Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PACKAGING ARTICLE WITH THREE-DIMENSIONAL LOOP MATERIAL
Document Type and Number:
WIPO Patent Application WO/2018/125860
Kind Code:
A1
Abstract:
The present disclosure provides a packaging article (10). In an embodiment, the packaging article includes a body (12) having a geometric shape, the body composed of a three-dimensional random loop material (3DRLM). The 3DRLM (14) is composed of an olefin- based polymer. The packaging article includes a sleeve (20) having opposing ends (21a, 21b) on respective opposing surfaces of the body. The sleeve extends through an interior portion of the body. The sleeve has an opening (22, 23) at each respective end. Each opening has a closed width. The packaging article includes a product having an insert shape. The insert shape has an insert width that is greater than or equal to the closed width of the sleeve opening. A portion of the 3DRLM moves from a neutral state to a stretched state when the product is inserted into the sleeve.

More Like This:
JP2007076684STORAGE CONTAINER
JP3187188Box
JPH07257552PACKAGING DEVICE
Inventors:
SHAH VIRAJ (US)
PEREIRA BRUNO (BR)
DE CARVALHO MARCUS (BR)
KOPPI KURT (US)
BISWAS SANJIB (US)
THAKRE PIYUSH (US)
BLACK MARC (US)
Application Number:
PCT/US2017/068403
Publication Date:
July 05, 2018
Filing Date:
December 26, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
DOW GLOBAL TECHNOLOGIES LLC (US)
International Classes:
B65D5/50; B65D81/03; B65D81/05; B65D81/107
Domestic Patent References:
WO2014179293A12014-11-06
Foreign References:
US4681225A1987-07-21
US9415922B12016-08-16
JP2004149959A2004-05-27
JP2015182814A2015-10-22
US6111023A2000-08-29
US5677383A1997-10-14
US6984695B22006-01-10
US5783638A1998-07-21
US3645992A1972-02-29
US4798081A1989-01-17
US5089321A1992-02-18
US7803728B22010-09-28
Other References:
"Periodic Table of the Elements", 2003, CRC PRESS, INC.
B MONRABAL, MACROMOL. SYMP., vol. 257, 2007, pages 71 - 79
WILLIAMS; WARD, J. POLYM. SCI., POLYM. LET., vol. 6, 1968, pages 621
Attorney, Agent or Firm:
BARTHEL, Ted, J. et al. (555 East Wells Street Suite 190, Milwaukee WI, US)
Download PDF:
Claims:
CLAIMS 

 

1.  A packaging article comprising: 

a body having a geometric shape and composed of a three‐dimensional random loop   material (3DRLM) composed of an olefin‐based polymer;  

a  sleeve  having  opposing  ends  on  respective  opposing  surfaces  of  the  body,  the  sleeve extending  through an  interior portion of  the body and having an opening at each  respective end; 

each opening having a closed width; 

a  product  having  an  insert  shape,  the  insert  shape  having  an  insert width  that  is  greater than or equal to the closed width of the sleeve opening; and  

a portion of the 3DRLM moves  from a neutral state to a stretched state when the  product is inserted into the sleeve.  

2.  The packaging article of claim 1 wherein the body has an original geometric  shape and the body maintains its original geometrical shape when the product is located in  the sleeve.   

3.  The packaging article of claim 1 wherein the sleeve stretches from the closed  width to the insert width when the product is located in the sleeve. 

4.  The packaging article of claim 1 wherein the 3DRLM compressively engages  at least two opposing surfaces of the product.  

5.  The  packaging  article  of  claim  1  wherein  the  body  forms  a  border  area  around a circumference of the product.   

6.  The packaging article of claim 1 wherein  the body provides  from 1.0 cm  to  10.0 cm of 3DRLM around each side of the product.  

7.  The packaging article of claim 1 wherein one end of the sleeve is closed, the  closed sleeve forming a pocket. 

8.  The packaging article of claim 7 wherein the pocket has a single opening on a  single surface of the body. 

9.  The packaging article of claim 8 wherein the pocket stretches from the closed  width to the insert width when the product is located in the pocket.    

10.  The  packaging  article  of  claim  1  wherein  the  3DRLM  is  composed  of  a  material  selected  from  the  group  consisting  of  an  ethylene‐based  polymer,  a  propylene‐ based polymer, and combinations thereof. 

11.   The packaging article of claim 1 comprising 

a container having 

(i)   a top wall and a bottom wall; 

(ii)   a plurality sidewalls extending between the top wall and bottom wall,  the walls defining a compartment; and 

  the body and the product are located in the compartment.  

12.  The packaging  article of  claim 11 wherein  the packaging  article passes  the  drop test or the vibration test as measured in accordance with ISTA 3A.   

13.  A packaging article comprising: 

a container having 

(i)   a top wall and a bottom wall; 

(ii)   a plurality sidewalls extending between the top wall and bottom wall,  the walls defining a compartment; 

at least two bodies, each body having a geometric shape of an endcap, each endcap   composed of a  three‐dimensional  random  loop material  (3DRLM) composed of an olefin‐ based polymer;  

each endcap having a pocket in an interior portion of the body, each pocket having  an opening; 

each opening having a closed width; 

a product having opposing ends, each product end having an insert shape, the insert  shape  having  an  insert  width  that  is  greater  than  or  equal  to  the  closed  width  of  the  opening; and   a  portion  of  the  3DRLM moves  from  a  neutral  state  to  a  stretched  state when  a  product end is inserted into a respective pocket.  

14.  The packaging article of claim 13 wherein the endcaps are spaced apart and  in parallel relation to each other in the compartment. 

15.  The packaging  article of  claim 13 wherein  the packaging  article passes  the  drop test or the vibration test as measured in accordance with ISTA 3A. 

Description:
PACKAGING ARTICLE WITH THREE‐DIMENSIONAL LOOP MATERIA L 

FIELD 

[0001] The present disclosure relates to protective packaging , and more particularly, to  an  economical  reusable  protective  packaging  article  for  packing  and  shipping  delicate  product susceptible to damage by impact and/or vibrat ion.  

BACKGROUND 

[0002] Packaging is a fundamental item in supply chain mana gement.  Packaging serves  to  protect  valuable  product  during  shipping  and  storage.    Packaging  requires  sturdy  construction  and  a  cushioning  feature  in  order  to  fulfill  its  primary  function  of  product  protection  from physical  shock during  shipping and  storage.   As a  result, packaging must  withstand many  stresses  such as  falls, drops,  tips, puncture, vibration and environmental  stresses such as extreme temperatures and water.  Kn own are common packaging materials  such as corrugated cardboard, packing peanuts, bubble out bags, air pillow, bubble wrap,  and foam sheets.    

[0003] Overly expensive packaging can reduce an entity’s r eturn on investment.  Excess  packaging material has an undue environmental impact  and creates a disposal problem for  the customer.  Excess packaging material also impacts  logistics by increasing the amount of  pallet space that each package consumes and the dime nsional weight of each package.  On  the other hand, poor or improper packaging can expos e product to undue risk of damage.   

[0004] Packaging success is the safe arrival of the package d product to a customer.  Safe  arrival  depends  upon  adequate  exterior  strength  to  allow  stacking  of  packages  during  shipping and adequate  interior  strength  to keep  the packaged product  from harm  in  the  event of excessive accelerations, such as dropping of  the package.   Damaged product as a  result  of  defective  packaging,  impedes  the  supply  chain,  is  costly,  and  is  deleterious  to  customer relations.   

[0005] Consequently, the art recognizes the need for versati le packaging materials that  are  sturdy,  lightweight,  and  shock  absorbing  to meet  the demand needs of  supply  chain  management.  Also needed is packaging material that  is economical, convenient to use and  handle, and packaging that is re‐usable and/or recy clable.   SUMMARY 

[0006] The  present  disclosure  provides  a  packaging  article.    In  an  embodiment,  the  packaging article includes a body having a geometric shape, the body composed of a three‐ dimensional  random  loop material  (3DRLM).   The 3DRLM  is composed of an olefin‐based  polymer.    The  packaging  article  includes  a  sleeve  having  opposing  ends  on  respective  opposing surfaces of the body.  The sleeve extends  through an interior portion of the body.   The sleeve has an opening at each respective end.   Each opening has a closed width.   The  packaging article includes a product having an insert  shape.  The insert shape has an insert  width that is greater than or equal to the closed  width of the sleeve opening.  A portion of  the 3DRLM moves  from a neutral state  to a stretched state when  the product  is  inserted  into the sleeve.  

[0007] The present disclosure provides another packaging arti cle.    In an embodiment,  the packaging article  includes a container.   The container has  (i) a  top wall and a bottom  wall, and  (ii) a plurality  sidewalls extending between  the  top wall and bottom wall.   The  walls define a compartment.  The packaging article h as at least two bodies.  Each body has a  geometric shape of an endcap.   Each endcap  is composed of a three‐dimensional random  loop material (3DRLM).  The 3DRLM is composed of an  olefin‐based polymer.  Each endcap  has a pocket in an interior portion of the body.  Each pocket has an opening, each opening  having a closed width.  The packaging article includ es a product having opposing ends.  Each  product end has an insert shape.  The insert shape has an insert width that is greater than  or equal to the closed width of the opening.  A p ortion of the 3DRLM moves from a neutral  state to a stretched state when a product end is i nserted into a respective pocket. 

DEFINITIONS AND TEST METHODS 

[0008] All  references  to  the  Periodic  Table  of  the  Elements  herein  shall  refer  to  the  Periodic Table of the Elements, published and copyrig hted by CRC Press,  Inc., 2003.   Also,  any  references  to  a Group  or Groups  shall  be  to  the Groups  or Groups  reflected  in  this  Periodic Table of the Elements using the IUPAC syste m for numbering groups.  Unless stated  to  the  contrary,  implicit  from  the  context,  or  customary  in  the  art,  all  components  and  percents are based on weight.  For purposes of Unit ed States patent practice, the contents  of any patent, patent application, or publication ref erenced herein are hereby incorporated  by  reference  in  their entirety  (or  the equivalent US version  thereof  is  so  incorporated by  reference). 

[0009] The numerical ranges disclosed herein include all val ues from, and including, the  lower value and the upper value.  For ranges contai ning explicit values (e.g., 1, or 2, or 3 to  5, or 6, or 7) any subrange between any two explic it values is included (e.g., 1 to 2; 2 to 6; 5  to 7; 3 to 7; 5 to 6; etc.). 

[0010] Unless stated to the contrary, implicit from the con text, or customary in the art,  all components and percents are based on weight, and  all test methods are current as of  the filing date of this disclosure. 

[0011] Apparent density.  A sample material is cut into a square piece of 38 cm × 38 cm  (15in x 15 in) in size.  The volume of this piece  is calculated from the thickness measured at  four  points.    The  division  of  the  weight  by  the  volume  gives  the  apparent  density  (an  average of four measurements is taken) with values r eported in grams per cubic centimeter,  g/cc. 

[0012] Bending  Stiffness.    The  bending  stiffness  is measured  in  accordance with DIN  53121 standard, with compression molded plaques of 55 0 µm thickness, using a Frank‐PTI  Bending Tester.   The samples are prepared by compression molding of resin granules per  ISO 293  standard.   Conditions  for  compression molding  are  chosen per  ISO 1872 – 2007  standard.  The average cooling rate of the melt is 15° C/min.  Bending stiffness is measured  in  2‐point  bending  configuration  at  room  temperature with  a  span  of  20 mm,  a  sample  width of 15 mm, and a bending angle of 40°.   Bending  is applied at 6°/second  (s) and the  force readings are obtained from 6 to 600 s, after the bending is complete.  Each material is  evaluated four times with results reported in Newton millimeters (“Nmm”).  

[0013] “Blend,” “polymer  blend”  and  like  terms  is  a  composition  of  two  or  more  polymers.  Such a blend may or may not be miscible .  Such a blend may or may not be phase  separated.   Such a blend may or may not contain one or more domain configurations, as  determined from transmission electron spectroscopy,  light scattering, x‐ray scattering, and  any other method known in the art.  Blends are not  laminates, but one or more layers of a  laminate can comprise a blend. 

[0014] 13 C Nuclear Magnetic Resonance (NMR)  

[0015] Sample Preparation  

[0016] The samples are prepared by adding approximately 2.7 g of a 50/50 mixture of  tetrachloroethane‐d2/orthodichlorobenzene  that  is  0.025M  in  chromium  acetylacetonate  (relaxation agent) to 0.21 g sample  in a 10 mm NMR tube.  The samples are dissolved a nd  homogenized by heating the tube and its contents to 150°C. 

[0017] Data Acquisition Parameters  

[0018] The  data  is  collected  using  a  Bruker  400 MHz  spectrometer  equipped with  a  Bruker Dual DUL high‐temperature CryoProbe.   The data  is acquired using 320  transients  per data file, a 7.3 sec pulse repetition delay (6 sec delay+1.3 sec acq. time), 90 degree flip  angles,  and  inverse  gated  decoupling  with  a  sample  temperature  of  125°C.    All  measurements  are  made  on  non‐spinning  samples  in  locked  mode.    Samples  are  homogenized immediately prior to insertion into the h eated (130°C) NMR Sample changer,  and  are  allowed  to  thermally  equilibrate  in  the  probe  for  15  minutes  prior  to  data  acquisition. 

[0019] "Composition” and like terms is a mixture of two  or more materials.  Included in  compositions are pre‐reaction, reaction and post‐re action mixtures the  latter of which will  include reaction products and by‐products as well a s unreacted components of the reaction  mixture and decomposition products, if any, formed fr om the one or more components of  the pre‐reaction or reaction mixture. 

[0020] The  terms “comprising,” “including,” “having,”  and  their  derivatives,  are  not  intended to exclude the presence of any additional c omponent, step or procedure, whether  or  not  the  same  is  specifically  disclosed.    In  order  to  avoid  any  doubt,  all  compositions  claimed  through  use  of  the  term “comprising”  may  include  any  additional  additive,  adjuvant, or compound, whether polymeric or otherwise,  unless stated to the contrary.  In  contrast,  the  term, “consisting essentially of” excludes  from  the  scope of any  succeeding  recitation any other component, step or procedure, ex cepting those that are not essential  to operability.   The  term “consisting of” excludes any  component,  step or procedure not  specifically delineated or listed.  

[0021] Crystallization Elution Fractionation (CEF) Method 

[0022] Comonomer  distribution  analysis  is  performed  with  Crystallization  Elution  Fractionation (CEF) (PolymerChar  in Spain) (B Monrabal et al, Macromol. Symp. 257, 7 1‐79  (2007)).    Ortho‐  dichlorobenzene  (ODCB)  with  600  ppm  antioxidant  butylated  hydroxytoluene (BHT)  is used as solvent.   Sample preparation  is done with autosampler at  160°C  for  2  hours  under  shaking  at  4 mg/ml  (unless  otherwise  specified).    The  injection  volume is 300 μm.  The temperature profile of CEF is: crystallization at 3°C/min from 110°C  to 30°C,  the  thermal equilibrium  at 30°C  for 5 minutes, elution  at 3°C/min  from 30°C  to  140°C.  The flow rate during crystallization is at 0.052 ml/min.  The flow rate during elution  is at 0.50 ml/min.  The data is collected at one  data point/second.  CEF column is packed by  the Dow Chemical Company with glass beads at 125 μ m + 6% (MO‐SCI Specialty Products)  with 1/8  inch stainless tubing.   Glass beads are acid washed by MO‐SCI Specialty  with the  request from The Dow Chemical Company. Column volume is 2.06 ml.  Column temperature  calibration  is  performed  by  using  a mixture  of NIST  Standard  Reference Material  Linear  polyethylene  1475a  (1.0  mg/ml)  and  Eicosane  (2  mg/ml)  in  ODCB.    Temperature  is  calibrated by adjusting elution heating  rate  so  that NIST  linear polyethylene 1475a has a  peak  temperature  at  101.0°C,  and  Eicosane has  a peak  temperature of  30.0°C.    The CEF  column  resolution  is  calculated  with  a  mixture  of  NIST  linear  polyethylene  1475a  (1.0  mg/ml)  and  hexacontane  (Fluka,  purum,  >97.0,  1  mg/ml  ).    A  baseline  separation  of  hexacontane and NIST polyethylene 1475a is achieved.   The area of hexacontane (from 35.0  to 67.0°C) to the area of NIST 1475a from 67.0 to  110.0°C is 50 to 50, the amount of soluble  fraction below 35.0°C  is <1.8 wt%.   The CEF column  resolution  is defined  in  the  following  equation:  

[0023] where the column resolution is 6.0.  [0024] Density  is measured  in  accordance with  ASTM D  792 with  values  reported  in  grams per cubic centimeter, g/cc.  

[0025] Differential Scanning Calorimetry (DSC).  DSC is used  to measure the melting and  crystallization behavior of a polymer over a wide ra nge of temperatures.  For example, the  TA  Instruments Q1000 DSC,  equipped with  an  RCS  (refrigerated  cooling  system)  and  an  autosampler is used to perform this analysis.  Durin g testing, a nitrogen purge gas flow of 50  ml/min  is used.   Each  sample  is melt pressed  into a  thin  film at about 175°C;  the melted  sample  is then air‐cooled to room temperature (approx. 25 C).   The film sample  is formed  by pressing a “0.1 to 0.2 gram” sample at 175° C at 1,500 psi, and 30 seconds, to form a “0.1  to 0.2 mil  thick”  film.   A 3‐10 mg, 6 mm diameter specimen  is extracted  from  the cooled  polymer, weighed, placed in a light aluminum pan (ca  50 mg), and crimped shut.  Analysis is  then performed to determine its thermal properties.  The thermal behavior of the sample is  determined by ramping the sample temperature up and  down to create a heat flow versus  temperature profile.   First, the sample  is rapidly heated to 180°C, and held  isothermal  for  five minutes, in order to remove its thermal history .  Next, the sample is cooled to ‐40°C, at  a 10 °C/minute cooling rate, and held  isothermal at ‐40°C for five minutes.   The sample  is  then heated to 150°C (this  is the “second heat” ramp) at a 10°C/minute hea ting rate.   The  cooling  and  second  heating  curves  are  recorded.    The  cool  curve  is  analyzed  by  setting  baseline  endpoints  from  the  beginning  of  crystallization  to ‐20°C.    The  heat  curve  is  analyzed  by  setting  baseline  endpoints  from ‐20°C  to  the  end  of  melt.    The  values  determined  are  peak  melting  temperature  (Tm),  peak  crystallization  temperature  (Tc),  onset  crystallization  temperature  (Tc onset), heat of  fusion  (Hf)  (in  Joules per gram),  the  calculated % crystallinity for polyethylene samples us ing:  % Crystallinity for PE = ((Hf)/(292  J/g))  x  100,  and  the  calculated  %  crystallinity  for  polypropylene  samples  using:    %  Crystallinity  for PP =  ((Hf)/165  J/g))  x 100.   The heat of  fusion  (Hf) and  the peak melting  temperature  are  reported  from  the  second heat  curve.   Peak  crystallization  temperature  and onset crystallization temperature are determined f rom the cooling curve 

[0026] Elastic Recovery.  Resin pellets are compression mold ed following ASTM D4703,  Annex A1, Method C to a thickness of approximately  5‐10 mil.  Microtensile test specimens  of geometry as detailed in ASTM D1708 are punched o ut from the molded sheet.  The test  specimens are conditioned for 40 hours prior to test ing in accordance with Procedure A of  Practice D618. 

[0027] The samples are tested  in a screw‐driven tensile tester using  flat, rubber  faced  grips.   The grip separation  is set at 22 mm, equal  to  the gauge  length of  the microtensile  specimens.  The sample is extended to a strain of  100% at a rate of 100%/min and held for  30s.   The crosshead  is  then  returned  to  the original grip separation at  the same  rate and  held for 60s.  The sample is then strained to 100%  at the same 100%/min strain rate. 

[0028] Elastic recovery may be calculated as follows:   

[0029] An  "ethylene‐based polymer"  is a polymer  that  contains more  than 50 weight  percent  polymerized  ethylene  monomer  (based  on  the  total  weight  of  polymerizable  monomers) and, optionally, may contain at least one  comonomer.  Ethylene‐based polymer  includes  ethylene  homopolymer,  and  ethylene  copolymer  (meaning  units  derived  from  ethylene  and  one  or  more  comonomers).    The  terms  "ethylene‐based  polymer"  and  "polyethylene"  may  be  used  interchangeably.    Nonlimiting  examples  of  ethylene‐based  polymer  (polyethylene)  include  low  density  polyethylene  (LDPE)  and  linear  polyethylene.   Nonlimiting  examples  of  linear  polyethylene  include  linear  low  density  polyethylene  (LLDPE),  ultra  low  density  polyethylene  (ULDPE),  very  low  density  polyethylene  (VLDPE),  multi‐component  ethylene‐based  copolymer  (EPE),  ethylene/α‐olefin  multi‐block  copolymers  (also known as olefin block copolymer  (OBC)),  single‐site catalyzed  linear  low  density polyethylene (m‐LLDPE), substantially  linear, or  linear, plastomers/elastomers, and  high density polyethylene (HDPE).   Generally, polyethylene may be produced  in gas‐phase,  fluidized bed reactors, liquid phase slurry process r eactors, or liquid phase solution process  reactors,  using  a  heterogeneous  catalyst  system,  such  as  Ziegler‐Natta  catalyst,  a  homogeneous catalyst system, comprising Group 4 transi tion metals and  ligand structures  such  as  metallocene,  non‐metallocene  metal‐centered,  heteroaryl,  heterovalent  aryloxyether,  phosphinimine,  and  others.    Combinations  of  heterogeneous  and/or  homogeneous  catalysts  also  may  be  used  in  either  single  reactor  or  dual  reactor  configurations. 

[0030] "High  density  polyethylene"  (or  "HDPE")  is  an  ethylene  homopolymer  or  an  ethylene/α‐olefin  copolymer with at  least one C 4 –C 10   α‐olefin  comonomer, or C α‐olefin  comonomer and a density from greater than 0.94 g/cc,  or 0.945 g/cc, or 0.95 g/cc, or 0.955  g/cc to 0.96 g/cc, or 0.97 g/cc, or 0.98 g/cc.  T he HDPE can be a monomodal copolymer or a  multimodal copolymer.  A "monomodal ethylene copolymer " is an ethylene/C 4 –C 10  α‐olefin  copolymer  that has one distinct peak  in a gel permeation chromatography  (GPC) showing  the molecular weight distribution.   A "multimodal ethylene copolymer"  is an ethylene/C 4 – C 10  α‐olefin copolymer that has at  least two distinct peaks  in a GPC showing the molecular  weight distribution.  Multimodal includes copolymer ha ving two peaks (bimodal) as well as  copolymer  having more  than  two  peaks.   Nonlimiting  examples  of HDPE  include DOW™  High  Density  Polyethylene  (HDPE)  Resins  (available  from  The  Dow  Chemical  Company),  ELITE™  Enhanced  Polyethylene  Resins  (available  from  The  Dow  Chemical  Company),  CONTINUUM™ Bimodal Polyethylene Resins (available  from The Dow Chemical Company),  LUPOLEN™  (available  from LyondellBasell), as well as HDPE products  from Borealis,  Ineos,  and ExxonMobil. 

[0031] An "interpolymer"  is a polymer prepared by  the polymerization of at  least  two  different monomers.   This generic term  includes copolymers, usually employed to refer to  polymers prepared from two different monomers, and po lymers prepared from more than  two different monomers, e.g., terpolymers, tetrapolymer s, etc. 

[0032] "Low  density  polyethylene"  (or  "LDPE")  consists  of  ethylene  homopolymer,  or  ethylene/α‐olefin copolymer comprising at  least one C 3 –C 10  α‐olefin, preferably C 3 –C that  has a density from 0.915 g/cc to 0.940 g/cc and co ntains  long chain branching with broad  MWD.    LDPE  is  typically  produced  by  way  of  high  pressure  free  radical  polymerization  (tubular  reactor  or  autoclave with  free  radical  initiator).    Nonlimiting  examples  of  LDPE  include MarFlex™  (Chevron Phillips), LUPOLEN™  (LyondellBasell), as well as LDPE products  from Borealis, Ineos, ExxonMobil, and others.  [0033] "Linear  low  density  polyethylene"  (or  "LLDPE")  is  a  linear  ethylene/α‐olefin  copolymer  containing  heterogeneous  short‐chain  branching  distribution  comprising  units  derived from ethylene and units derived from at leas t one C 3 –C 10  α‐olefin comonomer or at  least one C 4 –C 8  α‐olefin comonomer, or at  least one C 6 –C 8  α‐olefin comonomer.   LLDPE  is  characterized by little, if any, long chain branching , in contrast to conventional LDPE.  LLDPE  has a density from 0.910 g/cc, or 0.915 g/cc, or 0 .920 g/cc, or 0.925 g/cc to 0.930 g/cc, or  0.935  g/cc,  or  0.940  g/cc.    Nonlimiting  examples  of  LLDPE  include  TUFLIN™  linear  low  density  polyethylene  resins  (available  from  The  Dow  Chemical  Company),  DOWLEX™  polyethylene  resins  (available  from  the  Dow  Chemical  Company),  and  MARLEX™  polyethylene (available from Chevron Phillips). 

[0034] "Ultra  low  density  polyethylene"  (or  "ULDPE")  and  "very  low  density  polyethylene"  (or  "VLDPE")  each  is  a  linear  ethylene/α‐olefin  copolymer  containing  heterogeneous  short‐chain branching distribution  comprising units derived  from ethylene  and units derived  from at  least one C 3 –C 10   α‐olefin  comonomer, or at  least one C 4 –C 8   α‐ olefin comonomer, or at least one C 6 –C 8  α‐olefin comonomer.  ULDPE and VLDPE each  has a  density  from 0.885 g/cc, or 0.90 g/cc  to 0.915 g/cc.   Nonlimiting examples of ULDPE and  VLDPE  include  ATTANE™  ultra  low  density  polyethylene  resins  (available  form  The  Dow  Chemical Company) and FLEXOMER™ very  low density polyethylene resins  (available  from  The Dow Chemical Company). 

[0035] "Multi‐component  ethylene‐based  copolymer"  (or  "EPE")  comprises  units  derived from ethylene and units derived from at leas t one C 3 –C 10  α‐olefin comonomer, or at  least one C 4 –C 8   α‐olefin  comonomer, or  at  least one C 6 –C 8   α‐olefin  comonomer,  such  as  described  in  patent  references USP  6,111,023; USP  5,677,383;  and USP  6,984,695.    EPE  resins have a density from 0.905 g/cc, or 0.908 g/c c, or 0.912 g/cc, or 0.920 g/cc to 0.926  g/cc, or 0.929 g/cc, or 0.940 g/cc, or 0.962 g/cc.  Nonlimiting examples of EPE resins include  ELITE™  enhanced  polyethylene  (available  from  The Dow  Chemical  Company),  ELITE  AT™  advanced  technology  resins  (available  from  The  Dow  Chemical  Company),  SURPASS™  Polyethylene (PE) Resins (available from Nova Chemical s), and SMART™ (available from SK  Chemicals Co.).  [0036] "Single‐site catalyzed linear low density polyethylen es" ( or "m‐LLDPE") are linear  ethylene/α‐olefin  copolymers  containing homogeneous  short‐chain branching distribution  comprising units derived from ethylene and units deri ved from at least one C 3 –C 10  α‐olefin  comonomer,  or  at  least  one  C 4 –C 8   α‐olefin  comonomer,  or  at  least  one  C 6 –C 8   α‐olefin  comonomer.   m‐LLDPE has density  from 0.913 g/cc, or 0.918 g/cc, or 0.920 g/cc  to 0.925  g/cc,  or  0.940  g/cc.   Nonlimiting  examples  of m‐LLDPE  include  EXCEED™ metallocene  PE  (available from ExxonMobil Chemical), LUFLEXEN™ m‐L LDPE (available from LyondellBasell),  and ELTEX™ PF m‐LLDPE (available from Ineos Olefi ns & Polymers). 

[0037] "Ethylene plastomers/elastomers" are substantially linea r, or linear, ethylene/α‐ olefin  copolymers  containing homogeneous  short‐chain branching distribution  comprising  units derived from ethylene and units derived from a t least one C 3 –C 10  α‐olefin comonomer,  or  at  least  one  C 4 –C 8   α‐olefin  comonomer,  or  at  least  one  C 6 –C 8   α‐olefin  comonomer.   Ethylene plastomers/elastomers have a density from 0.8 70 g/cc, or 0.880 g/cc, or 0.890 g/cc  to  0.900  g/cc,  or  0.902  g/cc,  or  0.904  g/cc,  or  0.909  g/cc,  or  0.910  g/cc,  or  0.917  g/cc.   Nonlimiting  examples  of  ethylene  plastomers/  elastomers  include  AFFINITY™  plastomers  and elastomers (available from The Dow Chemical Compa ny), EXACT™ Plastomers (available  from ExxonMobil Chemical), Tafmer™ (available from M itsui), Nexlene™ (available from SK  Chemicals Co.), and Lucene™ (available LG Chem Ltd. ).   

[0038] Melt  flow  rate  (MFR)  is measured  in accordance with ASTM D 1238, Condition  280°C/2.16 kg (g/10 minutes).  

[0039] Melt  index  (MI)  is  measured  in  accordance  with  ASTM  D  1238,  Condition  190°C/2.16 kg (g/10 minutes).   

[0040] “Melting Point” or “Tm”  as used herein  (also  referred  to as  a melting peak  in  reference  to  the  shape  of  the  plotted  DSC  curve)  is  typically  measured  by  the  DSC  (Differential Scanning Calorimetry) technique for measu ring the melting points or peaks of  polyolefins as described in USP 5,783,638.  It shoul d be noted that many blends comprising  two or more polyolefins will have more  than one melting point or peak, many  individual  polyolefins will comprise only one melting point or  peak.  [0041] Molecular  weight  distribution  (Mw/Mn)  is  measured  using  Gel  Permeation  Chromatography  (GPC).    In  particular,  conventional  GPC  measurements  are  used  to  determine  the weight‐average  (Mw)  and  number‐average  (Mn) molecular weight  of  the  polymer  and  to  determine  the  Mw/Mn.    The  gel  permeation  chromatographic  system  consists of either a Polymer Laboratories Model PL‐ 210 or a Polymer Laboratories Model PL‐ 220  instrument.    The  column  and  carousel  compartments  are operated  at 140°C.    Three  Polymer  Laboratories  10‐micron  Mixed‐B  columns  are  used.    The  solvent  is  1,2,4  trichlorobenzene.  The samples are prepared at a con centration of 0.1 grams of polymer in  50 milliliters of solvent containing 200 ppm of buty lated hydroxytoluene (BHT).  Samples are  prepared  by  agitating  lightly  for  2  hours  at  160°C.    The  injection  volume  used  is  100  microliters and the flow rate is 1.0 ml/minute.  

[0042] Calibration of the GPC column set is performed with 21 narrow molecular weight  distribution polystyrene standards with molecular weigh ts ranging  from 580 to 8,400,000,  arranged  in 6 "cocktail" mixtures with at  least a decade of separation between  individual  molecular weights.   The  standards are purchased  from Polymer  Laboratories  (Shropshire,  UK).  The polystyrene standards are prepared at 0.02 5 grams in 50 milliliters of solvent for  molecular weights equal  to or greater  than 1,000,000, and 0.05 grams  in 50 milliliters of  solvent for molecular weights less than 1,000,000.   The polystyrene standards are dissolved  at 80°C with gentle agitation for 30 minutes.   The narrow standards mixtures are run first  and  in order of decreasing highest molecular weight compo nent to minimize degradation.   The polystyrene standard peak molecular weights are c onverted to polyethylene molecular  weights  using  the  following  equation  (as  described  in Williams  and Ward,  J.  Polym.  Sci.,  Polym. Let., 6, 621 (1968)): 

     M polypropylene =0.645(M polystyrene ).  

[0043] Polypropylene  equivalent  molecular  weight  calculations  are  performed  using  Viscotek TriSEC software Version 3.0.  

[0044] An “olefin‐based polymer,” as used herein, is a  polymer that contains more than  50 weight percent polymerized olefin monomer  (based on  total amount of polymerizable  monomers), and optionally, may contain at least one  comonomer.  Nonlimiting examples of  olefin‐based polymer include ethylene‐based polymer and propylene‐based polymer.  

[0045] A "polymer" is a compound prepared by polymerizing m onomers, whether of the  same or a different  type,  that  in polymerized  form provide  the multiple and/or  repeating  “units” or “mer units” that make up a polyme r.   The generic term polymer thus embraces  the term homopolymer, usually employed to refer to p olymers prepared from only one type  of monomer,  and  the  term  copolymer,  usually  employed  to  refer  to  polymers  prepared  from  at  least  two  types  of  monomers.    It  also  embraces  all  forms  of  copolymer,  e.g.,  random,  block,  etc.    The  terms “ethylene/α‐olefin  polymer”  and “propylene/α‐olefin  polymer”  are  indicative  of  copolymer  as  described  above  prepared  from  polymerizing  ethylene  or  propylene  respectively  and  one  or  more  additional,  polymerizable  α‐olefin  monomer.  It is noted that although a polymer is o ften referred to as being “made of” one  or  more  specified  monomers, “based  on”  a  specified  monomer  or  monomer  type,  “containing” a specified monomer content, or the  like, in this context the term “monomer”  is understood to be referring to the polymerized rem nant of the specified monomer and not  to the unpolymerized species.  In general, polymers  herein are referred to has being based  on “units” that are the polymerized form of a c orresponding monomer.   

[0046] A “propylene‐based polymer”  is a polymer  that  contains more  than 50 weight  percent  polymerized  propylene monomer  (based  on  the  total  amount  of  polymerizable  monomers) and, optionally, may contain at least one  comonomer. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0047] FIG. 1 is a perspective view of a packaging article  having a sleeve and a product  (a  laptop computer), to be  inserted  into the sleeve,  in accordance with an embodiment of  the present disclosure.  

[0048] FIG. 2 is a perspective view of the product of FIG . 1 being inserted into the sleeve  of the packaging article, in accordance with an embo diment of the present disclosure.   

[0049] FIG. 3  is a  top plan view of  the product  located  in  the sleeve of  the packaging  article, in accordance with an embodiment of the pre sent disclosure.   [0050] FIG. 4  is an enlarged fragmentary perspective view of area  4 of FIG. 2, showing  the stretching of the three dimensional  loop material during  insertion of the product  into  the sleeve. 

[0051] FIG. 5  is an enlarged  fragmentary perspective view of area 5 of FIG. 3 wi th the  product inserted into the sleeve. 

[0052] FIG. 6  is  a perspective  view of  a packaging  article  and  a product  (a bottle),  in  accordance with an embodiment of the present disclosu re. 

[0053] FIG. 7 is a perspective view of the bottle of FIG.  6 after insertion into a pocket of  the packaging article of FIG. 6, in accordance with an embodiment of the present disclosure.  

[0054] FIG. 8  is  a  top plan  view of  the bottle  located  in  the pocket of  the packaging  article of FIG. 6.  

[0055] FIG. 9  is a  top perspective view of a packaging article and a p roduct  (eggs),  in  accordance with an embodiment of the present disclosu re.  

[0056] FIG. 10  is a  top plan view of  the eggs  located  in  the pockets of  the packaging  article of FIG. 9. 

[0057] FIG.  11  is  an  exploded  perspective  view  of  another  packaging  article  in  accordance with an embodiment of the present disclosu re.  

[0058] FIG. 12 is a sectional view taken along line 12—1 2 of FIG. 11. 

[0059] FIG.  13  is  a  perspective  view  of  a  representation  of  a  packaging  article  and  identification of faces and edges in support of ISTA  3A 2008 testing. 

[0060] FIG. 14  is a top plan view of a photograph of a prior art  packaging article  for a  laptop computer, utilizing conventional packaging mater ials. 

DETAILED DESCRIPTION 

[0061] The  present  disclosure  provides  a  packaging  article.    In  an  embodiment,  the   packaging article  includes a body having a geometric  shape.   The body  is  composed of a  three‐dimensional  random  loop material  (3DRLM).   The 3DRLM  is composed of an olefin‐ based polymer.   A sleeve extends through an  interior portion of the body.   The sleeve has  opposing ends on respective opposing surfaces of the body.  The sleeve includes an opening  at each respective end on the respective opposing su rfaces of the body.  Each opening has a  closed width.   The packaging article  includes a product.   The product has an  insert shape,  the insert shape has an insert width that is greate r than or equal to the closed width of the  sleeve opening.   A portion of  the 3DRLM moves  from a neutral state  to a stretched state  when the product is inserted into the sleeve.  

1.  Body and 3D Loop Structure  

[0062] Referring to the drawings, and initially to FIG. 1, a packaging article is shown and  indicated generally by the reference numeral 10.  Th e packaging article 10 includes a body  12  having  a  geometric  shape,  the  body  being  composed  of  a  three‐dimensional  random  loop   material 14.   A “geometric shape,” as used herein,  is a three dimensional shape or a  three  dimensional  configuration  having  a  length,  a width,  and  a  height.    The  geometric  shape can be a regular three dimensional shape, an  irregular three dimensional shape, and  combinations  thereof.   Nonlimiting examples of  regular  three‐dimensional  shapes  include  cube, prism, sphere, cone, and cylinder.  The body  may be solid or hollow.  It is understood  that when the geometric shape of the body is a pri sm, the prism can have a cross‐sectional  shape that  is a regular polygon, or an  irregular polygon having three, four, five, six, seve n,  eight, nine, 10 or more sides.   

[0063] The body is composed of a three dimensional random  loop material 14.  A “three  dimensional random loop material” (or “3DRLM”) i s a mass or a structure of a multitude of   loops 16  formed by allowing  continuous  fibers 18,  to wind  to permit  respective  loops  to  come in contact with one another in a molten state and to be heat‐bonded at most of the  contact points 19.   Even when a great stress to cause significant defo rmation  is given, the  3DRLM 18 absorbs the stress with the entire net str ucture composed of three‐dimensional  random  loops melt‐integrated,  by  deforming  itself;  and  once  the  stress  is  lifted,  elastic  resilience  of  the  polymer manifests  itself  to  allow  recovery  to  the  original  shape  of  the  structure.   When a net structure composed of continuous fibers made from a known non‐ elastic polymer  is used as a cushioning material, plastic deformation   is developed and the  recovery  cannot  be  achieved,  thus  resulting  in  poor  heat‐resisting  durability.   When  the  fibers  are  not  melt‐bonded  at  contact  points,  the  shape  cannot  be  retained  and  the  structure does not  integrally change  its shape, with the result that a  fatigue phenomenon  occurs  due  to  the  concentration  of  stress,  thus  unbeneficially  degrading  durability  and  deformation  resistance.    In  certain  embodiments,  melt‐bonding  is  the  state  where  all  contact points are melt‐bonded.  

[0064] A nonlimiting method for producing 3DRLM 14 includes the steps of (a) heating a  molten olefin‐based polymer, at a temperature 10°C 140C°C higher than the melting point  of  the polymer  in a  typical melt‐extruder;  (b) discharging  the molten  interpolymer  to  the  downward direction from a nozzle with plural orifices  to form loops by allowing the fibers to  fall naturally.   The polymer may be used  in  combination with a  thermoplastic elastomer,  thermoplastic  non‐elastic  polymer  or  a  combination  thereof.    The  distance  between  the  nozzle surface and  take‐off conveyors  installed on a cooling unit  for solidifying  the  fibers,  melt viscosity of the polymer, diameter of orifice a nd the amount to be discharged are the  elements which  decide  loop  diameter  and  fineness  of  the  fibers.    Loops  are  formed  by  holding  and  allowing  the  delivered  molten  fibers  to  reside  between  a  pair  of  take‐off  conveyors  (belts,  or  rollers)  set  on  a  cooling  unit  (the  distance  therebetween  being  adjustable), bringing the loops thus formed into cont act with one another by adjusting the  distance between the orifices to this end such that the loops in contact are heat‐bonded as  they  form  a  three‐dimensional  random  loop  structure.    Then,  the  continuous  fibers,  wherein  contact  points  have  been  heat‐bonded  as  the  loops  form  a  three‐dimensional  random loop structure, are continuously taken into a cooling unit for solidification to give a  net structure.  Thereafter, the structure is cut int o a desired length and shape.  The method  is  characterized  in  that  the olefin‐based polymer  is melted  and heated  at  a  temperature  10°C‐140°C  higher  than  the  melting  point  of  the  interpolymer  and  delivered  to  the  downward  direction  in  a  molten  state  from  a  nozzle  having  plural  orifices.    When  the  polymer  is discharged at a  temperature  less  than 10°C higher  than  the melting point,  the  fiber delivered becomes  cool  and  less  fluidic  to  result  in  insufficient heat‐bonding of  the  contact points of fibers. 

[0065] Properties, such as, the loop diameter and fineness  of the fibers constituting the  cushioning  net  structure  provided  herein  depend  on  the  distance  between  the  nozzle  surface  and  the  take‐off  conveyor  installed  on  a  cooling  unit  for  solidifying  the  interpolymer, melt viscosity of the interpolymer, diam eter of orifice and the amount of the  interpolymer  to  be  delivered  therefrom.    For  example,  a  decreased  amount  of  the  interpolymer  to  be  delivered  and  a  lower melt  viscosity  upon  delivery  result  in  smaller  fineness  of  the  fibers  and  smaller  average  loop  diameter  of  the  random  loop.    On  the  contrary,  a  shortened  distance  between  the  nozzle  surface  and  the  take‐off  conveyor  installed  on  the  cooling  unit  for  solidifying  the  interpolymer  results  in  a  slightly  greater  fineness  of  the  fiber  and  a  greater  average  loop  diameter  of  the  random  loop.    These  conditions in combination afford the desirable finenes s of the continuous fibers of from 100  denier to 100000 denier and an average diameter of  the random loop of not more than 100  mm, or from 1 millimeter (mm), or 2 mm, or 10 mm to 25 mm, or 50 mm.  By adjusting the  distance to the aforementioned conveyor, the thickness  of the structure can be controlled  while the heat‐bonded net structure is in a molten  state and a structure having a desirable  thickness and flat surface formed by the conveyors c an be obtained.  Too great a conveyor  speed results  in failure to heat‐bond the contact points, since  cooling proceeds before the  heat‐bonding.  On the other hand, too slow a spee d can cause higher density resulting from  excessively long dwelling of the molten material.  I n some embodiments the distance to the  conveyor and the conveyor speed should be selected s uch that the desired apparent density  of 0.005‐0.1 g/cc or 0.01‐0.05 g/cc can be achie ved. 

[0066] In an embodiment, the 3DRLM 30 has, one, some, or  all of the properties (i) – (iii)  below: 

[0067] (i)  an apparent density from 0.016 g/cc, or 0.024 g/cc, or 0.032 g/cc to 0.040  g/cc, or 0.048 g/cc; and/or 

[0068] (ii)  a fiber diameter from 0.1 mm, or 0.5 mm, or 0.7 m m, or 1.0 mm, or 1.5 mm  to 2.0 mm to 2.5 mm, or 3.0 mm; and/or  

[0069] (iii)  a thickness (machine direction) from 1.0 cm, 2.0 cm,  or 3.0, cm, or 4.0 cm,  or 5.0 cm, or 10 cm, or 20 cm to 50 cm, or 75  cm, or 100 cm, or more.  It is understood that  the thickness of the 3DRLM 14 will vary based on t he type of product to be packaged.  

[0070] The 3DRLM 14  is formed  into a three dimensional geometric shape to form the   body 12.  The 3DRLM 14 is an elastic material whic h can be compressed and stretched and  return to its original geometric shape.  An “elast ic material,” as used herein, is a rubber‐like  material that can be compressed and/or stretched and which expands/retracts very rapidly  to approximately its original shape/length when the f orce exerting the compression and/or  the stretching  is released.   The three dimensional random  loop material 14 has a “neutral  state” when no  compressive  force and no  stretch  force  is  imparted upon  the 3DRLM 14.   The  three  dimensional  random  loop  material  14  has “a  compressed  state”  when  a  compressive  force  is  imparted upon  the 3DRLM 14.   The  three dimensional  random  loop  material 14 has “a stretched state” when a stret ching force is imparted upon the 3DRLM 14.   The  body  12  can  be  compressed  (compressed  state),  be  neutral  (neutral  state),  and  be  stretched (stretched state) in a similar manner.        

[0071] The  three  dimensional  random  loop material  14  is  composed  of  one  or more  olefin‐based  polymers.    The  olefin‐based  polymer  can  be  one  or  more  ethylene‐based  polymers, one or more propylene‐based polymers, and blends thereof.    

[0072] In  an embodiment,  the ethylene‐based polymer  is  an ethylene/α‐olefin polymer.   Ethylene/α‐olefin polymer may be a random ethylene/ α‐olefin polymer or an ethylene/α‐olefin  multi‐block polymer.  The α‐olefin is a C 3 ‐C 20  α‐olefin , or a C 4 ‐C 12  α‐olefin , or a C 4 ‐C 8  α‐olefin.   Nonlimiting  examples  of  suitable  α‐olefin  comonomer  include  propylene,  butene, methyl‐1‐ pentene,  hexene,  octene,  decene,  dodecene,  tetradecene,  hexadecene,  octadecene,  cyclohexyl‐1‐propene (allyl cyclohexane), vinyl cycl ohexane, and combinations thereof.   

[0073] In an embodiment,  the ethylene‐based polymer  is a homogeneously branched  random ethylene/α‐olefin copolymer.   

[0074] “Random  copolymer”  is  a  copolymer  wherein  the  at  least  two  different  monomers are arranged in a non‐uniform order.  The  term “random copolymer” specifically  excludes  block  copolymers.    The  term “homogeneous  ethylene  polymer”  as  used  to  describe  ethylene  polymers  is  used  in  the  conventional  sense  in  accordance  with  the  original  disclosure  by  Elston  in  U.S.  Pat.  No.  3,645,992,  the  disclosure  of  which  is  incorporated herein by reference, to refer to an eth ylene polymer in which the comonomer  is randomly distributed within a given polymer molecu le and wherein substantially all of the  polymer molecules have  substantially  the  same ethylene  to  comonomer molar  ratio.   As  defined herein, both substantially  linear ethylene polymers and homogeneously branched  linear ethylene are homogeneous ethylene polymers. 

[0075] The  homogeneously  branched  random  ethylene/α‐olefin  copolymer may  be  a  random  homogeneously  branched  linear  ethylene/α‐olefin  copolymer  or  a  random  homogeneously  branched  substantially  linear  ethylene/α‐olefin  copolymer.    The  term  “substantially  linear  ethylene/α‐olefin  copolymer”  means  that  the  polymer  backbone  is  substituted  with  from  0.01  long  chain  branches/1000  carbons  to  3  long  chain  branches/1000  carbons,  or  from  0.01  long  chain  branches/1000  carbons  to  1  long  chain  branches/1000  carbons,  or  from  0.05  long  chain  branches/1000  carbons  to  1  long  chain  branches/1000 carbons.  In contrast, the term “line ar ethylene/α‐olefin copolymer” means  that the polymer backbone has no long chain branchin g. 

[0076] The homogeneously branched  random ethylene/α‐olefin copolymers may have  the  same  ethylene/  α‐olefin  comonomer  ratio  within  all  copolymer  molecules.    The  homogeneity  of  the  copolymers  may  be  described  by  the  SCBDI  (Short  Chain  Branch  Distribution  Index) or CDBI  (Composition Distribution Branch  Index) and  is defined as  the  weight percent of the polymer molecules having a com onomer content within 50 percent of  the median  total molar comonomer content.   The CDBI of a polymer  is  readily calculated  from data obtained  from  techniques known  in  the art, such as,  for example,  temperature  rising  elution  fractionation  (abbreviated  herein  as  "TREF")  as  described  in  U.S.  Pat.  No.  4,798,081 (Hazlitt et al.), or in U.S. Pat. No. 5,0 89,321 (Chum et al.) the disclosures of all of  which  are  incorporated herein by  reference.    The  SCBDI or CDBI  for  the homogeneously  branched  random  ethylene/α‐olefin  copolymers  is  preferably  greater  than  about  30  percent, or greater than about 50 percent.

[0077] The homogeneously branched random ethylene/α‐olefin  copolymer may include  at least one ethylene comonomer and at least one C 3  ‐C 20  α‐olefin, or at least one C 4 ‐C 12  α‐ olefin  comonomer.    For  example  and  not  by way  of  limitation,  the  C 3 ‐C 20   α‐olefins may  include  but  are  not  limited  to  propylene,  isobutylene,  1‐butene,  1‐hexene,  4‐methyl‐1‐ pentene,  1‐heptene,  1‐octene,  1‐nonene,  and  1‐decene,  or,  in  some  embodiments,  1‐ butene, 1‐hexene, 4‐methyl‐1‐pentene and 1‐oct ene. [0078] The  homogeneously  branched  random  ethylene/α‐olefin  copolymer may  have  one, some, or all of the following properties (i)   (iii) below:

[0079] (i)  a melt index (1 2 ) from 1 g/10 min, or 5 g/10 min, or 10 g/1 0 min, or 20 g/10  min to 30 g/10 min, or 40 g/10 min, or 50 g/10 m in, and/or

[0080] (ii)  a density from 0.075 g/cc, or 0.880 g/cc, or 0.890 g/cc to 0.90 g/cc, or 0.91  g/cc, or 0.920 g/cc, or 0.925 g/cc; and/or

[0081] (iii)  a molecular weight distribution (Mw/Mn) from 2.0, or 2.5, or 3.0 to 3.5, or  4.0.

[0082] In an embodiment, the ethylene‐based polymer  is a heterogeneously branched  random ethylene/a‐olefin copolymer.  

[0083] The  heterogeneously  branched  random  ethylene/α‐olefin  copolymers  differ  from the homogeneously branched random ethylene/α‐ol efin copolymers primarily in their  branching distribution.   For example, heterogeneously branched random ethylene /α‐olefin  copolymers have a distribution of branching, including  a highly branched portion (similar to  a  very  low  density  polyethylene),  a  medium  branched  portion  (similar  to  a  medium  branched  polyethylene)  and  an  essentially  linear  portion  (similar  to  linear  homopolymer  polyethylene). 

[0084] Like  the  homogeneously  branched  random  ethylene/α‐olefin  copolymer,  the  heterogeneously branched  random ethylene/α‐olefin copolymer may  include at  least one  ethylene comonomer and at least one C 3 ‐C 20  α‐olefin comonomer, or at least one C 4 ‐C 12  α‐ olefin  comonomer.    For  example  and  not  by way  of  limitation,  the  C 3 ‐C 20   α‐olefins may  include  but  are  not  limited  to,  propylene,  isobutylene,  1‐butene,  1‐hexene,  4‐methyl‐1‐ pentene,  1‐heptene,  1‐octene,  1‐nonene,  and  1‐decene,  or,  in  some  embodiments,  1‐ butene,  1‐hexene,  4‐methyl‐1‐pentene  and  1‐octene.    In  one  embodiment,  the  heterogeneously branched ethylene/α‐olefin copolymer  may comprise greater  than about  50% by wt ethylene comonomer, or greater than about 60% by wt., or greater than about  70%  by  wt.    Similarly,  the  heterogeneously  branched  ethylene/α‐olefin  copolymer  may  comprise  less than about 50% by wt α‐olefin monomer, or  less than about 40% by wt., or  less than about 30% by wt.  [0085] The heterogeneously branched  random ethylene/α‐olefin  copolymer may have  one, some, or all of the following properties (i)   (iii) below: 

[0086] (i)  a density  from 0.900 g/cc, or 0.0910 g/cc, or 0.920 g/cc  to 0.930 g/cc, or  0.094 g/cc; 

[0087] (ii)  a melt index (I 2 ) from 1 g/10 min, or 5 g/10 min, or 10 g/1 0 min, or 20 g/10  min to 30 g/10 min, or 40 g/10 min, or 50 g/10 m in; and/or 

[0088] (iii)  an Mw/Mn from 3.0, or 3.5 to 4.0, or 4.5. 

[0089] In an embodiment, the 3DRLM 14  is composed of a blend of a homogeneously  branched  random  ethylene/α‐olefin  copolymer  and  a  heterogeneously  branched  ethylene/α‐olefin copolymer, the blend having one,  some, or all of the properties  (i) –  (v)  below: 

[0090] (i)  a Mw/Mn from 2.5, or 3.0 to 3.5, or 4.0, or 4.5;

[0091] (ii)  a melt index (I 2 ) from 3.0 g/10 min, or 4.0 g/10 min, or 5.0  g/10 min, or 10  g/10 min to 15 g/10 min, or 20 g/10 min, or 25 g /10 min; 

[0092] (iii)  a density  from 0.895  g/cc, or 0.900  g/cc, or 0.910  g/cc, or 0.915  g/cc  to  0.920 g/cc, or 0.925 g/cc; and or 

[0093] (iv)  an  I 10 /I 2  ratio  from 5 g/10 min, or 7 g/10 min  to 10 g/10 min, or 15 g/10  min; and/or 

[0094] (v)  a percent crystallinity from 25%, or 30%, or 35%, o r 40% to 45%, or 50%, or  55%. 

[0095] According  to  Crystallization  Elution  Fractionation  (CEF),  the  ethylene/α‐olefin  copolymer blend may have a weight fraction  in a temperature zone from 90°C to 115°C or  about 5% to about 15% by wt., or about 6% to abou t 12%, or about 8% to about 12%, or  greater  than  about  8%,  or  greater  than  about  9%.    Additionally,  as  detailed  below,  the  copolymer blend may have a Comonomer Distribution Con stant (CDC) of at least about 100,  or at least about 110. 

[0096] The present ethylene/α‐olefin copolymer blend may h ave at  least two, or three  melting  peaks  when  measured  using  Differential  Scanning  Calorimetry  (DSC)  below  a  temperature  of  130°C.    In  one  or more  embodiments,  the  ethylene/α‐olefin  copolymer  blend may include a highest temperature melting peak of at least 115°C, or at least 120°C,  or  from  about 120°C  to  about 125°C, or  from  about  from 122  to  about 124°C.   Without  being  bound  by  theory,  the  heterogeneously  branched  ethylene/α‐olefin  copolymer  is  characterized by  two melting peaks,  and  the homogeneously branched ethylene/α‐olefin  copolymer  is characterized by one melting peak, thus making up  the three melting peaks.   Further without being bound by  theory,  it  is believed  that 3DRLM having an ethylene/α‐ olefin copolymer blend with a highest DSC melting pe ak of at least 115°C can demonstrate  effective  heat  resistance  when  subjected  to  high  temperature  sterilization  processes.   Specifically, heat and/or steam sterilization of a 3D RLM may degrade the structural integrity  of a structure having a DSC highest melting peak be low 115°C (for example, via compression  of  the  structure),  whereas  3DRLM  having  an  ethylene/α‐olefin  copolymer  blend  with  a  highest DSC melting peak of at least 115°C can be heat resistant and retain their structure.   Further, the ethylene/α‐olefin copolymer blend may  have an enthalpy of fusion value ΔH of  at least 120 J/g, or at least 125 J/g when measure d via DSC. 

[0097] Additionally,  the ethylene/α‐olefin  copolymer blend may  comprise  from about  10 to about 90% by weight, or about 30 to about 7 0% by weight, or about 40 to about 60%  by  weight  of  the  homogeneously  branched  ethylene/α‐olefin  copolymer.    Similarly,  the  ethylene/α‐olefin copolymer blend may comprise  from about 10 to about 90% by weight,  about  30  to  about  70%  by  weight,  or  about  40  to  about  60%  by  weight  of  the  heterogeneously  branched  ethylene/α‐olefin  copolymer.    In  a  specific  embodiment,  the  ethylene/α‐olefin copolymer blend may comprise from about 50% to about 60% by weight  of the homogeneously branched ethylene/α‐olefin copo lymer, and 40% to about 50% of the  heterogeneously branched ethylene/α‐olefin copolymer.  

[0098] Moreover,  the  strength  of  the  ethylene/α‐olefin  copolymer  blend  may  be  characterized by one or more of the following metric s.  One such metric is elastic recovery.   Here, the ethylene/α‐olefin copolymer blend has an elastic recovery, Re,  in percent at 100  percent strain at 1 cycle of between 50‐80%.   Additional details regarding elastic recovery  are  provided  in  US  Patent  7,803,728,  which  is  incorporated  by  reference  herein  in  its  entirety.   [0099] The ethylene/α‐olefin copolymer blend may also be  characterized by its storage  modulus.   In some embodiments, the ethylene/α‐olefin copolym er blend may have a ratio  of storage modulus at 25° C, G′ (25° C.) to st orage modulus at 100° C, G′ (100° C.) of about 20 to about 60, or from about 20 to about 50, or about 30 to about 50, or about 30 to about  40.  

[00100] Moreover, the ethylene/α‐olefin copolymer blend may also be characterized by  a bending stiffness of at least about 1.15 Nmm at  6 s, or at least about 1.20 Nmm at 6 s, or  at least about 1.25 Nmm at 6 s, or at least about  1.35 Nmm at 6 s.  Without being bound by  theory,  it  is  believed  that  these  stiffness  values  demonstrate  how  the  ethylene/α‐olefin  copolymer  blend will  provide  cushioning  support  when  incorporated  into  3DRLM  fibers  bonded to form a cushioning net structure.  

[00101] In  an  embodiment,  the  ethylene‐based  polymer  is  an  ethylene/α‐olefin  interpolymer composition having one, some, or all of the following properties (i)‐(v) below:  

[00102] (i)   a highest DSC temperature melting peak from 90.0°C  to 115.0°C; and/or 

[00103] (ii)   a zero shear viscosity ratio (ZSVR) from 1.40 to 2. 10; and/or 

[00104] (iii)    a density in the range of from 0.860 to 0.925 g/cc ; and/or 

[00105] (iv)   a melt index (I 2 ) from 1 g/10 min to 25 g/10 min; and/or 

[00106] (v)   a molecular weight distribution (Mw/Mn) in the range of from 2.0 to 4.5. 

[00107] In  an  embodiment,  the  ethylene‐based  polymer  contains  a  functionalized  commoner such as an ester.   The functionalized comonomer can be an acetate comm oner  oran acrylate comonomer.   Nonlimiting examples of suitable ethylene‐based pol ymer with  functionalized  comonomer  include ethylene vinyl acetate  (EVA), ethylene methyl acrylate  EMA, ethylene ethyl acrylate (EEA), and any combinati on thereof.   

[00108] In an embodiment, the olefin‐based polymer is a pr opylene‐based polymer.  The  propylene‐based  polymer  can  be  a  propylene  homopolymer  or  a  propylene/α‐olefin  polymer.     The α‐olefin  is a C 2  α‐olefin  (ethylene) or a C 4 ‐C 12  α‐olefin  , or a C 4 ‐C 8  α‐olefin.   Nonlimiting examples of suitable α‐olefin comonomer include ethylene, butene, methyl‐1‐ pentene,  hexene,  octene,  decene,  dodecene,  tetradecene,  hexadecene,  octadecene,  cyclohexyl‐1‐propene (allyl cyclohexane), vinyl cycl ohexane, and combinations thereof.  [00109] In an embodiment, the propylene interpolymer includes from 82 wt% to 99 wt%  units derived from propylene and from 18 wt% to 1  wt% units derived from ethylene,  having one, some, or all of the properties (i) – (vi) below: 

[00110]  (i)  a density of from 0.840 g/cc, or 0.850 g/cc to 0.9 00 g/cc; and/or 

[00111] (ii)  a highest DSC melting peak temperature from 50.0°C  to 120.0°C; and/or 

[00112] (iii)  a melt flow rate from 1 g/10 min, or 2 g/10 min  to 50 g/10 min, or 100 g/10  min; and/or 

[00113] (iv)  a Mw/Mn of less than 4; and/or 

[00114] (v)  a percent crystallinity in the range of from 0.5 % to 45%; and/or  

[00115] (vi)  a DSC crystallization onset temperature, Tc‐Onset, o f less than 85°C. 

[00116] In  an  embodiment,  the  olefin‐based  polymer  used  in  the manufacture  of  the  3DRLM  14  contains  one  or  more  optional  additives.    Nonlimiting  examples  of  suitable  additives  include  stabilizer,  antimicrobial  agent,  antifungal  agent,  antioxidant,  processing  aid,  ultraviolet  (UV)  stabilizer,  slip  additive,  antiblocking  agent,  color  pigment  or  dyes,  antistatic agent, filler, flame retardant, and any co mbination thereof.  

2.  Sleeve 

[00117] The  body  12  has  a  sleeve  20.    A “sleeve,”  as  used  herein,  is  an  orifice  that  extends through the  interior of the body, the sleeve having a first end  on a first surface of  the body and an opposing  second end on an opposing  second  surface of  the body.   The  sleeve  is a channel  formed through the surrounding 3DRLM 14  for receiving, holding, and  supporting an object within the body interior.  FIGS . 1‐3 show the sleeve 20 has a first end  21a with an opening 22.   The sleeve 20 has a second end 21b with an openi ng   23.   The  openings 22,23 provide  ingress  and egress  into/from  the  sleeve.   Each opening 22, 23  is  located on an outer surface, or on an outermost sur face, of the body 12. 

[00118] The  opening  (and/or  the  sleeve)  can  be  formed  in  the  body  during  the  fabrication of  the 3DRLM.   Alternatively,  the opening  (and/or  the  sleeve)  can be  formed  post‐fabrication by cutting a slit into the body w ith a blade member or other cutting device.   In this way, the opening (sleeve) can be a slit, f ormed by cutting the 3DRLM 14 with a blade,  such as an electric knife, for example.     [00119] Each opening 22, 23 has a closed width.  A “clos ed width,” as used herein, is the  width of the opening  (sleeve) when the three dimensional random  loop material  is  in the  neutral state.  FIGS. 1‐3 show openings 22, 23 ea ch having a closed width, the closed width  having a distance of W1.    

[00120] The packaging article 10  includes a product.   A “product,” as used herein,  is a  tangible object with a mass of at  least one gram and having three dimensions—namely,  a  length, a width, and a height.  Nonlimiting examples  of suitable products include consumer  electronics  products,  household  goods,  medical  products,  comestibles,  and  any  combination thereof.  

[00121] Nonlimiting  examples  of  suitable  consumer  electronics  products  include  computer  disk  drives,  computer  input  and  output  (I/O)  devices,  such  as  a  keyboard,  a  mouse;  speakers;  video  display/monitor;  computer;  laptop  computer;  tablet  computer;  cellphone;  smartphone;  camera;  handheld  computing  device;  television;  audio  device;  computer printer; 3‐D printer; wearable technology;  drone; virtual reality equipment; video  game equipment; media device; accessories such as pow er cord and power pack; and any  combination thereof. 

[00122] Nonlimiting  examples  of  suitable  household  goods  include  cutlery,  glassware,  glass picture frames, dishware, small appliances (hair  dryer, microwave oven, toaster, food  processing device, blender),  light bulbs, hardware such as screwdrivers and hammer s, and  decorative items such as candle holders or vases, an d any combination thereof. 

[00123] Nonlimiting  examples  of  suitable  medical  products  include  vials,  ampules,  syringes,  intravenous  (IV)  bags, medical  devices  used  in  surgical  suites  including  trocars,  forceps,  clamps,  retractors,  endoscopes,  staplers,  specula,  drills,  and  any  combination  thereof. 

[00124] Nonlimiting examples of suitable comestibles  include produce such as fruit and  vegetables.   Nonlimiting examples of  suitable  fruit and vegetables  include apple; apricot;  artichoke;  asparagus;  avocado;  banana;  beans;  beets;  bell  peppers;  blackberries;  blueberries;  bok  choy;  boniato;  boysenberries;  broccoli;  Brussel  sprouts;  cabbage;  cantaloupe;  carambola;  carrots;  cauliflower;  celery;  chayote;  cherimoya;  cherries;  citrus;  clementines;  collard  greens;  coconuts;  corn;  cranberries;  cucumber;  dates;  dragon  fruits;  durian;  eggplant;  endive;  escarole;  feijoa;  fennel;  figs;  garlic;  gooseberries;  grapefruit;  grapes; green beans; green onions; greens (turnip, be et, collard, mustard); guava; horminy;  honeydew melon; horned melon; lettuce (iceberg, leaf  and romaine); jackfruit; jicama; kale,  kiwifruit;  kohirabi;  kumquat;  leeks;  lemons;  lettuce;  lima  beans;  limes;  longan;  loquat;  lychee;  mandarins;  malanga;  mandarin  oranges;  mangos;  mangosteen;  mulberries;  mushrooms;  mustard  greens;  napa;  nectarines;  okra;  onion;  oranges;  papayas;  parsnip;  passion  fruit; peaches; pears; peas; peppers  (bell – red, yellow, green, chili); persimmons;  pineapple;  plantains;  plums;  pomegranate;  potatoes;  prickly  pear;  prunes;  pummel;  pumpkin; quince; radicchio; radishes; raisins; rambutan ; raspberries; red cabbage; rhubarb;  romaine lettuce; rutabaga; shallots; snap peas; snow  peas; spinach; sprouts; squash (acorn,  banana,  buttercup,  butternut,  hubbard,  summer);  strawberries;  starfruit;  string  beans;  stone  fruits;  sweet  potato;  tamarind;  tomatoes,  tangelo;  tangerines;  tomatilio;  tomato;  turnip;  ugli  fruit;  water  chestnuts;  waxed  beans;  yams;  yellow  squash;  yucca/cassava;  zucchini; and any combination thereof. 

3.  Insert width 

[00125] Each  opening  is  located  on  a  surface  of  the  body  as  disclosed  above  and  hereafter  is  referred  to as “an opening  surface.”     The product has an  insert  shape.   The  “insert  shape,”  as  used  herein,  is  the  cross  sectional  shape  of  the  product,  when  the  product  is being  inserted  into  the sleeve 20.   The  insert shape has a width, hereafter  the  “insert width,” that is (i) greater than or equa l to the closed width of the sleeve 20 and (ii) i s  less than the width of the opening surface 30, as  shown in FIG. 1 and in FIG. 3.  A portion of  the  3DRLM  14 moves  from  a  neutral  state  to  a  stretched  state when  the  product  24  is  inserted into the pocket 20 as shown in FIG. 2. 

[00126] In  an  embodiment,  FIGS.  1‐3  show  the  product  as  a  consumer  electronics  product, such as a laptop computer 24, for example.  The laptop computer 24 has an insert  shape  26  that  is  a  rectangle,  (cross  section  of  the  laptop  computer  when  computer  is  inserted  into opening 22).   The  insert shape 26 has an  insert width W c  shown  in FIGS. 1‐3.   The  insert width W c  of the  laptop computer 24  is greater than the closed width W1 of the  sleeve 20.  As the laptop computer 24 is inserted  into the sleeve 20, the laptop computer 24  stretches the 3DRLM 14 and extends the  length of the opening 22 from the closed width,  W1 to the insert width W c .  

[00127] The “closed height”  is  the height of  the opening 22  (and/or opening 23) when  the 3DRLM 14 is in the neutral state.  In an embo diment, the insert shape 26 has a height,  hereafter the “insert height,” that is (i) greate r than or equal to the closed height, h1, of the  sleeve 20 and (ii) is less than height 32 of the  opening surface 28 shown in FIG. 1 and FIG. 3.   In a  further embodiment, the product 24 has an  insert height, h c , that  is greater than the  closed height, h1, of the opening 22 and/or the ope ning 23.    

[00128] A portion of the 3DRLM 14 moves from a neutral sta te to a stretched state when  the product 24  is  inserted  into the sleeve 20 as shown  in FIG. 2.   FIG. 3 shows the  laptop  computer 24  fully residing  in  the sleeve 20.   The 3DRLM 14 stretches so  the width of  the  sleeve  20  expands  from  the  closed  width  W1  to  the  insert  width  W c ,  in  order  to  accommodate the product therein.   The  insert width W c   is greater than the closed width,  W1.  The 3DRLM 14 in contact with the product 24  stretches around the inserted product,  such  that  the 3DRLM 14    imparts an elastic and  compressive  contact on and around  the  laptop computer 24.  In this way, the 3DRLM 14 int imately contacts, or otherwise imparts a  squeezing  force,  around  opposing  sides,  or  around  two  sides,  or  around  three  sides,  or  around  four  sides,  or  around  five  sides,  or  around  six  sides  of  the  product  24,  (i.e.,  the  laptop  computer).    The  squeezing  force  of  the  stretched  state  3DRLM  14  around  the  product 24 in the sleeve 20 enables the body to ap ply a restraining force, or a holding force,  upon the product in the sleeve.   

[00129] The  opening may  or may  not  return  to  the  closed width  once  the  product  is  inserted into the sleeve.  In an embodiment, the op ening 22 and the opening 23 each return  to the closed width W1 once the product 24 is full y inserted into the sleeve 20, as shown in  FIG. 3.      

[00130] In an embodiment,  the  insert width W c   is  from 1.0, or 1.01, 1.05, or 1.07, or  1.10, or 1.15, or 1.2, to 1.3 , or 1.4, or 1.5 t imes greater than the closed width, W1 (width  measured in centimeters, cm).  For example, the prod uct can be a smartphone with a width  (i.e., insert width) of 6.4 cm (2.5 inches), a leng th of 14.0 cm (5.5 inches), and a perimeter of  40.0  cm.   The body has an opening with a  closed width of 6.0  cm.   The body also has a  length greater  than 14.0  cm  in order  to accommodate and  fully  receive  the  smartphone.   When the smartphone  is  inserted  into the closed width, the 3DRLM 14 of the body mo ves  to  a  stretched  state,  and  the width  of  the  opening  increases  to  the  insert width  of  the  smartphone, 6.4 cm.  The insert width (6.4 cm) of  the smartphone is 1.07 times greater than  the closed width (6.0 cm) of the opening.  

[00131] FIG. 3 shows the opening surface 28 has a width 30 .  In an embodiment, the  insert width W c  is from 0.4, or 0.5, or 0.6 to 0.7, or 0.8 , or 0.9 times the length of the width  30 of the opening surface 28. 

[00132] In an embodiment, the body is a prism with a regul ar polygonal shape.  The body  has a single, or one and only one, opening on a s ingle (or one and only one) surface. 

[00133] In an embodiment, the 3DRLM 14 forms a border area around a circumference  of the product 24. 

[00134] In an embodiment, the body 12 provides from 1.0 cm,  or 2.0 cm, or3.0 cm, or 4.0  cm, or 5.0 cm, or 6.0 cm, or 7.0 cm to 8.0 cm,  or 9.0 cm, or 10.0 cm, or 11.0 cm, or 12.0 cm,  or  13.0  cm,  or  14.0  cm  of  3DRLM  14  around  each  surface  of  the  product  24, when  the  product  is  fully  inserted  into  the pocket 20.    In  this way,  the body  is  cushion around  the  product and protects product 24 from damage due to  falls, drops, tips, and/or stacking of  the packaging article 10.     

[00135] FIGS. 6‐8  show an embodiment of  the present disclosure wherein a packaging  article 110  is provided.   The packaging article 110  includes a body 112 having a cylindrical  shape, or a substantially cylindrical shape.   The body 112  is composed of, or  is otherwise  formed from, a three‐dimensional random  loop material 114.   The 3DRLM 114 can be any  3DRLM as previously disclosed herein.   The 3DRLM 214 has  loops 116 and fibers 118.   The  3DRLM 114 is formed into a three dimensional shape  of the body 112, in this embodiment,  a cylinder.     

[00136] The body 112 has a pocket 120.   A “pocket,” as used herein,  is an enclosure  in  the  interior of  the body,  the pocket  formed by  the  surrounding 3DRLM 14  for  receiving,  holding, and supporting an object within the body in terior.  The pocket has a single opening  (or one and only one opening) for ingress and egres s into/from the enclosure.  The opening  is located on an outer surface, or on an outermost surface, of the body 112.   

[00137] In an embodiment, the pocket is a sleeve, whereby o ne of the sleeve ends has an  opening and  the opposing sleeve end  is closed, or otherwise has no opening.   The closed  sleeve end is composed of 3DRLM and is part of the  body.     

[00138] The pocket 120 has a  single opening 122  for  ingress and egress  into/from  the  pocket 120.    In an embodiment, the opening 122  is  located on a top outer surface of the  body 112 as shown in FIGS. 6‐8.  The top outer  surface is the opening surface 128.   

[00139] The opening 122 has a closed width, W 2 .  The product is a comestible, such as a  bottle 124 containing a liquid, such as a liquid be verage, for example.  The insert shape 126  of the bottle 124, from cross sectional view, is a circle.  The insert width, Wd, of the insert  shape 126 is the diameter of the circle, or the wi dth (diameter) of the insert shape (circle).   The insert width, Wd, is greater than the closed wi dth, W2, and the insert width, Wd, is less  than the width 130 of the opening surface 128.   

[00140] A portion of  the 3DRLM 114 surrounding  the bottle 124 moves  from a neutral  state  to a stretched state when  the bottle 124  is  inserted  into  the pocket 120.   The body  maintains its geometric shape of a cylinder when the  bottle 124 is completely inserted into  the pocket 120. 

[00141] FIGS. 9‐10 show an embodiment of the present discl osure wherein a packaging  article  210  is  provided.    The  packaging  article  210  includes  a  body  212  having  a  regular  geometric shape that is a rectangular prism.  The b ody 212 is composed of, or is otherwise  formed from, a three‐dimensional random  loop material 214.   The 3DRLM 214 can be any  3DRLM as previously disclosed herein.  The 3DRLM 214  is formed into a three dimensional  shape  to  form  the body 212.   The body 212 has a plurality of pockets 220a, 220 b, 220c,  220d, 220e, 220f.   

[00142] Each  pocket  220a‐220f  has  a  respective  opening  222a‐222f,  that  is  a  slit,  for  ingress and egress  into/from  the pockets 220a‐220f.   The openings 222a‐222f are  located  on the same  top outer surface of the body 212.  The top surface is the opening surface 228.     [00143] Each opening  222a‐222f has  a  respective  closed width, W3.    The product  is  a  food product, such as an egg 224.  The insert shap e 226 for each egg, from cross sectional  view,  is a  circle.   The  insert width, We,  for each egg  is  the diameter of  the  circle, or  the  width  (diameter)  of  the  insert  shape  (circle).    The  insert width, We,  is  greater  than  the  closed width, W3.      

[00144] A portion of  the 3DRLM 214  surrounding each egg 224 moves  from  a neutral  state to a stretched state when the eggs 224 are i nserted into respective pockets 120a‐120f.   The body 214 maintains its geometric shape of a rec tangular prism when the eggs 224 are  completely inserted into respective pockets 220a‐22f.  

[00145] When an egg is located in its respective pocket, th e elastic nature of the 3DRLM  214  enables  the  3DRLM  214  to  compressively  contact  all,  or  substantially  all,  the  outer  surface of each egg, cushioning the entire surface o f each egg and providing a holding force,  or grip, on each egg.   The elasticity of  the 3DRLM 214 advantageously holds  the eggs  in  place and reduces the risk of the eggs  inadvertently falling from the packaging article 210.   The elasticity of the 3DRLM 214 can be tailored to the product (eggs in this embodiment) by  adjusting the polymeric composition used to form the 3DRLM.  The polymeric composition  of the 3DRLM can be selected such that the elastici ty of the 3DRLM is sufficient to hold the  egg in the pocket with a gentle compressive force t hat avoids damaging or cracking the egg. 

[00146] In an embodiment, the body is a rectangular prism w ith the openings 220a‐220f  on a single surface (i.e., opening surface 228) of  the rectangular prism.  

[00147] In an embodiment,  FIGS. 9‐10  show  the packaging article  includes a  container  230.  The container 230 includes a top wall 231, a  bottom wall 232 and four sidewalls 234.   The walls 231‐234 form a compartment 236.  The to p wall 231 and/or the bottom wall 232  may or may not be attached to one or more sidewall s.  For example, the top wall 231 may  be  a  discrete  stand‐alone  component,  that  is  placed  on  the  sidewalls,  forming  a  closed  compartment (along with the bottom wall).  In an em bodiment, the top wall 231 is attached  by way of a hinge to one of the sidewalls (i.e.,  a fold between the top wall and the sidewall).  

[00148] FIGS.  9‐10  show  body  214  (with  the  product  224  (eggs))  placed  in  the  compartment  236.    The  container  230  is  an  outer  container  and  provides  additional  protection to the product.  Nonlimiting examples of  suitable material for the container 230  include  paper  product  (paper,  cardboard),  polymeric  material,  wood,  metal,  and  any  combination thereof. 

[00149] In  an  embodiment,  the packaging  article  210  passes  the drop  test  and/or  the  vibration test as measured in accordance with Interna tional Safe Transit Association(“ISTA”)  3A.  In a further embodiment, the product of the p ackaging article is a laptop computer and  the  packaging  article  passes  the  drop  test  and/or  the  vibration  test  as  measured  in  accordance ISTA 3A. 

[00150] ISTA Test procedure 3A is for packaged‐products wei ghing 150 lb. (70 kg) or less,  and  is a general simulation test for  individual packaged‐products shipped through a parcel   delivery system.  The 3A test is appropriate for fo ur different types of packages commonly  distributed  as  individual  packages,  either  by  air  or  ground.    The  types  include  standard,  small,  flat  and  elongated  packages.    The  3A  test  includes  an  optional  test  combining  Random Vibration under Low Pressure (simulated high a ltitude).  This tests the container’s  (whether primary package of  transport package) ability  to hold a  seal of  closure and  the  retention of contents (liquid, powder or gas) without  leaking. 

[00151] STANDARD packaged‐products  are defined  as  any packaged‐product  that does  not meet any of the definitions below for a small, flat, or elongated packaged‐product.   A  standard packaged‐product may be packages such as t raditional fiberboard cartons, as well  as plastic wooden or cylindrical containers. 

[00152] SMALL  packaged‐products  are  defined  as  any  packaged‐product  where  the:volume  is  less  than 13,000 cm3  (800  in 3 ),  longest dimension  is 350mm  (14in) or  less,  and weight is 4.5kg (10lb) or less. 

[00153] FLAT  packaged‐products  are  defined  as  any  packaged‐product  where  the  shortest dimension is 200mm (8in) or less, next long est dimension is four (4) or more times  larger than the shortest dimension, and volume is 13 ,000 cm 3  (800in 3 ) or greater. 

[00154] ELONGATED packaged‐products are defined as any packa ged‐product where the  longest dimension  is 900mm (36in) or greater, and both of the package s other dimensions  are each 2 percent or less of that of the longest dimension. 

Table 3: Test Sequence FLAT 

 

Table 4: Test Sequence ELONGATED 

 

[00155] The present disclosure provides another packaging arti cle.  FIGS. 11‐12 show an  embodiment wherein packaging article 310  includes a  container 312.   The  container 312   includes a top wall 320, a bottom wall 322, and si dewalls 324 extending between the top  wall and the bottom wall.  The walls 320‐324 form  a compartment 326.  The container 312  has four sidewalls 324 shown in FIGS. 11‐12.   

[00156] The top wall 320 and/or the bottom wall 322 may or  may not be attached to one  or  more  sidewalls.    For  example,  the  top  wall  320  may  be  a  discrete  stand‐alone  component, that is placed on the sidewalls, forming  a closed compartment (along with the  bottom wall).  In an embodiment, the top wall 320  is attached by way of a hinge to one of  the sidewalls (i.e., a fold between the top wall an d the sidewall) as shown in FIG. 11. 

[00157] The top wall and/or the bottom wall 320, 322 may c omprise one, two, or more  flaps attached to respective one, two, or more sidew alls.   

[00158] The  container  312  can  be  openable  from  the  top wall,  the  bottom wall,  or  a  sidewall.  In an embodiment, the container 12 is op enable by way of the top wall.  

[00159] The walls 320‐324 are made of a rigid material.  Nonlimiting examples of suitable  material  for  the walls  include cardboard, polymeric material, metal, wood,  fiberglass, and  any combination thereof.  In an embodiment, container  312 has top/bottom walls and four  sidewalls, the walls 320‐324 are made of a corruga ted cardboard. 

[00160] In an embodiment,  the container 312  is  selected  from a corrugated cardboard  shipping  box  (such  as  Federal  Express  (FedEx)  or United  Parcel  Service  (UPS)  corrugated  cardboard shipping box), or a roll end lock front c ontainer or a “RELF” container.  The RELF  container may or may not include dust flaps.   

[00161] The container 312 is openable and closable between a n open configuration and  a  closed  configuration.    An “open  configuration”  is  an  arrangement  of  the walls  which  allows access to the compartment.  A “closed confi guration” is an arrangement of the walls  preventing, or otherwise denying, access to the compa rtment.  When the container 312 is in  the closed configuration, the walls form a completely  enclosed compartment.  For example,  FIG.  11  shows  the  container  312  in  an  open  configuration  with  top  wall  retracted,  permitting  access  to  the  compartment 326.    FIG.  12  shows  a  cross‐sectional  view  of  container 312 in the closed configuration.    

[00162] The  packaging  article  310  includes  at  least  two  bodies,  each  body  being  a  geometric  shape  that  is an endcap 313, 315.   An “endcap,” as used herein,  is a prism of  3DRLM 314 having a pocket and a surface with an op ening for the pocket.   The endcap  is  dimensioned  to  have  opposing  sides  that  extend  and  contact  opposing  sidewalls  of  the  container when the endcap is placed in the compartme nt, while maintaining accessibility to  the pocket for insertion of the product.    [00163] Each endcap 313,315 is composed of a three‐dimensio nal random loop material  (3DRLM) 314 composed of an olefin‐based polymer as disclosed above.   Each endcap 313,  315 has a  respective pocket 321a, 321b  in an  interior portion of  the body.   Each pocket  321a, 321b has a respective opening 323a, 323b.  Ea ch opening 323a, 323b is located on a  respective opening surface 328a, 328b.  Each opening 323a, 323b has a closed width 330a,  330b.  A product 325 (such as a laptop computer in  FIGS. 11‐12, for example) has opposing  ends 332a, 332b.  In an embodiment, endcap 313 has the same, or substantially the same,  size and shape of endcap 315.   Each endcap 313, 315  is made of  the 3DRLM as disclosed  above. 

[00164] Each  product  end  332a,  332b  has  an  insert  shape.    In  FIGS.  11‐12,  the  insert  shape of for each product end 332a, 332b of the la ptop computer is a rectangle.  The insert  width  334a,  334b  for  respective  product  ends  332a,  332b  (rectangle)  of  the  laptop  computer is greater than the respective pocket closed  widths 330a, 330b.   

[00165] Endcaps 313, 315 are placed around  the product 325 by  inserting  the product  ends  332a,  332b  of  the  laptop  computer  (product  325)  into  respective  pocket  openings  323a, 323b.  For each endcap 313, 315, a portion o f (or all of) the 3DRLM 314 moves from a  neutral  state  to  a  stretched  state when  the  product  ends  332a,  332b  are  inserted  into  respective pocket openings 323a, 323b.  

[00166] The  endcap‐product‐endcap  assembly  is  subsequently  placed  into  the  compartment 326.    In  the compartment 326, endcap 313 contacts  the  front  sidewall and  extends to, and contacts, the opposing sidewall, name ly the rear sidewall.  Similarly, endcap  315 contacts the front sidewall and extends to, and contacts, the opposing rear sidewall.  In  the compartment 326, the endcaps 313, 315 are spaced  apart from each other and are  in  parallel relation to each other (or  in substantially parallel relation to each other).   In other  words,  the  endcaps  313,  315  are  parallel  to,  and  spaced  apart  from,  each  other  in  the  compartment 326.     

[00167] FIGS.  11‐12  show  the  endcaps  313,  315  oppose  each  other  when  in  the  compartment 326 so that opening 323a of the endcap  313 opposes, or otherwise faces, the  opening 323b of endcap 315.    [00168] In  an  embodiment,  the  endcap‐product‐endcap  assembly  has  a  height  that  is  greater than the depth of the compartment 326.   When the container 312  is  in the closed  configuration, the walls (top/bottom walls 320,322  in particular) compress the 3DRLM 314  of each endcap.  The endcaps 313, 315 support the  product 325, such that the product 325  (laptop  computer)  does  not  contact  any wall  of  the  container  312.    FIG.  12  shows  the  product 325 (laptop computer) extending from endcap 3 13 to endcap 315, the product 325  (laptop  computer)  suspended  below  the  top wall  320,  and  product  325  also  suspended  above  the bottom wall 322.   The 3DRLM 314 at  the closed end of each endcap 313, 315  prevents  the  product  ends  332a,  332b  from  contacting  any  of  the  walls.    When  the  container  312  is  in  the  closed  configuration,  the  3DRLM  314  of  each  endcap  313,  315  simultaneously experiences both  (i) a  stretched  state  (vis‐à‐vis product end  insertion  into  the pocket) and a compressed state  (compressive  force  imparted onto  the 3DRLM by  the  walls).  

[00169] In  an  embodiment,  the packaging  article  310  passes  the drop  test  and/or  the  vibration  test  as measured  in  accordance with  ISTA  3A.    In  a  further  embodiment,  the  product of the packaging article  is a  laptop computer and the packaging article passes the drop test and/or the vibration test as measured in  accordance with ISTA 3A.   

[00170] The present packaging article 10, 110, 210, 310 each  advantageously provides  one, some, or all of the following features (1) –  (5) provided below: 

[00171]  (1)  Energy  management –  the  body  (bodies)  composed  of  3DRLM  provides  resistance  and  protects  the  product  from  impact,  shock,  vibration,  or  compression  resistance  typically  experienced  by  a  packaging  article  during  handling  and  shipping  via  truck,  rail,  air,  etc.    The  present  packaging  article  provides  ease‐of‐use  to  package while  simultaneously  providing  higher  drop/impact  and/or  vibration  resistance,  yielding  a  conformed energy management packaging system.  

[00172] (2) Conformability – as the product  is  introduced  into the opening, the body of  3DRLM stretches and conforms around the product. 

[00173] (3)  Breathable  and  Hygenic –  the  body  composed  of  3DRLM  provides  the  packaging article with enhanced breathability, which  is advantageous for products such as  fresh  produce  which  may  contain  excess  moisture.    Because  of  3DRLM’s  open  loop  structure,  the body does not retain water and  therefore  the packaging article reduces, or  eliminates the risk of bacterial /fungal/mold growth  within the packaging article.  Low or no  risk of contamination vis‐à‐vis the packaging is particularly beneficial when the product is a  comestible such as fresh produce, for example.  

[00174] (4) Washable –  the body  is  readily washable and quickly drains and dries after  washing or wetting.    In addition, moisture or wetness does not detract  from  the 3DRM’s  ability to cushion and protect the product.  The bo dy composed of 3DRLM operates in wet  or dry conditions without loss of performance. 

[00175] (5) Reusable – The body composed of 3DRLM is reus able and/or recyclable which  is  advantageous  over  packaging  material  composed  of  polyurethane  foam,  crosslinked  foams, and/or polystyrene foams, for example.   

[00176] By way of example, and not  limitation, examples of  the present disclosure are  provided. 

EXAMPLES 

Example 1 

[00177] Ends  (product ends) of a  laptop computer  (laptop) are  inserted  into pockets of  two  respective  endcaps  composed  of  3DRLM,  as  shown  in  FIGS.  11‐12.    3DRLM  has  an  apparent density of 0.3 g/cc and is formed from a  linear low density polyethylene (LLDPE).   The  laptop ends  stretch each pocket  closed width  to  the  insert width of each  respective  laptop  end.    The  endcap‐laptop‐endcap  assembly  is  placed  in  a  FedEx  Large  Box  having  inside dimensions 17.88" x 12.38" x 3" (45.40 cm x 31.43 cm x 7.62 cm).  The endcap‐laptop‐ endcap assembly has a height that is greater than t he height of the FedEx Large Box, i.e., a  height greater than 7.62 cm.  The FedEx Large Box  is sealed closed, compressing the 3DRLM  of  each  endcap  and  forming  the  packaging  article.  The  sealed  FedEx  Large  Box  is  subsequently  subjected  to  the  drop  test  protocol  and  the  vibration  test  protocol  in  accordance with  ISTA  3A.   After  the  ISTA  3A  testing  the  FedEx  Large  Box  is  opened  the  laptop computer is removed and the endcaps removed f rom the laptop.  Manual inspection  finds no visual damage to the laptop.  The laptop  is powered on and tested for operational  damage and defects.   The  laptop performs all normal and expected and functions  as does  the same type of  laptop that  is not subjected to the  ISTA 3A testing protocol.   With these  results and delivery of a fully operational laptop,  the packaging article is certified as passing  (i) the ISTA 3A drop test and (ii) the ISTA 3A vi bration test. 

[00178] Materials used in the examples are provided in Table  5 below. 

Table 5: Material Properties 

 

[00179] Simulation  of  package  shipping.  The  simulation  of  package  shipping  is  measured  in accordance with  ISTA 3A 2008  for  flat‐packaged products.  ISTA 3A 2008  is a  three‐part  test.  The  first  part  is  a  drop  test,  performed  in  accordance with  ISO  2248  or  ASTM D 5276. The  first drop test  is a series of 9 drops to simulate  loading condition. The  second part of the ISTA 3A 2008 test  is a vibration test, performed  in accordance with the  apparatus section of ISO 13355 or ASTM D 4728. The second part is an intermediate test to  simulate transportation. The third part of the ISTA  3A 2008  is a second drop test, that  is a  series of 8 drop tests. The second drop test simula tes unloading condition.  

[00180] A  control  sample  for  a  packaging  article  is  prepared.  The  control  sample  includes a container, a laptop computer, and packagin g material. The container is a Federal  Express Large Box with dimensions of 31.45cm (12⅜ ) x 7.62cm (3”) x 44.45 cm (17½”). The  laptop  computer  is a Hewlett Packard Chromebook. The packaging materi al  includes  two  opposing endcaps made of EPE foam (as described in  Table 1) with slits to receive opposing  ends  of  the  laptop  computer.  Each  endcap  is  24.8cm  (9¾”)  long,  6.5cm  (2½”) wide,  and  6.5cm (2½”) deep at maximum depth. A top plan vi ew of the control sample is shown in FIG.  14.

[00181] For the control sample, the container has a top wal l and a bottom wall, with  four  sidewalls  extending  between  the  top wall  and  the  bottom wall.  The walls  define  a  compartment.  In  the  compartment  are  the  two  separate  endcaps  of  EPE  foam.  The  opposing endcaps hold  the  laptop at  its ends. Each endcap has a shape of a capital  letter  “E”, as shown  in FIG. 14. Each endcap has a slit  (21.0cm, 8¼”  long, 2.6cm, 1” wide) along  one of the  long sides, the slit receiving a respective end of  the  laptop computer. A smaller  third piece of EPE foam is positioned between the l aptop computer and a sidewall as shown  in FIG. 14. The third piece of EPE foam has the s hape of a rectangular prism, and has a pair  of opposing parallel short sides and a pair of oppo sing parallel long sides. The pair of short  sides is perpendicular to the pair of long sides. T he third piece of EPE foam has a slit (7.7cm,  3”  long, 2.6cm, 1” wide) along one of  the  long  sides  for  receiving an edge of  the  laptop  computer. 

[00182] Inventive Example 2  (henceforth,  Inventive Package 2)  is a packaging article,  including the same, or substantially the same, elemen ts of packaging article 10 as set forth  in FIGS. 1‐5.  Inventive Package 2  includes a container  that  is a Federal Express Large Box,  which  has  dimensions  of  31.45cm  (12⅜”)  long  by  44.45  cm  (17½”) wide  by  7.62cm  (3”)  deep. The container has a top wall and a bottom wa ll. Four sidewalls extend between the  top wall and bottom wall, the walls defining a comp artment. A body of a three‐dimensional  random  loop material  (3DRLM,  described  in  Table  5),  composed  of  the  ethylene/octene  copolymer of  Table  5,  is  a  sleeve having  a  shape  of  a  rectangular  prism.  The  sleeve  has  opposing ends on respective opposing surfaces of the body. The sleeve extends through an  interior portion of the body. The dimensions for the  single sleeve of 3DRLM  in the neutral  state are 31.45cm (12⅜”) long by 44.45 cm (17½ ) wide by 7.62cm (3”) deep. The sleeve of  Inventive  Package  2  also  includes  a Hewlett  Packard  Chromebook  laptop  computer.  The  laptop computer has a width that is greater than th e closed width of the sleeve opening. A  portion  of  the  3DRLM moves  from  a  neutral  state  to  a  stretched  state when  the  laptop  computer is inserted into the sleeve opening. The bo dy of 3DRLM and the laptop computer  are located together in the compartment. The body has a shape of a rectangular prism and  maintains its original geometrical shape when the lap top computer is located in the sleeve.  The  sleeve opening  stretches  from  the  closed width  to  the  insert width when  the  laptop  computer  is  inserted  into  the  sleeve.  The  3DRLM  compressively  engages  at  least  two  opposing  surfaces  of  the  laptop  computer.  The  body  forms  a  border  area  around  a  circumference of  the  laptop  computer. The body provides 3.0cm of 3DRLM  around each  side of the laptop computer. 

[00183] Inventive Example 3  (henceforth,  Inventive Package 3)  is a packaging article,  including the same, or substantially the same, elemen ts of packaging article 310 as set forth  in FIGS. 11‐12. Inventive Package 3 includes a con tainer, that is a Federal Express Large box,  which  has  dimensions  of  31.45cm  (12⅜”)  long  by  44.45  cm  (17½”) wide  by  7.62cm  (3”)  deep.  The  container  has  a  top  wall  and  a  bottom  wall,  with  four  sidewalls  extending  between  the  top wall and  the bottom wall. The walls define a  compartment.    Inside  the  container are at  least two bodies. Each body  is an endcap having a shape of a rectangular  prism.  Each  endcap  is  composed  of  a  three‐dimensional  random  loop material  (3DRLM)  composed of  the ethylene/octene copolymer of Table 5. Each endcap  has a pocket  in an  interior portion of the body, with each pocket havin g an opening. Each opening has a closed  width. A Hewlett Packard Chromebook  laptop computer, having opposing ends  that each  have an insert shape, the insert shape having an in sert width that is greater than or equal to  the  closed width of  the pocket opening. A portion of  the 3DRLM of each endcap moves  from a neutral state to a stretched state when an  end of a laptop computer is inserted into  a respective pocket. The endcaps are spaced apart an d in parallel relation to each other in  the compartment. The endcap‐laptop‐endcap assembly  has a height that is greater than the  height of the Federal Express Large Box,  i.e., a height greater than 7.62 cm.   The endcap‐ laptop‐endcap assembly  is placed  in a Federal Express Large Box having  inside dimensions  45.40cm (17.88") by 31.43cm (12.38") by 7.62cm (3"). The FedEx Large Box is sealed closed,  compressing the 3DRLM of each endcap and forming the  packaging article.   Prior to being  compressed and placed  into the compartment, the dimensions for each endcap of 3DRLM  are 25.5cm (10”) long by 10.5cm (4⅛”) wide by 5.5cm (2 3 / 16 ”) deep. 

[00184] The  results of  ISTA 3A 2008  testing are provided  in Tables 6‐8 below. Fig. 13  indicates the package faces, edges, and corners used to describe the various orientations of  both the control sample and the Inventive Packages d uring ISTA 3A 2008 testing.  Table 6: Drop Tests 1‐9 (Loading Condition) 

Note: Pre‐existing crease noted prior to testing for control 

RESULTS 

[00185] After  ISTA  3A  2008  testing,  the  control  sample,  Inventive  Package  2,  and  Inventive Package 3 each is opened and the laptop c hecked for damage. No visible damage  to  the  laptop  computer  from  any  package  is  observed.  Each  laptop  computer  is  then  powered on, and operates normally with no errors or problems in computer applications. 

[00186] Inventive  Package  2  and  Inventive  Package  3  perform  the  same  as,  or  better  than, the control sample. Applicant discovered that,  for  Inventive Package 2 and  Inventive  Package 3, the 3DRLM protect the laptop computer fro m drop and vibration. The 3DRLM of  Inventive Package 2 expands to fill most, or all, o f the void volume of the container interior  to synergistically (i) hold the laptop computer in p lace, (ii) provide drop, shock and vibration  protection during shipping and handling,  (iii) with a  lightweight material  (i.e.,  the 3DRLM)  that  is more  flexible  than  rigid EPE  foam endcaps.  Inventive Package 3  also  (i) holds  the  laptop computer in place, (ii) provides drop, shock  and vibration protection during shipping  and handling,  (iii) with a  lightweight material  (i.e.,  the 3DRLM)  that  is more  flexible  than  rigid EPE foam endcaps. 

[00187] The 3DRLM  from  Inventive Package 2 and  Inventive Package 3 advantageously  provide good resilience and breathability. The opposin g 3DRLM endcaps and single sleeve  of 3DRLM provide balanced and even pressure distribut ion within the container interior for  drop/vibration protection along the entire body of th e laptop computer. In addition, use of  the 3DRLM allows for a reduced carbon footprint due to the elimination of foam packaging  material  that  requires  blowing  agents  during  foam  manufacturing.  Hence,  the  3DRLM  provides  an  environmentally‐friendly  option  for  packaging  material  production.  Furthermore, the 3DRLM is a fully recyclable material .  

[00188]   It  is  specifically  intended  that  the present disclosure not be  limited  to  the  embodiments  and  illustrations  contained  herein,  but  include  modified  forms  of  those  embodiments  including  portions  of  the  embodiments  and  combinations  of  elements  of  different embodiments as come with the scope of the following claims.