Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PROCESSES FOR PRODUCING HIGHER HYDROCARBONS FROM HYDROCARBON FEED SOURCES
Document Type and Number:
WIPO Patent Application WO/2008/157045
Kind Code:
A1
Abstract:
Processes are provided for producing higher hydrocarbons wherein at least a hydrocarbon feed source and a metal halide are combined at a temperature hot enough to gasify a portion of the metal halide.

Inventors:
COOK GEORGE W (US)
SAUER JOE D (US)
BEARD ALLEN M (US)
COURY JOSEPH E (US)
GARCIA MARIO A (US)
LANIER CARROLL W (US)
Application Number:
PCT/US2008/065835
Publication Date:
December 24, 2008
Filing Date:
June 05, 2008
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ALBEMARLE CORP (US)
COOK GEORGE W (US)
SAUER JOE D (US)
BEARD ALLEN M (US)
COURY JOSEPH E (US)
GARCIA MARIO A (US)
LANIER CARROLL W (US)
International Classes:
C07C2/76; C10G11/08; C10G50/00
Foreign References:
US3257333A1966-06-21
US5593569A1997-01-14
GB942491A1963-11-20
Other References:
OSTERWALDER N ET AL: "Direct coupling of bromine-mediated methane activation and carbon deposit gasification", CHEMPHYSCHEM - A EUROPEAN JOURNAL OF CHEMICAL PHYSICS & PHYSICAL CHEMISTRY, DEWILEY VCH, WEINHEIM, vol. 8, 1 January 2007 (2007-01-01), pages 297 - 303, XP002489549
BREED ET AL: "Natural gas conversion to liquid fuels in a zone reactor", CATALYSIS TODAY, ELSEVIER, vol. 106, no. 1-4, 15 October 2005 (2005-10-15), pages 301 - 304, XP005161450, ISSN: 0920-5861
YULIATI ET AL: "Photoactive sites on pure silica materials for nonoxidative direct methane coupling", JOURNAL OF CATALYSIS, ACADEMIC PRESS, DULUTH, MN, US, vol. 238, no. 1, 15 February 2006 (2006-02-15), pages 214 - 220, XP005252929, ISSN: 0021-9517
Attorney, Agent or Firm:
HOEFLING, Marcy M. et al. (451 Florida StreetBaton Rouge, LA, US)
Download PDF:
Claims:

What is claimed is:

1. A process comprising:

- combining at least a hydrocarbon feed source and a metal haiide at at least about 350 0 C 1

- cracking at least some of the hydrocarbon feed source to Ci or higher hydrocarbons; and

- polymerizing at least some of the Ci or higher hydrocarbons;

- yielding C 2 and higher hydrocarbons.

2. The process of claim 1 wherein the metal haiide comprises aluminum bromide, aluminum chloride, aluminum fluoride, titanium bromide, or aluminum iodide.

3. The process of claim 1 wherein the hydrocarbon feed source comprises a paraffin wax, polyethylene, plastic grocery bags, Ci 6 straight chain paraffins, isopentane, cyclohexane, heptane, acetylene, or ethylene.

4. The process of claim 1 further comprising combining an additional component with the at least hydrocarbon feed source and metal haiide, wherein the additional component comprises methyl iodide, titanium bromide, a branched hydrocarbon, ethane, hydrogen, an alkyl haiide, an olefin, or a metal haiide comprising Li, Na, K, Mg,

Ca, Sc, Y, Zr, Cu, Hf, V, Nb, Ta, Fe, Ru, Co, Ni, Pb, B, Ga, Ge, Sn, or Sb and bromine, chlorine, fluorine, or iodine.

5. The process of claim 1 further comprising combining a hydrogen haiide with the at least hydrocarbon feed source and metal haiide.

6. The process of claim 1 further comprising combining a hydrogen haiide and an additional component with the at least hydrocarbon feed source and metal haiide, wherein the additional component comprises methyl iodide, titanium bromide, a branched hydrocarbon, ethane, hydrogen, an alky! haiide, an olefin, or a metal haiide

, , , , , , , , , , , , , , , , , , , , Sn, or Sb and bromine, chlorine, or iodine.

7. The process of claim 1 further comprising combining gaseous methane with the at least hydrocarbon feed source and metal halide.

8. A process for producing C 2 and higher hydrocarbons, comprising:

(a) heating a metal halide to a temperature of at least about 350 0 C, and

(b) combining at least a hydrocarbon feed source and the heated metal halide,

(c) cracking at least some of the hydrocarbon feed source to Ci or higher hydrocarbons;

(d) polymerizing at least some of the Ci or higher hydrocarbons; and

(e) yielding C 2 and higher hydrocarbons.

9. The process of claim 8 wherein the hydrocarbon feed source comprises a paraffin wax, polyethylene, plastic grocery bags, Ci 6 straight chain paraffins, isopentane, cyclohexane, heptane, acetylene, or ethylene.

10. A process comprising:

- combining at least gaseous methane, a hydrocarbon feed source and a metal halide at at least about 100 0 C,

- cracking at least some of the hydrocarbon feed source to Ci or higher hydrocarbons;

- polymerizing at least some of the Ci or higher hydrocarbons; and

- yielding C 2 and higher hydrocarbons.

11. The process of claim 1 wherein the metal halide comprises aluminum bromide, aluminum chloride, aluminum fluoride, titanium bromide, or aluminum iodide.

12. The process of claim 10 wherein the hydrocarbon feed source comprises a paraffin wax, poiyethyiene, plastic grocery bags, C-iβ straight chain paraffins, isopentane, cyclohexane, heptane, acetylene, or ethylene.

. at least a temperature at which at least some of the metal halide is gaseous, yielding C2 and higher hydrocarbons.

Description:

HYDROCARBON FEED SOURCES

BACKGROUND

[0001] Many hydrocarbon feed sources including, without limitation, paraffin waxes, high density polyethylene, plastic grocery bags, C 16 straight chain paraffins, isopentane, cyclohexane, heptane, acetylene, ethylene, etc., are readily available. [0002] In spite of technologies that are currently described and available, a need exists for commercially feasible means for converting such hydrocarbon feed sources to useful hydrocarbons, such as gasoline.

THE INVENTION

[0003] This invention meets the above-described needs by providing processes for producing C 2 and higher hydrocarbons, comprising combining at least a hydrocarbon feed source and a metal halide at a temperature of at least about 350 0 C. In processes of this invention, the hydrocarbon feed source and the metal halide can combine to form a second stream and the second stream can be at at least a temperature high enough to initiate cracking of the hydrocarbon feed source. This invention also provides processes for producing C 2 and higher hydrocarbons, comprising combining at least a hydrocarbon feed source, a metal halide, and a halogen at at least about 100 0 C. This invention also provides processes for producing C 2 and higher hydrocarbons, comprising combining at least a hydrocarbon feed source, a metal halide, and gaseous methane at at least about 100 0 C.

[0004] Processes of this invention are particularly advantageous in that produced higher hydrocarbons are useful, e.g., as gasoline, diesel fuel, chemical feedstock, heating oils, lubricating oils, and the like. An added benefit of processes of this invention is that usable H 2 is produced, as is described in greater detail below. A component suitable for absorbing hydrogen can be used in processes of this invention for recovery of the usable H 2 . Alternatively, H 2 can be recovered by techniques familiar to those skilled in the art, such as by pressure swing absorption, distillation, and the like. The availability of usable H 2 is advantageous in that it can be used as a clean- burning fuel with reduced CO 2 emissions as compared to traditional fueis.

hydrocarbon feed source and a metal haiide at at least about 35O 0 C 1 cracking at least some of the hydrocarbon feed source to Ci or higher hydrocarbons; and polymerizing at least some of the C 1 or higher hydrocarbons; yielding C2 and higher hydrocarbons; such processes wherein the metal haiide comprises aluminum bromide, aluminum chloride, aluminum fluoride, titanium bromide, or aluminum iodide; such processes wherein the hydrocarbon feed source comprises a paraffin wax, polyethylene, plastic grocery bags, C 16 straight chain paraffins, isopentane, cyclohexane, heptane, acetylene, or ethylene; such processes further comprising combining an additional component with the at least hydrocarbon feed source and metal haiide, wherein the additional component comprises methyl iodide, titanium bromide, a branched hydrocarbon, ethane, hydrogen, an alkyl haiide, an olefin, or a metal haiide comprising Li, Na, K, Mg, Ca, Sc, Y, Zr, Cu, Hf, V, Nb, Ta, Fe, Ru, Co, Ni, Pb, B, Ga, Ge, Sn, or Sb and bromine, chlorine, fluorine, or iodine; such processes further comprising combining a hydrogen haiide with the at least hydrocarbon feed source and metal haiide; such processes further comprising combining a hydrogen haiide and an additional component with the at least hydrocarbon feed source and metal haiide, wherein the additional component comprises methyl iodide, titanium bromide, a branched hydrocarbon, ethane, hydrogen, an alkyl haiide, an olefin, or a metal haiide comprising U, Na, K, Mg, Ca, Sc, Y, Zr, Cu, Hf, V 1 Nb, Ta, Fe, Ru, Co, Ni, Pb, B, Ga, Ge, Sn, or Sb and bromine, chlorine, fluorine, or iodine; such processes further comprising combining gaseous methane with the at least hydrocarbon feed source and metal haiide. [0006] Also provided are processes for producing C 2 and higher hydrocarbons, comprising: (a) heating a metal haiide to a temperature of at least about 35O 0 C, and (b) combining at least a hydrocarbon feed source and the heated metal haiide, (c) cracking at least some of the hydrocarbon feed source to Ci or higher hydrocarbons; (d) polymerizing at least some of the Ci or higher hydrocarbons; and (e) yielding C 2 and higher hydrocarbons; such processes wherein the hydrocarbon feed source comprises a paraffin wax, polyethylene, plastic grocery bags, C 16 straight chain paraffins, isopentane, cyclohexane, heptane, acetylene, or ethylene. [0007] Also provided are processes comprising: combining at least gaseous methane, a hydrocarbon feed source and a metal haiide at at least about 100 0 C, cracking at least some of the hydrocarbon feed source to Ci or higher hydrocarbons; polymerizing at least some of the Ci or higher hydrocarbons; and yielding C 2 and higher

, aluminum chloride, aluminum fluoride, titanium bromide, or aluminum iodide; such processes wherein the hydrocarbon feed source comprises a paraffin wax, polyethylene, plastic grocery bags, Ci 6 straight chain paraffins, isopentane, cyclohexane, heptane, acetylene, or ethylene.

[0008] Also provided are processes comprising combining at least gaseous methane and a metal halide at at least a temperature at which at least some of the metal halide is gaseous, yielding C 2 and higher hydrocarbons.

[0009] Also provided are processes comprising combining at least a hydrocarbon feed source and a Lewis acid at at least a temperature at which at least some of the

Lewis acid is gaseous, yielding C 2 and higher hydrocarbons. Suitable Lewis acids include, without limitation, metal halides such as aluminum bromide. As is familiar to those skilled in the art, a Lewis acid is defined as a compound capable of accepting an electron pair.

[0010] Also provided are processes comprising combining at least a hydrocarbon feed source, a Lewis acid, and a Bronsted acid, e.g., HBr, at at least a temperature at which at ieast some of the Lewis acid is gaseous, yieiding C 2 and higher hydrocarbons.

As is familiar to those skilled in the art, a Bronsted acid is defined as a compound capable of donating a proton.

[0011] These and other aspects of the invention are described herein and by reference to the Figures, in which:

Figure 1 illustrates a batch process according to this invention; and Figure 2 illustrates a batch process according to this invention;. [0012] C 2 and higher hydrocarbons produced according to processes of this invention can include without limitation C 2 to C 30 hydrocarbons, particularly C 2 to Ci 2 hydrocarbons or C 4 to C 8 hydrocarbons. The C 2 and higher hydrocarbons produced according to this invention can include normal and iso alkanes (C n H 2n +2), cyclic alkanes (C n H 2n ), alkenes (C n H 2n ), alkynes (C n H 2n-2 ), aromatics, and the like. [0013] The gaseous methane can be provided by a natural gas stream co-produced with oil or otherwise produced, or a natural gas stream from any other suitable source. For example, the gas stream can be produced from coa! beds (e.g., anthracite or bituminous); biogas produced by the anaerobic decay of non-fossil organic materia! from swamps, marshes, landfills, and the like; biogas produced from sewage sludge and manure by way of anaerobic digesters; biogas produced by enteric fermentation

. 2 the gas stream.

[0014] The gas stream can comprise at least about 50 vo!% methane, or at least about 75 vol% methane. Other components can be present in the gas stream, for example, ethane, butane, propane, carbon dioxide, nitrogen, helium, hydrogen sulfide, water, odorants, mercury, organosulfur compounds, etc. Such components can be removed as needed from the gas stream prior to, during, or after processing according to this invention using techniques familiar to those skilled in the art. The gas stream can consist essentially of methane, e.g., can be zero grade, or essentially pure, methane.

[0015] This invention also provides processes for producing C-2 and higher hydrocarbons, comprising combining at least a hydrocarbon feed source and a meta! halide within a temperature range in which at least some of the metal halide is gaseous. Suitable hydrocarbon feed sources include, without limitation, paraffin waxes, high density polyethylene, plastic grocery bags, C- 16 straight chain paraffins, isopentane, cyclohexane, heptane, acetylene, ethylene, etc.

[0016] Other components can be present in the hydrocarbon feed source, for example, oxygen, nitrogen, helium, hydrogen sulfide, water, odorants, mercury, organosulfur compounds, etc. Such components can be removed as needed from the hydrocarbon feed source prior to, during, or after processing according to this invention using techniques familiar to those skilled in the art.

[0017] The metal haiide or other Lewis acid can be suitable for catalyzing polymerization of methane and can comprise aluminum bromide (e.g., AIBr 3 or aluminum chloride, aluminum fluoride, aluminum iodide, titanium bromide, and the like, including mixtures thereof. For example, titanium bromide in the form of TiBr 2 , TiBr 4 , and the like can be used. Without limiting this invention, metal halides comprising a metal such as Li, Na, K, Mg, Ca, Sc, Y, Zr, Cu, Hf, V, Nb, Ta, Fe, Ru, Co, Ni, Pb, B, Ga, Ge, Sn, or Sb and a halogen such as bromine, chlorine, iodine, or fluorine may also be used in processes of this invention. The metal halide can have a purity of 100% or less than 100%. For example, the metal halide can be of a commercial grade, can have a purity of at least about 95%, or at least about 98%, or at least about 99%, or at least about 99.9%. Impurities can be present on the surface of the metal halide(s); and such impurities can participate in reactions that occur during processes of this invention.

, temperature range, that is at least high enough to gasify at least some of the metal halide. When the metal halide comprises aluminum bromide, the temperature can be at least about 100 0 C, and can be from about 100 0 C to about 400 0 C, or about 25O 0 C to about 35O 0 C.

[0019] When a hydrogen halide is used in processes of this invention, any suitable hydrogen halide can be used, for example hydrogen bromide. When a hydrogen haϋde, such as hydrogen bromide for example, is used, it can have a purity of about 100% or less than about 100%. For example, the hydrogen halide can be of a commercial grade, can have a purity of at least about 95%, or at least about 98%, or at least about 99%, or at least about 99.9%. Additionally, the hydrogen halide can have a purity of at least about 50% or at least about 90% and can comprise various impurities such as H 2 O, CO, CO 2 , O 2 , HCI, HF, Br 2 , Cl 2 , fluorine, or iodine, to name a few. The same is true when another hydrogen halide is used, such as hydrogen fluoride, or hydrogen chloride, or hydrogen iodide.

[0020] The component suitable for absorbing hydrogen can comprise Raney nickel, platinum, paladium, tantalum, niobium, yttrium, platinum on carbon, paladϊum on carbon, platinum on activated carbon, paladium on activated carbon, etc. Raney nickel can be comprised of aluminum-nickel alloy. Given the teachings of this disclosure, one skilled in the art can select an suitable component for absorbing hydrogen. [0021] Processes according to this invention for producing C 2 and higher hydrocarbons can comprise combining at least gaseous methane, a metal halide, and an additional component. Without limiting this invention, the additional component (sometimes referred to herein as a promoter) can comprise a halogen such as bromine, chlorine, fluorine, or iodine; methyl iodide; titanium bromide; metal halides comprising a metal such as Li, Na, K 1 Mg, Ca, Sc, Y, Zr, Cu, Hf, V, Nb, Ta, Fe, Ru, Co, Ni, Pb, B, Ga, Ge, Sn, or Sb and a halogen such as bromine, chlorine, fluorine, or iodine; branched hydrocarbons such as isopentane, neopentane, and the like; ethane; hydrogen; alkyl halides such as methyl bromide, ethyl bromide, and the like; and/or olefins such as propene, butene, and the like. One or more additional components can be combined. Such additional components can be generated in situ. For example, combined methane and bromine can generate methyl bromide in situ; combined hydrogen bromide and ethylene can generate ethylene bromide in situ, etc..

, , , can comprise a hydrocarbon feed source and/or gaseous methane. The metal haiide 114 can catalyze polymerization of methane in gaseous methane in stream 118 to C 2 and higher hydrocarbons. The metal haiide 114 can be in a container 112. The container 112 can be heated by any suitable means, e.g., by a heated sand bed 116, so that the metal haiide 114 is heated, e.g., at least to its melting temperature. Stream 118 can be injected into (or otherwise put into) the container 112 such that the metal haiide 114 catalyzes cracking of at least some of the hydrocarbon feed source and polymerization of methane and other hydrocarbons. For example, the residence time of hydrocarbon feed source and/or gaseous methane from stream 118 within the container 112 and other conditions, such as temperature, can be adequate to initiate polymerization of the methane. For example, residence time can be up to about one minute. Longer residence times can be used. For example, residence time of hydrocarbon feed source and/or gaseous methane from stream 118 within the container 112 can be longer than about one minute, for example from about one minute to about five minutes, or up to about two minutes. A substantial portion of the polymerization can occur in vapor phase 119. Simultaneously with the polymerization in vapor phase 119, some of the polymerized higher hydrocarbons can be cracked, e.g., by thermal cracking, acid cracking, etc.. At appropriately high temperatures, olefins are formed and hydrogen given off can assist in the cracking process. For example, the temperature can be above about 35O 0 C, or can be from about 350 0 C to about 1000 0 C, or from about 350°C to about 400 0 C. At lower temperatures, cracking can be achieved without the assistance of olefins by addition of hydrogen. For example, at a temperature of up to about 350 0 C, or at about 110°C, cracking can be assisted by addition of hydrogen under pressure. Thermal reforming of hydrocarbons, isomerizatϊon of hydrocarbons, and other reactions can also occur in vapor phase 119 and/or elsewhere in container 112. Skeletel or bond isomerization can occur. The metal haiide can catalyze polymerization of the methane by action as a Lewis acid. Although not illustrated in Figure 1 , hydrogen given off during the polymerization of the methane can be recovered for sale or use, e.g., by being absorbed by a component suitable for absorbing hydrogen, which component may be in the container 112 with the metal haiide 114 or may be in a separate container through which the gaseous methane stream 118 (or a resulting product/product stream (not shown in Figure 1)) is subsequently passed. Produced C 2 and higher hydrocarbons can be recovered from

. Given the teachings of this disciosure, those skilled in the art can determine appropriate temperatures, pressures, and other process parameters as desired to achieve desired results using processes of this invention.

[0023] Referring, for example, to Figure 2, in processes of this invention, stream 218 can comprise a hydrocarbon feed source and/or gaseous methane. Metal halide 214 can catalyze polymerization of methane in stream 218 to C- 2 and higher hydrocarbons. The metal haiide 214 can be in a container 212. Also, component 215 (e.g., packing) can be put into container 212, e.g., for the purpose of increasing surface area within container 212 and/or for supporting the metal halide 214. One benefit of component 215 is that additional surface area is provided for surface activated polymerization reactions. Gas/vapor phase polymerization reactions can also occur. Suitable packing materials will be well known to those skilled in the art, given the teachings of this disclosure, and can include, for example, glass beads, aluminum oxides, and zeolites. The container 212 can be heated by any suitable means, e.g., by a heated sand bed 216, so that the metal halide 214 is heated, e.g., to at least its melting temperature. Stream 218 can be injected into (or otherwise put into) the container 212 such that the metal halide 214 catalyzes polymerization of methane. For example, the residence time of methane in the gaseous methane stream 218 within the container 212 and other conditions, such as temperature, can be adequate to initiate polymerization of the methane. A substantial portion of the polymerization can occur on the surface of component 215 and/or in vapor phase 219. Simultaneously with the polymerization on the surface of component 215 and/or in vapor phase 219, some of the polymerized higher hydrocarbons can be cracked by, e.g., thermal cracking, acid cracking, or the like. Thermal reforming of hydrocarbons, isomerization of hydrocarbons, and other reactions can also occur in vapor phase 219 and/or elsewhere in container 212. Although not illustrated in Figure 2, hydrogen given off during the polymerization of the methane can be recovered for sale or use, e.g., by being absorbed by a component suitable for absorbing hydrogen, which component may be in the container with the metal halide or may be in a separate container through which the gaseous methane stream is subsequently passed. Produced Ca and higher hydrocarbons can be recovered from container 212 by means known to those skilled in the art (not illustrated in Figure 2).

. ., species in that the pressure and temperature conditions allow a substantial portion of the metal haiide to remain available as a salt in the vapor phase. A vapor phase containing such ionic species can be conducive to reactions such as alkylation, isomerization, and the like.

[0025] Byproducts of processes according to this invention can include red oil or red oil like substances. Red oil is a clathrate of at least olefinϊc hydrocarbon(s), aluminum halide(s), and, in some cases, Bronsted acid(s) and/or other Lewis acid(s). [0026] A benefit of processes of this invention is that components having a catalytic effect on the polymerization reactions taking place, e.g., aluminum bromide and hydrogen bromide, for example, either do not require regeneration or can be regenerated in situ.

[0027] It is to be understood that the reactants and components referred to by chemical name or formula anywhere in the specification or claims hereof, whether referred to in the singular or plural, are identified as they exist prior to being combined with or coming into contact with another substance referred to by chemical name or chemical type (e.g., another reactant, a solvent, or etc.). It matters not what chemical changes, transformations and/or reactions, if any, take place in the resulting mixture or solution or reaction medium as such changes, transformations and/or reactions are the natural result of bringing the specified reactants and/or components together under the conditions called for pursuant to this disclosure. Thus the reactants and components are identified as ingredients to be brought together in connection with performing a desired chemical reaction or in forming a mixture to be used in conducting a desired reaction. Accordingly, even though the claims hereinafter may refer to substances, components and/or ingredients in the present tense ("comprises", "is", etc.), the reference is to the substance, component or ingredient as it existed at the time just before it was first contacted, combined, blended or mixed with one or more other substances, components and/or ingredients in accordance with the present disclosure. Whatever transformations, if any, which occur in situ as a reaction is conducted is what the claim is intended to cover. Thus the fact that a substance, component or ingredient may have lost its original identity through a chemical reaction or transformation during the course of contacting, combining, blending or mixing operations, if conducted in accordance with this disclosure and with the application of common sense and the ordinary skill of a chemist, is thus wholly immaterial for an accurate understanding and

n m m thereof. As will be familiar to those skilled in the art, the terms "combined", "combining", and the like as used herein mean that the components that are "combined" or that one is "combining" are put into a container with each other. Likewise a "combination" of components means the components having been put together in a container.

[0028] While the present invention has been described in terms of one or more preferred embodiments, it is to be understood that other modifications may be made without departing from the scope of the invention, which is set forth in the claims below.