferred practice of the subject development, the following three key reactions can desirably be combined and employed to decarbonize natural gas to produce hydrogen and, if desired, carbon sulfide polymer (where natural gas is again represented by its majority component, CH 4 ):

1) 2CH 4 + Ss --> 2CS 2 + 4H 2 S

2) 4H 2 S + 2CH 4 --> 2CS 2 + 8H 2

3) CS 2 — > polymerized CS 2

FIG. 1 schematically illustrates a system, generally designated by the reference numeral 10, for the decarbonization of methane in accordance with one embodiment of the invention. As detailed below, the system 10 utilizes solid sulfur as a sulfur input source and results in the production of hydrogen gas (H 2 ) and polymerized CS 2 as products.

More particularly, methane such as in the form of a methane-containing natural gas and solid sulfur are respectively introduced via lines 12 and 14 into a hydrogen sulfide-forming reactor 20 (sometimes referred to as a first reactor) to produce a product stream such as including CS 2 and H 2 S and such as passed via a line 22.

The hydrogen sulfide-forming reactor product stream in the line 22 or at least a portion thereof is introduced in a reactor 30 (sometimes referred to as a hydrogen and carbon disulfide-forming reactor or a second reactor). Methane, such as in the form of a methane-containing natural gas, is introduced as a stream in a line 24 into the second reactor 30. The second reactor 30 produces a product stream such as including CS2 and H2 and conveyed via a line 32. The product stream in the line 32 can be processed through a heat exchanger device 34 to effect cooling. Optionally, CS2 can be separated from Fh such as represented at point 35 to form an ¾ stream in line 36 and a CS2 stream in line 38. The CS2 stream in line 38 can then be processed through a polymerization reactor 40 to produce a product stream of polymerized CS2 such as by way of one or more of the above-identified techniques and which product polymerized CS2 is conveyed via a line 42. Where, for example, H2 is inert in the polymerization reactor or where the presence of H2 does not cause or result in undesired reactions or processing complications, the ¾ can be introduced into the polymerization reactor as hydrogen gas may more easily be separated from the solid CS2 polymer rather than vapor phase CS2,

FIG. 2 illustrates in greater detail a system, generally designated by the reference numeral 110, for the decarbonization of natural gas that utilizes solid sulfur as a sulfiir input source and results in the production of hydrogen gas (H2) and polymerized CS2 as products in accordance with an embodiment of the invention.

In the system 1 10, natural gas is introduced via a line 1 12 into a heater 114 to form a stream of heated natural gas (such as at a temperature of 535 °C and 100 psig). A stream of heated natural gas is passed via a line 116 to a hydrogen sulfide-forming reactor 120 (sometimes referred to as Reactor 1). Similarly, solid sulfur such as in a line 122 is introduced into a heater 124 and appropriately heated such as to a temperature of 600 °C to generate sulfur vapor such as at 100 psig. The sulfur vapor is conveyed, such as via lines 126, 128, and 130 and via a pump 132 to the hydrogen sulfide-forming reactor 120.

In the hydrogen sulfide-forming reactor 120, the natural gas and sulfur react to form CS2 and H2S, such as shown by below by reaction 4):

4) Natural gas + Ss ~> 2CS2 + 4H2S.

To that end, the mole ratio of sulfur to carbon in the feed to the hydrogen sulfide-forming reactor 120 is desirably about 2.5 to 3, preferably about 2.7. The hydrogen sulfide-forming reactor 120 can desirably contain or include an appropriate catalyst, e.g., silica gel, and is appropriately maintained at a desired elevated temperature e.g., 600 °C, to effect the desired reaction. As the reaction is endothermic, heat is appropriately applied or supplied to the reactor 120 such as by steam, the burning of natural gas or other fuel material, electric heaters or other appropriate heating device (not specifically shown). The conversion of sulfur in the hydrogen sulfide-forming reactor is typically greater than 80%, preferably at least about 85%. The conversion of natural gas in the hydrogen sulfide-forming reactor is typically greater than 85%, preferably at least about 90%.

The reactor 120 produces a product stream such as including CS2 and H 2 S that is conveyed via a line 134 to a heater 136 such as to raise the gas temperature to about 1 100 °C. The heated CS2 and ThS are conveyed via a line 138 to a hydrogen and carbon disulfide-forming reactor 140 (sometimes referred to as Reactor 2). Natural gas, is introduced as a stream in a line 142 into a heater 144 (e.g., 1100 °C and 100 psig) resulting in a stream of heated natural gas that is conveyed via the lines 146 and 150 to the hydrogen and carbon disulfide-forming reactor 140.

The hydrogen and carbon disulfide-forming reactor 140 can desirably be a vessel packed with an appropriate catalyst, such as known in the art, to effect the following reaction 5):

5) 2CS2 + 4H 2 S + Natural gas ~> 4CS 2 + 8¾

The hydrogen and carbon disulfide-forming reactor 140 is appropriately maintained at a desired elevated temperature e.g., 1100 °C, to effect the desired reaction. As the reaction is endothermic, heat can be appropriately applied or supplied to the reactor 140 such as by steam, the burning of natural gas or other fuel material, electric heaters or other appropriate heating device (not specifically shown).

In the reactor 140, the conversion of natural gas to CS2 and hydrogen is at or near 100 % and the conversion of ¾S to CS2 and hydrogen is at or near 50%.

The reactor 140 produces a product stream containing CS2 and ¾ whose pressure is reduced from 100 psig to about 10 psig and is conveyed via a line 152 to a heat exchanger/cooler device 154 to effect cooling and a reduction in temperature to about 32 °C. The cooled product stream is conveyed via a line 156 to a gas-liquid separator 160 to effect condensation of sulfur vapor of or in the gas stream to a liquid and separation of the liquid from the gas streams. Residual sulfur, e.g., molten sulfur, is recycled or otherwise returned via lines 162, 164, and 130 by way of pump 166 to the hydrogen sulfide-forming reactor 120. The cooled gases separated by the gas-liquid separator 160 are conveyed via a line 170 to a desired separation system or scheme 172, such as an oil absorption separation system, for example, to effect separation of CS 2 from the other materials (e.g., ¾ and H2S) such as by the CS2 being oil absorbed. It is to be understood and appreciated that the separation can be effected by other suitable separation systems or schemes as will be apparent to those skilled in the art and guided by the teachings herein provided. The absorbed CS2 is released or recovered from the oil. At least a portion of the recovered CS2 is conveyed via the lines 174 and 176 by way of pump 178 to a desired CS2 polymerization reactor 180 to form polymerized CS2 conveyed via a line 182. The CS2 polymerization reactor 180 can suitably polymerize CS2 such as by way of one or more of the above-identified polymerization techniques.

Suitable operating conditions for the absorber and stripper for the oil absorption separation system are identifiable by those skilled in the art. For example, U.S. Patent 3,345,802 identifies operating conditions for such absorbers and strippers such as CS2 being released at 121 °C and 10 psig.

As identified above, the feeding of the cooled gas stream to the oil absorption system results in absorption of the CS2 product and separation of the absorbed CS2 from the resulting H2 and FhS gas stream. The resulting stream is about 33% H2S and 67% hydrogen and can be forwarded to a guard bed (not specifically shown) or other appropriate device or system to remove remaining, if any, CS2 impurities. The Fh and H2S gas stream can then be split such as with 20% of it being used as a stripping gas for the oil absorption system and then recompressed such as from 5 psig to 10 psig, with the stripping gas being then recombined with the remaining Fh and H2S containing gas. The Fh and FhS gas is conveyed via a line 184 to a compressor 186 such as to be compressed, such as to 300 psig, and cooled, such as to 31 °C, and fed via a line 188 to a purification system, for example a pressure swing absorption (PSA) system 190, where pure H2 is generated at such as at 150 psig and 37 °C and conveyed via a line 192.

The tail gas from the PSA system 190, comprising mostly H2S is conveyed via a line 194 to a compressor 196 and compressed, such as to 100 psig, and cooled, such as to 38 °C, and is recycled back to the carbon disulfide reactor 140 via lines 198 and 150.

FIG. 3 depicts a process flow diagram of processing starting with FhS as a sulfur input source in accordance one embodiment of the invention.

FIG. 3 illustrates a system, generally designated by the reference numeral 210, for the decarbonization of natural gas that utilizes FhS as a sulfur input source and results in the production of hydrogen gas (Fh) and polymerized CS2 as products in accordance with an embodiment of the invention.

In the system 210, FhS such as at 5 psig is introduced via a line 212 into a compressor 214 such to increase the gas pressure to 100 psig and introduced via a line 216 into a heater 220. In the heater 220, the material is heated to a temperature of 1100 °C and introduced via a line 222 as a stream into a hydrogen and carbon disulfide-forming reactor 226. Correspondingly, natural gas is introduced via a line 230 into a heater 232 and also desirably preheated to a temperature of 1000 °C, with the heated natural gas introduced via lines 234 and 236 into the hydrogen and carbon disulfide-forming reactor 226. The combined feed streams to the hydrogen and carbon disulfide-forming reactor 226 are desirably blended and have a ratio of 4:1 FhS to natural gas, on a volume basis.

The hydrogen and carbon disulfide-forming reactor 226 can desirably be a vessel packed with an appropriate solid catalyst, such as known in the art, to effect the following reaction 6):

6) 2¾S + Natural gas— > CS2 + 4¾

The hydrogen and carbon disulfide-forming reactor 226 desirably operates where 100% of the natural gas is converted to CS2 and hydrogen, and 50% of the ¾S is reacted to CS2 and hydrogen.

As with the above-described embodiment, as the reaction is endothermic, heat can be appropriately applied or supplied to the reactor 226 such as by steam, the burning of natural gas or other fuel material, electric heaters or other appropriate heating device (not specifically shown).

The hydrogen and carbon disulfide-forming reactor 226 produces a product stream containing CS2 and ¾ whose pressure is reduced from 100 psig to about 10 psig and is conveyed via a line 240 to a heat exchanger/cooler device 242 to effect cooling and a reduction in temperature to about 32 °C. The cooled product stream is conveyed via a line 244 to a desired separation system or scheme 246, such as an oil absorption separation system, for example, to effect separation of CS2 from the other materials (e.g., Fh and H2S), such as in the case of an oil absorption separation system, by the CS2 being absorbed by oil.

The absorbed CS2 is released or recovered from the oil. At least a portion of the received CS2 is conveyed via the lines 250 and 252 by way of pump 254 to a desired CS2 polymerization reactor 260 to form polymerized CS2 conveyed via a line 262. The CS2 polymerization reactor 260 can suitably polymerize CS2 such as by way of one or more of the above-identified polymerization techniques.

Suitable operating conditions for the absorber and stripper for the oil absorption separation system are identifiable by those skilled in the art. For example, U.S. Patent 3,345,802 identifies operating conditions for such absorbers and strippers such as CS2 being released at 121 °C and 10 psig.

As identified above, the feeding of the cooled gas stream to the oil absorption system results in absorption of the CS2 product and separation of the absorbed CS2 from the resulting ¾ and H2S gas stream. The resulting stream is about 33% H2S and 67% hydrogen and can be forwarded to a guard bed (not specifically shown) or other appropriate device or system to remove remaining, if any, CS2 impurities. The ¾ and ¾S gas stream can then be split such as with 20% of it being used as a stripping gas for the oil absorption system and then recompressed such as from 5 psig to 10 psig, with the stripping gas being then recombined with the remaining ¾ and ¾S containing gas. The ¾ and H2S gas is conveyed via a line 264 to a compressor 266 such as to be compressed, such as to 300 psig, and cooled, such as to 31 °C, and fed via a line 268 to a purification system, for example a pressure swing absorption (PSA) system 270, where pure ¾ is generated at such as at 150 psig and 37 °C and conveyed via a line 272.

The tail gas from the PSA system 190, comprising mostly H2S is conveyed via a line 274 to a compressor 278 and compressed, such as to 100 psig, and cooled, such as to 38 °C, and is recycled back to the hydrogen and carbon disulfide-forming reactor 226 via lines 280 and 236.

The subject invention development allows for the decarbonizaton of natural gas and with a use for waste sulfur streams from other processes. The resulting carbon sulfide polymer can be used for making a variety of different products, used as filler in plastics, rubber, or concrete, etc. The carbon present in the natural gas is desirably sequestered in a solid product. The hydrogen can be used as fuel, feed for fertilizer production or industrial uses, as may be desired. It is to be particularly noted and appreciated that methods and systems of the invention can serve to not only decarbonize natural gas and utilize sulfur but also to produce and recover ¾, desirably in a purified form, with little or no carbon emissions.

As will be appreciated, advantages resulting or associated with the subject invention and the practice thereof can include:

1. a polymer is produced as the side product rather than carbon black; and

2. sulfur or H2S, normally waste streams, can be utilized as a feedstock and

turned into useful products.

The subject development illustratively disclosed herein suitably may be practiced in the absence of any element, part, step, component, or ingredient which is not specifically disclosed herein.

While in the foregoing detailed description the subject development has been described in relation to certain preferred embodiments thereof, and many details have been set forth for purposes of illustration, it will be apparent to those skilled in the art that the subject development is susceptible to additional embodiments and that certain of the details described herein can be varied considerably without departing from the basic principles of the invention.