AEHLE WOLFGANG (NL)
LAAN JAN METSKE V D (NL)
AEHLE WOLFGANG (NL)
WO1994002597A1 | 1994-02-03 | |||
WO1991000353A2 | 1991-01-10 | |||
WO1994018314A1 | 1994-08-18 |
FR2676456A1 | 1992-11-20 |
1. | An amylolytic enzyme derived from an σamylase of Bacillus licheniformis or an enzyme having at least 70% amino acid identity therewith which comprises one or more amino acid changes at positions selected from the group consisting of positions 104, 1 28, 1 87 and 1 88 of the amino acid sequence of the σamylase of Bacillus licheniformis. |
2. | An enzyme according to claim 1 , wherein one or more of the amino acid changes are selected from the group consisting of Asn at position 104 to Asp, Val at position 128 to Glu, Ser at position 187 to Asp, and Asn at position 188 to Asp. |
3. | An enzyme according to any one of claims 1 or 2, which comprises at least one additional amino acid change providing the enzyme with improved thermostability. |
4. | An enzyme according to claim 3, wherein at least one additional amino acid change selected from the group consisting of His at position 1 33 to Tyr, and Thr at position 149 to lie. |
5. | An enzyme according to any one of claims 1 4, which comprises at least one additional amino acid change providing the enzyme with improved oxidation stability. |
6. | An enzyme according to claim 5, wherein the additional amino acid change comprises a change of a methionine to another amino acid. |
7. | An enzyme according to claim 6, wherein the methionine is the methionine at position 1 97. |
8. | A nucleic acid molecule encoding an enzyme according to any one of the claims 1 7 or a nucleic acid complementary to said nucleic acid or a nucleic acid which hybridizes to either of said nucleic acids under moderately stringent conditions. |
9. | A vector for expression of an enzyme according to any one of the claims 1 7, comprising a nucleic acid according to claim 8, together with suitable elements for expression. |
10. | A cell for expressing an enzyme according to any one of claims 1 7, comprising a nucleic acid molecule or a vector according to claims 8 or 9, respectively. |
11. | 1 1 . A process for producing an enzyme according to any one of claims 1 7, which comprises culturing a cell according to claim 10 in a suitable medium for expression of said enzyme and after a suitable amount of time isolating the enzyme from the culture or the culture supernatant. |
12. | 1 2. Use of an enzyme according to any one of the claim 1 7 in the processing of starch, in the production of syrups, isosyrups, or ethanol, in the desizing of textiles or paper, in brewing processes, in detergents or in the beverage industry. |
13. | 1 3. A detergent composition comprising an enzyme according to any one of claims 1 7. |
The present invention relates to amylolytic enzymes, particularly a- amyiases which are derived from such enzymes as present in Bacillus licheniformis. σ-Amylases hydrolyse starch, glycogen and related poly-saccharides by cleaving internal σ-1 ,4-glucosidic bonds at random. Starch consists of a mixture of amylose ( 1 5-30% w/w) and amylopectin (70-85% w/w). Amylose consists of linear chains of σ-1 ,4-linked glucose units having a molecular weight (MW) from about 60,000 to about 800,000. Amylopectin is a branched polymer containing σ-1 ,6 branch points every 24-30 glucose units, its MW may be as high as 100 million.
Starch and especially derivatized starch or thinned starch are important for a number of technical applications, e.g. as substrate for sugar and alcohol production, as an intermediate in polymer production or as technical aid during the production of textiles and paper. Starch is also the major component of stains derived from e.g. chocolate, pap or porridge on clothes and dishes. Thinning of starch, also called liquefaction, is a first step which is necessary in most applications of starch mentioned above. This thinning step can be very conveniently carried out using σ-amylase.
The σ-amylase used thus far are isolated from a wide variety of bacterial, fungal, plant and animal sources. The industrially most commonly used amyiases are those isolated from Bacilli.
A known drawback of enzymatic reactions is that enzymes are active over a quite limited range of conditions such as pH, ionic strength and especially temperature.
The σ-amylase from B.licheniformis is one of the most stable ones in that last respect known so far and is therefore used in applications where the
thermostability of the enzyme is crucial. However, the stability of this enzyme depends on the calcium concentration in the application and the optimum activity is observed at neutral pH. A more thermostable variant of the B.licheniformis enzyme, which has the same specific activity as the wild type enzyme, has been described in PCT/EP90/01042.
It has been shown in PCT/DK93/00230 that it is possible to improve the oxidation stability of B.licheniformis σ-amylase by replacing methionines by one of the other 1 9 possible amino acids. In the specified test under the given conditions one of these mutants showed a slightly higher activity level than the wild type enzyme.
Though it has been shown that it is possible to improve the stability of amylolytic enzymes, in particular σ-amylase, for some detrimental conditions, there is as yet no σ-amylase available which has the same or better activity under suboptimal conditions than the wild type enzyme at optimum conditions. Suboptimal conditions are herein defined as conditions which use a pH other than neutral, e.g. lower than 6.5 or higher than 7.5, and/or conditions which use a lower than optimal Ca 2+ concentration, i.e. lower than 50 ppm.
Because in most industrial applications the conditions are at best suboptimal, the problem of diminished activity could be solved by providing an enzyme which, at optimum conditions, has a higher activity than the wild type enzyme. It would then still have sufficient activity at sub-optimal conditions. The invention provides exactly such enzymes.
The invention provides an amylolytic enzyme derived from the amylolytic enzyme of Bacillus licheniformis or an enzyme having at least 70%, or preferably at least 90%, amino acid identity therewith which comprises at least one change of an amino acid in its sequence to another amino acid which provides the enzyme with a higher activity than the wild type enzyme. The activity of an amylolytic enzyme is herein defined as the specific activity as determined in Example 2. The higher activity of the mutant enzymes is apparent under optimal conditions but also under
suboptimal conditions where a pH value of less than pH 6.5 or higher than pH 7.5 and/or a Ca 2 + concentration of less then 50 ppm is used. In addition, the invention provides such amylolytic enzymes with a higher thermostability than the wild-type enzyme, wherein the thermostability is defined as determined in Example 3. For some of the mutant enzymes, the improved thermostability is most pronounced under suboptimal conditions regarding the Ca 2+ concentration.
The amino acid sequence of the B.licheniformis σ-amylase is shown in Figure 1 . The numbers indicate the position of an amino acid in the sequence and will be used as an indication for the amino acid position in the description of the amino acid changes. Regarding the corresponding amino acid changes in enzymes having at least 70%, or preferably at least 90%, amino acid identity with the B.licheniformis σ-amylase, the skilled person will understand that the B.licheniformis σ-amylase amino acid positions used herein refer to the corresponding conserved amino acids in the amino acid sequence of these related enzymes and not necessarily to their amino acid positions in those enzymes. It is also to be understood that these corresponding conserved amino acids are not necessarily identical to those of the B.licheniformis σ-amylase. In a site directed mutagenesis study we identified mutants on the amino acid sequence which influence the activity level of the enzyme. Among others, we made the following mutations: N104D, S187D, V1 28E and N188D, which are preferred mutant enzymes according to the invention. Some of these mutants showed a higher overall activity than the wild type enzyme. Alternatively, some of these mutations showed improved thermostability.
Although site directed mutations in the DNA encoding the amylolytic enzymes are a preferred way of arriving at the enzymes according to the invention, the man skilled in the art will be aware that there are different ways of obtaining the enzymes according to the invention and they are therefore part of this invention.
Due to the fact that until now only 3D-structure of non bacterial σ- amylases are available (e.g. L. Brady et al. Acta Cryst. B47 (1 991 ), 527- 535, H.J. Swift et al. Acta Cryst. B4Z (1 991 ), 535-544, M. Quian et al. J. Mol. Biol. 231 (1 993), 785-799), it is hard to predict for the σ-amylase from B.licheniformis whether a certain amino acid at a certain position can have any influence on the activity level of the enzyme. One normally needs a 3D- structure for making such predictions, because the spatial orientation of the amino acids determines their role in the catalytic process. Without a 3D- structure of the investigated enzyme one has to relate the results of site directed mutagenesis experiments on putative active site residues on related enzymes (see e.g. L. Holm et al. Protein Engineering 3 (1 990) 1 81 -1 91 , M. Vihinen et al. J. Biochem. 107 (1 990) 267-272, T. Nagashima et al. Biosci. Biotech. Biochem. 56 (1 992) 207-210, K. Takase Eur. J. Biochem. 21 1 ( 1 993) 899-902, M. Seigaard et al. J. Biol. Chem. 268 (1 993) 22480- 22484) via a multiple sequence alignment (see e.g. L. Holm et al. Protein Engineering 3 (1990) 181 -1 91 ) to the known 3D-structures. This allows the identification of the active site residues and allows to identify residues which are conserved in all similar enzymes. One normally assumes that conserved residues are crucial for the function or structure of the enzyme. It is therefore to be expected that mutations in those sites will influence the activity of the enzyme. By making mutations in said active sites it would therefore be expected that some mutations would result in higher activity. However, in B.licheniformis none of the mutated residues at position 104, 128, 187 and 188 are active site residues. Only position 104 is located at the end of a conserved region and could maybe be important for the activity, but also in that particular case a correct prediction of the effect of a point mutation is nearly impossible.
Another important aspect of the invention is the finding that in a number of cases the higher active mutants were slightly less thermostable than the wild type enzyme, except at least the mutations V128E and N188D, which are more stable, or at least more thermostable, than the wild type enzyme.
We therefore combined them with some earlier identified mutations which are known to stabilize the wild type enzyme. These are the mutations H133Y and T149I. These extra mutations indeed stabilized the more active mutants, but moreover they surprisingly showed an even higher activity level than the higher active mutants themselves.
In a further embodiment of the invention, the mutants of the invention are combined with mutations which improve the oxidation stability of the amylolytic enzyme. Such mutant enzymes may comprise mutations known in the art to improve the oxidation stability of amylolytic enzymes, such as e.g. mutations which replace the methionine at position 197 (see e.g. PCT/DK93/00230).
As stated before, a suitable way of arriving at the enzymes according to the invention is site directed mutagenesis of a nucleic acid, especially a DNA molecule, which comprises the coding sequence for the enzymes. The mutated nucleic acid molecules themselves are also part of the invention representing novel and inventive intermediates in producing the enzymes. Also by providing these nucleic acids in a suitable vector format (whereby a vector is meant to include any suitable vehicle for expression in a cell), it is possible to express the nucleic acid in a vast array of different hosts, including homologous and heterologous hosts, such as bacteria and/or other prokaryotes. yeasts, fungi, plant cells, insect cells or mammalian cells and or other eukaryotic host cells. These host cells which can be cultured to produce the enzymes are also part of the invention.
These cells can be cultured according to known techniques, which are all adapted to the particular kind of cell to be propagated. The isolation of the enzymes according to the invention from the culture or the culture supernatant is also known in the art.
A number of mutants will be more active (i.e. higher specific activity) and/or more stable (with respect to oxidation- and/or thermo-stability) even when only parts thereof are used. These fragments are of course within the
scope of this invention. It will also be possible to design mutations based upon this invention which have hardly any influence on the activity or stability, such derivatives are also a part of this invention. Some reactive residues which are present in the amino acid sequences according to the invention may also be chemically modified without having significant influence on the activity of such an enzyme. These derivatives are also a part of the invention.
The same may be stated for the nucleic acids according to the invention, which can be modified to a certain extent without influencing the important properties of the resulting enzyme. Therefore nucleic acid sequences which share at least 70% identity, or more preferably at least 90 % identity, with a coding sequence for an enzyme according to the invention or which are complementary to such a sequence are part of this invention. This is also true because based on this invention it will be possible to arrive at similar improvements in activity and/or stability in closely related enzymes such as amylolytic enzymes from B.stearothermophilus and B.amyloliquefaciens.
The novel amylolytic enzymes according to the invention may be used in all known applications of the amylolytic enzymes in the state of the art. These applications include the use in the processing of starch, e.g. for polymer production wherein starch needs to be "thinned", the use in detergent compositions to break down stains which comprise starch or starch derivatives, the use in production of sugar or alcohol, or the use in the processing of textile or paper, in particular, the use for desizing of textile or paper, respectively. Detergent compositions comprising the novel amylolytic enzymes are also a part of the invention. These compositions may be designed for dishwashing (either by hand or automatically), for household or industrial cleaning purposes, or for cleaning textiles. These compositions may comprise the usual additives and/or ingredients such as builders, surfactants, bleaching agents and the like.
Another preferred embodiment of the invention is the use of the enzymes in producing syrup or isosyrup from starch. Syrup and isosyrup are produced using an σ-amylase according to the invention which catalyzes the liquefaction (or thinning) of the starch resulting in dextrins having an average polymerization degree of about 7-10, usually followed by saccharification of the liquefied starch resulting in a syrup with a high glucose content. Optionally the syrup can be isomerized to a dextrose/fructose mixture known as isosyrup.
The invention will now be explained in more detail through the following examples, which are intended for illustration purposes only.
Examples
Short description of the figures:
Figure 1 gives the amino acid sequence of the σ-amylase of B.licheniformis. The numbers relate to the positions of the amino acids in the sequence. They are used to identify the mutations, which are given in one letter amino acid code in the text of the application. The nomenclature used for the mutations is as follows S1 87D means the replacement of the serine (Ser) at position 187 against an aspartic acid (Asp). Multiple mutants are designated as follows H133Y/T149I means the replacement of histidine (His) at position 133 by tyrosine (Tyr) plus the replacement of threonine (Thr) at position 149 by isoleucine (lie).
Figure 2 gives a map of plasmid pBHATLAT. σ-amylase: B.licheniformis a- amylase encoding gene. oripUB: origin of replication of plasmid pUB1 10. reppUB: replication protein of plasmid pUB1 1 0. neo: neomycin resistance gene, bleo: bleomycin resistance gene. pHpall: Hpall promoter, orifl: origin of replication of phage fl. ori322: origin of replication of plasmid pBR322. bla: β-lactamase (ampicillin resistance) gene, cat*: inactive chloramphenicol acetyl transferase (chloramphenicol resistance) gene. pTac: Tac promoter.
Example 1
Production and purification of wild type and mutant σ-amylases
a) Genetic procedures: All molecular genetic techniques used for E.coli (plasmid construction, transformation, plasmid isolation, etc.) were performed according to
Maniatis et aj. (Molecular Cloning, A Laboratory Manual, Cold Spring Harbor, 1 989). Transformation of B.subtilis and plasmid isolation were performed according to Harwood et aL (Molecular Biological Methods for Bacillus, Chichester, 1 990). E.coli strains containing pBHATLAT or its derivatives were grown in the presence of 100 mg/l ampicillin and 2 mg/l neomycin. Bacillus subtilis strains harboring pBHLAT 9-derived plasmids were cultivated in medium containing 20 mg/l neomycin.
Plasmid pBHA/C1 is a Bacillus/E.coli shuttle vector derived from the twin vector system pMa/c5-8 of Stanssens et aL (Nucl. Acids Res. V7_ ( 1 989): 4441 -4454). A complete description of pBHAI is given in the European Patent Application EP 414297.
The B.licheniformis σ-amylase gene used throughout this study was obtained from plasmid pMcTLiaδ (WO91 /00353) as an EcoRI-HinPIII restriction fragment still including the inducible Tac promoter. This fragment was inserted in EcoRI-HinPIII digested pBHAI to yield plasmid pBHATLAT (Fig. 2). This plasmid is used for the expression of σ-amylase in E.coli through induction of the Tac promoter by 0.2 mM IPTG. Expression of mutant σ-amylase was obtained by replacing the wild type σ-amylase gene fragment by the corresponding mutant gene fragment. For expression in Bacillus, plasmid pBHATLAT was digested with BamHI and subsequent relegation thus placing the σ-amylase gene under the control of the constitutive Hpall promoter. Wild type and mutant σ-amylase enzyme was isolated from the Bacillus culture supernatant.
Site directed mutagenesis of the σ-amylase gene was performed using the PCR overlap extension technique described by Ho et a (Gene 77 (1 989): 51 -59).
b) Purification of the σ-amylase wild type and mutants:
One aliquot of the culture supernatant is added to five aliquots water of 85°C and than maintained at 75°C for 15 minutes. Protease activity is removed in this step. The enzyme is then isolated via ion exchange
chromatography at pH 5.5 on a S-Sepharose FF column. The buffers used are 20 mM sodium acetate buffer with 1 mM CaCI 2 followed, with a gradient, by 20 mM sodium acetate buffer with 1 mM CaCI 2 and 0.5 M KCI. The pooled σ-amylase fractions are concentrated by ultrafiltration via a 10 kD filter. By washing the concentrate with 1 .6 mM EDTA in 50 mM MOPS, pH 7.5 the enzyme can be demetallized. Finally the concentrate is washed twice with 50 mM MOPS buffer pH 7.5.
Example 2 Determination of activity and enzyme concentration
The enzyme concentration is determined by measuring the optical density at 280 nm. The extinction coefficient of wild type enzyme is 1 35100 M "1 cm "1 . The mutants with the mutation H1 33Y have an extinction coefficient of 1 36430 M "1 cm "1 . The molecular weight is 55 kD.
The σ-Amylase activity is determined by means of the substrate para-
Nitrophenyl-maltoheptaosoide (4NP-DP7). The reagent of Abbott (code
LN5A23-22) is used. Besides 4NP-DP7 there is also σ-glucosidase and glucoamylase in the substrate. σ-Amylase activity is measured by the ultimate release of the chromophore p-nitrophenol (pNP).
The terminal glucose unit of the substrate is blocked with a benzylidene group. This terminal blocking inhibits cleavage by σ-glucosidase until the initial bonds can be cleaved by σ-amylase followed by glucoamylase. The increase of the OD405 per minute is directly proportional to the σ-amylase activity.
The molar extinction coefficient of pNP at 405 nm and pH 6.8 is 7600 M " cm "1 . 1 Unit is 1 //mol converted substrate per minute. With the law "Lambert- Beer" the following relationship is established:
Acti vi ty
where t = time [minutes], I = lightpath [cm], t- 405 = molar extinction coefficient at 405nm [M 1 * cm "1 ], OD405 = extinction at 405 nm, 10 6 = calculation factor from mol/l → μmol/l
Activity assay:
- Add 0.8 ml reagent solution (R1 ) to a bottle R2 (Abbott).
- Heat the temperature controlled cuvette holder of the spectrophotometer to 37°C.
- Heat the activity buffer to 37°C (50 mM MOPS + 50 mM NaCI + 2 mM CaCI 2 , pH 6.8).
- Add to the cuvette in the cuvette holder: 500 μ\ reagent x μ\ sample
500 - x μ\ activity buffer - Measure the increase in extinction at 405 nm during 2 minutes.
- Calculate the activity by using the above equation.
Table 1
Specific activities of wild type (WT) and mutant σ-amylases
Enzyme Specific Activity [Units/mg]
wild type 60
H133Y 52
H133Y/T1491 60
N104D 30
N104D/H133Y 46
N104D/H1 33Y/T149I 52
V128E/H133Y 62
V128E/H133Y/T149I 54
S1 87D 1 10
H133Y/S187D 155
H133Y T149I/S187D 1 50
H1 33Y/N188D 56
H1 33Y/T149I/N188D 52
V128E/H1 33Y/S187D 142
Example 3 Determination of thermostability
The enzyme is incubated in an oil bath at 93 °C in closed Eppendorff micro test tubes with safety lid lock (order-No. 0030 120.086). The Calcium concentration is varied whereas the ionic strength is kept constant. The buffer has at room temperature pH 7.5 which changes at the incubation temperature
to pH 7.0. A solution of ± 0,25 mg/ml protein in 50 mM MOPS pH 7.5 is obtained by mixing the right amount of enzyme in 50mM MOPS pH 7.5 with X mM CaCI 2 + X mM K 2 SO 4 + 100 mM MOPS pH 7.5 + water. The final buffer concentration must be 50 mM and the final volume should be 500 to 1000 //I (the best is 1000 μ\). The salt composition is shown on the following table:
mM CaCI 2 mM K 2 S0 4
0 15
0.25 14.75
0.5 14.5
0.75 14.25
1 14
1 .25 1 3.75
1 .5 13.5
Example for 0.5 mM CaCI 2 :
250.0 μ\ 100 mM MOPS pH 7.5 88.0 μ\ enzyme (1 .42 mg/ml) 50.0 /I 5 mM CaCI 2 72.5 //I 100 mM K 2 SO 4
39.5 υ\ demi water 500.0 μ\ total volume
The enzyme solutions are incubated in the sealed tubes at 93 °C. 50 μ\ samples are taken after 0.5, 10, 20, 30, 60, 90 and 1 20 minutes. The residual activity is determined with the Abbott Quickstart Amyiase essay (see above). The half life time is calculated by using the fitting program GraFit (Leatherbarrow, R.J. 1990 GraFit version 2.0, Erithacus Software Ltd., Staines, UK).
Table 2
Half life of the WT and mutant σ-amylases at different Ca 2+ concentrations
Ca 2+ 0 0.25 0.5 0.75 1 1.25 1.5
Enzyme Half life [min]
wild type 4.1 9.2 15.5 18.1 22.9 30.3 29.5
H133Y nd 12.1 24.2 33.3 53.3 nd 77.0
H133Y/T149I 1 .1 9.2 21 .4 32.8 40.2 53.6 53.6
N104D nd nd nd nd 7.7 nd nd
N104D/H133Y nd 8.4 1 1 .6 nd 14.4 nd 1 5.4
N104D/H133Y/T149I nd 10.2 13.4 17.5 19.1 23.1 20.3
V128E/H133Y nd 15.6 33.9 nd 53.3 65.3 77.8
V128E/H133Y/T149I nd 19.7 35.2 nd 54.7 nd 76.3
S187D nd 4.0 6.9 9.3 12.1 nd 1 5.1
H133Y/S1 87D nd 1 5.2 19.7 27.0 29.8 40.8 47.2
H1 33Y/T149I/S187D 1 .4 6.0 12.7 17.6 20.0 nd nd
H133Y/N188D nd 18.2 36.2 nd 70.4 76.8 84.9
H133Y/T149I/N188D nd 1 5.8 28.8 nd 62.0 nd 73.6
V128E/H1 33Y/S187D 1 .9 7.2 16.9 nd 32.1 nd 36.2 nd = not determined
Example 4 Starch liouefaction using a mutant σ-amylase of the invention
The mutant enzyme was proven to be effective in starch liquefaction tests using industrially relevant conditions. It was tested under identical conditions in comparison with the wild type enzyme.
A 34.3 % dry solids starch slurry was liquefied using a pilot plant jet cooking apparatus, Hydroheater Model # M 103-MS, at a flow rate of 2.8 I per minute. A 5 minutes retention time at 105 °C of primary liquefaction was followed by a 93 °C 1 20 min secondary liquefaction. The comparison tests vis a vis the wild type enzyme were performed based upon equal Modified Wohlgemuth Units (MWU) 1 68 units/gram of starch. The specific activity is for wild type 1 8,447 MWU/mg and for H133Y/S187D 48,000 MWU/mg respectively.
The enzymes were tested under two sets of conditions. The first experiment used standard industrial conditions (pH 6.4, 44 ppm Calcium), while the second experiment employed stress conditions (pH 5.8, 8 ppm Calcium).
The decrease in viscosity during liquefaction was measured with a #3 Zahn cup, while Dextrose Equivalent (DE) development was measured using a reducing sugar assay. The results are summarized in the following tables:
Table 3.
Experiment 1 : pH 6.4, 44 ppm Calcium
Wild type H1 33Y/S187D
time [min] DE Viscosity DE Viscosity
0 25 24
20 2.7 2.4
40 4.0 3.5
60 5.4 14 4.7 14
80 6.5 6.0
100 7.8 7.5
120 9.2 12 8.8 12
Table 4.
Experiment 2: pH 5.8, 8 ppm Calcium
Wild type H133Y/S187D
time [min] DE Viscosity DE Viscosity
0 36 38
20 0.3 1 .1
40 1 .1 2.0
60 2.0 17 2.9 15
80 2.5 3.5
100 3.2 4.2
120 3.9 13 4.6 13
Example 5 Textile desizing using a mutant σ-amylase of the invention
Cretonne cotton patches (30 * 30 cm, J. Hacot et Cie., 48 Rue Mermoz, La Gorgue, France) are impregnated with 12 % soluble starch (weight/weight) as sizing agent. The sized cotton is given in a beaker with one litre tap water and 0.5 ml/l wetting agent at 25 °C and pH 7.0. σ-Amylase is added in a concentration as shown in the table. The mixture is agitated and heated with a gradient of 2 °C per minute within 30 minutes to a final temperature of 85 °C. After 10 minutes agitating at the final temperature the fabric is 2 minutes rinsed with cold water and dried.
The residual starch is determined with a reflectrometric method. The residual starch on the fibres is coloured with a solution made from 0.1 5 g iodine, 0.5 g potassium iodine and 10 ml 2 N H 2 SO 4 in a volume of 1 I water. The dried cotton patch is wetted with alcohol and soaked in the colouring
solution for 1 5 minutes. The reflectance of the coloured patch is measured at 700 nm with a Universal Messeinheit UME 1 lll/LR 90 reflectometer (Dr. Bruno Lange GmbH, Berlin, Germany). The amount of residual starch can be calculated with a calibration curve recorded with known amounts of starch on the fabric.
Table 5.
A comparison of the performance of the wild type and a mutant σ-amylase in the desizing of textile.
wild type H133Y/S187D enzyme remaining starch on enzyme concentration remaining starch on concentration [μmol/l] fabrics [mg/g] [/.mol/l] fabric [mg/g]
0 3.92 0 4.05
9.3 3.35 2.5 3.35
18.5 2.76 4.9 2.45
37.2 2.25 7.6 2.02
46.5 1 .85 9.1 1 .72
70 1.42 12.5 1 .37
93 0.9 18.9 1.12
25.3 0.68
37.8 0.5
Example 6
A comparison of the wash performance of the wild type and a mutant σ-amylase
The wash performance of the wild type vis a vis the H1 33Y/S1 87D mutant was tested in a full scale wash experiment using the amylase sensitive cotton test fabric EMPA 1 1 2 as monitor. In all tests the σ-amylase dosage was 1 .3 mg/l suds. A blank was taken as reference. Washing powder base was the IEC reference detergent A, containing bleach and protease. All tests were carried out in quintuple. The fabrics were washed in a Miele, type W701 washing machine at 40 °C and a total load of 4 kg fabrics. The soil removal was determined by measuring the white light reflection with a Colorgard Model 05 (Gardner Lab., USA) reflectometer. Table summarizes the results. It shows that the mutant performs better than wild type enzyme at the same dosage.
Table 6.
A comparison of the wash performance of the wild type and a mutant a- amylase
Enzyme none wild type H133Y/S187D
Soil removal 31.7 % 40.2 % 42.1 %
SEQUENCE LISTING
(1) GENERAL INFORMATION:
(i) APPLICANT:
(A) NAME: Gist-brocades B.V.
(B) STREET: Wateringseweg 1
(C) CITY: Delft (E) COUNTRY: The Netherlands
(F) POSTAL CODE (ZIP) : 2611 XT
(ii) TITLE OF INVENTION: Alpha-amylase mutants
(iii) NUMBER OF SEQUENCES: 2
(iv) COMPUTER READABLE FORM:
(A) MEDIUM TYPE: Floppy disk
(B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS
(D) SOFTWARE: Patentin Release #1.0, Version #1.25 (EPO)
(2) INFORMATION FOR SEQ ID NO: 1:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1539 base pairs (B) TYPE: nucleic acid
(C) STRANDEDNESS : double
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)
(iii) HYPOTHETICAL: NO
(iii) ANTI-SENSE: NO
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Bacillus licheniformis
(B) STRAIN: CBS407.83
(ix) FEATURE: (A) NAME/KEY: CDS
(B) LOCATION: 1..1539
(ix) FEATURE:
(A) NAME/KEY: sig_jpeptide (B) LOCATION: 1..87
(ix) FEATURE:
(A) NAME/KEY: mat_peptide
(B) LOCATION: 88..1539 (D) OTHER INFORMATION: /product-- "alpha-amylase"
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:
ATG AAA CAA CAA AAA CGG CTT TAC GCC CGA TTG CTG ACG CTG TTA TTT 48 Met Lys Gin Gin Lys Arg Leu Tyr Ala Arg Leu Leu Thr Leu Leu Phe -29 -25 -20 -15
GCG CTC ATC TTC TTG CTG CCT CAT TCT GCA GCA GCG GCG GCA AAT CTT 96 Ala Leu lie Phe Leu Leu Pro His Ser Ala Ala Ala Ala Ala Asn Leu -10 -5 1
AAT GGG ACG CTG ATG CAG TAT TTT GAA TGG TAC ATG CCC AAT GAC GGC 144
Asn Gly Thr Leu Met Gin Tyr Phe Glu Trp Tyr Met Pro Asn Asp Gly 5 10 15
CAA CAT TGG AAG CGT TTG CAA AAC GAC TCG GCA TAT TTG GCT GAA CAC 192 Gin His Trp Lys Arg Leu Gin Asn Asp Ser Ala Tyr Leu Ala Glu His 20 25 30 35
GGT ATT ACT GCC GTC TGG ATT CCC CCG GCA TAT AAG GGA ACT AGT CAA 240 Gly He Thr Ala Val Trp He Pro Pro Ala Tyr Lys Gly Thr Ser Gin 40 45 50
GCG GAT GTG GGC TAC GGT GCT TAC GAC CTT TAT GAT TTA GGG GAG TTT 288
Ala Asp Val Gly Tyr Gly Ala Tyr Asp Leu Tyr Asp Leu Gly Glu Phe 55 60 65
CAT CAA AAA GGG ACG GTT CGG ACA AAG TAC GGC ACA AAA GGA GAG CTG 336
His Gin Lys Gly Thr Val Arg Thr Lys Tyr Gly Thr Lys Gly Glu Leu 70 75 80
CAA TCT GCG ATC AAA AGT CTT CAT TCC CGC GAC ATT AAC GTT TAC GGG 384 Gin Ser Ala He Lys Ser Leu His Ser Arg Asp He Asn Val Tyr Gly 85 90 95
GAT GTG GTC ATC AAC CAC AAA GGC GGC GCT GAT GCG ACC GAA GAT GTA 432 Asp Val Val He Asn His Lys Gly Gly Ala Asp Ala Thr Glu Asp Val 100 105 110 115
ACC GCG GTT GAA GTC GAT CCC GCT GAC CGC AAC CGC GTA ATT TCA GGA 480 Thr Ala Val Glu Val Asp Pro Ala Asp Arg Asn Arg Val He Ser Gly 120 125 130
GAA CAC CTA ATT AAA GCC TGG ACA CAT TTT CAT TTT CCG GGG CGC GGC 528 Glu His Leu He Lys Ala Trp Thr His Phe His Phe Pro Gly Arg Gly 135 140 145
AGC ACA TAC AGC GAT TTT AAA TGG CAT TGG TAC CAT TTT GAC GGA ACC 576 Ser Thr Tyr Ser Asp Phe Lys Trp His Trp Tyr His Phe Asp Gly Thr 150 155 160
GAT TGG GAC GAG TCC CGA AAG CTG AAC CGC ATC TAT AAG TTT CAA GGA 624 Asp Trp Asp Glu Ser Arg Lys Leu Asn Arg He Tyr Lys Phe Gin Gly 165 170 175
AAG GCT TGG GAT TGG GAA GTT TCC AAT GAA AAC GGC AAC TAT GAT TAT 672 Lys Ala Trp Asp Trp Glu Val Ser Asn Glu Asn Gly Asn Tyr Asp Tyr 180 185 190 195
TTG ATG TAT GCC GAC ATC GAT TAT GAC CAT CCT GAT GTC GCA GCA GAA 720 Leu Met Tyr Ala Asp He Asp Tyr Asp His Pro Asp Val Ala Ala Glu 200 205 210
ATT AAG AGA TGG GGC ACT TGG TAT GCC AAT GAA CTG CAA TTG GAC GGT 768 He Lys Arg Trp Gly Thr Trp Tyr Ala Asn Glu Leu Gin Leu Asp Gly 215 220 225
TTC CGT CTT GAT GCT GTC AAA CAC ATT AAA TTT TCT TTT TTG CGG GAT 816 Phe Arg Leu Asp Ala Val Lys His He Lys Phe Ser Phe Leu Arg Asp 230 235 240
TGG GTT AAT CAT GTC AGG GAA AAA ACG GGG AAG GAA ATG TTT ACG GTA 864 Trp Val Asn His Val Arg Glu Lys Thr Gly Lys Glu Met Phe Thr Val 245 250 255
GCT GAA TAT TGG CAG AAT GAC TTG GGC GCC CTG GAA AAC TAT TTG AAC 912 Ala Glu Tyr Trp Gin Asn Asp Leu Gly Ala Leu Glu Asn Tyr Leu Asn 260 265 270 275
AAA ACA AAT TTT AAT CAT TCA GTG TTT GAC GTG CCG CTT CAT TAT CAG 960 Lys Thr Asn Phe Asn His Ser Val Phe Asp Val Pro Leu His Tyr Gin 280 ' 285 290
TTC CAT GCT GCA TCG ACA CAG GGA GGC GGC TAT GAT ATG AGG AAA TTG 1008 Phe His Ala Ala Ser Thr Gin Gly Gly Gly Tyr Asp Met Arg Lys Leu 295 300 305
CTG AAC GGT ACG GTC GTT TCC AAG CAT CCG TTG AAA TCG GTT ACA TTT 1056 Leu Asn Gly Thr Val Val Ser Lys His Pro Leu Lys Ser Val Thr Phe 310 315 320
GTC GAT AAC CAT GAT ACA CAG CCG GGG CAA TCG CTT GAG TCG ACT GTC 1104 Val Asp Asn His Asp Thr Gin Pro Gly Gin Ser Leu Glu Ser Thr Val 325 330 335
CAA ACA TGG TTT AAG CCG CTT GCT TAC GCT TTT ATT CTC ACA AGG GAA 1152 Gin Thr Trp Phe Lys Pro Leu Ala Tyr Ala Phe He Leu Thr Arg Glu 340 345 350 355
TCT GGA TAC CCT CAG GTT TTC TAC GGG GAT ATG TAC GGG ACG AAA GGA 1200 Ser Gly Tyr Pro Gin Val Phe Tyr Gly Asp Met Tyr Gly Thr Lys Gly 360 365 370
GAC TCC CAG CGC GAA ATT CCT GCC TTG AAA CAC AAA ATT GAA CCG ATC 1248 Asp Ser Gin Arg Glu He Pro Ala Leu Lys His Lys He Glu Pro He 375 380 385
TTA AAA GCG AGA AAA CAG TAT GCG TAC GGA GCA CAG CAT GAT TAT TTC 1296 Leu Lys Ala Arg Lys Gin Tyr Ala Tyr Gly Ala Gin His Asp Tyr Phe 390 395 400
GAC CAC CAT GAC ATT GTC GGC TGG ACA AGG GAA GGC GAC AGC TCG GTT 1344 Asp His His Asp He Val Gly Trp Thr Arg Glu Gly Asp Ser Ser Val 405 410 415
GCA AAT TCA GGT TTG GCG GCA TTA ATA ACA GAC GGA CCC GGT GGG GCA 1392 Ala Asn Ser Gly Leu Ala Ala Leu He Thr Asp Gly Pro Gly Gly Ala 420 425 430 435
AAG CGA ATG TAT GTC GGC CGG CAA AAC GCC GGT GAG ACA TGG CAT GAC 1440 Lys Arg Met Tyr Val Gly Arg Gin Asn Ala Gly Glu Thr Trp His Asp 440 445 450
ATT ACC GGA AAC CGT TCG GAG CCG GTT GTC ATC AAT TCG GAA GGC TGG 1488 He Thr Gly Asn Arg Ser Glu Pro Val Val He Asn Ser Glu Gly Trp 455 460 465
GGA GAG TTT CAC GTA AAC GGC GGG TCG GTT TCA ATT TAT GTT CAA AGA 1536 Gly Glu Phe His Val Asn Gly Gly Ser Val Ser He Tyr Val Gin Arg • 470 475 480
TAG 1539
(2) INFORMATION FOR SEQ ID NO: 2:
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 512 amino acids
(B) TYPE: amino acid (D) TOPOLOGY: linear
(ii) MOLECULE TYPE: protein
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:
Met Lys Gin Gin Lys Arg Leu Tyr Ala Arg Leu Leu Thr Leu Leu Phe -29 -25 -20 -15
Ala Leu He Phe Leu Leu Pro His Ser Ala Ala Ala Ala Ala Asn Leu -10 -5 1
Asn Gly Thr Leu Met Gin Tyr Phe Glu Trp Tyr Met Pro Asn Asp Gly 5 10 15
Gin His Trp Lys Arg Leu Gin Asn Asp Ser Ala Tyr Leu Ala Glu His 20 25 30 35
Gly He Thr Ala Val Trp He Pro Pro Ala Tyr Lys Gly Thr Ser Gin 40 45 50
Ala Asp Val Gly Tyr Gly Ala Tyr Asp Leu Tyr Asp Leu Gly Glu Phe 55 60 65
His Gin Lys Gly Thr Val Arg Thr Lys Tyr Gly Thr Lys Gly Glu Leu 70 75 80
Gin Ser Ala He Lys Ser Leu His Ser Arg Asp He Asn Val Tyr Gly 85 90 95
Asp Val Val He Asn His Lys Gly Gly Ala Asp Ala Thr Glu Asp Val 100 105 110 115
Thr Ala Val Glu Val Asp Pro Ala Asp Arg Asn Arg Val He Ser Gly 120 125 130
Glu His Leu He Lys Ala Trp Thr His Phe His Phe Pro Gly Arg Gly 135 140 145
Ser Thr Tyr Ser Asp Phe Lys Trp His Trp Tyr His Phe Asp Gly Thr
150 155 160
Asp Trp Asp Glu Ser Arg Lys Leu Asn Arg He Tyr Lys Phe Gin Gly 165 170 175
Lys Ala Trp Asp Trp Glu Val Ser Asn Glu Asn Gly Asn Tyr Asp Tyr 180 185 190 195
Leu Met Tyr Ala Asp He Asp Tyr Asp His Pro Asp Val Ala Ala Glu 200 205 210
He Lys Arg Trp Gly Thr Trp Tyr Ala Asn Glu Leu Gin Leu Asp Gly 215 220 225
Phe Arg Leu Asp Ala Val Lys His He Lys Phe Ser Phe Leu Arg Asp 230 235 240
Trp Val Asn His Val Arg Glu Lys Thr Gly Lys Glu Met Phe Thr Val 245 250 255
Ala Glu Tyr Trp Gin Asn Asp Leu Gly Ala Leu Glu Asn Tyr Leu Asn 260 265 270 275
Lys Thr Asn Phe Asn His Ser Val Phe Asp Val Pro Leu His Tyr Gin 280 285 290
Phe His Ala Ala Ser Thr Gin Gly Gly Gly Tyr Asp Met Arg Lys Leu 295 300 305
Leu Asn Gly Thr Val Val Ser Lys His Pro Leu Lys Ser Val Thr Phe 310 315 320
Val Asp Asn His Asp Thr Gin Pro Gly Gin Ser Leu Glu Ser Thr Val 325 330 335
Gin Thr Trp Phe Lys Pro Leu Ala Tyr Ala Phe He Leu Thr Arg Glu 340 345 350 355
Ser Gly Tyr Pro Gin Val Phe Tyr Gly Asp Met Tyr Gly Thr Lys Gly 360 365 370
Asp Ser Gin Arg Glu He Pro Ala Leu Lys His Lys He Glu Pro He 375 380 385
Leu Lys Ala Arg Lys Gin Tyr Ala Tyr Gly Ala Gin His Asp Tyr Phe 390 395 400
Asp His His Asp He Val Gly Trp Thr Arg Glu Gly Asp Ser Ser Val 405 410 415
Ala Asn Ser Gly Leu Ala Ala Leu He Thr Asp Gly Pro Gly Gly Ala 420 425 430 435
Lys Arg Met Tyr Val Gly Arg Gin Asn Ala Gly Glu Thr Trp His Asp
440 445 450
He Thr Gly Asn Arg Ser Glu Pro Val Val He Asn Ser Glu Gly Trp 455 460 465
Gly Glu Phe His Val Asn Gly Gly Ser Val Ser He Tyr Val Gin Arg 470 475 480
Next Patent: PLANT GENES AFFECTING GIBBERELLIC ACID BIOSYNTHESIS