Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
POLYURETHANE FOAMS BASED ON POLYETHERCARBONATE POLYOLS
Document Type and Number:
WIPO Patent Application WO/2021/204590
Kind Code:
A1
Abstract:
The invention relates to a process for preparing polyurethane foams by reacting the following components: A a polyol component, containing A1 40 to 100 parts by weight of polyethercarbonate polyol with a hydroxyl number according to DIN 53240-1 (June 2013) of 20 mg KOH/g to 120 mg KOH/g, which is obtainable by copolymerization of carbon dioxide and alkylene oxide in the presence of H-functional starter molecules, A2 0 to 60 parts by weight of polyether polyol with a hydroxyl number according to DIN 53240-1 (June 2013) of 20 mg KOH/g to 250 mg KOH/g, and an ethylene oxide content of 0 to 60 wt.%, wherein polyether polyol A2 is free of carbonate units; B B1 a catalyst, and B2 optionally auxiliary and additional substances; C water and/or physical blowing agents, with D di- and/or polyisocyanates, wherein the preparation occurs at a characteristic value of 90 to 120, characterized in that the preparation occurs in the presence of 0.01 to 10.00 parts by weight of a component K, in relation to the total of the parts by weight of the component A1 + A2 = 100 parts by weight, the component K being a zeolite having a one-dimensional system of channels.

Inventors:
KARAFILIDIS CHRISTOS (DE)
WEHLAU ANTJE (DE)
Application Number:
PCT/EP2021/058232
Publication Date:
October 14, 2021
Filing Date:
March 30, 2021
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
COVESTRO DEUTSCHLAND AG (DE)
International Classes:
C08G18/44; B01J20/16; C08G18/16; C08G18/18; C08G18/24; C08G18/76; C08J9/00; C08J9/12; C08K3/34; C08G101/00
Domestic Patent References:
WO2012130760A12012-10-04
WO2016097729A12016-06-23
WO2008013731A12008-01-31
WO1997040086A11997-10-30
WO1998016310A11998-04-23
WO2000047649A12000-08-17
Foreign References:
EP0496204A21992-07-29
EP3178858A12017-06-14
EP0222453A21987-05-20
EP3178858A12017-06-14
EP0496204A21992-07-29
EP1359177A12003-11-05
EP2115032A12009-11-11
US3404109A1968-10-01
US3829505A1974-08-13
US3941849A1976-03-02
US5158922A1992-10-27
US5470813A1995-11-28
EP0700949A21996-03-13
EP0743093A11996-11-20
EP0761708A21997-03-12
US4089835A1978-05-16
US4260530A1981-04-07
GB2072204A1981-09-30
DE3103757A11981-12-17
US4374209A1983-02-15
EP0176013A21986-04-02
EP0000389A11979-01-24
EP0007502A11980-02-06
EP0355000A11990-02-21
Other References:
CZAPLEWSKI K F ET AL: "One-dimensional zeolites as hydrocarbon traps", MICROPOROUS AND MESOPOROUS MATERIALS, ELSEVIER, AMSTERDAM, NL, vol. 56, no. 1, 24 September 2002 (2002-09-24), pages 55 - 64, XP004383896, ISSN: 1387-1811, DOI: 10.1016/S1387-1811(02)00441-9
INOUE ET AL.: "Copolymerization of Carbon Dioxide and Epoxide with Organometallic Compounds", DIE MAKROMOLEKULARE CHEMIE, vol. 130, 1969, pages 210 - 220, XP001018750, DOI: 10.1002/macp.1969.021300112
Attorney, Agent or Firm:
LEVPAT (DE)
Download PDF:
Claims:
Patentansprüche

1. Verfahren zur Herstellung von Polyurethanschaumstoffen durch Umsetzung der Komponenten A Polyolkomponente, enthaltend

Al 40 bis 100 Gew. -Teile Polyethercarbonatpolyol mit einer Hydroxylzahl gemäß DIN 53240-1 (Juni 2013) von 20 mg KOH/g bis 120 mg KOH/g, welches erhältlich ist durch Copolymerisation von Kohlendioxid und Alkylenoxid in Gegenwart H- funktioneller Startermoleküle,

A2 0 bis 60 Gew. -Teile Polyetherpolyol mit einer Hydroxylzahl gemäß DIN 53240-1 (Juni 2013) von 20 mg KOH/g bis 250 mg KOH/g und einem Gehalt an Ethylenoxid von 0 bis 60 Gew.-%, wobei Polyetherpolyol A2 frei von Carbonateinheiten ist,

B

B 1 Katalysator, und

B2 gegebenenfalls Hilfs- und Zusatzstoffe,

C Wasser und/oder physikalische Treibmittel, mit

D Di- und/oder Polyisocyanaten, wobei die Herstellung bei einer Kennzahl von 90 bis 120 erfolgt, dadurch gekennzeichnet, dass die Herstellung in Gegenwart von 0,01 bis 10,00 Gew. -Teile einer Komponente K erfolgt, bezogen auf die Summe der Gewichtsteile der Komponente Al + A2 = 100 Gewichtsteile, und die Komponente K ein Zeolith mit einem eindimensionalen System von Kanälen ist.

2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass die Komponente K ein orthorombisches Kristallsystem aufweist.

3. Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Kanäle des eindimensionalen Systems aus 10 bis 14 Tetraedern aufgebaut sind.

4. Verfahren gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Komponente K ein molares Verhältnis von [S1O2] / [AI2O3] von 4 bis 140, bevorzugt 6 bis 100 besonders bevorzugt von 8 bis 50 aufweist.

5. Verfahren gemäß Anspruch 4, dadurch gekennzeichnet, dass die Komponente K ein Mordenit ist.

6. Verfahren gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass Komponente A die folgende Zusammensetzung aufweist: Al 40 bis 100 Gew. -Teile Polyethercarbonatpolyol mit einer Hydroxylzahl gemäß DIN 53240- 1 (Juni 2013) von 20 mg KOH/g bis 120 mg KOH/g,

A2 0 bis 60 Gew. -Teile Polyetherpolyol mit einer Hydroxylzahl gemäß DIN 53240-1 (Juni 2013) von 20 mg KOH/g bis 250 mg KOH/g und einem Gehalt an Ethylenoxid von 0 bis 60 Gew.-%, wobei Polyetherpolyol A2 frei von Carbonateinheiten ist,

A3 0 bis 20 Gew. -Teile, bezogen auf die Summe der Gew. -Teile der Komponenten Al und A2, Polyetherpolyol mit einer Hydroxylzahl gemäß DIN 53240-1 (Juni 2013) 20 mg KOH/g bis 250 mg KOH/g, und einem Gehalt an Ethylenoxid von > 60 Gew.-%, wobei Polyetherpolyol A3 frei von Carbonateinheiten ist,

A4 0 bis 40 Gew. -Teile, bezogen auf die Summe der Gew. -Teile der Komponenten Al und A2, Polymerpolyol, PHD-Polyol und/oder PIPA-Polyol,

A5 0 bis 40 Gew. -Teile, bezogen auf die Summe der Gew. -Teile der Komponenten Al und A2, Polyol, welches nicht unter die Definition der Komponenten Al bis A4 fällt, wobei die Angabe der Gewichtsteile der Komponenten A3, A4 und A5 jeweils bezogen sind auf die Summe der Gewichtsteile der Komponenten Al + A2 = 100 Gewichtsteile.

7. Verfahren gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass Komponente A frei ist von Komponenten A3 und/oder A4.

8. Verfahren gemäß einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass Komponente A umfasst:

Al 65 bis 75 Gew. -Teile Polyethercarbonatpolyol mit einer Hydroxylzahl gemäß DIN 53240- 1 (Juni 2013) von 20 mg KOH/g bis 120 mg KOH/g, und A2 25 bis 35 Gew. -Teile Polyetherpolyol mit einer Hydroxylzahl gemäß DIN 53240-1 (Juni 2013) von 20 mg KOH/g bis 250 mg KOH/g und einem Gehalt an Ethylenoxid von 0 bis 60 Gew.-%, wobei Polyetherpolyol A2 frei von Carbonateinheiten ist.

9. Verfahren gemäß einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Polyethercarbonatpolyol Al einen C02-Gehalt von 15 bis 25 Gew.-% aufweist.

10. Verfahren gemäß einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass als Komponente B

B 1 Katalysator ausgewählt aus einem oder mehreren der folgenden Verbindungen a) aliphatische tertiäre Amine, cycloaliphatische tertiäre Amine, aliphatische Aminoether, cycloaliphatische Aminoether, aliphatische Amidine, cycloaliphatische Amidine, Harnstoff und Derivate des Harnstoffs und/oder b) Zinn(II)-Salze von Carbonsäuren, und B2 gegebenenfalls Hilfs- und Zusatzstoffe eingesetzt werden.

11. Verfahren gemäß einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass als Komponente B

B 1 Katalysator und

B2 gegebenenfalls Hilfs- und Zusatzstoffe eingesetzt werden, wobei als Komponente B 1

B 1.1 0,05 bis 1,50 Gew. -Teilen, bezogen auf die Summe der Gew. -Teile der Komponenten Al und A2, Harnstoff und/oder Derivate des Harnstoffs und B 1.2 0,03 bis 1,50 Gew. -Teilen, bezogen auf die Summe der Gew. -Teile der Komponenten Al und A2, anderer Katalysator als die der Komponente Bl.2, wobei der Gehalt an aminischen Katalysator in der Komponente Bl.2 maximal 50 Gew.-% bezogen auf Komponente B 1 betragen darf, eingesetzt wird.

12. Verfahren gemäß einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass Komponente K in einer Menge von 0,01 bis 8,00 Gew. -Teile (bezogen auf die Summe der Gewichtsteile der Komponenten Al + A2 = 100 Gewichtsteile) eingesetzt wird.

13. Polyurethanschaumstoffe, erhältlich durch ein Verfahren gemäß einem der Ansprüche 1 bis 12.

14. Polyurethanschaumstoffe gemäß Anspruch 13, wobei es sich um Polyurethan- Weichschaumstoffe handelt.

15. Verwendung der Polyurethanschaumstoffe gemäß Anspruch 13 oder 14 zur Herstellung von Möbelpolsterungen, Textileinlagen, Matratzen, Automobilsitze, Kopfstützen, Armlehnen, Schwämme, Schaumstofffolien zur Verwendung in Automobilteilen wie beispielsweise Dachhimmeln, Türseitenverkleidungen, Sitzauflagen und Bauelementen.

Description:
Polvurethanschaumstoffe basierend auf Polyethercarbonatpolyolen

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Polyurethanschaumstoffen, vorzugsweise von Polyurethanweichschaumstoffen, durch Reaktion einer Isocyanat-Komponente mit einer gegenüber Isocyanaten reaktiven Komponente, die mindestens ein Polyethercarbonatpolyol umfasst, und wobei die Umsetzung in Gegenwart einer Komponente K erfolgt, die im weiteren näher beschrieben wird. Die Erfindung betrifft weiterhin durch das erfindungsgemäße Verfahren hergestellte Polyurethanschaumstoffe und deren Verwendung.

Im Rahmen einer umweltfreundlichen Ausrichtung von Produktionsprozessen ist es generell wünschenswert, CCE-basierte Ausgangsstoffe, beispielsweise in Form von Polyethercarbonatpolyolen, in relativ großen Mengen einzusetzen. Die Herstellung von Polyethercarbonatpolyolen durch katalytische Umsetzung von Alkylenoxiden (Epoxiden) und Kohlendioxid in Anwesenheit von H-funktionellen Starterverbindungen („Starter“) wird seit mehr als 40 Jahren intensiv untersucht (z. B. Inoue et al, Copolymerization of Carbon Dioxide and Epoxide with Organometallic Compounds; Die Makromolekulare Chemie 130, 210-220, 1969). Diese Reaktion ist in Schema (I) schematisch dargestellt, wobei R für einen organischen Rest wie Alkyl, Alkylaryl oder Aryl steht, der jeweils auch Heteroatome wie beispielsweise O, S, Si usw. enthalten kann, und wobei e, f und g für eine ganzzahlige Zahl stehen, und wobei das hier im Schema (I) gezeigte Produkt für das Polyethercarbonatpolyol lediglich so verstanden werden soll, dass sich Blöcke mit der gezeigten Struktur im erhaltenen Polyethercarbonatpolyol prinzipiell wiederfinden können, die Reihenfolge, Anzahl und Länge der Blöcke sowie die OH-Funktionalität des Starters aber variieren kann und nicht auf das in Schema (I) gezeigte Polyethercarbonatpolyol beschränkt ist. Diese Reaktion (siehe Schema (I)) ist ökologisch sehr vorteilhaft, da diese Reaktion die Umsetzung eines Treibhausgases wie CO2 zu einem Polymer darstellt. Als weiteres Produkt, eigentlich Nebenprodukt, entsteht das in Schema (I) gezeigte cyclische Carbonat (beispielsweise für R = CH3 Propylencarbonat, im Folgenden auch als cPC bezeichnet, oder für R = H Ethylencarbonat, im Folgenden auch als cEC bezeichnet).

Starter- + (e+g) C0 2

Die Herstellung von Polyurethanschaumstoffen auf Basis von Polyethercarbonatpolyolen und Isocyanaten ist bekannt (z.B. WO 2012/130760 Al, EP-A 0222453). Es wurde festgestellt, dass bei der Verwendung von Polyethercarbonatpolyolen zur Herstellung von Polyurethanschaumstoffen die resultierenden Produkte cyclisches Propylencarbonat enthalten, welches beispielsweise durch Emissionsmessungen am Polyurethanweichschaumstoff nachgewiesen werden kann.

In WO 2016/097729 Al wird beschrieben, dass durch den Einsatz von Estern von ein- oder mehrbasigen Carbonsäuren, deren (erste) Dissoziation einen pKs-Wert von 0,5 bis 4,0 aufweist, als Additive beim Verschäumen von Polyurethanschäumen eine Verringerung der Emission von cyclischem Propylencarbonat beobachtet werden kann.

EP 3 178 858 Al offenbart ein Verfahren zur Herstellung von Polyurethanweichschaumstoffen, bei dem der Einsatz von Zinn-Salzen enthaltend ein langkettiges Carbonsäuresalz zu einer Verringerung der Anteile von cyclischem Propylencarbonat in den Polyurethanweichschaumstoffen führt.

EP 0 496 204 A2 offenbart die Verwendung von Zeolithen als Füllstoffe bei der Herstellung von Polyurethan-Elastomeren enthaltend Polyetherpolycarbonatdiole. Die Polyetherpolycarbonatdiole in EP 0496204 A2 werden durch Polykondensation von Diolen mit Phosgen, Diphenlycarbonat oder Dialkylcarbonaten mit Ci- bis CrAlkylgruppen hergestellt. Die Polyetherpolycarbonatpolyole aus EP 0496204 A2 unterscheiden sich somit strukturell von Polyethercarbonatpolyolen.

Die Aufgabe der vorliegenden Erfindung bestand darin, ein Verfahren zur Herstellung von Polyurethanschaumstoffen bereitzustellen, welches zu Polyurethanschaumstoffen mit einer reduzierten Emission von cyclischem Propylencarbonat führt.

Überraschenderweise wurde diese Aufgabe gelöst durch ein

Verfahren zur Herstellung von Polyurethanschaumstoffen durch Umsetzung der Komponenten A Polyolkomponente, enthaltend

Al 40 bis 100 Gew. -Teile Polyethercarbonatpolyol mit einer Hydroxylzahl gemäß DIN 53240-1 (Juni 2013) von 20 mg KOH/g bis 120 mg KOH/g, welches erhältlich ist durch Copolymerisation von Kohlendioxid und Alkylenoxid in Gegenwart H- funktioneller Startermoleküle,

A2 0 bis 60 Gew. -Teile Polyetherpolyol mit einer Hydroxylzahl gemäß DIN 53240-1 (Juni 2013) von 20 mg KOH/g bis 250 mg KOH/g und einem Gehalt an Ethylenoxid von 0 bis 60 Gew.-%, wobei Polyetherpolyol A2 frei von Carbonateinheiten ist,

B

B 1 Katalysator, und B2 gegebenenfalls Hilfs- und Zusatzstoffe,

C Wasser und/oder physikalische Treibmittel, mit

D Di- und/oder Polyisocyanaten, wobei die Herstellung bei einer Kennzahl von 90 bis 120 erfolgt, dadurch gekennzeichnet, dass die Herstellung in Gegenwart von 0,01 bis 10,00 Gew. -Teile einer Komponente K erfolgt, bezogen auf die Summe der Gewichtsteile der Komponente Al + A2 = 100 Gewichtsteile, und die Komponente K ein Zeolith mit einem eindimensionalen System von Kanälen ist. Bevorzugter Gegenstand der Erfindung ist ein Verfahren zur Herstellung von Polyurethanschaumstoffen, vorzugsweise von Polyurethanweichschaumstoffen, durch Umsetzung von

Al 40 bis 100 Gew. -Teile, bevorzugt 60 bis 100 Gew. -Teile, besonders bevorzugt 80 bis 100 Gew. -Teile eines oder mehrerer Polyethercarbonatpolyole mit einer Hydroxylzahl gemäß DIN 53240-1 (Juni 2013) von 20 mg KOH/g bis 120 mg KOH/g,

A2 0 bis 60 Gew. -Teile, bevorzugt 0 bis 40 Gew. -Teile, besonders bevorzugt 0 bis 20 Gew.- Teile eines oder mehrerer Polyetherpolyole mit einer Hydroxylzahl gemäß DIN 53240-1 (Juni 2013) von 20 mg KOH/g bis 250 mg KOH/g und einem Gehalt an Ethylenoxid von 0 bis 60 Gew.-%, wobei die Polyetherpolyole A2 frei von Carbonateinheiten sind,

A3 0 bis 20 Gew. -Teilen, bezogen auf die Summe der Gew. -Teile der Komponenten Al und A2, eines oder mehrerer Polyetherpolyole mit einer Hydroxylzahl gemäß DIN 53240-1 (Juni 2013) 20 mg KOH/g bis 250 mg KOH/g, und einem Gehalt an Ethylenoxid von > 60 Gew.-%, wobei die Polyetherpolyole A3 frei von Carbonateinheiten sind,

A4 0 bis 40 Gew. -Teilen, bezogen auf die Summe der Gew. -Teile der Komponenten Al und A2, eines oder mehrerer Polymerpolyole, PHD-Polyole und/oder PIPA-Polyole,

A5 0 bis 40 Gew. -Teilen, bezogen auf die Summe der Gew. -Teile der Komponenten Al und A2, Polyole, die nicht unter die Definition der Komponenten Al bis A4 fallen,

B

B 1 Katalysator, und

B2 gegebenenfalls Hilfs- und Zusatzstoffen C Wasser und/oder physikalischen Treibmitteln, mit

D Di und/oder Polyisocyanaten, wobei die Herstellung bei einer Kennzahl von 90 bis 120 erfolgt, und wobei die Herstellung bei einer Kennzahl von 90 bis 120 erfolgt, dadurch gekennzeichnet, dass die Herstellung in Gegenwart von 0,01 bis 10,00 Gew. -Teile einer Komponente K erfolgt, bezogen auf die Summe der Gewichtsteile der Komponente Al + A2 = 100 Gewichtsteile, und die Komponente K ein Zeolith mit einem eindimensionalen System von Kanälen ist.

Die Komponenten Al bis A5 beziehen sich jeweils auf „eine oder mehrere“ der genannten Verbindungen. Bei Verwendung mehrerer Verbindungen einer Komponente entspricht die Mengenangabe der Summe der Gewichtsteile der Verbindungen.

In einer besonders bevorzugten Ausführungsform enthält Komponente A

Al 65 bis 75 Gew. -Teile, höchst bevorzugt 68 bis 72 Gew. -Teile eines oder mehrerer Polyethercarbonatpolyole mit einer Hydroxylzahl gemäß DIN 53240-1 (Juni 2013) von 20 mg KOH/g bis 120 mg KOH/g sowie vorzugsweise einem CCE-Gehalt von 15 bis 25 Gew.- %, und

A2 25 bis 35 Gew. -Teile, höchst bevorzugt 28 bis 32 Gew. -Teile eines oder mehrerer Polyetherpolyole mit einer Hydroxylzahl gemäß DIN 53240-1 (Juni 2013) von 20 mg KOH/g bis 250 mg KOH/g und einem Gehalt an Ethylenoxid von 0 bis 60 Gew.-%, wobei die Polyetherpolyole A2 frei von Carbonateinheiten sind, wobei die Komponente A vorzugsweise frei ist von Komponente A3 und/oder A4.

In einer anderen Ausführungsform umfasst Komponente A

Al 65 bis 75 Gew. -Teile, bevorzugt 68 bis 72 Gew. -Teile eines oder mehrerer Polyethercarbonatpolyole mit einer Hydroxylzahl gemäß DIN 53240-1 (Juni 2013) von 20 mg KOH/g bis 120 mg KOH/g sowie vorzugsweise einem C0 2 -Gehalt von 15 bis 25 Gew.- %, und

A2 25 bis 35 Gew. -Teile, bevorzugt 28 bis 32 Gew. -Teile eines oder mehrerer Polyetherpolyole mit einer Hydroxylzahl gemäß DIN 53240-1 (Juni 2013) von 20 mg KOH/g bis 250 mg KOH/g und einem Gehalt an Ethylenoxid von 0 bis 60 Gew.-%, wobei die Polyetherpolyole A2 frei von Carbonateinheiten sind,

A3 2 bis 20 Gew. -Teile, bevorzugt 2 bis 10 Gew. -Teile, bezogen auf die Summe der Gew. -Teile der Komponenten Al und A2, eines oder mehrerer Polyetherpolyole mit einer Hydroxylzahl gemäß DIN 53240-1 (Juni 2013) 20 mg KOH/g bis 250 mg KOH/g, und einem Gehalt an Ethylenoxid von > 60 Gew.-%, wobei die Polyetherpolyole A3 frei von Carbonateinheiten sind, wobei die Komponente A vorzugsweise frei ist von Komponente A4.

In einer weiteren Ausführungsform umfasst Komponente A

Al 40 bis 100 Gew. -Teile, bevorzugt 60 bis 100 Gew. -Teile, besonders bevorzugt 80 bis 100 Gew. -Teile, höchst bevorzugt 65 bis 75 Gew. -Teile eines oder mehrerer Polyethercarbonatpolyole mit einer Hydroxylzahl gemäß DIN 53240-1 (Juni 2013) von 20 mg KOH/g bis 120 mg KOH/g sowie vorzugsweise einem C0 2 -Gehalt von 15 bis 25 Gew.- %, und

A2 0 bis 60 Gew. -Teile, bevorzugt 0 bis 40 Gew. -Teile, besonders bevorzugt 0 bis 20 Gew.- Teile, höchst bevorzugt 25 bis 35 Gew. -Teile eines oder mehrerer Polyetherpolyole mit einer Hydroxylzahl gemäß DIN 53240-1 (Juni 2013) von 20 mg KOH/g bis 250 mg KOH/g und einem Gehalt an Ethylenoxid von 0 bis 60 Gew.-%, wobei die Polyetherpolyole A2 frei von Carbonateinheiten sind,

A4 0,01 bis 40,00 Gew. -Teile, bevorzugt 0,01 bis 20,00 Gew. -Teile, besonders bevorzugt 1,00 bis 20,00 Gew. -Teile, höchst bevorzugt 2,00 bis 20,00 Gew. -Teile, bezogen auf die Summe der Gew. -Teile der Komponenten Al und A2, eines oder mehrerer Polymerpolyole, PHD- Polyole und/oder PIPA-Polyole,

A5 0 bis 40 Gew. -Teilen, bezogen auf die Summe der Gew. -Teile der Komponenten Al und A2, Polyole, die nicht unter die Definition der Komponenten Al bis A4 fallen, wobei die Komponente A vorzugsweise frei ist von Komponente A3.

Dabei sind die angegebenen Bereiche und Vorzugsbereiche der Komponenten Al, A2, A4 und A5 miteinander frei kombinierbar.

Im Folgenden sind die im erfindungsgemäßen Verfahren eingesetzten Komponenten näher beschrieben.

Komponente Al

Die Komponente Al umfasst ein Polyethercarbonatpolyol mit einer Hydroxylzahl (OH-Zahl) gemäß DIN 53240-1 (Juni 2013) von 20 mg KOH/g bis 120 mg KOH/g, vorzugsweise von 20 mg KOH/g bis 100 mg KOH/g, besonders bevorzugt von 25 mg KOH/g bis 90 mg KOH/g, welches erhältlich ist durch Copolymerisation von Kohlendioxid, einem oder mehreren Alkylenoxiden, in Gegenwart eines oder mehrerer H-fünktioneller Startermoleküle, wobei das Polyethercarbonatpolyol vorzugsweise einen C0 2- Gehalt von 10 bis 30 Gew.-%, besonders bevorzugt 15 bis 25 Gew.-% aufweist. Bevorzugt umfasst Komponente Al ein Polyethercarbonatpolyol, welches erhältlich ist durch Copolymerisation von 2 Gew.-% bis 30 Gew.-% Kohlendioxid und 70 Gew.-% bis 98 Gew.- % einem oder mehreren Alkylenoxiden, in Gegenwart eines oder mehrerer H-funktioneller Startermoleküle mit einer durchschnittlichen Funktionalität von 1 bis 6, bevorzugt von 1 bis 4, besonders bevorzugt von 2 bis 3. Unter „H-funktionell“ wird im Sinne der Erfindung eine Starterverbindung verstanden, die gegenüber Alkoxylierung aktive H-Atome aufweist. Vorzugsweise erfolgt die Copolymerisation von Kohlendioxid und einem oder mehreren Alkylenoxiden in Gegenwart mindestens eines DMC -Katalysators (Doppelmetallcyanid- Katalysators).

Vorzugsweise weisen die erfindungsgemäß eingesetzten Polyethercarbonatpolyole zwischen den Carbonatgruppen auch Ethergruppen auf, was in Formel (III) schematisch dargestellt wird. In dem Schema gemäß Formel (III) steht R für einen organischen Rest wie Alkyl, Alkylaryl oder Aryl, der jeweils auch Heteroatome wie beispielsweise O, S, Si usw. enthalten kann, e und f stehen für eine ganzzahlige Zahl. Das im Schema gemäß Formel (III) gezeigte Polyethercarbonatpolyol soll lediglich so verstanden werden, dass sich Blöcke mit der gezeigten Struktur im Polyethercarbonatpolyol prinzipiell wiederfinden können, die Reihenfolge, Anzahl und Länge der Blöcke aber variieren kann und nicht auf das in Formel (III) gezeigte Polyethercarbonatpolyol beschränkt ist. In Bezug auf Formel (III) bedeutet dies, dass das Verhältnis von e/f bevorzugt von 2 : 1 bis 1 : 20, besonders bevorzugt von 1,5 : 1 bis 1 : 10 beträgt. Der Anteil an eingebautem CO2 („aus Kohlendioxid stammende Einheiten“; „CCE-Gehalt“) in einem Polyethercarbonatpolyol lässt sich aus der Auswertung charakteristischer Signale im 'H-NMR- Spektrum bestimmen. Das nachfolgende Beispiel illustriert die Bestimmung des Anteils an aus Kohlendioxid stammenden Einheiten in einem auf 1,8-Octandiol gestarteten CCE/Propylenoxid- Polyethercarbonatpolyol .

Der Anteil an eingebautem CO2 in einem Polyethercarbonatpolyol sowie das Verhältnis von Propylencarbonat zu Polyethercarbonatpolyol kann mittels 'H-N1VIR (ein geeignetes Gerät ist von der Firma Bruker, DPX 400, 400 MHz; Pulsprogramm zg30, Wartezeit dl: 10s, 64 Scans) bestimmt werden. Die Probe wird jeweils in deuteriertem Chloroform gelöst. Die relevanten Resonanzen im 'H-NMR (bezogen auf TMS = 0 ppm) sind wie folgt:

Cyclisches Propylencarbonat (welches als Nebenprodukt gebildet wurde) mit Resonanz bei 4,5 ppm; Carbonat, resultierend aus im Polyethercarbonatpolyol eingebautem Kohlendioxid mit Resonanzen bei 5, 1 bis 4,8 ppm; nicht abreagiertes Propylenoxid (PO) mit Resonanz bei 2,4 ppm; Polyetherpolyol (d.h. ohne eingebautes Kohlendioxid) mit Resonanzen bei 1,2 bis 1,0 ppm; das als Startermolekül (soweit vorhanden) eingebaute 1,8-Octandiol mit einer Resonanz bei 1,6 bis 1,52 ppm.

Der Gewichtsanteil (in Gew.-%) polymer-gebundenen Carbonats (LC’) in der Reaktionsmischung wurde nach Formel (IV) berechnet, wobei sich der Wert für N („Nenner“ N) nach Formel (V) berechnet:

N = [F(5,I- 4,8) - F(4,5)]*102 + F(4,5) * 102 + F(2,4) * 58 + 0,33 * F(f ,2 - 1,0) * 58 + 0,25 * F(f ,6 - 1,52) * 146

(V)

Dabei gelten folgende Abkürzungen:

F(4,5) = Fläche der Resonanz bei 4,5 ppm für cyclisches Carbonat (entspricht einem H Atom)

F(5, 1-4,8) = Fläche der Resonanz bei 5,1 bis 4,8 ppm für Polyethercarbonatpolyol und einem H- Atom für cyclisches Carbonat.

F(2,4) = Fläche der Resonanz bei 2,4 ppm für freies, nicht abreagiertes PO F( 1,2- 1,0) = Fläche der Resonanz bei 1,2 bis 1,0 ppm für Polyetherpolyol

F( 1,6- 1,52) = Fläche der Resonanz bei 1,6 bis 1,52 ppm für 1,8-Octandiol (Starter), soweit vorhanden. Der Faktor 102 resultiert aus der Summe der Molmassen von CO2 (Molmasse 44 g/mol) und der von Propylenoxid (Molmasse 58 g/mol), der Faktor 58 resultiert aus der Molmasse von Propylenoxid und der Faktor 146 resultiert aus der Molmasse des eingesetzten Starters 1,8-Octandiol (soweit vorhanden).

Der Gewichtsanteil (in Gew.-%) an cyclischem Carbonat (CC’) in der Reaktionsmischung wurde nach Formel (VI) berechnet, wobei sich der Wert für N nach Formel (V) berechnet.

Um aus den Werten der Zusammensetzung der Reaktionsmischung die Zusammensetzung bezogen auf den Polymer-Anteil (bestehend aus Polyetherpolyol, welches aus Starter und Propylenoxid während der unter C0 2 -freien Bedingungen stattfindenden Aktivierungsschritten aufgebaut wurde, und Polyethercarbonatpolyol, aufgebaut aus Starter, Propylenoxid und Kohlendioxid während den in Gegenwart von CO2 stattfindenden Aktivierungsschritten und während der Copolymerisation) zu berechnen, wurden die Nicht-Polymer-Bestandteile der Reaktionsmischung (d.h. cyclisches Propylencarbonat sowie ggf. vorhandenes, nicht umgesetztes Propylenoxid) rechnerisch eliminiert. Der Gewichtsanteil der Carbonat-Wiederholungseinheiten im Polyethercarbonatpolyol wurde in einen Gewichtsanteil Kohlendioxid mittels des Faktors F = 44/(44+58) umgerechnet. Die Angabe des C0 2 -Gehalts im Polyethercarbonatpolyol ist normiert auf den Anteil des Polyethercarbonatpolyol-Moleküls, das bei der Copolymerisation und ggf. den Aktivierungsschritten in Gegenwart von CO2 gebildet wurde (d.h. der Anteil des Polyethercarbonatpolyol-Moleküls, der aus dem Starter (1,8-Octandiol, soweit vorhanden) sowie aus der Reaktion des Starters mit Epoxid resultiert, das unter C0 2 -freien Bedingungen zugegeben wurde, wurde hierbei nicht berücksichtigt). Beispielsweise umfasst die Herstellung von Polyethercarbonatpolyolen gemäß Al:

(a) eine H-fünktionelle Starterverbindung oder ein Gemisch aus mindestens zwei H- fünktionellen Starterverbindungen vorgelegt und gegebenenfalls Wasser und/oder andere leicht flüchtige Verbindungen durch erhöhte Temperatur und/oder reduziertem Druck entfernt werden ("Trocknung"), wobei der DMC -Katalysator der H-fünktionellen Starterverbindung oder dem Gemisch von mindestens zwei H-fünktionellen Starterverbindungen vor oder nach der Trocknung zugesetzt wird,

(ß) zur Aktivierung eine Teilmenge (bezogen auf die Gesamtmenge der bei der Aktivierung und Copolymerisation eingesetzten Menge an Alkylenoxiden) von einem oder mehreren Alkylenoxiden zu der aus Schritt (a) resultierenden Mischung zugesetzt wird, wobei diese Zugabe einer Teilmenge an Alkylenoxid gegebenenfalls in Gegenwart von CO2 erfolgen kann, und wobei dann die aufgrund der folgenden exothermen chemischen Reaktion auftretende Temperaturspitze ("Hotspot") und/oder ein Druckabfall im Reaktor jeweils abgewartet wird, und wobei der Schritt (ß) zur Aktivierung auch mehrfach erfolgen kann, (g) ein oder mehrere der Alkylenoxide und Kohlendioxid zu der aus Schritt (ß) resultierenden Mischung zugesetzt werden, wobei die in Schritt (ß) eingesetzten Alkylenoxide gleich oder verschieden sein können von den bei Schritt (g) eingesetzten Alkylenoxiden.

Allgemein können zur Herstellung der Polyethercarbonatpolyole Al Alkylenoxide (Epoxide) mit 2 bis 24 Kohlenstoffatomen eingesetzt werden. Bei den Alkylenoxiden mit 2 bis 24 Kohlenstoffatomen handelt es sich beispielsweise um eine oder mehrere Verbindungen ausgewählt aus der Gruppe bestehend aus Ethylenoxid, Propylenoxid, 1 -Butenoxid, 2,3 -Butenoxid, 2-Methyl-l,2-propenoxid (Isobutenoxid), 1-Pentenoxid, 2,3-Pentenoxid, 2-Methyl-l,2-butenoxid, 3 -Methyl- 1,2-butenoxid, 1- Hexenoxid, 2,3-Hexenoxid, 3,4-Hexenoxid, 2-Methyl-l,2-pentenoxid, 4-Methyl-l,2-pentenoxid, 2- Ethyl- 1,2-butenoxid, 1-Heptenoxid, 1-Octenoxid, 1 -Nonenoxid, 1-Decenoxid, 1-Undecenoxid, 1- Dodecenoxid, 4-Methyl-l,2-pentenoxid, Butadienmonoxid, Isoprenmonoxid, Cyclopentenoxid, Cyclohexenoxid, Cycloheptenoxid, Cyclooctenoxid, Styroloxid, Methylstyroloxid, Pinenoxid, ein- oder mehrfach epoxidierte Fette als Mono-, Di- und Triglyceride, epoxidierte Fettsäuren, C1-C24- Ester von epoxidierten Fettsäuren, Epichlorhydrin, Glycidol, und Derivate des Glycidols, wie beispielsweise Methylglycidylether, Ethylglycidylether, 2-Ethylhexylglycidylether, Allylglycidylether, Glycidylmethacrylat sowie epoxidfunktionelle Alkoxysilane, wie beispielsweise 3 -Glycidyloxypropyltrimethoxy silan, 3 -Glycidyioxypropyltriethoxy silan, 3 -

Glycidyloxypropyltripropoxysilan, 3 -Glycidyloxypropyl-methyl-dimethoxysilan, 3 -

Glycidyloxypropylethyldiethoxysilan, 3-Glycidyloxypropyltrlisopropoxysilan. Vorzugsweise werden als Alkylenoxide Ethylenoxid und/oder Propylenoxid und/oder 1,2 Butylenoxid, besonders bevorzugt Propylenoxid eingesetzt.

In einer bevorzugten Ausführungsform der Erfindung liegt der Anteil an Ethylenoxid an der insgesamt eingesetzten Menge an Propylenoxid und Ethylenoxid bei 0 bis 90 Gew.-%, bevorzugt bei 0 bis 50 Gew.-% und besonders bevorzugt frei von Ethylenoxid.

Als geeignete H-fimktionelle Startverbindung können Verbindungen mit für die Alkoxylierung aktiven H-Atomen eingesetzt werden. Für die Alkoxylierung aktive Gruppen mit aktiven H-Atomen sind beispielsweise -OH, -NH2 (primäre Amine), -NH- (sekundäre Amine), -SH und -CO2H, bevorzugt sind -OH und -NH2, besonders bevorzugt ist -OH. Als H-fünktionelle Starterverbindung wird beispielsweise eine oder mehrere Verbindungen ausgewählt aus der Gruppe bestehend aus Wasser, ein- oder mehrwertigen Alkoholen, mehrwertigen Aminen, mehrwertigen Thiolen, Aminoalkohole, Thioalkohole, Hydroxyester, Polyetherpolyole, Polyesterpolyole, Polyesteretherpolyole, Polyethercarbonatpolyole, Polycarbonatpolyole, Polycarbonate, Polyethylenimine, Polyetheramine (z. B. sogenannte Jeffamine ® von Huntsman, wie z. B. D-230, D- 400, D-2000, T-403, T-3000, T-5000 oder entsprechende Produkte der BASF, wie z. B. Polyetheramin D230, D400, D200, T403, T5000), Polytetrahydrofürane (z. B. PolyTHF ® der BASF, wie z. B. PolyTHF ® 250, 650S, 1000, 1000S, 1400, 1800, 2000), Polytetrahydrofüranamine (BASF Produkt Polytetrahydrofüranamin 1700), Polyetherthiole, Polyacrylatpolyole, Ricinusöl, das Mono- oder Diglycerid von Ricinolsäure, Monoglyceride von Fettsäuren, chemisch modifizierte Mono-, Di- und/oder Triglyceride von Fettsäuren, und C 1 -C 24 Alkyl-Fettsäureester, die im Mittel mindestens 2 OH-Gruppen pro Molekül enthalten, eingesetzt. Beispielhaft handelt es sich bei den C 1 -C 24 Alkyl- Fettsäureester, die im Mittel mindestens 2 OH-Gruppen pro Molekül enthalten, um Handelsprodukte wie Lupranol Balance ® (Fa. BASF AG), Merginol ® -Typen (Fa. Hobum Oleochemicals GmbH), Sovermol ® -Typen (Fa. Cognis Deutschland GmbH & Co. KG) und Soyol ® TM-Typen (Fa. US SC Co.).

Als monofunktionelle Starterverbindungen können Alkohole, Amine, Thiole und Carbonsäuren eingesetzt werden. Als monofunktionelle Alkohole können Verwendung finden: Methanol, Ethanol, 1 -Propanol, 2-Propanol, 1 -Butanol, 2-Butanol, t-Butanol, 3-Buten-l-ol, 3-Butin-l-ol, 2-Methyl-3- buten-2-ol, 2-Methyl-3-butin-2-ol, Propagylalkohol, 2-Methyl-2-propanol, l-t-Butoxy-2-propanol., 1-Pentanol, 2-Pentanol, 3-Pentanol, 1-Hexanol, 2-Hexanol, 3-Hexanol, 1-Heptanol, 2-Heptanol, 3- Heptanol, 1-Octanol, 2-Octanol, 3-Octanol, 4-Octanol, Phenol, 2-Hydroxybiphenyl, 3- Hydroxybiphenyl, 4-Hydroxybiphenyl, 2-Hydroxypyridin, 3-Hydroxypyridin, 4-Hydroxypyridin. Als monofunktionelle Amine kommen in Frage: Butylamin, t-Butylamin, Pentylamin, Hexylamin, Anilin, Aziridin, Pyrrolidin, Piperidin, Morpholin. Als monofunktionelle Thiole können verwendet werden: Ethanthiol, 1-Propanthiol, 2-Propanthiol, 1-Butanthiol, 3 -Methyl- 1-butanthiol, 2-Buten-l- thiol, Thiophenol. Als monofunktionelle Carbonsäuren seien genannt: Ameisensäure, Essigsäure, Propionsäure, Buttersäure, Fettsäuren wie Stearinsäure, Palmitinsäure, Ölsäure, Linolsäure, Linolensäure, Benzoesäure, Acrylsäure.

Als H-funktionelle Starterverbindungen geeignete mehrwertige Alkohole sind beispielweise zweiwertige Alkohole (wie beispielweise Ethylenglykol, Diethylenglykol, Propylenglykol, Dipropylenglykol, 1,3-Propandiol, 1,4-Butandiol, 1,4-Butendiol, 1,4-Butindiol, Neopentylglykol, 1,5-Pentantandiol, Methylpentandiole (wie beispielweise 3-Methyl-l,5-pentandiol), 1,6-Hexandiol; 1,8-Octandiol, 1,10-Decandiol, 1,12-Dodecandiol, Bis-(hydroxymethyl)-cyclohexane (wie beispielweise l,4-Bis-(hydroxymethyl)cyclohexan), Triethylenglykol, Tetraethylenglykol, Polyethylenglykole, Dipropylenglykol, Tripropylenglykol, Polypropylenglykole, Dibutylenglykol und Polybutylenglykole); dreiwertige Alkohole (wie beispielweise Trimethylolpropan, Glycerin, Trishydroxyethylisocyanurat, Rizinusöl); vierwertige Alkohole (wie beispielsweise Pentaerythrit); Polyalkohole (wie beispielweise Sorbit, Hexit, Saccharose, Stärke, Stärkehydrolysate, Cellulose, Cellulosehydrolysate, hydroxyfunktionalisierte Fette und Öle, insbesondere Rizinusöl), sowie alle Modifizierungsprodukte dieser zuvorgenannten Alkohole mit unterschiedlichen Mengen an e- Caprolacton. In Mischungen von H-funktionellen Startern können auch dreiwertige Alkohole, wie beispielsweise Trimethylolpropan, Glycerin, Trishydroxyethylisocyanurat und Rizinusöl eingesetzt werden.

Die H-funktionellen Starterverbindungen können auch aus der Substanzklasse der Polyetherpolyole ausgewählt sein, insbesondere solchen mit einem Molekulargewicht M n im Bereich von 100 bis 4000 g/mol, vorzugsweise 250 bis 2000 g/mol. Bevorzugt sind Polyetherpolyole, die aus sich wiederholenden Ethylenoxid- und Propylenoxideinheiten aufgebaut sind, bevorzugt mit einem Anteil von 35 bis 100% Propylenoxideinheiten, besonders bevorzugt mit einem Anteil von 50 bis 100% Propylenoxideinheiten. Hierbei kann es sich um statistische Copolymere, Gradienten- Copolymere, alternierende oder Blockcopolymere aus Ethylenoxid und Propylenoxid handeln. Geeignete Polyetherpolyole, aufgebaut aus sich wiederholenden Propylenoxid- und/oder Ethylenoxideinheiten sind beispielsweise die Desmophen ® -, Acclaim ® -, Arcol ® -, Baycoll ® -, Bayfill ® -, Bayflex ® - Baygal ® -, PET ® - und Polyether-Polyole der Covestro Deutschland AG (wie z. B. Desmophen ® 3600Z, Desmophen ® 1900U, Acclaim ® Polyol 2200, Acclaim ® Polyol 40001, Arcol ® Polyol 1004, Arcol ® Polyol 1010, Arcol ® Polyol 1030, Arcol ® Polyol 1070, Baycoll ® BD 1110, Bayfdl ® VPPU 0789, Baygal ® K55, PET ® 1004, Polyether ® S 180). Weitere geeignete homo- Polyethylenoxide sind beispielsweise die Pluriol ® E-Marken der BASF SE, geeignete homo- Polypropylenoxide sind beispielsweise die Pluriol ® P-Marken der BASF SE, geeignete gemischte Copolymere aus Ethylenoxid und Propylenoxid sind beispielsweise die Pluronic ® PE oder Pluriol ® RPE-Marken der BASF SE.

Die H-fünktionellen Starterverbindungen können auch aus der Substanzklasse der Polyesterpolyole ausgewählt sein, insbesondere solchen mit einem Molekulargewicht M n im Bereich von 200 bis 4500 g/mol, vorzugsweise 400 bis 2500 g/mol. Als Polyesterpolyole werden mindestens difünktionelle Polyester eingesetzt. Bevorzugt bestehen Polyesterpolyole aus alternierenden Säure- und Alkoholeinheiten. Als Säurekomponenten werden z. B. Bemsteinsäure, Maleinsäure, Maleinsäureanhydrid, Adipinsäure, Phthalsäureanhydrid, Phthalsäure, Isophthalsäure, Terephthalsäure, Tetrahydrophthalsäure, Tetrahydrophthalsäureanhydrid,

Hexahydrophthalsäureanhydrid oder Gemische aus den genannten Säuren und/oder Anhydride eingesetzt. Als Alkoholkomponenten werden z. B. Ethandiol, 1,2-Propandiol, 1,3-Propandiol, 1,4- Butandiol, 1,5-Pentandiol, Neopentylglykol, 1,6-Hexandiol, l,4-Bis-(hydroxymethyl)-cyclohexan, Diethylenglykol, Dipropylenglykol, Trimethylolpropan, Glycerin, Pentaerythrit oder Gemische aus den genannten Alkoholen verwendet. Werden als Alkoholkomponente zweiwertige oder mehrwertige Polyetherpolyole eingesetzt, so erhält man Polyesteretherpolyole die ebenfalls als Starterverbindungen zur Herstellung der Polyethercarbonatpolyole dienen können. Falls Polyetherpolyole zur Herstellung der Polyesteretherpolyole eingesetzt werden, sind Polyetherpolyole mit einem zahlenmittleren Molekulargewicht M n von 150 bis 2000 g/mol bevorzugt.

Des Weiteren können als H-fünktionelle Starterverbindungen Polycarbonatpolyole (wie beispielsweise Polycarbonatdiole) eingesetzt werden, insbesondere solchen mit einem Molekulargewicht M n im Bereich von 150 bis 4500 g/mol, vorzugsweise 500 bis 2500, die beispielsweise durch Umsetzung von Phosgen, Dimethylcarbonat, Diethylcarbonat oder Diphenylcarbonat und di- und/oder polyfunktionellen Alkoholen oder Polyesterpolyolen oder Polyetherpolyolen hergestellt werden. Beispiele zu Polycarbonatpolyolen finden sich z. B. in der EP- A 1359177. Beispielsweise können als Polycarbonatdiole die Desmophen ® C-Typen der Covestro Deutschland AG verwendet werden, wie z. B. Desmophen ® C 1100 oder Desmophen ® C 2200. Ebenfalls können Polyethercarbonatpolyole als H-fünktionelle Starterverbindungen eingesetzt werden. Insbesondere werden Polyethercarbonatpolyole, die nach dem oben beschriebenen Verfahren hergestellt werden, eingesetzt. Diese als H-fünktionelle Starterverbindungen eingesetzten Polyethercarbonatpolyole werden hierzu in einem separaten Reaktionsschritt zuvor hergestellt. Bevorzugte H-fünktionelle Starterverbindungen sind Alkohole der allgemeinen Formel (VII),

HO-(CH 2 ) X -OH (VII), wobei x eine Zahl von 1 bis 20, bevorzugt eine gerade Zahl von 2 bis 20 ist. Beispiele für Alkohole gemäß Formel (VI) sind Ethylenglycol, 1,4-Butandiol, 1,6-Hexandiol, 1,8-Octandiol, 1,10 Decandiol und 1,12-Dodecandiol. Weitere bevorzugte H-fünktionelle Starterverbindungen sind Neopentylglykol, Trimethylolpropan, Glycerin, Pentaerythrit, Umsetzungsprodukte der Alkohole gemäß Formel (VI) mit e-Caprolacton, z.B. Umsetzungsprodukte von Trimethylolpropan mit e- Caprolacton, Umsetzungsprodukte von Glycerin mit e-Caprolacton, sowie Umsetzungsprodukte von Pentaerythrit mit e-Caprolacton. Weiterhin bevorzugt werden als H-fünktionelle Startverbindungen Wasser, Diethylenglykol, Dipropylenglykol, Rizinusöl, Sorbit und Polyetherpolyole, aufgebaut aus sich wiederholenden Polyalkylenoxideinheiten, eingesetzt.

Besonders bevorzugt handelt es sich bei den H-fünktionellen Starterverbindungen um eine oder mehrere Verbindungen ausgewählt aus der Gruppe bestehend aus Ethylenglykol, Propylenglykol, 1,3-Propandiol, 1,3-Butandiol, 1,4-Butandiol, 1,5-Pentandiol, 2-Methylpropan-l,3-diol, Neopentylglykol, 1,6-Hexandiol, Diethylenglykol, Dipropylenglykol, Glycerin, Trimethylolpropan, di- und trifünktionelle Polyetherpolyole, wobei das Polyetherpolyol aus einer di- oder tri-H- fünktionellen Starterverbindung und Propylenoxid bzw. einer di- oder tri -H-fünktionellen Starterverbindung, Propylenoxid und Ethylenoxid aufgebaut ist. Die Polyetherpolyole haben bevorzugt ein zahlenmittleres Molekulargewicht M n im Bereich von 62 bis 4500 g/mol und insbesondere ein zahlenmittleres Molekulargewicht M n im Bereich von 62 bis 3000 g/mol, ganz besonders bevorzugt ein Molekulargewicht von 62 bis 1500 g/mol. Bevorzugt haben die Polyetherpolyole eine Funktionalität von 2 bis 3.

In einer bevorzugten Ausführungsform der Erfindung ist das Polyethercarbonatpolyol Al durch Anlagerung von Kohlendioxid und Alkylenoxiden an H-fünktionelle Starterverbindungen unter Verwendung von Multimetallcyanid-Katalysatoren (DMC-Katalysatoren) erhältlich. Die Herstellung von Polyethercarbonatpolyolen durch Anlagerung von Alkylenoxiden und C0 2 an H- fünktionelle Starterverbindungen unter Verwendung von DMC-Katalysatoren ist beispielsweise aus der EP-A 0222453, WO-A 2008/013731 und EP-A 2115032 bekannt.

DMC-Katalysatoren sind im Prinzip aus dem Stand der Technik zur Homopolymerisation von Epoxiden bekannt (siehe z.B. US-A 3 404 109, US-A 3 829 505, US-A 3 941 849 und US-A 5 158 922). DMC -Katalysatoren, die z.B. in US-A 5 470 813, EP-A 700 949, EP-A 743 093, EP-A 761 708, WO-A 97/40086, WO-A 98/16310 und WO-A 00/47649 beschrieben sind, besitzen eine sehr hohe Aktivität in der Homopolymerisation von Epoxiden und ermöglichen die Herstellung von Polyetherpolyolen und/oder Polyethercarbonatpolyolen bei sehr geringen Katalysatorkonzentrationen (25 ppm oder weniger). Ein typisches Beispiel sind die in EP-A 700 949 beschriebenen hochaktiven DMC -Katalysatoren, die neben einer Doppelmetallcyanid-Verbindung (z.B. Zinkhexacyanocobaltat(III)) und einem organischen Komplexliganden (z.B. t. -Butanol) noch einen Polyether mit einem zahlenmittlerem Molekulargewicht M n größer als 500 g/mol enthalten. Der DMC-Katalysator wird zumeist in einer Menge von < 1 Gew.-%, vorzugsweise in einer Menge von < 0,5 Gew.-%, besonders bevorzugt in einer Menge von < 500 ppm und insbesondere in einer Menge von < 300 ppm, jeweils bezogen auf das Gewicht des Polyethercarbonatpolyols eingesetzt.

In einer bevorzugten Ausführungsform der Erfindung weist das Polyethercarbonatpolyol Al einen Gehalt an Carbonatgruppen („aus Kohlendioxid stammenden Einheiten“), berechnet als CO2, von 2,0 und 30,0 Gew.-%, bevorzugt von 5,0 und 28,0 Gew.-% und besonders bevorzugt von 10,0 und 25,0 Gew.-% auf.

In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens weisen das oder die Polyethercarbonatpolyole gemäß Al eine Hydroxylzahl von 20 mg KOH/g bis 250 mg KOH/g auf und sind erhältlich durch Copolymerisation von 2,0 Gew.-% bis 30,0 Gew.-% Kohlendioxid und 70 Gew.-% bis 98 Gew.-% Propylenoxid in Gegenwart eines hydroxyfünktionellen Startermoleküls, wie beispielsweise Trimethylolpropan und/oder Glycerin und/oder Propylenglykol und/oder Sorbitol. Die Hydroxylzahl kann gemäß DIN 53240-1 (Juni 2013) bestimmt werden.

In einer weiteren Ausführungsform wird ein Polyethercarbonatpolyol Al eingesetzt, enthaltend Blöcke gemäß Formel (III) wobei das Verhältnis e/f von 2 : 1 bis 1 : 20 beträgt.

In einer weiteren Ausführungsform der Erfindung wird Komponente Al zu 100 Gew. -Teilen eingesetzt.

Komponente A2

Die Komponente A2 umfasst Polyetherpolyole mit einer Hydroxylzahl gemäß DIN 53240-1 (Juni 2013) von 20 mg KOH/g bis 250 mg KOH/g, vorzugsweise von 20 bis 112 mg KOH/g und besonders bevorzugt 20 mg KOH/g bis 80 mg KOH/g und ist frei von Carbonateinheiten. Die Herstellung der Verbindungen gemäß A2 kann durch katalytische Addition von einem oder mehreren Alkylenoxiden an H-fünktionelle Starterverbindungen erfolgen. Als Alkylenoxide (Epoxide) können Alkylenoxide mit 2 bis 24 Kohlenstoffatomen eingesetzt werden. Bei den Alkylenoxiden mit 2 bis 24 Kohlenstoffatomen handelt es sich beispielsweise um eine oder mehrere Verbindungen ausgewählt aus der Gruppe bestehend aus Ethylenoxid, Propylenoxid, 1 -Butenoxid, 2,3 -Butenoxid, 2-Methyl-l,2-propenoxid (Isobutenoxid), 1-Pentenoxid,

2.3-Pentenoxid, 2-Methyl-l,2-butenoxid, 3 -Methyl- 1,2-butenoxid, 1-Hexenoxid, 2,3 -Hexenoxid,

3.4-Hexenoxid, 2-Methyl-l,2-pentenoxid, 4-Methyl-l,2-pentenoxid, 2-Ethyl- 1,2-butenoxid, 1-

Heptenoxid, 1-Octenoxid, 1 -Nonenoxid, 1-Decenoxid, 1-Undecenoxid, 1-Dodecenoxid, 4-Methyl- 1,2-pentenoxid, Butadienmonoxid, Isoprenmonoxid, Cyclopentenoxid, Cyclohexenoxid, Cycloheptenoxid, Cyclooctenoxid, Styroloxid, Methylstyroloxid, Pinenoxid, ein- oder mehrfach epoxidierte Fette als Mono-, Di- und Triglyceride, epoxidierte Fettsäuren, Ci-C24-Ester von epoxidierten Fettsäuren, Epichlorhydrin, Glycidol, und Derivate des Glycidols, wie beispielsweise Methylglycidylether, Ethylglycidylether, 2-Ethylhexylglycidylether, Allylglycidylether, Glycidylmethacrylat sowie epoxidfünktionelle Alkyoxysilane, wie beispielsweise 3- Glycidyloxypropyltrimethoxy silan, 3 -Glycidyioxypropyltriethoxy silan, 3 -

Glycidyloxypropyltripropoxysilan, 3 -Glycidyloxypropyl-methyl-dimethoxysilan, 3 -

Glycidyloxypropylethyldiethoxysilan, 3-Glycidyloxypropyltrlisopropoxysilan. Vorzugsweise werden als Alkylenoxide Ethylenoxid und/oder Propylenoxid und/oder 1,2 Butylenoxid eingesetzt. Besonders bevorzugt wird ein Überschuss an Propylenoxid und/oder 1,2-Butylenoxid eingesetzt. Die Alkylenoxide können dem Reaktionsgemisch einzeln, im Gemisch oder nacheinander zugeführt werden. Es kann sich um statistische oder um Block-Copolymere handeln. Werden die Alkylenoxide nacheinander dosiert, so enthalten die hergestellten Produkte (Polyetherpolyole) Polyetherketten mit Blockstrukturen.

Die H-fünktionellen Starterverbindungen weisen Funktionalitäten von 2 bis 6 auf und sind vorzugsweise hydroxyfunktionell (OH-fünktionell). Beispiele für hydroxyfünktionelle Starterverbindungen sind Propylenglykol, Ethylenglykol, Diethylenglykol, Dipropylenglykol, 1,2- Butandiol, 1,3-Butandiol, 1,4-Butandiol, Hexandiol, Pentandiol, 3-Methyl-l,5-pentandiol, 1,12- Dodecandiol, Glycerin, Trimethylolpropan, Triethanolamin, Pentaerythrit, Sorbitol, Saccharose, Hydrochinon, Brenzcatechin, Resorcin, Bisphenol F, Bisphenol A, 1,3,5-Trihydroxybenzol, methylolgruppenhaltige Kondensate aus Formaldehyd und Phenol oder Melamin oder Harnstoff. Diese können auch in Mischung verwendet werden. Vorzugsweise wird als Starterverbindung 1,2- Propylenglykol und /oder Glycerin und/oder Trimethylolpropan und /oder Sorbitol eingesetzt.

Die Polyetherpolyole gemäß A2 weisen einen Gehalt von 0 bis 60 Gew.-%, vorzugsweise von 0 bis 40 Gew.-%, besonders bevorzugt 0 bis 25 Gew.-% an Ethylenoxid auf.

Komponente A3 Die Komponente A3 umfasst Polyetherpolyole mit einer Hydroxylzahl gemäß DIN 53240-1 (Juni 2013) 20 mg KOH/g bis 250 mg KOH/g, vorzugsweise von 20 bis 112 mg KOH/g und besonders bevorzugt 20 mg KOH/g bis 80 mg KOH/g.

Die Herstellung der Komponente A3 erfolgt im Prinzip analog der der Komponente A2, wobei jedoch ein Gehalt an Ethylenoxid im Polyetherpolyol von > 60 Gew.-%, bevorzugt > 65 Gew.-% eingestellt wird.

Als Alkylenoxide und H-fünktionelle Starterverbindungen kommen die gleichen in Frage, wie für Komponente A2 beschrieben.

Als H-fünktionelle Starterverbindungen kommen jedoch bevorzugt solche in Frage, die eine Funktionalität von 3 bis 6, besonders bevorzugt von 3 aufweisen, so dass Polyethertriole entstehen. Bevorzugte H-funktionelle Starterverbindungen mit einer Funktionalität von 3 sind Glycerin und/oder Trimethylolpropan, besonders bevorzugt ist Glycerin.

In einer bevorzugten Ausführungsform ist die Komponente A3 ein Glycerin-gestarteter trifünktioneller Polyether mit einem Ethylenoxidanteil von 68 bis 73 Gew.-% und einer OH-Zahl von 35 bis 40 mg KOH/g.

Komponente A4

Die Komponente A4 umfasst Polymerpolyole, PHD-Polyole und PIPA-Polyole.

Polymerpolyole sind Polyole, die Anteile von durch radikalische Polymerisation geeigneter Monomere wie Styrol oder Acrylnitril in einem Basispolyol, wie z.B. einem Polyetherpolyol und/oder Polyethercabonatpolyol, erzeugten festen Polymeren enthalten.

PHD (Polyhamstoffdipsersion)-Polyole werden beispielsweise hergestellt durch in situ Polymerisation eines Isocyanats oder einer Isocyanat-Mischung mit einem Diamin und/oder Hydrazin in einem Polyol, vorzugsweise einem Polyetherpolyol. Vorzugsweise wird die PHD-Dispersion hergestellt durch Umsetzung einer Isocyanat-Mischung eingesetzt aus einer Mischung aus 75 bis 85 Gew.-% 2,4- Toluylendiisocyanat (2,4-TDI) und 15 bis 25 Gew.-% 2,6-Toluylendiisocyanat (2,6-TDI) mit einem Diamin und/oder Hydrazin in einem Polyetherpolyol, vorzugsweise einem Polyetherpolyol und/oder Polyethercarbonatpolyol, hergestellt durch Alkoxylierung eines trifünktionellen Starters (wie beispielsweise Glycerin und/oder Trimethylolpropan), im Falle des Polyethercarbonatpolyols in Gegenwart von Kohlendioxid. Verfahren zur Herstellung von PHD-Dispersionen sind beispielsweise beschrieben in US 4,089,835 und US 4,260,530.

Bei den PIPA-Polyolen handelt es sich um durch Polyisocyanat-Polyaddition mit Alkanolaminen- modifizierte, vorzugsweise Triethanolamin-modifizierte Polyetherpolyole und/oder Polyethercarbonatpolyole, wobei das Polyether(carbonat)polyol eine Funktionalität von 2,5 bis 4,0 und eine Hydroxylzahl von 3 mg KOH/g bis 112 mg KOH/g (Molekulargewicht 500 bis 18000 g/mol) aufweist. Vorzugsweise ist das Polyetherpolyol „EO-capped“, d.h. das Polyetherpolyol besitzt terminale Ethylenoxidgruppen. PIPA-Polyole sind in GB 2 072 204 A, DE 31 03 757 Al und US 4 374 209 A eingehend beschrieben.

Komponente A5

Als Komponente A5 können alle dem Fachmann bekannten Polyhydroxyverbindungen eingesetzt werden, die nicht unter die Definition der Komponenten Al bis A4 fallen, und bevorzugt eine mittlere OH-Funktionalität > 1,5 aufweisen.

Dies können beispielsweise niedermolekulare Diole (z.B. 1,2-Ethandiol, 1,3- bzw. 1,2-Propandiol, 1,4-Butandiol), Triole (z.B. Glycerin, Trimethylolpropan) und Tetraoie (z.B. Pentaerythrit), Polyesterpolyole enthaltend keine von Malonsäure abgeleitete Baueinheiten, Polythioetherpolyole oder Polyacrylatpolyole, sowie Polyetherpolyole oder Polycarbonatpolyole, die nicht unter die Definition der Komponenten Al bis A4 fallen, sein. Es können z.B. auch Ethylendiamin und Triethanolamin gestartete Polyether eingesetzt werden. Diese Verbindungen zählen nicht zu den Verbindungen gemäß der Definition der Komponente B2.

Komponente B

Als Katalysatoren gemäß der Komponente B 1 werden vorzugsweise a) aliphatische tertiäre Amine (beispielsweise Trimethylamin, Tetramethylbutandiamin, 3-

Dimethylaminopropylamin, N,N-Bis(3-dimethylaminopropyl)-N-isopropanolamin), cycloaliphatische tertiäre Amine (beispielsweise l,4-Diaza(2,2,2)bicyclooctan), aliphatische Aminoether (beispielsweise Bisdimethylaminoethylether, 2-(2-Dimethylaminoethoxy)ethanol und N,N,N-Trimethyl-N-hydroxyethyl-bisaminoethylether), cycloaliphatische Aminoether (beispielsweise N-Ethylmorpholin), aliphatische Amidine, cycloaliphatische Amidine, Harnstoff und Derivate des Harnstoffs (wie beispielsweise Aminoalkylhamstoffe, siehe zum Beispiel EP-A 0 176 013, insbesondere (3-Dimethylaminopropylamin)-hamstoff) und/oder b) Zinn(II)-Salze von Carbonsäuren eingesetzt.

Es werden insbesondere die Zinn(II)-Salze von Carbonsäuren eingesetzt, wobei die jeweils zugrundeliegende Carbonsäure von 2 bis 24 Kohlenstoffatome aufweist. Beispielsweise werden als Zinn(II)-Salze von Carbonsäuren eine oder mehrere Verbindungen ausgewählt aus der Gruppe bestehend aus Zinn(II)-Salz der 2-Ethylhexansäure (d.h. Zinn(II)-(2-ethylhexanoat) oder Zinnoktoat), Zinn(II)-Salz der 2-Butyloctansäure, Zinn(II)-Salz der 2-Hexyldecansäure, Zinn(II)- Salz der Neodecansäure, Zinn(II)-Salz der Isononansäure, das Zinn(II)-Salz der Ölsäure, Zinn(II)- Salz der Ricinolsäure und Zinn(II)laurat eingesetzt.

In einer bevorzugten Ausführungsform der Erfindung wird mindestens ein Zinn(II)-Salz der Formel (VIII)

Sn(C x H 2x+i COO) 2 (VIII) eingesetzt, wobei x eine ganze Zahl von 8 bis 24, bevorzugt 10 bis 20, besonders bevorzugt von 12 bis 18 bedeutet. Besonders bevorzugt ist in Formel (VII) die Alkylkette C x Fb x+i des Carboxylats eine verzweigte Kohlenstoffkette, d.h. C x Fh x+i ist eine Ao-Alkylgruppe.

Höchst bevorzugt werden als Zinn(II)-Salze von Carbonsäuren eine oder mehrere Verbindungen ausgewählt aus der Gruppe bestehend aus Zinn(II)-Salz der 2-Butyloctansäure, d.h. Zinn(II)-(2- butyloctoat), Zinn(II)-Salz der Ricinolsäure, d.h. Zinn(II)-ricinoleat und Zinn(II)-Salz der 2- Hexyldecansäure, d.h. Zinn(II)-(2-hexyldecanoat) eingesetzt.

In einer anderen bevorzugten Ausführungsform der Erfindung wird als Komponente B 1

Bl.l 0,05 bis 1,50 Gew. -Teilen, bezogen auf die Summe der Gew. -Teile der

Komponenten Al und A2, Harnstoff und/oder Derivate des Harnstoffs und Bl.2 0,03 bis 1,50 Gew. -Teilen, bezogen auf die Summe der Gew. -Teile der

Komponenten Al und A2, anderer Katalysatoren als die der Komponente B1.2, wobei der Gehalt an aminischen Katalysatoren in der Komponente Bl.2 maximal 50 Gew.-% bezogen auf Komponente Bl betragen darf, eingesetzt.

Komponente Bl.l umfasst Harnstoff und Derivate des Harnstoffs. Als Derivate des Harnstoffs seien beispielsweise genannt: Aminoalkylhamstoffe, wie z.B. (3-Dimethylaminopropylamin)-hamstoff und l,3-Bis[3-(dimethylamino)propyl]hamstoff Es können auch Mischungen von Harnstoff und Hamstoffderivaten eingesetzt werden. Bevorzugt wird ausschließlich Harnstoff in Komponente B 1.1 eingesetzt. Die Komponente Bl.l wird in Mengen von 0,05 bis 1,50 Gew. -Teilen, bevorzugt von 0,10 bis 0,50 Gew. -Teilen, besonders bevorzugt von 0,25 bis 0,35 Gew. -Teilen, bezogen auf die Summe der Gew. -Teile der Komponenten Al bis A2, eingesetzt.

Die Komponente B 1.2 wird in Mengen von 0,03 bis 1,50 Gew. -Teilen, bevorzugt 0,03 bis 0,50 Gew.- Teilen, besonders bevorzugt von 0,10 bis 0,30 Gew. -Teilen, ganz besonders bevorzugt von 0,20 bis 0,30 Gew. -Teilen, bezogen auf die Summe der Gew. -Teile der Komponenten Al bis A2, eingesetzt. Vorzugsweise beträgt der Gehalt an aminischen Katalysatoren in der Komponente B1.2 maximal 50 Gew-% bezogen auf Komponente Bl.l, besonders bevorzugt maximal 25 Gew.-% bezogen auf Komponente Bl.l. Ganz besonders bevorzugt ist Komponente Bl.2 frei von aminischen Katalysatoren.

Als Katalysatoren der Komponente Bl.2 können z.B. die oben beschriebenen Zinn(II)-Salze von Carbonsäuren eingesetzt werden.

Als in geringen Mengen (s.o.) gegebenenfalls mitzuverwendende aminische Katalysatoren seien genannt: aliphatische tertiäre Amine (beispielsweise Trimethylamin, Tetramethylbutandiamin, 3- Dimethylaminopropylamin, N,N-Bis(3-dimethylaminopropyl)-N-isopropanolamin), cycloaliphatische tertiäre Amine (beispielsweise l,4-Diaza(2,2,2)bicyclooctan), aliphatische Aminoether (beispielsweise Bisdimethylaminoethylether, 2-(2-Dimethylaminoethoxy)ethanol und N,N,N-Trimethyl-N-hydroxyethyl-bisaminoethylether), cycloaliphatische Aminoether

(beispielsweise N-Ethylmorpholin), aliphatische Amidine und cycloaliphatische Amidine.

Zu den in Bl.2 genannten „aminischen Katalysatoren“ gehören nicht Harnstoff oder seine Derivate. Gegenstand der Erfindung ist daher auch ein Verfahren zur Herstellung von Polyurethanschaumstoffen durch Umsetzung der Komponenten A Polyolkomponente, enthaltend

Al 40 bis 100 Gew. -Teile Polyethercarbonatpolyol mit einer Hydroxylzahl gemäß DIN 53240-1 (Juni 2013) von 20 mg KOH/g bis 120 mg KOH/g,

A2 0 bis 60 Gew. -Teile Polyetherpolyol mit einer Hydroxylzahl gemäß DIN 53240-1 (Juni 2013) von 20 mg KOH/g bis 250 mg KOH/g und einem Gehalt an Ethylenoxid von 0 bis 60 Gew.-%, wobei Polyetherpolyol A2 frei von Carbonateinheiten ist, im nicht-alkalischen Medium mit C Wasser und/oder physikalischen Treibmitteln und

D Di und/oder Polyisocyanaten, wobei die Herstellung bei einer Kennzahl von 90 bis 120 erfolgt, dadurch gekennzeichnet, dass die Herstellung in Gegenwart von 0,01 bis 10,00 Gew. -Teile einer Komponente K erfolgt, bezogen auf die Summe der Gewichtsteile der Komponente Al + A2 = 100 Gewichtsteile, und die Komponente K ein Zeolith mit einem eindimensionalen System von Kanälen ist. Das nicht-alkalische Medium kann vorzugsweise dadurch erreicht werden, dass als Katalysatoren gemäß Komponente Bl Harnstoff und/oder Derivate des Harnstoffs eingesetzt werden, und keine aminischen Katalysatoren eingesetzt werden.

Daher ist ein bevorzugter Gegenstand der Erfindung ein Verfahren zur Herstellung von Polyurethanschaumstoffen, dadurch gekennzeichnet, dass A Polyolkomponente, enthaltend

Al 40 bis 100 Gew. -Teile Polyethercarbonatpolyol mit einer Hydroxylzahl gemäß DIN 53240-1 (Juni 2013) von 20 mg KOH/g bis 120 mg KOH/g,

A2 0 bis 60 Gew. -Teile Polyetherpolyol mit einer Hydroxylzahl gemäß DIN 53240-1 (Juni 2013) von 20 mg KOH/g bis 250 mg KOH/g und einem Gehalt an Ethylenoxid von 0 bis 60 Gew.-%, wobei Polyetherpolyol A2 frei von Carbonateinheiten ist,

Bl in Gegenwart von Harnstoff und/oder Derivaten des Harnstoffs und in Abwesenheit aminischer Katalysatoren mit C Wasser und/oder physikalischen Treibmitteln und D Di und/oder Polyisocyanaten, im nicht-alkalischen Medium umgesetzt werden, wobei die Herstellung bei einer Kennzahl von 90 bis 120 erfolgt, dadurch gekennzeichnet, dass die Herstellung in Gegenwart von 0,01 bis 10,00 Gew.- Teile einer Komponente K erfolgt, bezogen auf die Summe der Gewichtsteile der Komponente Al + A2 = 100 Gewichtsteile, und die Komponente K ein Zeolith mit einem eindimensionalen System von Kanälen ist. Als Komponente B2 werden Hilfs- und Zusatzstoffe eingesetzt, wie a) oberflächenaktive Zusatzstoffe, wie Emulgatoren und Schaumstabilisatoren insbesondere solche mit niedriger Emission wie beispielsweise Produkte der Tegostab® LF2-Serie b) Additive wie Reaktionsverzögerer (z.B. sauer reagierende Stoffe wie Salzsäure oder organische Säurehalogenide), Zellregler (wie beispielsweise Paraffine oder Fettalkohole oder Dimethylpoly siloxane), Pigmente, Farbstoffe, Flammschutzmittel, weitere Stabilisatoren gegen Alterungs- und Witterungseinflüsse, Antioxidantien, Weichmacher, fungistatisch und bakteriostatisch wirkende Substanzen, Füllstoffe (wie beispielsweise Bariumsulfat, Kieselgur, Ruß- oder Schlämmkreide) und Trennmittel.

Diese gegebenenfalls mitzuverwendenden Hilfs- und Zusatzstoffe werden beispielsweise in der EP- A 0 000 389, Seiten 18 - 21, beschrieben.

Komponente C

Als Komponente C werden Wasser und/oder physikalische Treibmittel eingesetzt. Als physikalische Treibmittel werden beispielsweise Kohlendioxid und/oder leicht flüchtige organische Substanzen als Treibmittel eingesetzt. Vorzugsweise wird Wasser als Komponente C eingesetzt.

Komponente D

Geeignete Di- und/oder Polyisocyanate sind aliphatische, cycloaliphatische, araliphatische, aromatische und heterocyclische Polyisocyanate, beispielsweise solche der Formel (IX)

Q(NCO)„ (IX), wobei n für 2 - 4, vorzugsweise 2 - 3, und

Q einen aliphatischen Kohlenwasserstoffrest mit 2 - 18, vorzugsweise 6 - 10 C-Atomen, einen cycloaliphatischen Kohlenwasserstoffrest mit 4 - 15, vorzugsweise 6 - 13 C-Atomen oder einen araliphatischen Kohlenwasserstoffrest mit 8 - 15, vorzugsweise 8 - 13 C-Atomen bedeuten. Beispielsweise handelt es sich um solche Polyisocyanate, wie sie in der EP-A 0 007 502, Seiten 7 - 8, beschrieben werden. Bevorzugt werden in der Regel die technisch leicht zugänglichen Polyisocyanate, zum Beispiel das 2,4- und 2,6-Toluylendiisocyanat, sowie beliebige Gemische dieser Isomeren ("TDI"); Polyphenylpolymethylenpolyisocyanate, wie sie durch Anilin- Formaldehyd-Kondensation und anschließende Phosgenierung hergestellt werden ("rohes MDI") und Carbodiimidgruppen, Urethangruppen, Allophanatgruppen, Isocyanuratgruppen, Hamstoffgruppen oder Biuretgruppen aufweisenden Polyisocyanate ("modifizierte Polyisocyanate"), insbesondere solche modifizierten Polyisocyanate, die sich vom 2,4- und/oder 2,6- Toluylendiisocyanat bzw. vom 4,4’- und/oder 2,4’-Diphenylmethandiisocyanat ableiten. Vorzugsweise wird als Polyisocyanat eine oder mehrere Verbindungen ausgewählt aus der Gruppe bestehend aus 2,4- und 2,6-Toluylendiisocyanat, 4,4’- und 2,4’- und 2,2’- Diphenylmethandiisocyanat und Polyphenylpolymethylenpolyisocyanat ("Mehrkem-MDF') eingesetzt. Besonders bevorzugt wird 2,4- und/oder 2,6-Toluylendiisocyanat eingesetzt.

In einer weiteren Ausführungsform des erfmdungsgemäßen Verfahrens umfasst die Isocyanat- Komponente B ein Toluylendiisocyanat-Isomerengemisch aus 55 bis 90 Gew.-% 2,4- und 10 bis 45 Gew.-% 2,6-TDI.

In einer weiteren Ausführungsform des erfmdungsgemäßen Verfahrens umfasst die Isocyanat- Komponente D 100 Gew.-% 2,4- Toluylendiisocyanat.

In einer Ausführungsform des erfmdungsgemäßen Verfahrens beträgt die Kennzahl 90 bis 120. Vorzugsweise liegt die Kennzahl in einem Bereich von 100 bis 115, besonders bevorzugt 102 bis 110. Die Kennzahl (Index) gibt das prozentuale Verhältnis der tatsächlich eingesetzten Isocyanat- Menge zur stöchiometrischen, d.h. für die Umsetzung der OH-Äquivalente berechneten Menge an Isocyanat-Gruppen (NCO)-Menge an.

Kennzahl = (Isocyanat-Menge eingesetzt) : (Isocyanat-Menge berechnet) · 100 (X)

Komponente K

Erfmdungsgemäß wird als Komponente K ein Zeolith mit einem eindimensionalen System von Kanälen eingesetzt, wobei die Kanäle des eindimensionalen Systems bevorzugt aus 10 bis 14, besonders bevorzugt aus 12 Tetraedern aufgebaut sind. Zeolithe sind Gerüstsilikate bei denen ein Teil des Siliciums durch Aluminium ersetzt ist und in deren Struktur größere Hohlräume existieren. Die Verbindungen innerhalb der Gerüstsilikate zwischen den größeren Hohlräumen werden Kanäle genannt. Beispiele für geeignete Zeolithe sind AIPO-8, CIT-5, Laumontit, Mordenit, Offretit, Perlialith, Chiavennit, Partheit, Roggianit oder Bikitait.

Bevorzugt werden als Komponente K Zeolithe eingesetzt die ein molares Verhältnis von S1O2 zu AI2O3 von 4 bis 140, besonders bevorzugt 6 bis 100 und insbesondere bevorzugt von 8 bis 50 aufweisen.

In einer besonderen Ausführungsform wird ein Zeolith mit einem orthorombischen Kristallsystem als Komponente K eingesetzt, wie z.B. Mordenit, Chiavennit oder Bikitait.

Es ist bevorzugt, dass als Komponente K Mordenit eingesetzt wird, besonders bevorzugt Mordenit mit einem molaren Si/Al-Verhältnis von 4 bis 140.

Die Komponente K wird in dem erfmdungsgemäßen Verfahren in einem Anteil von 0,01 bis 10,00 Gew. -Teile, bezogen auf die Summe der Gewichtsteile der Komponente Al + A2 = 100 Gewichtsteile, eingesetzt. Es ist bevorzugt, dass die Komponente K in einem Anteil von 0,01 bis 8,00 Gew. -Tie., besonders bevorzugt 0,05 bis 6,00 Gew. -Tie., insbesondere bevorzugt 0,1 bis 6,00 Gew. -Tie., jeweils bezogen auf die Summe der Gewichtsteile der Komponente Al + A2 = 100 Gewichtsteile, eingesetzt wird.

Zur Herstellung der Polyurethanschaumstoffe werden die Reaktionskomponenten nach dem an sich bekannten Einstufenverfahren zur Umsetzung gebracht, wobei man sich oft maschineller Einrichtungen bedient, z.B. solcher, die in der EP-A 355 000 beschrieben werden.

Die Polyurethanschaumstoffe liegen vorzugsweise als Polyurethanweichschaumstoffe vor und können als Form- oder auch als Blockschaumstoffe, vorzugsweise als Blockschaumstoffe hergestellt werden. Gegenstand der Erfindung sind daher ein Verfahren zur Herstellung der Polyurethanschaumstoffe, die nach diesen Verfahren hergestellten Polyurethanschaumstoffe, die nach diesen Verfahren hergestellten Polyurethanweichblockschaumstoffe bzw. Polyurethanweichformschaumstoffe, die Verwendung der Polyurethanweichschaumstoffe zur Herstellung von Formteilen sowie die Formteile selbst.

Die nach der Erfindung erhältlichen Polyurethanschaumstoffe vorzugsweise Polyurethanweichschaumstoffe, finden beispielsweise folgende Anwendung: Möbelpolsterungen, Textileinlagen, Matratzen, Automobilsitze, Kopfstützen, Armlehnen, Schwämme, Schaumstofffolien zur Verwendung in Automobilteilen wie beispielsweise Dachhimmeln, Türseitenverkleidungen, Sitzauflagen und Bauelementen.

Die erfindungsgemäßen Polyurethanschaumstoffe, vorzugsweise Polyurethanweichschaumstoffe weisen bevorzugt eine Rohdichte gemäß DIN EN ISO 3386-1-98 im Bereich von 16 bis 60 kg/m 3 , besonders bevorzugt von 20 bis 50 kg/m 3 auf.

Beispiele

Messmethoden

Experimentell bestimmte OH-Zahlen (Hydroxylzahl) wurden gemäß der Vorschrift der DIN 53240- 1 (Juni 2013) ermittelt.

Die Elementzusammensetzung (siehe Tabelle 2) wurde mittels Rasterelektronenmikroskopie/ energiedispersive Röntgenspektroskopie (REM/ED X) bestimmt.

Die Kristallstruktur wurde mittels Röntgendiffraktometrie (XRD) bestimmt.

Emissionsbestimmung - cyclisches Propylencarbonat

Die Quantifizierung des cPC-Gehalts erfolgte mittels 'H-N R-Spcktroskopic (Firma Bruker, DPX 400, 400 MHz): ca. 24 h nach Herstellung der Polyurethan-Weichschaumstoffe, wurde eine Probe von 1,2- 1,5 g des Polyurethan-Weichschaumstoffs bei 60°C für 7,5 Stunden in Aceton per Soxhlet extrahiert. Der Extrakt wurde unter vermindertem Druck konzentriert und in deuteriertem Chloroform, mit Dimethylterephthalat oder 1,2,4-Trichlorbenzol als internen Standard, aufgenommen. Anschließend wurde der cPC-Gehalt per 'H-NMR durch den Vergleich mit dem internen Standard quantifiziert.

Die vorliegende Erfindung wird anhand der nachfolgenden Beispiele erläutert, ohne jedoch darauf beschränkt zu sein. Es bedeuten:

Al-1: Polyethercarbonatpolyol, Funktionalität 2,8, OH-Zahl 54 mg KOH/g, 14 Gew.-%

CO2, hergestellt durch Copolymerisation von Propylenoxid und Kohlendioxid mit Glycerin und Propylenglykol als H-fiinktionelle Starterverbindungen in Gegenwart eines Doppelmetallcyanid-Katalysators

Bl-1: Niax Catalyst A-l, Bis[2- (N,N‘-dimethylamino)ethyl] -basiert (Fa. Momentive

Performance Materials GmbH)

Bl-2: Desmorapid SO, Zinnkatalysator (Fa. Covestro AG)

B2-1: Tegostab BF 2370 (Fa. Evonik Industries AG)

C-l: Wasser

D-l: Desmodur T 80, Mischung von 2,4‘-Toluylendiisocyanat und 2,6‘-

Toluylendiisocyanat im Verhältnis 80/20 (Fa. Covestro AG)

K-l: Mordenit, ein orthorombischer Zeolith mit einem eindimensionalen System von

Kanälen (ZEOflair 810 von Zeochem AG)

V-l: ZSM-5, ein orthorombischer Zeolith mit einem dreidimensionalen System von

Kanälen (ZEOflair 100 von Zeochem AG) Herstellung von Laborweichschaumstoffen:

Die in der Tabelle 1 beschriebenen Polyurethanweichschaumstoffe wurden in einem diskontinuierlichen Verfahren hergestellt. Die Vermischung der Komponenten erfolgte mittels eines Pendraulik Labormischers vom Typ LM 34. Die Komponente Al-1 (125 g) wurde in einem 500 mL Pappbecher zusammen mit den Komponenten Bl-1, B2-1 und C-l eingewogen und mit einem Schnellrührer 10 Sekunden lang vorvermischt. Anschließend erfolgte die Zugabe der Komponente Bl -2 und ein durchmischen von 10 Sekunden bei gleicher Rührgeschwindigkeit. Zu dieser Mischung wurde schließlich die Komponente D-l zugegeben, 7 Sekunden gemischt und die Mischung in ein vorbereitetes Papierkästchen mit einem Grundriss von 20 cm x 20 cm x 15 cm überführt.

Die Höhe der Polyurethanweichschaumstoffblöcke betrug ca. 14-15 cm. Der fertige Polyurethanweichschaum wurde im Papierkästchen ca. 20-24 Stunden gelagert, bevor dieser zur Ausprüfung in Probekörper gesägt wurde. Die Stauchhärte und die Rohdichte der Polyurethanweichschaumstoffe wurde gemäß DIN EN ISO 3386-1-98 bestimmt. Bei der Verwendung einer Komponente K wurde diese zunächst in der Komponente Al-1 vor verrührt, bevor die restlichen Rezepturkomponenten wie oben beschrieben zugegeben wurden.

Ergebnisse

Ohne Komponente K zeigte der resultierende Polyurethanweichschaumstoff eine hohe Emission an cyclischem Propylencarbonat (Vergleichsbeispiel 1). Die Zugabe einer erfindungsgemäßen Komponente K in Beispiel 2 führt zu niedrigeren Werten für cyclisches Propylencarbonat in der Emissionsbestimmung im Vergleich zu Vergleichsbeispiel 1. Die Zugabe eines Zeoliths mit einem dreidimensionalen System an Kanälen führt zu einer deutlichen Erhöhung an cyclischen Propylencarbonat im Polyurethanweichschaumstoff (Vergleichsbeispiel 3). Dies zeigt, dass überraschenderweise die Verwendung der erfindungsgemäßen Komponente K (Beispiel 2) zu einer Reduktion der Emission von cyclischem Propylencarbonat führt, währende die Verwendung eines Zeoliths mit einem dreidimensionalen System an Kanälen zu einer Erhöhung der Emission von cyclischem Propylencarbonat führt. - 23 -

Tabelle 1:

* Vergleichsbeispiel

Tabelle 2: