Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
OPTICAL ZOOMING SYSTEM FOR FUSION SPLICERS
Document Type and Number:
WIPO Patent Application WO/2014/121266
Kind Code:
A1
Abstract:
The invention relates to an optical zooming system for use on fusion splicers. The system may include a lens, camera, and a zooming mechanism, which allows the camera and the lens to move relative to each other. The zooming mechanism may be set to a "zoom out" configuration for aligning the cores of fibers. The zooming mechanism may also be set to a "zoom in" configuration for adjusting fibers with a large diameter.

Inventors:
MIZUSHIMA TOSHIROU (US)
SUGAWARA HIROSHI (US)
Application Number:
PCT/US2014/014652
Publication Date:
August 07, 2014
Filing Date:
February 04, 2014
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
MIZUSHIMA TOSHIROU (US)
International Classes:
G02B6/255
Foreign References:
US20030231834A12003-12-18
US20040223213A12004-11-11
US20090214166A12009-08-27
US20040228601A12004-11-18
US20050047725A12005-03-03
Other References:
ANONYMOUS: "Optem Zoom 70XL 7:1 Optical System.", QIOPTIQ IMAGING SOLUTIONS., 2008, Retrieved from the Internet [retrieved on 20140505]
Attorney, Agent or Firm:
PELLEGRINI, Carl J. et al. (PLLC2100 Pennsylvania Avenue, NW, Suite 80, Washington District of Columbia, US)
Download PDF:
Claims:
LISTING OF CLAIMS

1. An optical zooming system for splicing a plurality of fibers together, the system comprising:

a lens configured to view an image of the plurality of fibers;

a camera configured to capture an image of the plurality of fibers for aligning a plurality of cores of the plurality of fibers; and

a zooming mechanism configured to facilitate movement of the lens and the camera during a transition between at least one of a zoom in configuration and a zoom out configuration.

2. The system of claim 1, further comprising:

a flex cable attached to the camera configured to send data from the camera to a computer;

a rotation device configured to switch the optical zooming apparatus between the at least one of the zoom in configuration and the zoom out configuration;

a lens holder attached to the lens and slidably attached to the zooming mechanism;

a camera holder attached to the camera and slidably attached to the zooming mechanism; and a base configured to support the zooming mechanism.

3. The system of claim 2, wherein the rotation device comprises:

a link mechanism configured to switch the optical zooming apparatus between the at least one of the zoom in configuration and the zoom out configuration when the link mechanism is rotated; a first attachment bar configured to attach the lens holder to the link mechanism; and a second attachment bar configured to attach the camera holder to the link mechanism.

4. The system of claim 3, wherein the rotation device further comprises:

a motor attached to the link mechanism configured to automate the switching of the optical zooming apparatus between the at least one of the zoom in configuration and the zoom out configuration.

5. The system of claim 1, wherein the zooming mechanism comprises:

a configuration base attached to the base;

a guide rail attached to the configuration base;

a focus bracket base attached to the configuration base;

an intermediate base attached to the focus bracket base; and

stoppers attached to the intermediate base configured to adjust the movement of the lens holder and the camera holder.

6. The system of claim 5, wherein the zooming mechanism further comprises: a fine adjust motor attached to the intermediate base, wherein

the fine adjust motor adjusts the position of the intermediate base, which uses the stopper to adjust the position of the lens holder and the camera holder, along the focus bracket base to adjust the focus of the image produced in the lens.

7. The system of claim 1, further comprising:

a second camera positioned at 90 degrees relative to the camera configured to provide a second image of the plurality of optical fibers to further align the plurality of cores of the plurality of fibers.

Description:
OPTICAL ZOOMING SYSTEM FOR FUSION SPLICERS

CROS S -REFERENCE TO RELATED APPLICATIONS

[01 ] This application is based upon and claims the benefit of priority from United

States Provisional Application No. 61/760,336, filed February 4, 2013., in the United States Patent and Trademark Office, the disclosures of which are incorporated herein in its entirety by reference.

BACKGROUND

1. Field

[02] The invention relates to an optical zooming system for use on fusion splicers.

2. Related Art

[03] The background information provided herein is for the purpose of generally presenting the context of the disclosure. Work of the presently named inventor, to the extent it is described in this background section, as well as aspects of the description that may not otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly admitted as prior art against the present disclosure.

[04] Due to the development of optical fiber industries, fusion splicers need to handle a much larger range of fiber diameter (for example, 30 μηι to 3 mm). The camera system needs to have: a very large field of view (for example, 3 mm) to see the entire large fiber; a very high resolution (for example, 0.1 μτη) to align fiber cores; and moderate cost for industrial applications. Camera chips with a 3 mm FOV and 0.1 μιτι resolution (900 M pixel) are not available in the market. Therefore, there is a need to develop an optical zooming system for advanced fusion splicers. SUMMARY

[05] Exemplary implementations of the present invention address at least the above problems and/or disadvantages and other disadvantages not described above. Also, the present invention is not required to overcome the disadvantages described above, and an exemplary implementation of the present invention may not overcome any of the problems listed above.

[06] An embodiment of the invention is an optical zooming system for splicing fibers together which has a lens to view an image of the fibers, a camera which captures an image of the fibers for aligning cores of the fibers, and a zooming mechanism which facilitates movement of the lens and the camera during a transition between a zoom in configuration and a zoom out configuration.

[07] Other features of the embodiment may include a flex cable attached to the camera which sends data from the camera to a computer, a rotation device which switches the optical zooming apparatus between the zoom in configuration and the zoom out configuration, a lens holder attached to the lens and slidably attached to the zooming mechanism, a camera holder attached to the camera and slidably attached to the zooming mechanism, and a base which supports the zooming mechanism.

[08] Other features of the embodiment may include the rotation device having a link mechanism which switches the optical zooming apparatus between the zoom in configuration and the zoom out configuration when the link mechanism is rotated, a first attachment bar which attaches the lens holder to the link mechanism, and a second attachment bar which attaches the camera holder to the link mechanism. Other features of the embodiment may include the rotation device also having a motor attached to the link mechanism which automates the switching of the optical zooming apparatus between the zoom in configuration and the zoom out configuration.

[09] Other features of the embodiment may include a configuration base attached to the base, a guide rail attached to the configuration base, a focus bracket base attached to the configuration base, an intermediate base attached to the focus bracket base, and stoppers attached to the intermediate base which adjusts the movement of the lens holder and the camera holder. Other features of the embodiment may include the zooming mechanism having a fine adjust motor attached to the intermediate base, wherein the fine adjust motor adjusts the position of the intermediate base, which uses the stopper to adjust the position of the lens holder and the camera holder, along the focus bracket base to adjust the focus of the image produced in the lens.

[10] Other features of the embodiment may include a second camera positioned at 90 degrees relative to the camera which provides a second image of the plurality of optical fibers to further align the cores of the fibers.

BRIEF DESCRIPTION OF THE DRAWING

[11] Figure la is an exemplary embodiment of an optical zooming device 1 in a "zoom out" configuration.

[12] Figure lb is an exemplary embodiment of an optical zooming device 1 in a "zoom in" configuration.

[13] Figure lc is an exemplary embodiment of an image taken of an optical fiber 10 and an optical fiber 17 when the optical zooming device 1 is in a "zoom out" configuration. [14] Figure Id is an exemplary embodiment of an image taken of an optical fiber 10 and an optical fiber 17 when the optical zooming device 1 is in a "zoom in" configuration.

[15] Figure 2a is an exemplary embodiment of a rotated view of an optical zooming device 1 in a "zoom out" configuration.

[16] Figure 2b is an exemplary embodiment of a rotated view of an optical zooming device 1 in a "zoom in" configuration.

[17] Figure 3 is an exemplary embodiment of a diagram of the optical zooming device

1 in a "zoom out" configuration.

[18] Figure 4a is an exemplary embodiment of a zooming mechanism 5 in an optical zooming device 1, which is in a "zoom out" configuration.

[19] Figure 4b is an exemplary embodiment of a zooming mechanism 5 in an optical zooming device 1, which is in a "zoom in" configuration.

DETAILED DESCRIPTION

[20] The following detailed description is provided to assist the reader in gaining a comprehensive understanding of the methods, apparatuses and/or systems described herein. Various changes, modifications, and equivalents of the systems, apparatuses and/or methods described herein will suggest themselves to those of ordinary skill in the art. Descriptions of well-known functions and structures are omitted to enhance clarity and conciseness.

[21] The terms used in the description are intended to describe embodiments only, and shall by no means be restrictive. Unless clearly used otherwise, expressions in a singular from include a meaning of a plural form. In the present description, an expression such as "comprising" or "including" is intended to designate a characteristic, a number, a step, an operation, an element, a part or combinations thereof, and shall not be construed to preclude any presence or possibility of one or more other characteristics, numbers, steps, operations, elements, parts or combinations thereof.

[22] Referring to the drawings, Figure la is an exemplary embodiment of an optical zooming device 1 in a "zoom out" configuration. In an exemplary embodiment, the "zoom out" configuration is used for adjusting large diameter fibers. The optical zooming device 1 comprises a lens 2, a camera 3, a rotation device 4 having a rotation bar 7, a zooming mechanism 5, and a base 6. In an exemplary embodiment, the lens 2 allows a user to view the optical fibers. In an exemplary embodiment, the camera 3 acts as an imaging device for taking a picture of the optical fibers being viewed. In an exemplary embodiment, a second camera (not shown) is positioned at a 90 degree angle relative to the position of the camera 3 in order to provide a second image of the fibers to further align the cores in the fibers.

[23] In an exemplary embodiment, each of the fibers are held by v-recessed blocks, which is number 52 in a conventional fiber splicer as in Figure 1 of US Patent number 6,799,903, which is herein incorporated by reference. In an exemplary embodiment, the rotation device 4 allows a user to change the optical zooming device 1 from a "zoom in" configuration to a "zoom out" configuration. In an exemplary embodiment, if the link mechanism 7 is rotated by 180° in a clockwise direction along its length relative to its current display in Figure la, then the optical zooming device 1 will convert to a "zoom in" configuration. In an exemplary embodiment, the zooming mechanism 5 stabilizes and is attached to the lens 2, camera 3, and the rotation device 4. In an exemplary embodiment, both the camera 3 and the rotation device 4 are slideably attached to the zooming mechanism. In an exemplary embodiment, the zooming mechanism 5 allows for changing the "zoom" configuration when the rotation device 4 is operated. In an exemplary embodiment, the base 6 is attached to the zooming mechanism 5. In an exemplary embodiment, the base 6 or a computer processes data generated by the camera 3 through a flex cable 8. In an exemplary embodiment, the flex cable provides power to the camera 3. In an exemplary embodiment, two fiber optic cables are spliced by attaching each of the two fiber optic cables to v-recessed blocks at opposite ends of the camera 3, adjusting the optical zooming device 1 from a "zoom in" configuration to a "zoom out" configuration, using the image produced by the lens 2 to align the cores of the two fiber optic cables, and splicing the two fibers by using a splicer.

[24] Figure lb is an exemplary embodiment of an optical zooming device 1 in a "zoom in" configuration. In an exemplary embodiment, the "zoom in" configuration is used for core alignment for two fibers being spliced. In an exemplary embodiment, the link mechanism 7 is attached to a first attachment bar 11 and a second attachment bar 13. In an exemplary embodiment, when the link mechanism 7 is rotated from a "zoom out" configuration, as shown in Figure la, to a "zoom in" configuration, as shown in Figure lb, the second attachment bar 13 moves away from the lens 2 in conjunction with the camera 3, and the first attachment bar 11 moves away from the camera 3 in conjunction with the lens 2. hi an exemplary embodiment, a sensor 14 and a sensor shaft 15 are unengaged. In an exemplaiy embodiment, the sensor 14 and the sensor shaft 15 magnetically engage with each other in the "zoom out" configuration, as shown but not labeled in Figure la. In an exemplary embodiment, the sensor shaft 15 and the shaft 16 allow for the link mechanism 7 to maintain its shape. Thus, hi an exemplary embodiment, the link mechanism 7 resists bending when in operation. In an exemplary embodiment, a motor shaft 12 is provided as an attachment for a motor (not shown). In an exemplary embodiment, the motor (not shown) allows for mechanical switching between a "zoom out" configuration and a "zoom in" configuration.

[25] Figure lc is an exemplary embodiment of an image taken of an optical fiber 10 and an optical fiber 17 when the optical zooming device 1 is in a "zoom out" configuration. In an exemplary embodiment, the "zoom out" configuration allows for a user to readily identify an alignment of core 18 and core 19 of the optical fiber 17 and the optical fiber 10 respectively. In an exemplary embodiment, the optical fiber 17 and the optical fiber 10 are transparent. In an exemplary embodiment, a light (see Figure 1 of US Patent number 6,799,903) illuminates the transparent optical fiber 17 and the transparent optical fiber 10. In an exemplary embodiment, illuminating the optical fiber 17 and the optical fiber 10 shows an image of the core 18 and the core 19.

[26] Figure Id is an exemplary embodiment of an image taken of an optical fiber 10 and an optical fiber 17 when the optical zooming device 1 is in a "zoom in" configuration. In an exemplary embodiment, the area covered allows for fibers with comparatively large diameters in relation to the fiber 10 and fiber 17 to be aligned. In an exemplaiy embodiment, the diameter of fiber 10 and fiber 17 is 125 pm.

[27] Figure 2a is an exemplary embodiment of a rotated view of an optical zooming device 1 in a "zoom out" configuration. In an exemplary embodiment, the zooming mechanism 5 includes a fine adjust motor 21 that mechanically adjusting the focus of an image produced in the lens 2. In an exemplaiy embodiment, the zooming mechanism 5 also comprises a stopper 22 and a stopper 23 that engage with a lens holder 27 and a camera holder 28 respectively when the optical zooming device 1 is in a "zoom in" configuration. In an exemplary embodiment, a motor 25 is connected to the motor shaft 12 and mechanically controls the rotation device (not shown) to put the optical zooming device 1 in a "zoom in" configuration or a "zoom out" configuration.

[28] Figure 2b is an exemplary embodiment of a rotated view of an optical zooming device 1 in a "zoom in" configuration. In an exemplary embodiment, the stopper 22 engages with the lens holder 27 and the stopper 23 (not shown) engages with the camera holder 28 to prevent unwanted movement. In an exemplary embodiment, the stopper 24 engages with the lens holder 27 and the camera holder 28 when the optical zooming device is in a "zoom out" configuration so that the lens holder 27 and the camera holder 28 do not contact each other.

[29] Figure 3 is an exemplary embodiment of a diagram of the optical zooming device

1 in a "zoom out" configuration. In an exemplary embodiment, the direction arrows 30 show the distances that the lens 2, the camera 3, the lens holder 27, and the camera holder 28 are designed to travel along the top of the intermediate base 32. In an exemplary embodiment, lens bearings 31a and camera bearings 31b allow for the lens 2 and the camera 3 respectively to move across the top of the intermediate base 32. In an exemplary embodiment, the fine adjust bearings 31c allow for the intermediate base 32 to move relative to the focus bracket base 33 in order to adjust the focus of an image created in the lens 2. In an exemplary embodiment, the fine adjust motor shown in Figure 2a uses the fine adjust bearings 31c and the intermediate base 32 to adjust the focus of an image created in the lens 2.

[30] Figure 4a is an exemplary embodiment of a zooming mechanism 5 in an optical zooming device 1, which is in a "zoom out" configuration. In an exemplary embodiment, the zooming mechanism 5 includes a configuration base 41, a configuration rail 42, an intermediate base 32, and a focus bracket base 33. In an exemplary embodiment, the configuration base 41 is attached to the base 6. In an exemplary embodiment, the guide rail 42 is attached to the configuration base 41. In an exemplary embodiment, the lens holder 27 and the camera holder 28 are slidably attached to the guide base, hi an exemplary embodiment, the lens holder 27 and the camera holder 28 slide along the intermediate base 32 using lens bearings (not shown) and camera bearings (not shown) when the optical zooming device 1 is switched between a "zoom out" configuration and a "zoom in" configuration. In an exemplary embodiment, the focus bracket base 33 is attached to the configuration base 41. In an exemplary embodiment, the intermediate base 32 is slidably attached to the focus bracket base 33. In an exemplary embodiment, stopper 22, stopper 23, and stopper 24 are attached to the intermediate base 32. In an exemplary embodiment, a fine adjust motor (not shown) adjusts the position of the intermediate base 32, which uses the stopper 24 to adjust the position of the lens holder 27 and the camera holder 28, which adjusts the focus of the image produced in the lens 2.

[31] Figure 4b is an exemplary embodiment of a zooming mechanism 5 in an optical zooming device 1, which is in a "zoom in" configuration. In an exemplary embodiment, a fine adjust motor (not shown) adjusts the position of the intermediate base 32, which uses the stopper 22 and the stopper 23 to adjust the position of the lens holder 27 and the camera holder 28, which adjusts the focus of the image produced in the lens 2.