Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
NONWOVEN FABRIC FOR SHIELDING TERAHERTZ FREQUENCIES
Document Type and Number:
WIPO Patent Application WO/2019/048056
Kind Code:
A1
Abstract:
The present invention relates to a method for producing a nonwoven fabric for shielding electromagnetic radiation, in particular electromagnetic radiation in the terahertz (THz) range, more particularly from 5 THz to 300 THz, to a corresponding nonwoven fabric that can be produced according to said method and to uses of said nonwoven fabric.

Application Number:
PCT/EP2017/072634
Publication Date:
March 14, 2019
Filing Date:
September 08, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SZE HAGENUK GMBH (DE)
International Classes:
D04H1/42; D04H1/4234; D04H3/005; H05K9/00
Foreign References:
DE202006011912U12007-01-18
US20120289107A12012-11-15
US4943477A1990-07-24
CA2645531A12010-05-28
JP2011241522A2011-12-01
Other References:
None
Attorney, Agent or Firm:
PRINZ & PARTNER MBB (DE)
Download PDF:
Claims:
PATENTANSPRÜCHE

Verfahren zur Herstellung eines Vlieses zur Abschirmung von elektromagnetischer Strahlung, insbesondere im Terahertz (THz)- Bereich, insbesondere im Bereich von 5 THz bis 300 THz, umfassend oder bestehend aus einem in drei Dimensionsrichtungen (X, Y und Z) des Vlieses zufällig unregelmäßig angeordneten Netzwerk von beschichten, faserkernverfüllten Polymerfasern, dadurch gekennzeichnet, dass das Verfahren folgende Schritte umfasst oder daraus besteht: a. Bereitstellen einer ersten Metalllegierung, die geeignet ist elektromagentische Strahlung abzuschirmen, insbesondere im Terahertz (THz) Bereich, insbesondere im Bereich von 5 THz bis 300 THz, b. Bereitstellen eines Polymermaterials, c. Bereitstellen einer zweiten Metalllegierung, die sich von der ersten Metalllegierung aus Schritt a) dadurch unterscheidet, dass ein Ladungspotentialunterschied zwischen der ersten und zweiten Metalllegierung hervorgerufen werden kann, d. Herstellen von faserkernverfüllten Polymerfasern durch Verdampfen der ersten Metalllegierung aus Schritt a) zu ersten Metalllegierungsmolekülen mit trigonaler Struktur und Mischen der ersten Metalllegierungsmoleküle mit dem in Schritt b) bereitgestellten Polymermaterial sowie Anordnung des metallisierten Polymermaterials in Faserfom, wobei die ersten Metalllegierungsmoleküle mit trigonaler Struktur im Wesentlichen im Kern der Polymerfaser angeordnet sind und ein Gitter bilden, in dem die einzelnen ersten Metalllegierungsmoleküle jeweils durch das Polymer isoliert vorliegen, aber die Elektronenwolken der benachbarten ersten Metalllegierungsmoleküle überlagern, und e. Beschichten zumindest eines Teils der Oberfläche der faserkernverfüllten Polymerfasern aus Schritt d) mit der zweiten Metalllegierung aus Schritt c), wobei die zweite Metalllegierung zu einzelnen zweiten Metalllegierungsmolekülen mit hexa- oder oktagonale Struktur verdampft wird und diese isoliert von einander an der Polymerfaseroberfläche angeordnet sind und ein Oberflächen-Gitter bilden, in dem sich die Elektronenwolken der einzelnen zweiten Metalllegierungsmoleküle überlagern, und Herstellen des Vlieses durch zufällig unregelmäßiges Anordnen der beschichteten, faserkernverfüllten Polymerfasern in den drei räumlichen Dimensionsrichtungen (X, Y und Z) oder f. Herstellen des Vlieses durch zufällig unregelmäßiges Anordnen der faserkernverfüllten Polymerfasern aus Schritt d) in den drei räumlichen Dimensionsrichtungen (X, Y und Z) und Beschichten zumindest eines Teils der Oberfläche des Vlieses mit der zweiten Metalllegierung aus Schritt c), wobei die zweite Metalllegierung zu einzelnen zweiten Metalllegierungsmolekülen mit hexa- oder oktagonale Struktur verdampft wird und diese isoliert von einander an der Polymerfaseroberfläche angeordnet sind und ein Oberflächen-Gitter bilden, in dem sich die Elektronenwolken der einzelnen zweiten Metalllegierungsmoleküle überlagern.

Verfahren zur Herstellung des Vlieses gemäß Anspruch 1 , dadurch gekennzeichnet, dass für die Herstellung der ersten Metalllegierungsmoleküle in Schritt d) und / oder der zweiten Metalllegierungsmoleküle in Schritt e) physikalische Gasphasenabscheidungsverfahren verwendet werden, vorzugsweise (i) mittels Verdampfen, beispielsweise mittels thermischen Verdampfens, Elektronenstrahlverdampfen, Laserstrahlverdampfen, Lichtbogenverdampfen oder Molekularstrahlepitaxie, oder (ii) mittels Sputtern, beispielsweise ionenstrahlgestützte Deposition, oder (iii) mittels lonenplattieren oder (iv) mittels ICB-Abscheidung (ionized Cluster beam deposition, ICBD).

Verfahren zur Herstellung des Vlieses gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass die ersten Metalllegierungsmoleküle in Schritt a) und/oder die zweiten Metalllegierungsmoleküle in Schritt c) mit geeigneten Mitteln, vorzugsweise durch Zuleitung eines geeigneten Gases, weiter bevorzugt eines Edelgases abgekühlt werden bevor sie mit dem Polymermaterial in Schritt d), mit der Oberfläche der faserkernverfüllten Polymerfasern in Schritt e) oder der Oberfläche des Vlieses in Schritt f) in Kontakt gebracht werden.

Verfahren zur Herstellung des Vlieses gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die ersten und zweiten Metalllegierungen in Schritt a) und Schritt c) in Pulverform, vorzugsweise mit einem mittleren Partikeldurchmesser im Bereich von < 100 μηη, weiter bevorzugt < 50 μηη, noch weiter bevorzugt < 20 μηη vorliegen.

Verfahren zur Herstellung des Vlieses gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Polymermaterial in Schritt b) in einer Vorrichtung bereit gestellt wird, die das Polymermaterial in Schritt d) in Tropfenform für die Einbringung der ersten Metalllegierungsmoleküle in das Polymermaterial bereitstellt, wobei die Vorrichtung vorzugsweise piezoelektrisch gesteuert ist.

Verfahren zur Herstellung des Vlieses gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die faserkernverfüllten Polymerfasern in Schritt d) mittels Elektrospinnen hergestellt werden, wobei die faserkernverfüllten Polymerfasern vorzugsweise einen mittleren Partikeldurchmesser von < 500 μηη, weiter bevorzugt < 100 μηη, noch weiter bevorzugt < 50 μηη, noch weiter bevorzugt < 1 μηη haben.

Verfahren zur Herstellung des Vlieses gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die erste Metalllegierung aus Schritt a) und/oder die zweite Metalllegierung aus Schritt c) ein, zwei, drei oder mehrere unterschiedliche Metalllegierungen umfasst.

Verfahren zur Herstellung des Vlieses gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Metalle der ersten Metalllegierung(en) aus Schritt a) aus zwei, drei, vier oder mehreren Metallen ausgewählt werden aus der Gruppe bestehend aus Blei (Pb), Titan (Ti), Paladium (Pd), Praeseodym (Pr), Lanthan (La), Indium (In), Kobalt (Co), Aluminium (AI), Chrom (Cr), Nickel (Ni), Molybdän (Mo), Barium (Ba), Yttrium (Y), Samarium (Sm), Silizium (Si), Germanium (Ge) und Eisen (Fe).

9. Verfahren zur Herstellung des Vlieses gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Metalle der zweiten Metalllegierung(en) aus Schritt c) aus zwei, drei, vier oder mehreren Metalle ausgewählt werden aus der Gruppe bestehend aus Eisen (Fe), Mangan (Mn), Kupfer (Cu), Zink (Zn), Wolfram (W), Silicium (Si), Silber (Ag) und Zinn (Sn).

10. Verfahren zur Herstellung des Vlieses gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die ersten Metalllegierungen aus Schritt a) ausgewählt werden aus der Gruppe bestehend aus Kobalt- Legierungen, beispielsweise Co68.7Fe4Ni1B13SiiiMo2.3, Nd3Fe6s- xMnxCoi8Bn (x = 0, 1 , 2) oder CoFe2; Paladium-Legierungen, vorzugsweise Paladium-Indium-Eisen Legierungen, beispielsweise Pd57lri25Fei8, und Pd56.2ln26.3Fei7.5; vorzugsweise Titan-Paladium-Eisen Legierungen, beispielsweise Ti5oPd4oFeio, und Ti50Pd35Fei5; vorzugsweise Paladium-Mangan-Indium Legierungen, beispielsweise Pd2Mnln; Indium-Phosphat Legierungen, beispielsweise lnP03; Manganat-Legierungen, beispielsweise Praseodym-Lanthan-Calcium- Manganat Legierungen wie Praseodym-Calcium-Manganat Legierungen oder Lanthan-Calcium-Manganat Legierungen, wie beispielsweise Pr0.7Cao.3Mn03 oder Lao.7Ca0 3Mn03; Neodym-Blei-Manganat Legierungen wie Ndo.5Pb0.5Mn03, Lanthan-Barium-Manganat Legierungen wie La2/3Bai/3Mn03; Bor-Kupfer Legierungen wie B2Cu02; Legierungen mit hohem Wolframanteil wie Barium-Yttrium-Kupfer- Wolfram Legierungen und Kupfer-Samarium-Wolfram Legierungen und Eisenlegierungen, wie FeNiMo, Fe85Si3.5Al5.5Cr6 und FeMnW-(P0,5Ge0,iPb o,4W0,2).

1 1 . Verfahren zur Herstellung des Vlieses gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die zweiten Metalllegierungen aus Schritt c) ausgewählt werden aus der Gruppe bestehend aus Mangan Legierungen, vorzugsweise Nickel-Mangan-Zinn Legierungen, beispielsweise Ni2Mn1 44Sno.56, und Ni2Mn1 42Sno.58; vorzugsweise Nickel- Mangan-Gallium Legierungen, beispielsweise Ni2MnGa; vorzugsweise Eisen-Mangan-Silicium Legierungen, beispielsweise FeMnSi,

Fe57.4Mn35Si7.6, und FeMnW-(Po,5Geo,iPbo,4Wo,2); und Silber-Magnesium Legierungen, beispielsweise Ag-MgF2-Ag.

12. Verfahren zur Herstellung des Vlieses gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die ersten und zweiten Metalllegierungen aus Schritt a) und Schritt c), vorzugsweise die ersten Metalllegierungen sauerstofffrei sind.

13. Verfahren zur Herstellung des Vlieses gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass zusätzlich ein oder mehrere Materialien bereitgestellt werden, welche die Temperaturbeständigkeit des Vlieses verbessern, und in Schritt d) in das Metalllegierungsmolekül- Polymergemisch eingearbeitet werden.

14. Verfahren zur Herstellung des Vlieses gemäß Anspruch 13, dadurch gekennzeichnet, dass das Material, das die Temperaturbeständigkeit des Polymermaterials verbessert, ausgewählt wird aus glasartigen Materialien, insbesondere Glas, Keramik, und Porzellan, und/oder kohlenstoffhaltigen Materialien, insbesondere Graphen.

15. Verfahren zur Herstellung des Vlieses gemäß Anspruch 13 oder 14, dadurch gekennzeichnet, dass das Material, das die Temperaturbeständigkeit des Polymermaterials verbessert, als Pulver in das Metalllegierungsmolekül-Polymergemisch in Schritt d) eingebracht wird.

16. Verfahren zur Herstellung des Vlieses gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Polymermaterial aus Schritt b) ausgewählt wird aus der Liste bestehend aus der Gruppe der Polyester, beispielsweise Polyethylenterephthalat (PET), und der Gruppe der Polyamide, beispielsweise Poly(p-phenylenterephthalamid) (PPTA) und Poly(m-phenylenisophthalamid) (PMPI).

17. Verfahren zur Herstellung des Vlieses gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das hergestellte Vlies eine Schichtdicke von < 1 mm hat, vorzugsweise < 500 μm, weiter bevorzugt < 200 m.

18. Vlies zur Abschirmung elektromagnetischer Strahlung, insbesondere von Terahertz-Strahlung im Bereich von 5 THz bis 300 THz herstellbar gemäß einem der Ansprüche 1 bis 17 .

19. Vlies gemäß Anspruch 18, dadurch gekennzeichnet, dass das Vlies für Terahertz-Strahlung im Bereich von 5 THz bis 300 THz eine Schirmdämpfung von > 10 % hat, vorzugsweise bei 30 THz eine Schirmdämpfung von > 70 %, weiter bevorzugt > 80 %, noch weiter bevorzugt > 90 % hat und/oder vorzugsweise bei 300 THz eine

Schirmdämpfung von > 15 %, bevorzugt > 20 % hat.

20. Vlies gemäß Anspruch 18 oder 19, dadurch gekennzeichnet, dass es für Terahertz-Strahlung im Bereich 5 THz bis 300 THz einen Dämpfungswert von > 100 Dezibel (dB) aufweist. 21 . Vlies gemäß einem der Ansprüche 18 bis 20, dadurch gekennzeichnet, dass das Vlies 50 bis 60 Gew.-% Polymermaterial, bis zu 50 Gew.-%, vorzugsweise 10 bis 40 Gew-%, weiter bevorzugt 15 bis 35 Gew.-% erste und zweite Metalllegierungen und gegebenenfalls bis zu 25 Gew.- %, vorzugsweise 10 bis 20 Gew.-% Material zur Verbesserung der Temperaturstabilität jeweils bezogen auf das Gesamtgewicht des Vlieses aufweist.

22. Vlies gemäß einem der Ansprüche 18 bis 21 , dadurch gekennzeichnet, dass das Vlies einen Schrumpfungswert von bis zu 5 % nach DIN 7715 Teil 3 Klasse E3 aufweist und/oder einen Oberflächenwiederstand von 4 bis 7 Ohm / Zoll, vorzugsweise 5,5 Ohm / Zoll bei 20 mA Prüfstrom in der

X-Y-Z Achse des Vlieses aufweist und/oder temperaturbeständig im Bereich von - 40 °C bis + 120 °C ist und/oder ozonbeständig ist und/oder eine Wasseraufnahmekapazität von < 4 % aufweist und/oder ein Gewicht von < 200 g / m2, vorzugsweise < 100 g / m2 hat.

23. Verwendung des Vlieses gemäß einem der Ansprüche 18 bis 22 zur Abschirmung von Terahertz-Strahlung im Bereich von 5 THz bis 300 THz.

24. Verwendung des Vlieses gemäß einem der Ansprüche 18 bis 22 zur Herstellung von menschlichen oder tierischen Schutzanzügen.

25. Verwendung des Vlieses gemäß Anspruch einem der Ansprüche 18 bis 22 zur Abschirmung von Gebäuden, Fahrzeugen (zu Land, zu Wasser und/oder zu Luft), Gegenständen und/oder Leitungen.

26. Verwendung des Vlieses gemäß einem der Ansprüche 18 bis 22 zur Herstellung von Polymerisolierungen von Öffnungen in Gebäuden oder Fahrzeugen (zu Land, zu Wasser und/oder zu Luft) oder Gegenständen oder Leitungen.

Description:
VLIES ZUR ABSCHIRMUNG VON TERAHERTZ FREQUENZEN

GEBIET DER ERFINDUNG Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines Vlieses zur Abschirmung von elektromagentischer Strahlung, insbesondere von Frequenzen im Terahertz (THz)Bereich, insbesondere von 5 THz bis 300 THz, ein entsprechendes Vlies herstellbar nach dem erfindungsgemäßen Verfahren sowie Verwendungen des Vlieses. HINTERGRUND DER ERFINDUNG

Elektromagnetische Strahlung besteht aus gekoppelten elektrischen und magnetischen Feldern. Zu ihnen gehören unter anderem Radiowellen, Mikrowellen, Infrarotstrahlung, sichtbares Licht, UV-Strahlung sowie Röntgen- und Gammastrahlung. Terahertz (THz) Strahlung ist eine elektromagnetische Strahlung mit einer Frequenz von ungefähr 10 12 Hertz. Im elektromagnetischen Spektrum ist die Terahertz-Strahlung zwischen dem sichtbaren Licht und der Mikrowellenregion angeordnet und wurde früher als fernes Infrarot bezeichnet.

Elektromagentische Wellen im TerahertzBereich sind eine nicht ionisierende elektromagnetische Strahlung (kurz: Terahertz-Strahlung bzw. Terahertz- Strahlen oder auch Terahertz-Frequenzen). Nicht ionisierend bedeutet, dass die Energie eines Terahertzphotons zu klein ist, um Elektronen aus Atomen oder Molekülen zu entfernen.

Eine erhöhte Terahertz-Strahlung wird beispielsweise in Flugzeugen auf Flughöhe gemessen sowie im Bereich von Strommasten für Hoch- und Mittelspannung oder Transformatorenstationen, in denen die elektrische Energie aus dem Mittelspannungsnetz auf ein Niederspannungsnetz umgewandelt (transformiert) wird.

Derzeit können Terahertzstrahlen beispielsweise mittels Bleimaterialien, insbesondere Bleiwesten für Personen abgeschirmt werden. Diese Bleimaterialien weisen jedoch ein vergleichsweise hohes Eigengewicht auf und sind vergleichsweise starr und wenig atmungsaktiv.

Es besteht nun die Aufgabe der vorliegenden Erfindung darin, geeignete Materialien für die Abschirmung von elektromagnetischer Strahlung, insbesondere von Terahertz-Strahlung bereitzustellen, wobei die Materialien leichter als Bleimaterialien zu verarbeiten sind und insbesondere ein vergleichsweise geringes Eigengewicht besitzen und/oder vergleichsweise flexibel und/oder atmungsaktiv sind.

BESCHREIBUNG

Die vorgenannte Aufgabe wird anhand der erfindungsgemäß beanspruchten Gegenstände gelöst. Vorteilhafte Ausgestaltungen werden in den abhängigen Ansprüchen sowie in der nachfolgenden Beschreibung und den Figuren dargestellt.

Dementsprechend betrifft ein erster Erfindungsgegenstand der vorliegenden Erfindung ein Verfahren zur Herstellung eines Vlieses zur Abschirmung elektromagnetischer Strahlung (elektromagnetischer Wellen), insbesondere von Terahertz (THz)-Strahlung, insbesondere im Bereich von 5 THz bis 300 THz, umfassend oder bestehend aus einem in drei Dimensionsrichtungen (X, Y und Z) des Vlieses zufällig unregelmäßig angeordneten Netzwerk von beschichten, faserkernverfüllten Polymerfasern, dadurch gekennzeichnet, dass das Verfahren folgende Schritte umfasst oder daraus besteht: a. Bereitstellen einer ersten Metalllegierung, die geeignet ist elektromagentische Strahlung, insbesondere im Terahertz (THz)- Bereich, insbesondere von 5 THz bis 300 THz abzuschirmen, b. Bereitstellen eines Polymermaterials, c. Bereitstellen einer zweiten Metalllegierung, die sich von der ersten Metalllegierung aus Schritt a) dadurch unterscheidet, dass ein Ladungspotentialunterschied zwischen der ersten und zweiten Metalllegierung hervorgerufen werden kann,

Herstellen von faserkernverfullten Polymerfasern durch Verdampfen der ersten Metalllegierung aus Schritt a) zu ersten Metalllegierungsmolekülen mit trigonaler Struktur und Mischen der ersten Metalllegierungsmoleküle mit dem in Schritt b) bereitgestellten Polymermaterial sowie Anordnung des metallisierten Polymermaterials in Faserform, wobei die ersten Metalllegierungsmoleküle mit trigonaler Struktur im Wesentlichen im Kern der Polymerfaser angeordnet sind und ein Gitter bilden, in dem die einzelnen ersten Metalllegierungsmoleküle jeweils durch das Polymer isoliert vorliegen, aber die Elektronenwolken der benachbarten ersten Metalllegierungsmoleküle überlagern, und

Beschichten zumindest eines Teils der Oberfläche der faserkernverfüllten Polymerfasern aus Schritt d) mit der zweiten Metalllegierung aus Schritt c), wobei die zweite Metalllegierung zu einzelnen zweiten Metalllegierungsmolekülen mit hexa- oder oktagonale Struktur verdampft wird und diese isoliert von einander an der Polymerfaseroberfläche angeordnet sind und ein Oberflächen-Gitter bilden, in dem sich die Elektronenwolken der einzelnen zweiten Metalllegierungsmoleküle überlagern, und Herstellen des Vlieses durch zufällig unregelmäßiges Anordnen der beschichteten, faserkernverfüllten Polymerfasern in den drei orthogonalen räumlichen Dimensionsrichtungen (X, Y und Z) oder

Herstellen des Vlieses durch zufällig unregelmäßiges Anordnen der faserkernverfüllten Polymerfasern aus Schritt d) in den drei orthogonalen räumlichen Dimensionsrichtungen (X, Y und Z) und Beschichten zumindest eines Teils der Oberfläche des Vlieses mit der zweiten Metalllegierung aus Schritt c), wobei die zweite Metalllegierung zu einzelnen zweiten Metalllegierungsmolekülen mit hexa- oder oktagonale Struktur verdampft wird und diese isoliert von einander an der Polymerfaseroberfläche angeordnet sind und ein Oberflächen-Gitter bilden, in dem sich die Elektronenwolken der einzelnen zweiten Metalllegierungsmoleküle überlagern. Ein zweiter Erfindungsgegenstand der vorliegenden Erfindung betrifft ein Vlies zur Abschirmung von elektromagnetischer Strahlung, insbesondere von Terahertz-Strahlung, insbesondere im Bereich von 5 THz bis 300 THz, herstellbar gemäß dem erfindungsgemäßen Verfahren. Ein dritter Erfindungsgegenstand der vorliegenden Erfindung betrifft eine Verwendung des erfindungsgemäßen Vlieses zur Abschirmung von elektromagnetischer Strahlung, insbesondere Terahertz-Strahlung, insbesondere im Bereich von 5 THz bis 300 THz.

Ein vierter Erfindungsgegenstand der vorliegenden Erfindung betrifft eine Verwendung des erfindungsgemäßen Vlieses zur Herstellung von menschlichen oder tierischen Schutzanzügen.

Ein fünfter Erfindungsgegenstand der vorliegenden Erfindung betrifft eine Verwendung des erfindungsgemäßen Vlieses zur Abschirmung von Gebäuden, Fahrzeugen (zu Land, zu Wasser und/oder zu Luft), Gegenständen und Leitungen.

Ein vierter Erfindungsgegenstand der vorliegenden Erfindung betrifft eine Verwendung des erfindungsgemäßen Vlieses zur Herstellung von Polymerisolierungen von Öffnungen in Gebäuden oder Fahrzeugen (zu Land, zu Wasser und/oder zu Luft) oder Leitungen. Die vorstehend beschriebenen Erfindungsgegenstände können, sofern aus Sicht eines Fachmannes sinnvoll, jede mögliche Merkmalskombination der bevorzugten erfindungsgemäßen Ausgestaltungen, die nachfolgend und insbesondere auch in den abhängigen Ansprüchen offenbart werden, aufweisen.

BESCHREIBUNG DER FIGUREN

Im Folgenden werden die Merkmale und Aspekte der Erfindung anhand von Ausführungsbeispielen und unter Bezugnahme auf die Figuren näher erläutert, dabei zeigt: FIG. 1 : eine vereinfachte Darstellung einer Faser eines Vlieses in perspektivischer Ansicht mit Schnittansicht durch die Faser gemäß einem Ausführungsbeispiel

FIG. 2: eine Draufsicht auf ein Vlies gemäß einem Ausführungsbeispiel, - FIG. 3: eine seitliche Schnittansicht eines Vlieses gemäß einem Ausführungsbeispiel, und

FIG. 4: ein Ausführungsbeispiel mit mehreren Schichten eines Vlieses gemäß einem Ausführungsbeispiel.

DETAILLIERTE BESCHREIBUNG

FIG. 1 ist eine vereinfachte Darstellung einer Faser bzw. Polymerfaser 1 eines erfindungsgemäßen Vlieses 4 in perspektivischer Ansicht mit Schnittansicht durch die Faser 1 gemäß einem Ausführungsbeispiel. Die Faser hat eine Länge L und einen Durchmesser DF. Auf der Oberfläche H der Faser 1 sind zweite Metalllegierungsmoleküle 2 angeordnet. Im Kern (oder einfach im Inneren) K der Faser 1 sind erste Metalllegierungsmoleküle 3 angeordnet.

FIG. 2 ist eine Draufsicht auf ein erfindungsgemäßes Vlies 4 gemäß einem Ausführungsbeispiel. Das erfindungsgemäße Vlies 4 besteht aus zufällig unregelmäßig angeordneten Fasern 1 , wie bspw. in FIG. 1 gezeigt. Die Fasern 1 erstrecken sich unregelmäßig in allen drei Raumrichtungen X, Y und Z. Die Fasern 1 können eine oder mehrere Krümmungen in eine oder mehrere der Raumrichtungen X, Y und Z aufweisen. Die Fasern 1 können miteinander an Kreuzungspunkten bzw. Verbindungspunkten 5 verbunden sein. Ein solcher Verbindungspunkt 5 ist exemplarisch mit einem Kreis hervorgehoben. Es ist auch vorstellbar, dass die Fasern 1 lediglich miteinander unregelmäßig und zufällig verschlungen sind und sich an den Kreuzungspunkten lediglich berühren. Das Vlies kann eine Länge LV in Y-Richtung, eine Breite BV in X-Richtung und eine Höhe bzw. Stärke oder Dicke (Schichtdicke) DV in Z-Richtung (hier nicht dargestellt) aufweisen. Insgesamt hat das erfindungsgemäße Vlies 4 eine Länge LV und eine Breite BV, die typischerweise wesentlich größer ist als die Dicke DV. So ergibt sich, dass das erfindungsgemäße Vlies 4 gegebenenfalls durch weitere übliche Verfestigungsschritte zu einer im Wesentlichen flachen Textile geformt wird, die für Anwendungen am menschlichen oder tierischen Körper, an oder in Fahrzeugen (zu Land, zu Wasser und/oder zu Luft), an oder in Gebäuden usw. einsetzbar ist. Gemäß der vorliegenden Erfindung umfasst der Begriff Fahrzeuge jegliche Fortbewegungsmittel zu Land, zu Wasser und/oder zu Luft. Mit anderen Worten umfassen Landfahrzeuge insbesondere Kraftfahrzeuge, wie beispielsweise Automobile, Lastkraftwagen, Motorräder, oder auch Fahrräder, etc.. Wasserfahrzeuge umfassen motorisierte und auch nicht motorisierte Fahrzeuge, wie beispielsweise Schiffe, Boote, Jetski, Surfboards, etc.. Luftfahrzeuge umfassen motorisierte als auch nicht motorisierte Fahrzeuge, wie Flugzeuge, Hubschrauber, Luftschiffe (Zeppeline), Fahrgastballons, etc.. Die Fahrzeuge können sich bemannt oder autonom fortbewegen.

Der Begriff„Vlies" bzw.„Vliesmaterial" 4 bezeichnet in Bezug auf die vorliegende Erfindung allgemein einen Vliesstoff (englisch„non-woven") und ist ein Gebilde aus Fasern 1 begrenzter Länge, Endlosfasern (Filamenten) oder geschnittenen Fasern 1 , die auf eine geeignete Weise zu einem Vlies 4 (einer Faserschicht, einem Faserflor) jeweils zusammengefügt worden sind. Der Begriff „Vlies" 4 bezeichnet in Bezug auf die vorliegende Erfindung sowohl unverfestigten Vlies (auch „Faservlies" genannt) als auch verfestigten Vlies (auch „Vliesstoffe" genannt). Hierbei gilt grundsätzlich folgende Beziehung: je höher der Verfestigungsgrad des Vlieses, desto kleiner die Lücken zwischen den Fasern, desto besser ist die Abschirmung von hoherfrequenten Strahlen, insbesondere im Terahertz-Bereich. Bevorzugt handelt es sich bei dem erfindungsgemäßen Vlies 4 um ein mittels üblicher Verfahren verfestigtes Vlies bzw. einen verfestigten Vliesstoff, um Terahertz-Strahlung abzuschirmen. Davon nur insoweit zu unterscheiden, als die hierin beschriebenen Effekte, wenn auch verschlechtert, dennoch erreicht werden, ist das Verkreuzen bzw. Verschlingen von Garnen, wie es beim Weben, Wirken, Stricken, der Spitzenherstellung, dem Flechten und Herstellung von getufteten Erzeugnissen geschieht.

Im Vordergrund für die vorliegende Erfindung steht die zufällige unregelmäßige Anordnung und Erstreckung der Fasern 1 im Raum X, Y und Z. Das erfindungsgemäße Vlies 4, welches die Polymerfasern 1 umfasst, ist beispielsweise ein größtenteils flexibles textiles Flächengebilde, d. h. es ist leicht biegsam. Im vorliegenden Fall besteht das erfindungsgemäße Vlies 4 zumindest überwiegend, ggf. auch ausschließlich aus den Polymerfasern 1 , die eine vergleichsweise geringe Dicke gegenüber ihrer Länge und Breite aufweisen. Allerdings können auch erfindungsgemäße Vliese 4 mit einer verhältnismäßig großen Dicke hergestellt werden, die räumlichen Gebilden zugeordnet werden müssen (z. B. Vliesstoffe für Dämmstoffe und Polstermaterialien). Auch für derartige Anwendungen ist die vorliegende Erfindung geeignet. Alternativ oder kumulativ können zwei, drei oder mehrere erfindungsgemäße Vliese 4 je nach Verwendung übereinander angeordnet werden bzw. ein Vlies 4 mehrfach gefaltet werden, um eine geeignete Abschirmung für eine entsprechende magnetische Strahlung zu erreichen.

Das erfindungsgemäße Vlies kann gemäß üblicher Herstellverfahren für Vliesmaterialien gebildet werden. Eine Unterteilung der erfindungsgemäß geeigneten Herstellverfahren ist Deutsche Institut für Normung e.V. (DIN) Norm 61 210 zu entnehmen.

Dementsprechend sind mechanisch gebildete Vliese für die vorliegende Erfindung geeignet, die aus von Karden oder Krempeln abgenommenen Floren hergestellt werden, die zu Vliesen übereinandergelegt werden, oder direkt von diesen Kardiermaschinen gebildet werden. Es handelt sich dabei generell um Vliese aus Spinnfasern.

Alternativ sind erfindungsgemäß auch aerodynamisch gebildete Vliese für die vorliegende Erfindung geeignet, die aus Fasern mittels eines Luftstromes auf einer luftdurchlässigen Unterlage gebildet werden. Werden die Vliese aus Spinnfasern oder auch Kurzschnittfasern sowie Flockzellstoff gebildet, werden sie als Trockenvliese bezeichnet. Es entstehen generell Wirrlagevliese und nach entsprechender Verfestigung Trockenvliesstoffe oder Wirrlagevliesstoffe.

Alternativ sind erfindungsgemäß auch Vliese geeignet, die aus Fasern bestehen, die direkt aus durch Düsen hindurchtretende Polymerschmelzen ersponnen werden. Werden die aus durch Düsen hindurchtretende Polymerschmelzen ersponnen Fasern mittels heißer Luftströme bis zum Zerreißen verstreckt und durch unmittelbares Ablegen gebildet, entstehen sogenannte Schmelz-Blas-Vliese bzw. Meltblown-Vliese. Sie bestehen meist aus längeren Spinnfaser ähnlichen Endlosfaserabschnitten, aber auch aus einer Mischung mit Endlosfasern oder vollständig aus Endlosfasern. Die darauf aufbauenden verfestigten Vliese werden meist als Meltblown-Vliesstoffe bezeichnet.

Werden die aus durch Düsen hindurchtretenden Polymerschmelzen ersponnen Fasern mittels kalter Luft und/oder mechanisch verstreckt und durch unmittelbares Ablegen gebildet, bezeichnet man sie als Spinnvliese bzw. nach der Verfestigung als Spinnvliesstoffe (Spunlaid bzw. Spunbond Vlies / Vliesstoff) Die Vliese bauen sich dabei ausschließlich aus Filamenten bzw. Endlosfasern auf.

Alternativ können Meltblown-Vliese im schichtenweisen Verbund mit Spinnvliesen hergestellt werden, es entstehen so zum Beispiel Spinnvlies- Meltblownvlies-Spinnvlies (SMS). Diese erhalten durch den schichtweisen Aufbau eine höhere Festigkeit gegenüber den Einzelfaservliesen.

Alternativ sind auch hydrodynamisch gebildete Vliese für die vorliegende Erfindung geeignet. Bei hydrodynamisch gebildeten Vliesen werden die Fasern in Wasser aufgeschwemmt und auf einer wasserdurchlässigen Unterlage abgelegt. Werden kürzere Spinnfasern, aber auch Flockzellstoff verwendet, bezeichnet man die Vliese als Nassvliese. Die anschließend verfestigten Vliese als Nassvliesstoffe. Das Verfahren wird auch häufig als Nassverfahren bezeichnet. Wenn Endlosfasern, die direkt aus Polymerlösungen ersponnen, gegebenenfalls verstreckt werden, mittel Wasser zu einem Vlies abgelegt werden, erhält man Nass-Spinnvliese bzw. in verfestigter Form Nass-Spinnvliesstoffe.

Erfindungsgemäße geeignet sind ebenfalls elektrostatisch gebildete Vliese, deren Fasern aus Polymerlösungen oder -schmelzen unter Einwirkung eines elektrischen Feldes gebildet und abgelegt werden. Es entstehen sogenannte Feinstfaservliese oder Nanofaservliese.

Gemäß der vorliegenden Erfindung können auch Kombinationen der vorstehenden Vliesherstellungen verwendet werden. Erfindungsgemäß besonders bevorzugt ist die Kombination einer Spinnvlies- mit einer elektrostatischen Herstellung. Hierbei wird das metallisierte Polymermaterial vorzugsweise tropfenförmig in ein elektrisches Feld gebracht und während Zufuhr eines gegenüber dem Polymermaterial kälteren, vorzugsweise sauerstofffreien Gases zu einer Polymerfaser 1 gezogen. Vorteilhaft an der Kombination ist, dass durch das E-spinning eine Faser 1 hergestellt wird, in dem die ersten Metalllegierungsmoleküle 3 vorwiegend im Innern der Faser 1 angeordnet sind und durch kältere, vorzugsweise sauerstofffreie Gaszufuhr die Polymerfaser 1 entsprechend abgekühlt und erstarrt wird. Eine alternative häufig verwendete Unterteilung der erfindungsgemäß geeigneten Vliesbildungsverfahren betrifft die Unterteilung in Trocken-, Nass- und Extrusionsverfahren.

Hierbei werden die vorgenannten mechanischen und aerodynamischen Vliesbildungsverfahren auf Spinnfaserbasis dem Trockenverfahren zugeordnet. Das hydrodynamische Vliesbildungsverfahren auf Spinnfaserbasis wird dem Nassverfahren zugeordnet.

Den Extrusionsverfahren zur Vliesbildung wurden anfänglich nur solche Vliesbildungsverfahren zugeordnet, die auf Polymerschmelzen beruhen, Schmelz-Blas-(Meltblown)-Vliese und Spinnvliese aus Endlosfasern, die Bildung von Feinstvliesen durch Elektrospinnen und von Foliefaservliesen, die durch Fibrillierung von extrudierten Folien erzeugt werden. Die Extrusionsvliese umfassen in neueren Systematiken auch eine Vliesbildung direkt aus Polymerlösungen gebildeten Fasern nach dem Elektrostatikspinnverfahren oder dem sogenannten Flash-Spinning-Verfahren (Entspannungsverdampfungs- Spinnvliesverfahren).

Die erfindungsgemäß bevorzugte Kombination aus Extrusionsverfahren und Elektrostatikspinnverfahren wird auch dem Nassverfahren zugeordnet.

Üblicherweise wird das hergestellte Faservlies mechanisch, chemisch und /oder thermisch verfestigt, wobei ein anschließend ein festerer Verbund zwischen den Fasern gegenüber dem ursprünglich hergestellten Faservlies vorliegt. Durch eine entsprechende Verfestigung wird der Abstand der Polymerfasern 1 im Vlies verringert. Je kleiner der Abstand bzw. Lücken zwischen den Fasern, desto höher der Abschirmeffekt auch für höherfrequente Strahlung, insbesondere Terahertzstrahlung sowie noch höherfrequente Strahlung.

Bei den mechanischen Verfestigungsverfahren wird der Verbund der Fasern durch Reibschluss oder durch eine Kombination von Reib- und Formschluss hergestellt. Bei der Reibschluss-Bindung wird durch eine Vliesverdichtung der Abstand der benachbarten Fasern gegenüber dem im Vlies verringert. Damit wird die Haftung der Fasern aneinander erhöht und es können höhere Kräfte übertragen werden. Der Widerstand des Vlieses gegen Verformung wird höher, es wird fester. Erreicht werden kann die Verdichtung alternativ durch Schrumpfen aller Fasern oder eines Anteils, wenn die Fasern schrumpffähig bei Einwirkung von Wärme und/oder einem Quellmittel sind. Es entstehen Schrumpfvliesstoffe oder Quellvliesstoffe.

Ebenso kann das Verdichten durch Pressen (meistens Kalandern) erreicht werden. Gemäß einer Ausführungsform der vorliegenden Erfindung wird das erfindungsgemäße Vlies durch eine Rollsystem gepresst, wobei Kräfte von größer gleich 0, 1 bar, bevorzugt größer gleich, 0,2 bar, 0,3 bar, 0,4 bar, 0,5 bar, 0,6 bar, 0,7 bar, 0,8 bar, 0,9 bar, 1 ,0 bar, 1 , 1 bar, 1 ,2 bar, 1 ,3 bar, 1 ,4 bar, 1 ,5 barm 1 ,6 bar, 1 ,7 bar, 1 ,8 bar oder mehr verfestigt werden. Gemäß einer bevorzugten Ausgestaltung wird dieses Rollsystem mit einem Heizsystem kombiniert, sodass das verfestigte Vlies gleichzeitig getrocknet wird. Vorzugsweise wird das Rollsystem auf Temperaturen bis unter 70 °C, vorzugsweise im Bereich zwischen 40 °C und 65 °C beheizt. Das erfindungsgemäß verfestigte Vlies weist vorzugsweise einen Feuchtigkeitsanteil von < 20 %, weiter bevorzugt < 10 % auf.

Alternativ kann die mechanische Verfestigung durch Walken erfolgen, bei welchem die Fasern des Vlieses filzfähig sein müssen und durch gleichzeitige thermische, chemische und mechanische Einwirkungen untereinander verfilzen. Durch das Walken entstehen Filze bzw. Walkvliesstoffe. Nadelvliesstoffe, bei denen das Verschlingen der Fasern und damit das Verdichten und Verfestigen des Vlieses durch Vernadeln erfolgt, in dem eine Vielzahl von speziellen, in einem Nadelbrett oder -balken angeordneten Nadeln (Widerhakennadeln, Gabelnadeln) ein- und ausgestochen wird, sind erfindungsgemäß weniger geeignet, das aufgrund dieser Vernadelung gleichmäßige Löcher und damit Lücken in das Vlies eingebracht werden, welche die Abschirmwirkung abschwächen können. Die erfindungsgemäßen Vliese können alternativ oder kumulativ durch chemische Verfestigungsverfahren verfestigt werden, wodurch der Verbund der Fasern durch Stoffschluss mittels Zusatzstoffen hergestellt wird (synonym „adhäsive Bindung"). Allerdings wird eine solche chemische Verfestigung erfindungsgemäß eher nicht angewendet, da das Bindemittel selbst keine Wirkung bei der Abschirmung zeigt und durch die zusätzlichen Bindemittel größere Abstände zwischen den Metallegierungsmolekülen gebildet werden können und so die Abschirmwirkung reduziert werden kann.

Bei den thermischen Verfestigungsverfahren für erfindungsgemäße Vliese wird der Verbund der Fasern ebenfalls durch Stoffschluss hergestellt, wobei oft noch zwischen adhäsivem und kohäsiven Verbund unterschieden wird. Voraussetzungen sind thermoplastische Zusatzkomponenten oder thermoplastische Fasern. Bei der adhäsiven Verfestigung werden dem Vlies Bindemittel in fester Form als Faser (Einkomponentenfaser mit niedrigerem Schmelzpunkt als Hauptkomponentfaser oder Bi- bzw. Mehrkomponentenfaser, wobei eine Komponente vorzugsweise diejenige an der Oberfläche der Faser einen niedrigeren Schmelzpunkt als die anderen Komponenten aufweist. Durch eine thermische Behandlung, z. B. durch Heißluftdurchströmung (Thermofusion) oder Thermokalandrieren mittels gravierten und/oder glatten Walzen, bei dem neben der Wärme gleichzeitig Druck einwirkt, wird das thermische Bindemittel in einen klebrig-flüssigen Zustand gebracht, so dass es eine feste Bindung mit der Hauptfaserkomponenten des Vlieses eingeht.

Bei der kohäsiven Verfestigung werden rohstoffgleiche, thermoplastische Fasern ohne ein zusätzliches Bindemittel miteinander zu erfindungsgemäßen Vliesen gebunden. Es erfolgt ein Verschweißen der Fasern, in dem sie durch zeitweiliges Einwirken einer erhöhten Temperatur erweichen und sich die benachbarten Fasern an den Berührungspunkten verbinden. Sehr häufig erfolgt die Verbindung unter gleichzeitiger Druckeinwirkung. Eine kohäsive Verfestigung ist vorzugsweise dann geeignet, wenn leichte Faservliese bzw. leichte Spinnvliese beispielsweise durch beheizte Prägekalander, aber auch durch Ultraschall- Schweißanlagen verfestigt werden.

Während die einzelnen Polymerfasern 1 im erfindungsgemäßen Vlies 4 im Mikrometermaßstab in X, Y und Z Richtung des Raumes zufällig und inhomogen bzw. ungleichmäßig angeordnet sind, bildet das erfindungsgemäße Vlies als Ganzes in dreidimensonaler Sicht ein homogenes Faserkonstrukt. Treffen elektromagnetische Strahlen/Wellen auf das erfindungsgemäße Vliesmaterial auf, bilden sich zwar zunächst im Mikrometermaßstab statische Felder (positive und negative Ladungen in den Fasern) aus, diese heben sich aber im Dezimetermaßstab verteilt über das gesamte Vlies annähernd vollständig auf. Mit anderen Worten sollte das Vlies 4 in Durchgangsrichtung (vgl. unten FIG. 4 Referenzvektor S), also senkrecht zur Erstreckungsebene des Vlieses 4, keine oder nur solche Durchgangsöffnungen aufweisen, die im Verhältnis zur Wellenlänge, der zu absorbierenden Strahlung sehr klein sind. Beispielsweise, wäre dies bei 5 THz eine Wellenlänge λ von 0.2 mm bzw. 200 μηη. Entsprechend sollte ein geeignetes Vlies vorteilhaft keine durchgehenden Öffnungen aufweisen, die in der Größenordnung der Wellenlänge der zu absorbierenden Strahlung liegen. Im vorliegenden Beispiel (5 THz) sollte der maximale Durchmesser DO (nicht gezeigt) einer durchgehenden Öffnung sehr viel kleiner sein als die Wellenlänge λ der zu absorbierenden Strahlung, also DO « λ bzw. DO « 0.2 mm. Bei höheren Frequenzen sind die Wellenlängen entsprechend kürzer, was bedeutet, dass das Vlieses entsprechend dichter sein muss. Ferner sollten das Vlies auch Abstände AK der Kontaktpunkte zwischen den Fasern 1 aufweisen, die gegenüber der Wellenlänge λ der zu absorbierenden Strahlung klein sind (AK « λ). Für einen Frequenzbereich von 5 THz bis 300 THz gilt somit das DO, AK « 3.3 μηη sein sollten. Vorteilhaft kann das Vlies so verdichtet werden bzw. aufgebaut sein, dass praktisch keine Durchgangsöffnungen vorliegen und die Kontaktpunkte zwischen den Fasern sehr dicht liegen. Damit ist das Vlies ggf. auch für elektromagnetische Strahlung in sehr viel höheren Frequenzbereichen geeignet.

FIG. 3 ist eine seitliche Schnittansicht eines erfindungsgemäßen Vlieses 4 gemäß einem Ausführungsbeispiel. Es kann sich um das erfindungsgemäße Vlies 4 aus FIG. 2 handeln. Auch hier ist zu sehen, wie sich die Fasern 1 unregelmäßig in allen drei Raumrichtungen X, Y und Z erstrecken. Die Länge L der erfindungsgemäßen Fasern 1 kann im Wesentlichen gleich oder unterschiedlich sein. In dieser Darstellung ist nur die Dicke DV zu erkennen.

FIG. 4 ist ein Ausführungsbeispiel mit mehreren Schichten (Sandwichstruktur) eines erfindungsgemäßen Vlieses 4 gemäß einer Ausführungsform. Wenn das erfindungsgemäße Vlies 4 in mehreren Lagen (hier bspw. 3 Lagen, alternativ sind 2, 4, 5, 6, 7, 8, 9, 10 oder mehr Lagen möglich) übereinander und ggf. beabstandet voneinander angeordnet wird, kann die Dämpfungswirkung noch erhöht werden. Die einfallende elektromagentische Strahlung S wird dann um einen Faktor gedämpft und kommt auf der gegenüberliegenden Seite des erfindungsgemäßen Vlieses 4 umfassend die Sandwichanordnung aus mehreren Vlies-Lagen nur noch als elektromagentische Strahlung S' an.

Die vorliegende Erfindung beruht unter anderem auf der überraschenden Erkenntnis, dass das erfindungsgemäße Vliesmaterial 4 für elektromagnetische Strahlung, insbesondere für Terahertz-Strahlung im Bereich von 5 THz bis 300 THz eine Schirmdämpfung von > 10 % zeigt. Vorzugsweise liegt bei 30 THz eine Schirmdämpfung von > 70 %, weiter bevorzugt > 80 %, noch weiter bevorzugt > 90 % vor, während bei 300 THz eine Schirmdämpfung von > 15 %, bevorzugt > 20 % vorliegt. Das erfindungsgemäße Vlies 4 weist für Terahertz-Strahlung im Bereich 5 THz bis 300 THz einen Dämpfungswert von > 100 Dezibel (dB), bevorzugt 120 Dezibel (dB) auf.

Darüber hinaus kann auch elektromagnetische Strahlung in deutlich niedrigeren oder höheren Frequenzbereichen absorbiert und damit abgeschirmt werden. Hierbei gilt grundsätzlich: je dünner die Polymerfasern 1 , desto kleiner die Öffnungen zwischen den Polymerfasern 1 und desto stärker die Abschirmwirkung auch für höherfrequente Strahlung.

Gleichzeitig ist das erfindungsgemäße Vliesmaterial 4 vorteilhaft, weil es im Vergleich zu herkömmlichen für die Abschirmung verwendeten Bleimaterialien ein niedrigeres Materialgewicht aufweist und dennoch druck- und zugstabil ist.

Darüber hinaus ist das erfindungsgemäße Vliesmaterial 4 aufgrund der Vliesstruktur flexibel und gleichzeitig atmungsaktiv.

Nach derzeitigem Kenntnisstand geht man davon aus, dass die auf der Ebene der Oberfläche des erfindungsgemäßen Vlieses 4 eintreffende elektromagnetische Strahlung, insbesondere Terahertz-Strahlung durch die zweiten Metalllegierungsmoleküle 2, die auf der Oberfläche der Polymerfasern 1 ein Gitter bilden, absorbiert werden. Bei der Absorption der elektromagentischen Strahlung durch die zweite Metalllegierungsmoleküle 2 im Oberflächen-Gitter entsteht durch Konvektion eine statische Ladung. Diese wird aufgrund des Ladungspotentialunterschieds zwischen der zweiten 2 und der ersten Metalllegierung 3 in die Tiefe (Z-Achse) des Vlieses 4 gezogen. Die ersten Metalllegierungsmoleküle 3 im Gitter des Faserkerns K verarbeiten die entstandene Ladung schneller als die zweiten Metalllegierungsmoleküle 2 auf der Oberfläche und leiten die durch die elektromagnetischen Wellen entstandenen Ladungen als konvektionsartigen Strom im Kern K weiter. Hierdurch entstehen generell entgegengesetzte Ladungen bzw. Potentiale im Mikrometermaßstab. Aufgrund der im Mirkometermaßstab zufälligen, unregelmäßigen Anordnung der faserkernverfüllten Polymerfasern 1 im erfindungsgemäßen Vlies 4 schwächen sich die gegensätzlichen Ladungen bzw. die damit verbundenen lokalen Potentiale im Dezimetermaßstab annähernd vollständig ab. Bei dem erfindungsgemäßen Vlies konnte eine entsprechende Abschwächung der Ladungen / Potentiale (Potentialaufhebung) von > 98 %, insbesondere < 99 % gemessen werden. Es entsteht somit keine Oberflächenspannung und eine Reflektion an elektromagnetischer Strahlung / Frequenz kann erfindungsgemäß vermieden werden.

Gemäß dem ersten Erfindungsgegenstand werden erste Metalllegierungen 3 und zweite Metalllegierungen 2 bereitgestellt. Vorzugsweise liegen diese in Pulverform vor. Die Partikel des Pulvers haben einen mittleren Partikeldurchmesser im μΓη-Bereich, weiter bevorzugt einen mittleren Partikeldurchmesser im Bereich von < 100 μηη, weiter bevorzugt < 50 μηη, noch weiter bevorzugt < 20 μηη.

Gemäß allen Erfindungsgegenständen der vorliegenden Erfindung umfasst die erste Metalllegierung 3 aus Schritt a) und/oder die zweite Metalllegierung 2 aus Schritt c) vorzugsweise ein, zwei, drei oder mehrere unterschiedliche Metalllegierungen.

Hierbei ist eine erste Metalllegierung 3 erfindungsgemäß bevorzugt, wobei die Metalle der ersten Metalllegierung(en) 3 aus Schritt a) des ersten Erfindungsgegenstandes aus zwei, drei, vier oder mehreren Metallen ausgewählt werden aus der Gruppe bestehend aus Blei (Pb), Titan (Ti), Paladium (Pd), Praeseodym (Pr), Lanthan (La), Indium (In), Kobalt (Co), Aluminium (AI), Chrom (Cr), Nickel (Ni), Molybdän (Mo), Barium (Ba), Yttrium (Y), Samarium (Sm), Silizium (Si), Germanium (Ge) und Eisen (Fe).

Beispielsweise kann die erste Metalllegierung 3 aus Schritt a) ausgewählt werden aus der Gruppe bestehend aus Kobalt-Legierungen, beispielsweise Co68.7Fe 4 Ni 1 B 13 Siii Mo2.3, NdsFeee-xMnxCoieBu (x = 0, 1 , 2) oder CoFe 2 ; Paladium- Legierungen, vorzugsweise Paladium-Indium-Eisen Legierungen, beispielsweise Pd 5 7lri25Fei8, und Pd 5 6.2l n26.3Fei 7 .5; vorzugsweise Titan-Paladium-Eisen Legierungen, beispielsweise Ti 50 Pd 4 oFeio, und Ti 50 Pd 3 5Fei5; vorzugsweise Paladium-Mangan-Indium Legierungen, beispielsweise Pd 2 Mnln; Manganat- Legierungen, beispielsweise Praseodym-Lanthan-Calcium-Manganat Legierungen wie Praseodym-Calcium-Manganat Legierungen oder Lanthan- Calcium-Manganat Legierungen, wie beispielsweise Pr 0 .7Cao. 3 Mn0 3 oder La 0 .7Cao. 3 Mn0 3 ; Neodym-Blei-Manganat Legierungen wie Nd 0 .5Pbo.5Mn0 3 , Lanthan-Barium-Manganat Legierungen wie La2 /3 Ba 1/3 Mn0 3 ; Bor-Kupfer Legierungen wie B 2 Cu0 2 ; Legierungen mit hohem Wolframanteil wie Barium- Yttrium-Kupfer-Wolfram Legierungen und Kupfer-Samarium-Wolfram Legierungen und Eisenlegierungen, wie FeNiMo, Fe 8 5Si 3 .5AI5.5Cr6 und FeMnW- (Po, 5 Geo,i Pb o, 4 Wo,2).

Die zweite Metalllegierung 2 ist erfindungsgemäß dann bevorzugt, wenn die Metalle der zweiten Metalllegierung(en) 2 aus Schritt c) aus zwei, drei, vier oder mehreren Metalle ausgewählt werden aus der Gruppe bestehend aus Eisen (Fe), Mangan (Mn), Kupfer (Cu), Zink (Zn), Wolfram (W), Silicium (Si), Silber (Ag) und Zinn (Sn).

Beispielsweise kann die zweite Metalllegierung 2 aus Schritt c) ausgewählt werden aus der Gruppe bestehend aus Mangan Legierungen, vorzugsweise Nickel-Mangan-Zinn Legierungen, beispielsweise Ni 2 Mn 1 44 Sno.5 6 , und Ni 2 Mn 1 4 2Sno.5 8 ; vorzugsweise Nickel-Mangan-Gallium Legierungen, beispielsweise Ni 2 MnGa; vorzugsweise Eisen-Mangan-Silicium Legierungen, beispielsweise FeMnSi, Fe57. 4 Mn 35 Si 7 .6, Fe 6 6.7Mn 2 8.8Si 6 .5 und FeMnW- (Po,5Ge 0 ,iPbo,4Wo,2) sowie Silber-Magnesium Legierungen, beispielsweise Ag- MgF 2 -Ag.

Gemäß einer kumulativ oder alternativ bevorzugten Ausgestaltung der vorliegenden Erfindung werden die erste(n) Metalllegierung(en) 3 aus Schritt a) und gegebenenfalls die zweite(n) Metalllegierung(en) 2 und Schritt c) vorzugsweise so gewählt, dass sie sauerstofffrei sind. Für diese Ausgestaltung kann beispielsweise Phosphor (P) verwendet werden, um eine sauerstofffreie Metalllegierung bereit zu stellen.

Im Rahmen der vorliegenden Erfindung kann das Polymermaterial, bspw. für die Fasern 1 oder auch Pellets oder andere Ausgestaltungen aus Schritt b) des ersten Erfindungsgegenstands aus üblichen Polymermaterialien ausgewählt werden. Hierbei eignen sich insbesondere solche Polymermaterialien, welche eine Temperaturbeständigkeit von bis zu 95 °C aufweisen. Je nach Einsatzzweck können die Polymermaterialien ausgewählt werden aus der Liste bestehend aus der Gruppe der Polyester, beispielsweise Polyethylenterephthalat (PET), und der Gruppe der Polyamide, beispielsweise Poly(p-phenylenterephthalamid) (PPTA) und Poly(m-phenylenisophthalamid) (PMPI). Hierbei werden Polyester, wie PET vorzugsweise dann verwendet, wenn es sich um weichere Materialien handeln soll, während Polyamide gewählt werden, um härtete Vliesmaterialeigenschaften zu erreichen. Um ein Mischen des Polymermaterials mit den ersten Metalllegierungsmolekülen 3 zu erleichtern, werden dem Polymermaterial vorzugsweise geeignete Mittel zur Viskositätserniedrigung zugesetzt. Die geeignete Viskosität hängt von der Mischmethode ab. Beispielsweise werden für Polyester üblicherweise Alkohole, vorzugsweise hochzyklische Alkohole, wie beispielsweise C5 bis C9- Alkohole verwendet. Je höherzyklisch der Alkohol, desto viskoser die Zusammensetzung. Vorzugsweise kann erfindungsgemäß ein C6- oder C7-, vorzugsweise C6-Alkohol verwendet werden. Bei Polyamiden werden üblicherweise geeignete Säuren als Viskositätserniedrigendes Mittel verwendet, vorzugsweise Ameisensäure. Gemäß einer Ausführungsform der vorliegenden Erfindung können für die

Herstellung der ersten Metalllegierungsmoleküle 3 in Schritt d) und / oder der zweiten Metalllegierungsmoleküle 2 in Schritt e) übliche physikalische Gasphasenabscheidungsverfahren verwendet werden, vorzugsweise (i) mittels Verdampfen, beispielsweise mittels thermischen Verdampfens, Elektronenstrahlverdampfen, Laserstrahlverdampfen, Lichtbogenverdampfen oder Molekularstrahlepitaxie, oder (ii) mittels Sputtern, beispielsweise ionenstrahlgestützte Deposition, oder (iii) mittels lonenplattieren oder (iv) mittels ICB-Abscheidung (ionized düster beam deposition, ICBD). Erfindungsgemäß können auch verschiedene physikalischen Gasabscheidungsverfahren, wie beispielsweise Elektronenstrahlverdampfung und Lichtbogenverdampfung kombiniert werden. Eine solche Kombination ist bevorzugt, wenn auf kleinem Raum eine entsprechende Verdampfung der ersten Metalllegierung 3 erreicht werden soll.

Bei den thermischen Verdampfungsverfahren werden die ersten und/oder zweiten Metalllegierungen in geeigneten Vorrichtungen je nach Legierungsart auf bis zu 6.000 "Celsius erhitzt und dabei zu ersten und / oder zweiten Metalllegierungsmolekülen 3, 2 verdampft. Vorzugsweise werden die ersten und/oder zweiten Metalllegierungsmoleküle 3, 2 mit geeigneten Mitteln, vorzugsweise durch Zuleitung eines geeigneten Gases, weiter bevorzugt eines Edelgases alternativ Fluor abgekühlt bevor sie mit dem Polymermaterial in Schritt d), mit der Oberfläche der faserkernverfüllten Polymerfasern 1 in Schritt e) oder der Oberfläche des Vlieses in Schritt f) in Kontakt gebracht werden. Bei der Verdampfung der zweiten Metalllegierungen zu Metalllegierungsmolekülen 2 können zusätzlich sauerstoffhaltige Gase verwendet werden, wie beispielsweise C0 2 , da die zweiten Metalllegierungsmoleküle aufgrund der Anordnung an der Oberfläche der Polymerfaser 1 mit Luftsauerstoff in Kontakt kommt. Im Gegensatz hierzu wird bei der Verdampfung der ersten Metalllegierungen zu ersten Metalllegierungsmolekülen 3 eine sauerstofffreie Atmosphäre bevorzugt, damit die ersten Metallegierungsmoleküle 3 nicht oxidiert vorliegen.

Bei der Verdampfung der ersten Metalllegierung entstehen insbesondere erste Metalllegierungsmoleküle 3 mit trigonaler Struktur. Beim Mischen der ersten Metalllegierungsmolekülen 3 mit dem in Schritt b) bereitgestellten Polymermaterial sowie Anordnung des metallisierten Polymermaterials in Faserform, sind die ersten Metalllegierungsmoleküle 3 mit trigonaler Struktur im Wesentlichen im Kern K der Polymerfaser angeordnet und bilden ein Gitter, in dem die einzelnen ersten Metalllegierungsmoleküle 3 jeweils durch das Polymer isoliert vorliegen, aber die Elektronenwolken der benachbarten ersten Metalllegierungsmoleküle 3 überlagern.

Der Anteil an ersten Metalllegierungsmolekülen 3 mit trigonaler Struktur beträgt vorzugsweise 80 Gew.-% bezogen auf das Gesamtgewicht der ersten Metalllegierung im Polymermaterial. Bei der Verdampfung entstehen ebenfalls, allerdings zu einem geringeren Anteil (bis ca. 20 Gew.-% bezogen auf das Gesamtgewicht der ersten Metalllegierung), erste Metalllegierungsmoleküle 3 mit hexa- oder oktagonaler Struktur. Diese ordnen sich allerdings aufgrund ihres höheren Gewichtes an der Oberfläche der Polymerfaser 1 an. Im Rahmen der vorliegenden Erfindung wurde herausgefunden, dass erste Metalllegierungsmoleküle 3 mit hexa- oder oktagonaler Struktur, die an der Oberfläche der Polymerfaser 1 angeordnet sind aufgrund von Reibungen der Polymerfasern 1 untereinander entfernt werden, so dass die Polymerfaser 1 im Wesentlichen, d.h. zu 80 Gew.-% oder mehr, erste Metalllegierungsmolekülen 3 mit trigonaler Struktur umfasst, wobei diese im Wesentlichen im Kern K, also im Innern der Polymerfaser 1 angeordnet sind.

Eine Ausführungsmöglichkeit zur Herstellung entsprechender Polymerfasern 1 wird im Detail im Ausführungsbeispiel beschrieben.

Hierbei wird das Polymermaterial in Tropfenform mit den ersten Metalllegierungsmolekülen 3 zunächst gemischt, bevor es mittels üblicher Verfahren, vorzugsweise mittels E-Spinning zur faserkernverfüllten Polymerfaser 1 angeordnet wird.

Gegebenenfalls kann es notwendig sein vor dem E-Spinning die Viskosität des metallisierten Polymergemisches zu erniedrigen, um ein E- Spinning zu ermöglichen.

Um das Polymermaterial in Tropfenform bereitzustellen, kann jedes üblicherweise geeignete Gerät verwendet werden. Bei Verwendung eines Tintenstrahldruckgeräts, vorzugsweise eines das piezo-elektrisch gesteuert ist, kann die Tropfengröße gezielt gesteuert werden und reproduzierbarere Ergebnisse zu erzielen. Der Tropfen kann mittels üblicher Methoden mit den ersten Metalllegierungsmolekülen gemischt werden. Eine bevorzugte erfindungsgemäße Ausführung besteht darin, dass die erste Metalllegierung aus einem Vorratsbehälter über ein Zuführungssystem vorzugsweise am Druckkopf zu ersten Metalllegierungsmolekülen 3 verdampft wird und beispielsweise mittels eines Druckkopfinjektors in den Polymertropfen eingeleitet wird. Die Menge der ersten Metalllegierung hängt von dem geforderten Frequenzbereich, in dem noch abgeschirmt werden soll ab. Dabei gilt, dass ein höherer Grad an molekularer Faserkernverfüllung mit den ersten Metalllegierungsmolekülen 3 eine Abschirmung in einem höheren Frequenzbereich ermöglicht. Gleichzeitig bedeutet aber eine höhere Faserkernverfüllung eine Reduzierung der Flexibilität des erfindungsgemäßen Vlieses 4. Üblicherweise wird eine Menge an 10 Gew.% oder mehr erster

Metalllegierungsmoleküle 3 bezogen auf das Volumen des Polymermaterials gemischt. Das Volumen des Polymermaterials bedeutet im Rahmen der vorliegenden Erfindung das Volumen des Polymermaterials gegebenenfalls inklusive etwaiger Viskositätserniedrigende Mittel. Eine Menge an 50 Gew.% oder mehr erster Metalllegierungsmoleküle 3 führt zu keiner weiteren Steigerung des Abschirmeffektes, deshalb wird erfindungsgemäß ein Bereich zwischen 10 und 50 Gew.-% erster Metalllegierungsmoleküle 3 bezogen auf das Volumen des Polymermaterials verwendet. Erfindungsgemäß liegt der bevorzugte Bereichen zwischen 15 und 35 Gew.-%, weiter bevorzugt bei 20 bis 30 Gew.-% erster Metalllegierungsmoleküle 3 bezogen auf das Volumen des Polymermaterials.

Der mittlere Partikeldurchmesser (beispielsweise mittels Laserdopplermikrofluss oder Weißlicht-Spektroskopie gemessen) der ersten Metalllegierungsmoleküle 3, insbesondere bei mehr als 80 % der Partikel der ersten Metalllegierungsmoleküle 3 in der faserkernverfüllten Polymerfaser liegt in der Regel bei 2 bis 4 nm, wobei die Atom-Gitter-Struktur der Legierung sich zu einer vorwiegend trigonalen Gitterstruktur ändert. Eine Erklärung hierfür kann sein, dass Oxid-Brücken an der Alpha-Flanke der Metalllegierungsmoleküle abgesprengt werden und sich dabei die trigonalen Bindungsarme etwas ausdehnen.

Die erfindungsgemäßen faserkernverfüllten Polymerfasern 1 haben vorzugsweise einen mittleren Faserdurchmesser DF von < 500 μηη, weiter bevorzugt < 100 μηι, noch weiter bevorzugt < 50 μηη, noch weiter bevorzugt < 1 μηι. Der mittlere Faserdurchmesser DF wird beim E-Spinning üblicherweise über den Abstand des Magneten gesteuert.

Erfindungsgemäß kann die Beschichtung der faserkernverfüllten Polymerfasern 1 vor oder nach der Herstellung des erfindungsgemäßen Vlieses 4 durchgeführt werden.

Wenn die Polymerfasern 1 vor Herstellung des erfindungsgemäßen Vlieses 4 mit der zweiten Metalllegierung beschichtet wird, dann werden die Polymerfasern 1 vorzugsweise erst getrocknet und anschließend wird die zweite Metalllegierung aus Schritt c) aus dem Vorratsbehälter mittels einer geeigneten Zuführung mit üblichen Verfahren, wie vorstehend beschrieben, verdampft und auf der Oberfläche H der Polymerfasern 1 angeordnet. Ein solches Verfahren birgt allerdings die Gefahr, dass die zweiten Metalllegierungsmoleküle auf der Oberfläche der Polymerfaser 1 Cluster bilden, welche den Abschirmeffekt schwächen.

Deshalb wird das alternative Verfahren bevorzugt, wonach zuerst mittels üblicher Verfahren durch zufällig unregelmäßiges Anordnen der faserkernverfüllten Polymerfasern 1 in den drei räumlichen Dimensionsrichtungen (X, Y und Z) ein erfindungsgemäßes Vlies 4 hergestellt und dieses vorzugsweise verfestigt und/oder getrocknet wird, bevor die Oberfläche des Vlieses 4 (bzw. die Oberfläche der bereits zu einem Vlies 4 verbundenen Fasern 1 ) mit der verdampften zweiten Metalllegierung beschichtet wird. Hierbei wird üblicherweise eine Menge an mehr Gew.-% oder mehr, vorzugsweise 10 bis 20 Gew.-% erster Metalllegierungsmoleküle 2 bezogen auf das Volumen des Polymermaterials gegebenenfalls inklusive etwaiger viskositätserniedrigender Mittel verwendet.

Die zweiten Metalllegierungsmoleküle 2 haben in dem Oberflächen-Gitter einen mittleren Partikeldurchmesser (beispielsweise mittels Laserdopplermikrofluss oder Weißlicht-Spektroskopie gemessen) von 5 bis 7 nm. Das Oberflächen-Gitter zeichnet sich erfindungsgemäß dadurch aus, dass die zweiten Metalllegierungsmoleküle 2 isoliert von einander an der Vliesoberfläche H angeordnet sind, und ein Gitter bilden, in dem sich die Elektronenwolken der einzelnen zweiten Metalllegierungsmoleküle 2 überlagern. Das erfindungsgemäße Vlies 4 hat im nicht verfestigten Zustand üblicherweise eine Schichtdicke DV im Zentimeterbereich, insbesondere 4 bis 8 cm. Im verfestigten Zustand hat das erfindungsgemäße Vlies 4 üblicherweise ein Schichtdicke DV von < 1 mm, vorzugsweise < 500 μηη, weiter bevorzugt < 200 μηη. Das Gewicht des erfindungsgemäßen Vlieses 4 beträgt vorzugsweise < 500 g/m 2 , weiter bevorzugt < 250 g/m 2 , noch weiter bevorzugt < 100 g/m 2 . Gemäß einer beispielhaften Ausgestaltung kann ein erfindungsgemäßes Vlies bei einer Schichtdicke von ca. 70 μηη ein Gewicht von 48 g/m 2 bzw. bei 200 μηη ein Gewicht von 84 g/m 2 aufweisen. Gemäß einer kumulativ oder alternativ bevorzugten Ausgestaltung werden zusätzlich ein oder mehrere Materialien bereitgestellt, welche die Temperaturbeständigkeit des erfindungsgemäßen Vlieses 4 verbessern, da bei der Absorption elektromagnetischer Strahlung durch das Oberflächen-Gitter der zweiten Metalllegierung durch Konvektion auch Wärme entsteht. Gemäß dieser bevorzugten Ausgestaltung kann das Material, das die Temperaturbeständigkeit des Polymermaterials verbessert, ausgewählt werden aus glasartigen Materialien, insbesondere Glas, Keramik, und Porzellan, und/oder kohlenstoffhaltigen Materialien, beispielsweise Graphen. Graphen eignet sich aufgrund seines Schmiereffektes insbesondere dann besonders gut, wenn das erfindungsgemäße Vliesmaterial zur Abschirmung von Scharnieren, Öffnungen, und Türen verwendet werden soll.

Die Materialien, welche die Temperaturbeständigkeit des erfindungsgemäßen Vlieses 4 erhöhen, können gemäß üblicher Verfahren mit dem Polymermaterial und der ersten Metalllegierung gemischt werden. Beispielsweise wird das Material, das die Temperaturbeständigkeit des Polymermaterials verbessert, in Pulverform eingebracht und mit dem Metalllegierungsmolekül-Polymergemisch in Schritt d) gemischt, bevor die Polymerfaser 1 hergestellt wird. Vorzugsweise haben die Materialien, welche die Temperaturbeständigkeit des erfindungsgemäßen Vlieses 4 erhöhen einen geeigneten mittleren Partikeldurchmesser, vorzugsweise von < 100 μηη, < 50 μηη, < 20 μηη, < 10 μηη oder < 1 μηη. Gemäß einer erfindungsgemäßen Ausführungsform wird das Material, dass die Temperaturbeständigkeit des erfindungsgemäßen Vlieses 4 erhöht gemahlen, vorzugsweise nanokristallin gemahlen und zeigt einen mittleren Partikeldurchmesser (beispielsweise mittels Laserdopplermikrofluss oder Weißlicht-Spektroskopie gemessen) von < 500 nm, weiter bevorzugt < 250 nm, insbesondere einen mittleren Partikeldurchmesser im Bereich von 10 nm bis 50 nm. Mit steigendem Gewichtsanteil an Material, das die Temperaturstabilität der Fasern 1 bzw. des Vlieses 4 erhöht, steigt üblicherweise auch die Temperaturstabilität des erfindungsgemäßen Vliesmaterials 4. Allerdings nimmt die Zugelastizität des erfindungsgemäßen Vliesmaterials 4 mit steigendem Gewichtsanteil ab. Deshalb liegt erfindungsgemäß der Gewichtsanteil von dem Material, das die Temperaturstabilität erhöht, vorzugsweise Glas, Keramik, und Porzellan, und/oder kohlenstoffhaltige Materialien, wie Graphen im Bereich von bis zu 25 Gew.-%, vorzugsweise bei 10 bis 20 Gew.-%, weiter bevorzugt bei 15 Gew.-% bezogen auf das Volumen des Polymermaterials gegebenenfalls inklusive etwaiger Viskositätserniedrigende Mittel. Das erfindungsgemäße Vlies 4, dass gemäß einem der erfindungsgemäßen Herstellverfahren herstellbar ist, zeichnet sich zudem dadurch aus, dass sofern das Polymermaterial aufgrund hoher Hitzeeinwirkung verdampfen würde, die beiden Metallgitter, nämlich das innere Faserkern-Gitter bzw. Faserkern/Temperaturerhöhendes Material - Gitter einerseits und das äußere Oberflächenpolymerfaser-Gitter andererseits weiterhin intakt bleiben. Mit anderen Worten: Es bleiben auch die Funktionen der beiden Gitter, nämlich die Absorption der elektromagentischen Wellen durch das äußere Gitter und die Verarbeitung der durch Konvektion entstandenen statischen Ladung durch das innere Faserkern-Gitter bzw. Faserkern/Temperaturerhöhendes Material - Gitter bestehen und der Abschirmeffekt bleibt intakt. Das Material ist aufgrund des fehlenden Polymers weniger zugstabil. Es ist daher vorstellbar, dass zur besseren Beständigkeit bei Hitzeeinwirkung stabilisierende Maßnahmen eingesetzt werden. Beispielsweise kann das erfindungsgemäße Vlies 4 in einer stabilisierenden Vorrichtung, insbesondere aus Materialien wie Beton, angeordnet sein.

Das erfindungsgemäße Vlies 4 gemäß dem zweiten Erfindungsgegenstand ist vorzugsweise dadurch gekennzeichnet, dass das Vlies 50 bis 60 Gew.-% Polymermaterial, bis zu 50 Gew.-%, vorzugsweise 10 bis 40 Gew-%, weiter bevorzugt 15 bis 35 Gew.-% erste und zweite Metalllegierungen - vorzugsweise 10 bis 15 Gew.-% jeweils der ersten und zweiten Metalllegierung - und gegebenenfalls bis zu 25 Gew.-%, vorzugsweise 10 bis 20 Gew.-% Material zur Verbesserung der Temperaturstabilität jeweils bezogen auf das Gesamtgewicht des erfindungsgemäßen Vlieses 4 aufweist.

Das erfindungsgemäße Vlies 4, das insbesondere zur Abschirmung von Terahertz-Strahlung im Bereich von 5 THz bis 300 THz besonders geeignet ist, hat vorzugsweise

- einen Schrumpfungswert von bis zu 5 % nach DIN 7715 Teil 3 Klasse E3 und/oder

- einen Oberflächenwiderstand von 4 bis 7 Ohm / Zoll, vorzugsweise 5,5 Ohm / Zoll bei 20 mA Prüfstrom in der X-Y-Z Achse des Vlieses 4 und/oder

- eine Temperaturbeständigkeit im Bereich von - 40 °C bis + 120 °C und/oder

- eine Ozonbeständigkeit und/oder - eine Wasseraufnahmekapazität von < 4 % und/oder

- ein Gewicht von < 250 g/m 2 , vorzugsweise < 100 g / m 2 .

Das erfindungsgemäße Vlies 4 wird erfindungsgemäß zur Abschirmung elektromagnetischer Strahlung, insbesondere von Terahertz-Strahlung, weiter bevorzugt von Terahertz-Strahlung im Bereich von 5 THz bis 300 THz verwendet. Insbesondere wird das erfindungsgemäße Vlies 4 zur Herstellung von menschlichen oder tierischen Schutzanzügen verwendet, die für die Abschirmung von elektromagnetischer Strahlung, insbesondere von Terahertz-Strahlung, weiter bevorzugt von Terahertz-Strahlung im Bereich von 5 THz bis 300 THz verwendet werden sollen. Alternativ oder kumulativ wird das erfindungsgemäße Vlies 4 zur Abschirmung von Gebäuden, Fahrzeugen (zu Land, zu Wasser und/oder zu Luft), Gegenständen und/oder Leitungen im Bereich von 5 THz bis 300 THz verwendet. Alternativ oder kumulativ wird das erfindungsgemäße Vlies 4 zur Herstellung von Polymerisolierungen von Öffnungen in Gebäuden oder Fahrzeugen (zu Land, zu Wasser und/oder zu Luft) oder Leitungen verwendet. Hierbei eignen sich insbesondere solche erfindungsgemäßen Vliesmaterialien bevorzugt, die einen Anteil an kohlenstoffhaltigen Materialien, wie Graphen als temperaturstabilitätserhöhendes Material umfassen. Der Schmiereffekt wird auf Grund des Graphens erhöht, so dass eine verbesserte Abdichtung erreicht wird.

AUSFÜHRUNGSBEISPEIELE

Beispiel 1 : Herstellung eines erfindungsgemäßen Vlieses a) Bereitstellen einer ersten Metalllegierung

5 Gramm FeMnW-(P( 0 ,5)Ge( 0 ,i)Pb (o ,4 )W (0,2)) werden bereitgestellt, wobei die Legierung folgende Gewichtsbestandteile enthält:

1 ,23 Gramm Eisen (Fe). Alternativ kann auch CuAI anstelle von Fe eingesetzt werden.

0,6 Gramm Mangan (Mn).

0,7 Gramm Wolfram (W). 0,53 Gramm Phosphor (P). Phosphor wird eingesetzt, um eine sauerstofffreie Legierung zu erhalten.

1 ,25 Gramm Germanium (Ge).

0,7 Gramm Blei (Pb).

Die erste Metalllegierung wird hergestellt in dem das Konstrukt FeMnW auf ca. 1 .100 "Celsius erhitzt und dabei verdampft wird. Zudem wird das

Konstrukt PGePbW auf 2.000 "Celsius erhitzt.

Das Erhitzen und Verdampfen kann durch übliche Verfahren, wie physikalische Gasphasenabscheidungsverfahren verwendet werden, vorzugsweise (i) mittels Verdampfen, beispielsweise mittels thermischen Verdampfens, Elektronenstrahlverdampfen, Laserstrahlverdampfen, Lichtbogenverdampfen oder Molekularstrahlepitaxie, oder (ii) mittels Sputtern, beispielsweise ionenstrahlgestützte Deposition, oder (iii) mittels lonenplattieren oder (iv) mittels ICB-Abscheidung (ionized Cluster beam deposition, ICBD) durchgeführt werden. Vorliegend wurde ein physikalisches Gasphasenabscheidungsverfahren mittels thermischen Verdampfens genutzt. Erfindungsgemäß wird eine Kombination aus Elektronenstrahlverdampfen und Lichtbogenverdampfen eingesetzt um auf kleinem Raum eine kontinuierliche Verdampfung der ersten Metalllegierung zu ermöglichen. Beide verdampften Konstrukte werden gemischt und vorzugsweise durch Zuführung von sauerstofffreien Gasen, wie Edelgasen oder anderen nicht sauerstoffhaltigen Gasen, wie Fluor auf 650 "Celsius abgekühlt (getempert), so dass die erste Metalllegierung entsteht. Vorliegend wurde Argon verwendet. Der Erfinder hat gefunden, dass bei der Verwendung von fluorhaltigen Gasen Rückstände in den ersten Metalllegierungen verbleiben können, so dass fluorhaltige Gase eher nicht für das erfindungsgemäße Herstellverfahren verwendet werden. b) Bereitstellen eines Polymermaterials

Gemäß des vorliegenden Ausführungsbeispiels soll das Vliesmaterial verhältnismäßig fest werden, so dass das Polymer aus der Gruppe der Polyamide, beispielsweise Poly(p-phenylenterephthalamid) (PPTA) und Poly(m-phenylenisophthalamid) (PMPI) gewählt wird. Als viskositätserniedrigendes Mittel wird Ameisensäure verwendet.

Für den Fall, dass ein weicheres Viesmaterial entstehen soll, wird beispielsweise Polyethylenterephthalat (PET) verwendet, wobei dies vorzugsweise mit hochzyklischen Alkoholen (C5 bis C9), vorzugsweise C6-Alkoholen, bis zu einer geeigneten Viskosität gemischt wird.

Die geeignete Viskosität hängt von dem Verfahren der Mischung der ersten Metalllegierungsmoleküle mit dem Polymermaterial ab. c) Bereitstellen einer zweiten Metalllegierung

5 Gramm FeMnP( 0, 5)-(CuSi( 0, 4)) werden bereitgestellt, wobei die Legierung folgende Gewichtsbestandteile enthält:

1 ,9 Gramm Eisen (Fe).

1 ,9 Gramm Mangan (Mn).

0,5 Gramm Phosphor (P). Phosphor wird verwendet um vorzugsweise eine sauerstofffreie Metalllegierung zu erhalten.

0,3 Gramm Kuper (Cu).

0,4 Gramm Silicium (Si). Die zweite Metalllegierung wird hergestellt, in dem das Konstrukt FeMnP auf 1.050 "Celsius und das Konstrukt CuSi auf 1.800 "Celsius erhitzt wird. Beide verdampften Konstrukte werden gemischt und - wie unter a) beschrieben - auf 650 "Celsius abgekühlt (getempert), so dass die zweite Metalllegierung entsteht. d) Herstellen von faserkernverfüllten Polymerfasern aus der ersten Metalllegierung und dem Polymermaterial

Vorliegend wird das in Schritt b) bereitgestellte Polymermaterial in Tropfenform, beispielsweise mittels piezo-gesteuerter Tintenstrahltechnik bereitgestellt und mittels eines Druckkopfinjektors wird, bezogen auf das Volumen des Polymertropfens, bis maximal 20 Gew./Vol.%, vorzugsweise 10 bis 15 Gew./Vol.% der ersten Metalllegierungsmoleküle eingeleitet. Mit anderen Worten: 100 ml metallisiertes Polymermaterial hat einen Anteil von bis zu 5 Gramm, vorzugsweise 2,5 Gramm bis 3,75 Gramm erster Metalllegierungsmoleküle.

Die Viskosität des Polymermaterials wird gegebenenfalls so eingestellt, dass das Polymermaterial in Tropfenform bereitgestellt werden kann und in diesen Tropfen die ersten Metalllegierungsmoleküle eingebracht werden können. Der Metalldampf der ersten Metalllegierung wird vorliegend durch

Laserverdampfung am Druckkopf erzeugt. Alternativ können andere Techniken verwendet werden, beispielsweise Elektrodenverdampfung.

Der metallisierte Polymertropfen wird anschließend mittels geeigneter Techniken, vorliegend eine Kombination aus E-Spinning und Zufuhr verhältnismäßig kalten, sauerstofffreien Gases, wie vorliegend Argon, zu einer faserkernverfüllten Polymerfaser gezogen und abgekühlt. Hierbei steuert der Abstand des elektromagnetischen Feldes die Dicke der faserkernverfüllten Polymerfaser. Dabei wird der Durchmesser der faserkernverfüllten Polymerfaser 1 umso dicker, je größer der Abstand zum Magneten ist. Der mittlere Partikeldurchmesser der ersten Metalllegierungsmoleküle in der faserkernverfüllten Polymerfaser 1 liegt in der Regel bei 2 bis 4 nm (vorzugsweise bei > 80 % der Partikel), wobei die Atom-Gitter-Struktur der Legierung sich zu einer vorwiegend trigonalen Gitterstruktur ändert. Eine Erklärung hierfür kann sein, dass Oxid-Brücken an der Alpha-Flanke der Metalllegierungsmoleküle abgesprengt werden und dabei sich die trigonalen Bindungsarme etwas ausdehnen. Die erfindungsgemäßen faserkernverfüllten Polymerfasern haben vorzugsweise einen mittleren Durchmesser von < 500 μηη, weiter bevorzugt < 100 μηη, noch weiter bevorzugt < 50 μηη, noch weiter bevorzugt < 1 μηη.

Durch das zufällig unregelmäßige Ablegen und Anordnen der faserkernverfüllten Polymerfasern nach Elektrospinning und kalter Gaszufuhr wird ein Vlies hergestellt, wobei dieses Vlies eine Dicke im Zentimeterbereich hat, ungefähr im Bereich von 4 bis 8 cm. Das so erhaltene Vlies hat einen Feuchtigkeitsanteil von ca. 40 % bezogen auf das Gewicht des Vlies.

Vorliegend wird das Vlies bevorzugt verfestigt und getrocknet bevor mittels physikalischer Gasphasenabscheidung mittels plasmatischer Verdampfung die zweite Metalllegierung als Gitter auf zumindest einen Teil der Oberfläche des Vlieses beschichtet wird. Die Schichtdicke des so verfestigten Vlieses liegt bei 200 μηη und einem Gewicht von 84 g/m 2 und kann auch eine Schichtdicke von ca. 70 μηη und einem Gewicht von 48 g/m 2 einnehmen. Die zweiten Metalllegierungsmoleküle haben in dem Oberflächen-Gitter einen mittleren Partikeldurchmesser von 5 bis 7 nm. Das Oberflächen-Gitter zeichnet sich dadurch aus, dass die zweiten Metalllegierungsmoleküle isoliert von einander an der Vliesoberfläche angeordnet sind, und ein Gitter bilden, in dem sich die Elektronenwolken der einzelnen zweiten Metalllegierungsmoleküle überlagern.

Aus 100 ml Polymermaterial gegebenenfalls inklusive etwaiger viskositätserniedrigender Mittel und bis zu 5 Gramm erster Metalllegierung kann ein erfindungsgemäßes Vlies mit einer Fläche von 10 dm 2 gesponnen werden (entsprechend werden bis zu 50 Gramm erster Metalllegierung für 1 qm 2 erfindungsgemäßes Vlies benötigt).

Das erfindungsgemäß hergestellte Vlies 4 ermöglicht die Abschirmung von elektromagnetischer Strahlung, insbesondere von Terahertz-Strahlung im Bereich von 5 THz bis 300 THz , aber auch höher- und niederfrequenterer Strahlung, wobei die Ladungen durch auf der Oberfläche der Polymerfaser 1 befindliche zweite Metalllegierungs-Gitter in die Tiefe des erfindungsgemäßen Vlieses 4 gezogen werden, weil die ersten Metalllegierungsmoleküle 3 im Kern einen Ladungsunterschied zur Oberfläche aufweisen. Zudem sind die ersten Metalllegierungsmoleküle 3 im Kern K schneller in der Stromweiterleitung bzw. in der Ladungskompensation als die zweiten Metalllegierungsmoleküle 2 des Oberflächen-Gitters. Hierdurch entsteht eine lokale „Unterladung" im Mikrometermaßstab. Aufgrund der zufälligen, unregelmäßigen Anordnung der faserkernverfüllten Polymerfasern im erfindungsgemäßen Vlies heben sich die Ladungen bzw. Potentialunterschiede bezogen auf das erfindungsgemäße Vlies als Ganzes annähernd auf.

Beispiel 2: Physikalische Kennziffern des erfindungsgemäßen Vlieses aus Beispiel 1

Das erfindungsgemäße Vlies zeigt folgende Schirmdämpfungswerte:

Bei 30 THz: 80 bis 90 %

Bei 300 THz: 15 bis 20 %

Das erfindungsgemäße Vlies zeigt folgenden Widerstand in X-Y-Z Achse des erfindungsgemäßen Vlieses:

5,5 Ohm / Zoll bei 20 mA Prüfstrom

Das erfindungsgemäße Vlies zeigt folgende Beständigkeiten:

Wetter Sehr gut

Öl und Benzin gut

Alterung Sehr beständig

Lösungsmittel Mittel

Laugen Gut

Ozon Gut Das erfindungsgemäße Vlies zeigt folgende Brennbarkeiten gemäß DIN 4102 B1 :

Brennbar nach 25 Minuten bei 270 "Celsius und nach 40 Minuten bei 240 "Celsius. Brandfest nach UL 94-HB und UL 94-VO.

Das erfindungsgemäße Vlies zeigt eine hohe Permeabilität und ist entsprechend Atmungsaktiv.

Das erfindungsgemäße Vlies zeigt eine Schrumpfung und Toleranzen bis 5 % beispielsweise gemessen nach DIN 7715 Teil 3 Klasse E3. Das erfindungsgemäße Vlies ist Temperaturbeständig im Bereich von - 40

"Celsius bis + 120 "Celsius.

Das erfindungsgemäße Vlies ist Ozonbeständig und zeigt keine Risse.

Das erfindungsgemäße Vlies zeigt eine Wasseraufnahme von < 4 % bezogen auf das Gewicht des Vlieses.