Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
RECOMBINANT NARBONOLIDE POLYKETIDE SYNTHASE
Document Type and Number:
WIPO Patent Application WO/2002/097062
Kind Code:
A2
Abstract:
Recombinant DNA compounds that encode all or a portion of the narbonolide polyketide synthase are used to express recombinant polyketide synthase genes in host cells for the production of narbonolide, narbonolide derivatives, and polyketides that are useful as antibiotics and as intermediates in the synthesis of compounds with pharmaceutical value.

Inventors:
ASHLEY GARY (US)
BETLACH MELANIE C (US)
BETLACH MARY (US)
MCDANIEL ROBERT (US)
TANG LI (US)
Application Number:
PCT/US2002/005642
Publication Date:
December 05, 2002
Filing Date:
February 22, 2002
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
KOSAN BIOSCIENCES INC (US)
ASHLEY GARY (US)
BETLACH MELANIE C (US)
BETLACH MARY (US)
MCDANIEL ROBERT (US)
TANG LI (US)
International Classes:
C07D323/00; C07H17/08; C12N1/21; C12N9/14; C12N15/52; C12N15/65; C12P17/08; C12P19/62; C07B61/00; (IPC1-7): C12N/
Foreign References:
US6265202B12001-07-24
US6117659A2000-09-12
US5712146A1998-01-27
US5824513A1998-10-20
Other References:
XUE ET AL: 'A gene cluster for macrolide antibiotic biosynthesis in Streptomyces venezuelae:Architecture of metabolic diversity' PROC NATL ACAD SCI vol. 95, October 1998, pages 12111 - 12116, XP002117399
XUE ET AL: 'Genetic architecture of the polyketide synthase fro methymycim and pikromycin series marcolides' GENE vol. 245, no. 1, 07 March 2000, pages 203 - 211, XP004202977
CHEN ET AL: 'The Streptomyces venezuelae pikAV gene contains a transcription unit essential for expression of enzymes involved in glycosylation of narbonolide and 10-deoxymethynolide' GENE vol. 263, no. 1-2, 24 January 2001, pages 255 - 264
XUE ET AL: 'Alternative modular polyketide synthase expression controls macrolactone structure' NATURE vol. 403, 03 February 2000, pages 571 - 575
CHEN ET AL: 'mechanism of molecular recognition in the picromycin polyketide synthase' CHEM BIOL vol. 7, no. 12, December 2000, pages 907 - 918
Attorney, Agent or Firm:
Apple, Randolph T. (755 Page Mill Road Palo Alto, CA, US)
Download PDF:
Claims:
Claims
1. An isolated recombinant DNA compound that comprises a coding sequence for a domain of a narbonolide PKS.
2. The isolated recombinant DNA compound of Claim 1, wherein said domain is selected from the group consisting of a thioesterase domain, a KSQ domain, an AT domain, a KS domain, an ACP domain, a KR domain, a DH domain, and an ER domain.
3. The isolated recombinant DNA compound of Claim 2 that comprises the coding sequence for a loading module, thioesterase domain, and all six extender modules of the narbonolide PKS.
4. An isolated recombinant DNA compound that comprises a coding sequence for a desosamine biosynthetic gene or a desosaminyl transferase gene or a betaglucosidase gene of Streptomyces venezuelae.
5. An isolated recombinant DNA compound that comprises a coding sequence for a picK hydroxylase gene of Streptomyces zenezuelne.
6. An isolated DNA compound of any of Claim 1 that further comprises a promoter operably linked to said coding sequence.
7. The isolated recombinant DNA compound of Claim 6, wherein said promoter is a promoter derived from a cell other than a Streptomyces venezuelne cell.
8. The isolated recombinant DNA compound of Claim 7 that is a recombinant DNA expression vector.
9. The recombinant DNA expression vector of Claim 8 that expresses a PKS in Streptomyces host cells.
10. The recombinant DNA expression vector of Claim 9 that encodes a hybrid PKS comprising at least a portion of a narbonolide PKS gene and at least a portion of a second PKS gene for a macrolide aglycone other than narbonolide.
11. The recombinant DNA compound of Claim 10, wherein said second PKS gene is a DEBS gene.
12. The recombinant DNA compound of Claim 11, wherein said hybrid PKS is composed of a loading module and extender modules 1 through 6 of DEBS excluding a KR domain of extender module 6 of DEBS and an ACP of extender module 6 and a thioesterase domain of the narbonolide PKS.
13. A recombinant host cell, which in its untransformed state does not produce 10deoxymethynolide or narbonolide, that comprises a recombinant DNA expression vector of Claim 9 that encodes a narbonolide PKS and said cell produces 10deoxymethynolide or narbonolide.
14. The recombinant host cell of Claim 13 that further comprises a picB gene.
15. The recombinant host cell of Claim 13 that further comprises desosamine biosynthetic genes and a gene for desosaminyl transferase and produces YC17 or narbomycin.
16. The recombinant host cell of Claim 15 that further comprises a picK gene and produces methymycin, neomethymycin, or picromycin.
17. The recombinant host cell of any of Claim 16 that is Streptomyces coelicolor or Streptomyces lividans.
18. A recombinant host cell other than a Streptomyces venezuelae cell that expresses a picK hydroxylase gene of S. venezuelae encoded by the DNA compound of Claim 5.
19. A recombinant host cell other than a Streptomyces venezuelan host cell that expresses a desosamine biosynthetic gene or desosaminyl transferase gene of S. venezuelne encoded by the DNA compound of Claim 4.
20. A method for increasing the yield of a desosaminylated polyketide in a cell, which method comprises transforming the cell with a recombinant expression vector that encodes a functional betaglucosidase gene.
Description:
Title Recombinant Narbonolide Polyketide Synthase

Reference to Government Funding This invention was supported in part by SBIR grant 1R43-CA75792-01.

The U. S. government has certain rights in this invention.

Field of the Invention The present invention provides recombinant methods and materials for producing polyketides by recombinant DNA technology. The invention relates to the fields of agriculture, animal husbandry, chemistry, medicinal chemistry, medicine, molecular biology, pharmacology, and veterinary technology.

Background of the Invention Polyketides represent a large family of diverse compounds synthesized from 2-carbon units through a series of condensations and subsequent modifications. Polyketides occur in many types of organisms, including fungi

and mycelial bacteria, in particular, the actinomycetes. There are a wide variety of polyketide structures, and the class of polyketides encompasses numerous compounds with diverse activities. Tetracycline, erythromycin, FK506, FK520, narbomycin, picromycin, rapamycin, spinocyn, and tylosin, are examples of such compounds. Given the difficulty in producing polyketide compounds by traditional chemical methodology, and the typically low production of polyketides in wild-type cells, there has been considerable interest in finding improved or alternate means to produce polyketide compounds. See PCT publication Nos. WO 93/13663; WO 95/08548 ; WO 96/40968; 97/02358; and 98/27203; United States Patent Nos. 4,874,748; 5,063,155 ; 5, 098,837; 5,149,639; 5,672,491; and 5,712,146; Fu et al., 1994, Biochemistny 33: 9321-9326; McDaniel et al., 1993, Science 262: 1546-1550; and Rohr, 1995, Ange7t. Chem. Int. Ed. Engl. 34 (8): 881-888, each of which is incorporated herein by reference.

Polyketides are synthesized in nature by polyketide synthase (PKS) enzymes. These enzymes, which are complexes of multiple large proteins, are similar to the synthases that catalyze condensation of 2-carbon units in the biosynthesis of fatty acids. PKS enzymes are encoded by PKS genes that usually consist of three or more open reading frames (ORFs). Each ORF typically comprises two or more"modules"of ketosynthase activity, each module of which consists of at least two (if a loading module) and more typically three or more enzymatic activities or"domains."Two major types of PKS enzymes are known; these differ in their composition and mode of synthesis. These two major types of PKS enzymes are commonly referred to as Type I or"modular"and Type II"iterative"PKS enzymes.

Modular PKSs are responsible for producing a large number of 12,14, and 16-membered macrolide antibiotics including methymycin, erythromycin, narbomycin, picromycin, and tylosin. These large multifunctional enzymes (>300,000 kDa) catalyze the biosynthesis of polyketide macrolactones through multistep pathways involving decarboxylative condensations between acyl

thioesters followed by cycles of varying 6-carbon processing activities (see O'Hagan, D. The polyketide metabolites ; E. Horwood: New York, 1991, incorporated herein by reference).

During the past half decade, the study of modular PKS function and specificity has been greatly facilitated by the plasmid-based Streptomyces coelicolor expression system developed with the 6-deoxyerythronolide B (6-dEB) synthase (DEBS) genes (see Kao et al., 1994, Science, 265: 509-512, McDaniel et al., 1993, Science 262: 1546-1557, and U. S. Patent Nos. 5,672,491 and 5,712,146, each of which is incorporated herein by reference). The advantages to this plasmid-based genetic system for DEBS were that it overcame the tedious and limited techniques for manipulating the natural DEBS host organism, Saccharopolyspora enyt) zaen, allowed more facile construction of recombinant PKSs, and reduced the complexity of PKS analysis by providing a"clean"host background. This system also expedited construction of the first combinatorial modular polyketide library in Streptomyces (see PCT publication No. WO 98/49315, incorporated herein by reference).

The ability to control aspects of polyketide biosynthesis, such as monomer selection and degree of 6-carbon processing, by genetic manipulation of PKSs has stimulated great interest in the combinatorial engineering of novel antibiotics (see Hutchinson, 1998, Curr. Opin. Microbiol. 1: 319-329; Carreras and Santi, 1998, Curer. Opin. Biotech. 9: 403-411 ; and U. S. Patent Nos. 5,712,146 and 5,672,491, each of which is incorporated herein by reference). This interest has resulted in the cloning, analysis, and manipulation by recombinant DNA technology of genes that encode PKS enzymes. The resulting technology allows one to manipulate a .. t known PKS gene cluster either to produce the polyketide synthesized by that PKS at higher levels than occur in nature or in hosts that otherwise do not produce the polyketide. The technology also allows one to produce molecules that are structurally related to, but distinct from, the polyketides produced from known PKS gene clusters.

The present invention provides methods and reagents relating to the PKS gene cluster for the polyketide antibiotics known as narbomycin and picromycin.

Narbomycin is produced in Streptomyces narbonensis, and both narbomycin and picromycin are produced in S. venezuelae. These species are unique among macrolide producing organisms in that they produce, in addition to the 14- membered macrolides narbomycin and picromycin (picromycin is shown in Figure 1, compound 1), the 12-membered macrolides neomethymycin and methymycin (methymycin is shown in Figure 1, compound 2). Based on the structural similarities between picromycin and methymycin, it was speculated that methymycin would result from premature cyclization of a hexaketide intermediate in the picromycin pathway.

Glycosylation of the C5 hydroxyl group of the polyketide precursor, narbonolide, is achieved through an endogenous desosaminyl transferase to produce narbomycin. In Streptomyces venezuelae, narbomycin is then converted to picromycin by the endogenously produced narbomycin hydroxylase. Thus, as in the case of other macrolide antibiotics, the macrolide product of the narbonolide PKS is further modified by hydroxylation and glycosylation.

Picromycin (Figure 1, compound 1) is of particular interest because of its close structural relationship to ketolide compounds (e. g. HMR 3004, Figure 1, compound 3). The ketolides are a new class of semi-synthetic macrolides with activity against pathogens resistant to erythromycin (see Agouridas et al., 1998, J.

Med. Claim. 41 : 4080-4100, incorporated herein by reference). Thus, genetic systems that allow rapid engineering of the narbonolide PKS would be valuable for creating novel ketolide analogs for pharmaceutical applications. Furthermore, the production of picromycin as well as novel compounds with useful activity could be accomplished if the heterologous expression of the narbonolide PKS in Streptomyces lividans and other host cells were possible. The present invention meets these and other needs.

Summary of the Invention The present invention provides recombinant methods and materials for expressing PKSs derived in whole and in part from the narbonolide PKS and other genes involved in narbomycin and picromycin biosynthesis in recombinant host cells. The invention also provides the polyketides derived from the narbonolide PKS. The invention provides the complete PKS gene cluster that ultimately results, in Streptomyces venezuelae, in the production of picromycin.

The ketolide product of this PKS is narbonolide. Narbonolide is glycosylated to obtain narbomycin and then hydroxylated at C12 to obtain picromycin. The enzymes responsible for the glycosylation and hydroxylation are also provided in recombinant form by the invention.

Thus, in one embodiment, the invention is directed to recombinant materials that contain nucleotide sequences encoding at least one domain, module, or protein encoded by a narbonolide PKS gene. The invention also provides recombinant materials useful for conversion of ketolides to antibiotics.

These materials include recombinant DNA compounds that encode the C12 hydroxylase (the picK gene), the desosamine biosynthesis and desosaminyl transferase enzymes, and the beta-glucosidase enzyme involved in picromycin biosynthesis in S. venezuelae and the recombinant proteins that can be produced from these nucleic acids in the recombinant host cells of the invention.

In one embodiment, the invention provides a recombinant expression vector that comprises a heterologous promoter positioned to drive expression of the narbonolide PKS. In a preferred embodiment, the promoter is derived from a PKS gene. In a related embodiment, the invention provides recombinant host cells comprising the vector that produces narbonolide. In a preferred embodiment, the host cell is Streptomyces lividans or S. coelicolor.

In another embodiment, the invention provides a recombinant expression vector that comprises the desosamine biosynthetic genes as well as the desosaminyl transferase gene. In a related embodiment, the invention provides

recombinant host cells comprising the vector that produces the desosamine biosynthetic gene products and desosaminyl transferase gene product. In a preferred embodiment, the host cell is Streptomyces lit, iwans or S. coelicolor.

In another embodiment, the invention provides a method for desosaminylating polyketide compounds in recombinant host cells, which method comprises expressing the PKS for the polyketide and the desosaminyl transferase and desosamine biosynthetic genes in a host cell. In a preferred embodiment, the host cell expresses a beta-glucosidase gene as well. This preferred method is especially advantageous when producing desosaminylated polyketides in Streptomyces host cells, because such host cells typically glucosylate desosamine residues of polyketides, which can decrease desired activity, such as antibiotic activity. By coexpression of beta-glucosidase, the glucose residue is removed from the polyketide.

In another embodiment, the invention provides the picK hydroxylase gene in recombinant form and methods for hydroxylating polyketides with the recombinant gene product. The invention also provides polyketides thus produced and the antibiotics or other useful compounds derived therefrom.

In another embodiment, the invention provides a recombinant expression vector that comprises a promoter positioned to drive expression of a hybrid PKS comprising all or part of the narbonolide PKS and at least a part of a second PKS.

In a related embodiment, the invention provides recombinant host cells comprising the vector that produces the hybrid PKS and its corresponding polyketide. In a preferred embodiment, the host cell is Streptomyces lividans or S. coelicolor.

In a related embodiment, the invention provides recombinant materials for the production of libraries of polyketides wherein the polyketide members of the library are synthesized by hybrid PKS enzymes of the invention. The resulting polyketides can be further modified to convert them to other useful compounds, such as antibiotics, typically through hydroxylation and/or

glycosylation. Modified macrolides provided by the invention that are useful intermediates in the preparation of antibiotics are of particular benefit.

In another related embodiment, the invention provides a method to prepare a nucleic acid that encodes a modified PKS, which method comprises using the narbonolide PKS encoding sequence as a scaffold and modifying the portions of the nucleotide sequence that encode enzymatic activities, either by mutagenesis, inactivation, insertion, or replacement. The thus modified narbonolide PKS encoding nucleotide sequence can then be expressed in a suitable host cell and the cell employed to produce a polyketide different from that produced by the narbonolide PKS. In addition, portions of the narbonolide PKS coding sequence can be inserted into other PKS coding sequences to modify the products thereof. The narbonolide PKS can itself be manipulated, for example, by fusing two or more of its open reading frames, particularly those for extender modules 5 and 6, to make more efficient the production of 14- membered as opposed to 12-membered macrolides.

In another related embodiment, the invention is directed to a multiplicity of cell colonies, constituting a library of colonies, wherein each colony of the library contains an expression vector for the production of a modular PKS derived in whole or in part from the narbonolide PKS. Thus, at least a portion of the modular PKS is identical to that found in the PKS that produces narbonolide and is identifiable as such. The derived portion can be prepared synthetically or directly from DNA derived from organisms that produce narbonolide. In addition, the invention provides methods to screen the resulting polyketide and antibiotic libraries.

The invention also provides novel polyketides and antibiotics or other useful compounds derived therefrom. The compounds of the invention can be used in the manufacture of another compound. In a preferred embodiment, the antibiotic compounds of the invention are formulated in a mixture or solution for administration to an animal or human.

These and other embodiments of the invention are described in more detail in the following description, the examples, and claims set forth below.

Brief Description of the Figures Figure 1 shows the structures of picromycin (compound 1), methymycin (compound 2), and the ketolide HMR 3004 (compound 3).

Figure 2 shows a restriction site and function map of cosmid pKOS023-27.

Figure 3 shows a restriction site and function map of cosmid pKOS023-26.

Figure 4 has three parts. In Part A, the structures of picromycin (A (a)) and methymycin (A (b)) are shown, as well as the related structures of narbomycin, narbonolide, and methynolide. In the structures, the bolded lines indicate the two or three carbon chains produced by each module (loading and extender) of the narbonolide PKS. Part B shows the organization of the narbonolide PKS genes on the chromosome of Streptomyces venezuelae, including the location of the various module encoding sequences (the loading module domains are identified as sKS*, sAT, and sACP), as well as the picB thioesterase gene and two desosamine biosynthesis genes (picCII and p : cC7I2). Part C shows the engineering of the S. venezuelae host of the invention in which the picAI gene has been deleted. In the Figure, ACP is acyl carrier protein; AT is acyltransferase ; DH is dehydratase; ER is enoylreductase; KR is ketoreductase; KS is ketosynthase ; and TE is thioesterase.

Figure 5 shows the narbonolide PKS genes encoded by plasmid pKOS039- 86, the compounds synthesized by each module of that PKS and the narbonolide (compound 4) and 10-deoxymethynolide (compound 5) products produced in heterologous host cells transformed with the plasmid. The Figure also shows a hybrid PKS of the invention produced by plasmid pKOS038-18, which encodes a hybrid of DEBS and the narbonolide PKS. The Figure also shows the compound, 3,6-dideoxy-3-oxo-erythronolide B (compound 6), produced in heterologous host cells comprising the plasmid.

Figure 6 shows a restriction site and function map of plasmid pKOS039- 104, which contains the desosamine biosynthetic, beta-glucosidase, and desosaminyl transferase genes under transcriptional control of actlI-4.

Detailed Description of the Invention The present invention provides useful compounds and methods for producing polyketides in recombinant host cells. As used herein, the term recombinant refers to a compound or composition produced by human intervention. The invention provides recombinant DNA compounds encoding all or a portion of the narbonolide PKS. The invention also provides recombinant DNA compounds encoding the enzymes that catalyze the further modification of the ketolides produced by the narbonolide PKS. The invention provides recombinant expression vectors useful in producing the narbonolide PKS and hybrid PKSs composed of a portion of the narbonolide PKS in recombinant host cells. Thus, the invention also provides the narbonolide PKS, hybrid PKSs, and polyketide modification enzymes in recombinant form. The invention provides the polyketides produced by the recombinant PKS and polyketide modification enzymes. In particular, the invention provides methods for producing the polyketides 10-deoxymethynolide, narbonolide, YC17, narbomycin, methymycin, neomethymycin, and picromycin in recombinant host cells.

To appreciate the many and diverse benefits and applications of the invention, the description of the invention below is organized as follows. First, a general description of polyketide biosynthesis and an overview of the synthesis of narbonolide and compounds derived therefrom in Streptomyces venezuelan are provided. This general description and overview are followed by a detailed description of the invention in six sections. In Section I, the recombinant narbonolide PKS provided by the invention is described. In Section II, the recombinant desosamine biosynthesis genes, the desosaminyl transferase gene, and the beta-glucosidase gene provided by the invention are described. In

Section III, the recombinant picK hydroxylase gene provided by the invention is described. In Section IV, methods for heterologous expression of the narbonolide PKS and narbonolide modification enzymes provided by the invention are described. In Section V, the hybrid PKS genes provided by the invention and the polyketides produced thereby are described. In Section VI, the polyketide compounds provided by the invention and pharmaceutical compositions of those compounds are described. The detailed description is followed by a variety of working examples illustrating the invention.

The narbonolide synthase gene, like other PKS genes, is composed of coding sequences organized in a loading module, a number of extender modules, and a thioesterase domain. As described more fully below, each of these domains and modules is a polypeptide with one or more specific functions. Generally, the loading module is responsible for binding the first building block used to synthesize the polyketide and transferring it to the first extender module. The building blocks used to form complex polyketides are typically acylthioesters, most commonly acetyl, propionyl, malonyl, methylmalonyl, and ethylmalonyl CoA. Other building blocks include amino acid like acylthioesters. PKSs catalyze the biosynthesis of polyketides through repeated, decarboxylative Claisen condensations between the acylthioester building blocks. Each module is responsible for binding a building block, performing one or more functions on that building block, and transferring the resulting compound to the next modeule.

The next module, in turn, is responsible for attaching the next building block and transferring the growing compound to the next module until synthesis is complete. At that point, an enzymatic thioesterase activity cleaves the polyketide from the PKS.

Such modular organization is characteristic of the class of PKS enzymes that synthesize complex polyketides and is well known in the art. The polyketide known as 6-deoxyerythronolide B is a classic example of this type of complex polyketide. The genes, known as eryAl, eryAII, and enyAIII (also referred to herein

as the DEBS genes, for the proteins, known as DEBS1, DEBS2, and DEBS3, that comprise the 6-dEB synthase), that code for the multi-subunit protein known as DEBS that synthesizes 6-dEB are described in U. S. Patent No. 5,824,513, incorporated herein by reference. Recombinant methods for manipulating modular PKS genes are described in U. S. Patent Nos. 5,672,491; 5,843,718; 5,830,750; and 5,712,146; and in PCT publication Nos. 98/49315 and 97/02358, each of which is incorporated herein by reference.

The loading module of DEBS consists of two domains, an acyl-transferase (AT) domain and an acyl carrier protein (ACP) domain. Each extender module of DEBS, like those of other modular PKS enzymes, contains a ketosynthase (KS), AT, and ACP domains, and zero, one, two, or three domains for enzymatic activities that modify the beta-carbon of the growing polyketide chain. A module can also contain domains for other enzymatic activities, such as, for example, a methyltransferase or dimethyltransferase activity. Finally, the releasing domain contains a thioesterase and, often, a cyclase activity.

The AT domain of the loading module recognizes a particular acyl-CoA (usually acetyl or propionyl but sometimes butyryl) and transfers it as a thiol ester to the ACP of the loading module. Concurrently, the AT on each of the extender modules recognizes a particular extender-CoA (malonyl or alpha- substituted malonyl, i. e., methylmalonyl, ethylmalonyl, and carboxylglycolyl) and transfers it to the ACP of that module to form a thioester. Once the PKS is primed with acyl-and malonyl-ACPs, the acyl group of the loading module migrates to form a thiol ester (trans-esterification) at the KS of the first extender module; at this stage, extender module 1 possesses an acyl-KS adjacent to a malonyl (or substituted malonyl) ACP. The acyl group derived from the loading module is then covalently attached to the alpha-carbon of the malonyl group to form a carbon-carbon bond, driven by concomitant decarboxylation, and generating a new acyl-ACP that has a backbone two carbons longer than the loading unit (elongation or extension). The growing polyketide chain is

transferred from the ACP to the KS of the next module, and the process continues.

The polyketide chain, growing by two carbons each module, is sequentially passed as covalently bound thiol esters from module to module, in an assembly line-like process. The carbon chain produced by this process alone would possess a ketone at every other carbon atom, producing a polyketone, from which the name polyketide arises. Most commonly, however, additional enzymatic activities modify the beta keto group of each two-carbon unit just after it has been added to the growing polyketide chain but before it is transferred to the next module. Thus, in addition to the minimal module containing KS, AT, and ACP domains necessary to form the carbon-carbon bond, modules may contain a ketoreductase (KR) that reduces the keto group to an alcohol. Modules may also contain a KR plus a dehydratase (DH) that dehydrates the alcohol to a double bond. Modules may also contain a KR, a DH, and an enoylreductase (ER) that converts the double bond to a saturated single bond using the beta carbon as a methylene function. As noted above, modules may contain additional enzymatic activities as well.

Once a polyketide chain traverses the final extender module of a PKS, it encounters the releasing domain or thioesterase found at the carboxyl end of most PKSs. Here, the polyketide is cleaved from the enzyme and cyclyzed. The resulting polyketide can be modified further by tailoring enzymes; these enzymes add carbohydrate groups or methyl groups, or make other modifications, i. e., oxidation or reduction, on the polyketide core molecule.

While the above description applies generally to modular PKS enzymes, there are a number of variations that exist in nature. For example, some polyketides, such as epothilone, incorporate a building block that is derived from an amino acid. PKS enzymes for such polyketides include an activity that functions as an amino acid ligase or as a non-ribosomal peptide synthetase (NRPS). Another example of a variation, which is actually found more often than

the two domain loading module construct found in DEBS, occurs when the loading module of the PKS is not composed of an AT and an ACP but instead utilizes an inactivated KS, an AT, and an ACP. This inactivated KS is in most instances called KSQ, where the superscript letter is the abbreviation for the amino acid, glutamine, that is present instead of the active site cysteine required for activity. For example, the narbonolide PKS loading module contains aKSQ.

Yet another example of a variation has been mentioned above in the context of modules that include a methyltransferase or dimethyltransferase activity; modules can also include an epimerase activity. These variations will be described further below in specific reference to the narbonolide PKS and the various recombinant and hybrid PKSs provided by the invention.

With this general description of polyketide biosynthesis, one can better appreciate the biosynthesis of narbonolide related polyketides in Streptomyces venezuelae and S. narbonensis. The narbonolide PKS produces two polyketide products, narbonolide and 10-deoxymethynolide. Narbonolide is the polyketide product of all six extender modules of the narbonolide PKS. 10- deoxymethynolide is the polyketide product of only the first five extender modules of the narbonolide PKS. These two polyketides are desosaminylated to yield narbomycin and YC17, respectively. These two glycosylated polyketides are the final products produced in S. narbonensis. In S. venezuelne, these products are hydroxylated by the picK gene product to yield picromycin and either methymycin (hydroxylation at the C10 position of YC17) or neomethymycin (hydroxylation at the C12 position of YC17). The present invention provides the genes required for the biosynthesis of all of these polyketides in recombinant form.

Section 1 : The Narbonolide PKS The narbonolide PKS is composed of a loading module, six extender modules, and a thioesterase domain. Figure 4, part B, shows the organization of

the narbonolide PKS genes on the Streptomyces venezuelan chromosome, as well as the location of the module encoding sequences in those genes, and the various domains within those modules. In the Figure, the loading module is not numbered, and its domains are indicated as sKS*, sAT, and ACP. Also shown in the Figure, part A, are the structures of picromycin and methymycin.

The loading and six extender modules and the thioesterase domain of the narbonolide PKS reside on four proteins, designated PICAI, PICAII, PICAIII, and PICAIV. PICAI includes the loading module and extender modules 1 and 2 of the PKS. PICAII includes extender modules 3 and 4. PICAIII includes extender module 5. PICAIV includes extender module 6 and a thioesterase domain. There is a second thioesterase domain (TEII) on a separate protein, designated PICB.

The amino acid sequences of these proteins are shown below.

Amino acid sequence of narbonolide synthase subunit 1, PICAI

Amino acid sequence of typeII thioesterase, PICB 1 VTDRPLNVDS GLWIRRFHPA PNSAVRLVCL PHAGGSASYF FRFSEELHPS VEALSVQYPG 61 RQDRRAEPCL ESVEELAEHV VAATEPWWQE GRLAFFGHSL GASVAFETAR ILEQRHGVRP 121 EGLYVSGRRA PSLAPDRLVH QLDDRAFLAE IRRLSGTDER FLQDDELLRL VLPALRSDYK 181 AAETYLHRPS AKLTCPVMAL AGDRDPKAPL NEVAEWRRHT SGPFCLRAYS GGHFYLNDQW 241 HEICNDISDH LLVTRGAPDA RWQPPTSLI EGAAKRWQNP R The DNA encoding the above proteins can be isolated in recombinant form from the recombinant cosmid pKOS023-27 of the invention, which was deposited with the American Type Culture Collection under the terms of the Budapest Treaty on 20 August 1998 and is available under accession number ATCC 203141. Cosmid pKOS023-27 contains an insert of Streptomyces venezuelae DNA of-38506 nucleotides. The complete sequence of the insert from cosmid pKOS023-27 is shown below. The location of the various ORFs in the insert, as well as the boundaries of the sequences that encode the various domains of the multiple modules of the PKS, are summarized in the Table below. Figure 2 shows a restriction site and function map of pKOS023-27, which contains the complete coding sequence for the four proteins that constitute narbonolide PKS and four additional ORFs. One of these additional ORFs encodes the picB gene product, the type II thioesterase mentioned above. PICB shows a high degree of similarity to other type II thioesterases, with an identity of 51%,49%,45% and 40% as compared to those of Amycolatopsis mediterranae, S. grisets, S. fradiae and Sacchnropolysporn erythraea, respectively. The three additional ORFs in the cosmid pKOS023-27 insert DNA sequence, from the picCII, picCIII, and picCVI, genes, are involved in desosamine biosynthesis and transfer and described in the following section.

From Nucleotide To Nucleotide Description 70 13725 picas.

70 13725 narbonolide synthase 1 (PICAI) 148 3141 loading module 148 1434 KS loading module 1780 2802 AT loading module

2869 3141 ACP loading module 3208 7593 extender module 1 3208 4497 KS1 4828 5847 AT1 6499 7257 KR1 7336 7593 ACP1 7693 13332 extender module 2 7693 8974 KS2 9418 10554 AT2 10594 11160 DH2 12175 12960 KR2 13063 13332 ACP2 13830 25049 picAll 13830 25049 narbonolide synthase 2 (PICAII) 13935 18392 extender module 3 13935 15224 KS3 15540 16562 AT3 17271 18071 KR3 (inactive) 18123 18392 ACP3 18447 24767 extender module 4 18447 19736 KS4 20031 21050 AT4 21093 21626 DH4 22620 23588 ER4 23652 24423 KR4 24498 24765 ACP4 25133 29821 picAIII 25133 29821 narbonolide synthase 3 (PICAIII) 25235 29567 extender module 5 25235 26530 KS5 26822 27841 AT5 28474 29227 KR5 29302 29569 ACP5 29924 33964 picAIV 29924 33964 narbonolide synthase 4 (PICAIV) 30026 32986 extender module 6 30026 31312 KS6 31604 32635 AT6 32708 32986 ACP6 From Nucleotide To Nucleotide Description 33068 33961 PKS thioesterase domain 33961 34806 picB 33961 34806 type II thioesterase homolog

34863 36011 picCII 34863 36011 4-keto-6-deoxyglucose isomerase 36159 37439 picCIII 36159 37439 desosaminyl transferase 37529 38242 picCVI 37529 38242 3-amino dimethyltransferase DNA Sequence of the Insert DNA in Cosmid pKOS023-27

Those of skill in the art will recognize that, due to the degenerate nature of the genetic code, a variety of DNA compounds differing in their nucleotide sequences can be used to encode a given amino acid sequence of the invention.

The native DNA sequence encoding the narbonolide PKS of Streptomyces tenezuelae is shown herein merely to illustrate a preferred embodiment of the invention, and the invention includes DNA compounds of any sequence that encode the amino acid sequences of the polypeptides and proteins of the invention. In similar fashion, a polypeptide can typically tolerate one or more

amino acid substitutions, deletions, and insertions in its amino acid sequence without loss or significant loss of a desired activity. The present invention includes such polypeptides with alternate amino acid sequences, and the amino acid sequences shown merely illustrate preferred embodiments of the invention.

The recombinant nucleic acids, proteins, and peptides of the invention are many and diverse. To facilitate an understanding of the invention and the diverse compounds and methods provided thereby, the following description of the various regions of the narbonolide PKS and corresponding coding sequences is provided.

The loading module of the narbonolide PKS contains an inactivated KS domain, an AT domain, and an ACP domain. The AT domain of the loading module binds propionyl CoA. Sequence analysis of the DNA encoding the KS domain indicates that this domain is enzymatically inactivated, as a critical cysteine residue in the motif TVDACSSSL, which is highly conserved among KS domains, is replaced by a glutamine and so is referred to as a KSQ domain. Such inactivated KS domains are also found in the PKS enzymes that synthesize the 16-membered macrolides carbomycin, spiromycin, tylosin, and niddamycin.

While the KS domain is inactive for its usual function in extender modules, it is believed to serve as a decarboxylase in the loading module.

The present invention provides recombinant DNA compounds that encode the loading module of the narbonolide PKS and useful portions thereof.

These recombinant DNA compounds are useful in the construction of PKS coding sequences that encode all or a portion of the narbonolide PKS and in the construction of hybrid PKS encoding DNA compounds of the invention, as described in the section concerning hybrid PKSs below. To facilitate description of the invention, reference to a PKS, protein, module, or domain herein can also refer to DNA compounds comprising coding sequences therefor and vice versa.

Also, reference to a heterologous PKS refers to a PKS or DNA compounds comprising coding sequences therefor from an organism other than Streptomyces

venezuelae. In addition, reference to a PKS or its coding sequence includes reference to any portion thereof.

The present invention provides recombinant DNA compounds that encode one or more of the domains of each of the six extender modules (modules 1-6, inclusive) of the narbonolide PKS. Modules 1 and 5 of the narbonolide PKS are functionally similar. Each of these extender modules contains a KS domain, an AT domain specific for methylmalonyl CoA, a KR domain, and an ACP domain. Module 2 of the narbonolide PKS contains a KS domain, an AT domain specific for malonyl CoA, a KR domain, a DH domain, and an ACP domain.

Module 3 differs from extender modules 1 and 5 only in that it contains an inactive ketoreductase domain. Module 4 of the narbonolide PKS contains a KS domain, an AT domain specific for methylmalonyl CoA, a KR domain, a DH domain, an ER domain, and an ACP domain. Module 6 of the narbonolide PKS contains a KS domain, an AT domain specific for methylmalonyl CoA, and an ACP domain.

In one important embodiment, the invention provides a recombinant narbonolide PKS that can be used to express only narbonolide (as opposed to the mixture of narbonolide and 10-deoxymethynolide that would otherwise be produced) in recombinant host cells. This recombinant narbonolide PKS results from a fusion of the coding sequences of the picAIII and picAIV genes so that extender modules 5 and 6 are present on a single protein. This recombinant PKS can be constructed on the Streptomyces venezuelae or S. narbonensis chromosome by homologous recombination. Alternatively, the recombinant PKS can be constructed on an expression vector and introduced into a heterologous host cell.

This recombinant PKS is preferred for the expression of narbonolide and its glycosylated and/or hydroxylated derivatives, because a lesser amount or no 10- deoxymethynolide is produced from the recombinant PKS as compared to the native PKS. In a related embodiment, the invention provides a recombinant narbonolide PKS in which the picAIV gene has been rendered inactive by an

insertion, deletion, or replacement. This recombinant PKS of the invention is useful in the production of 10-deoxymethynolide and its derivatives without production of narbonolide.

In similar fashion, the invention provides recombinant narbonolide PKS in which any of the domains of the native PKS have been deleted or rendered inactive to make the corresponding narbonolide or 10-deoxymethynolide derivative. Thus, the invention also provides recombinant narbonolide PKS genes that differ from the narbonolide PKS gene by one or more deletions. The deletions can encompass one or more modules and/or can be limited to a partial deletion within one or more modules. When a deletion encompasses an entire module, the resulting narbonolide derivative is at least two carbons shorter than the polyketide produced from the PKS encoded by the gene from which deleted PKS gene and corresponding polyketide were derived. When a deletion is within a module, the deletion typically encompasses a KR, DH, or ER domain, or both DH and ER domains, or both KR and DH domains, or all three KR, DH, and ER domains.

This aspect of the invention is illustrated in Figure 4, parts B and C, which shows how a vector of the invention, plasmid pKOS039-16 (not shown), was used to delete or"knock out"the picAI gene from the Streptomyces venezuelae chromosome. Plasmid pKOS039-16 comprises two segments (shown as cross- hatched boxes in Figure 4, part B) of DNA flanking the picAl gene and isolated from cosmid pKOS023-27 (shown as a linear segment in the Figure) of the invention. When plasmid pKOS039-16 was used to transform S. venezuelae and a double crossover homologous recombination event occurred, the picAI gene was deleted. The resulting host cell, designated K039-03 in the Figure, does not produce picromycin unless a functional picAl gene is introduced.

This Streptomyces venezuelQe K039-03 host cell and corresponding host cells of the invention are especially useful for the production of polyketides produced from hybrid PKS or narbonolide PKS derivatives. Especially preferred for

production in this host cell are narbonolide derivatives produced by PKS enzymes that differ from the narbonolide PKS only in the loading module and/or extender modules 1 and/or 2. These are especially preferred, because one need only introduce into the host cell the modified picAI gene or other corresponding gene to produce the desired PKS and corresponding polyketide.

These host cells are also preferred for desosaminylating polyketides in accordance with the method of the invention in which a polyketide is provided to an S. venezuelan cell and desosaminylated by the endogenous desosamine biosynthesis and desosarninyl transferase gene products.

The recombinant DNA compounds of the invention that encode each of the domains of each of the modules of the narbonolide PKS are also useful in the construction of expression vectors for the heterologous expression of the narbonolide PKS and for the construction of hybrid PKS expression vectors, as described further below.

Section II : The Genes for Desosamine Biosynthesis and Transfer and for Beta- glucosidase Narbonolide and 10-deoxymethynolide are desosaminylated in Streptomyces venezuelae and S. narbonensis to yield narbomycin and YC-17, respectively. This conversion requires the biosynthesis of desosamine and the transfer of the desosamine to the substrate polyketides by the enzyme desosaminyl transferase. Like other Streptomyces, S. venezuelae and S. narbonensis produce glucose and a glucosyl transferase enzyme that glucosylates desosamine at the 2'position. However, S. venezuelae and S. narbonensis also produce an enzyme called beta-glucosidase, which removes the glucose residue from the desosamine. The present invention provides recombinant DNA compounds and expression vectors for each of the desosamine biosynthesis enzymes, desosaminyl transferase, and beta-glucosidase.

As noted above, cosmid pKOS023-27 contains three ORFs that encode proteins involved in desosamine biosynthesis and transfer. The first ORF is from the picCII gene, also known as desVIII, a homologue of enyCII, believed to encode a 4-keto-6-deoxyglucose isomerase. The second ORF is from the picCIII gene, also known as DesVII, a homologue of enjCIII, which encodes a desosaminyl transferase. The third ORF is from the picCVI gene, also known as desVI, a homologue of eryCVI, which encodes a 3-amino dimethyltransferase.

The three genes above and the remaining desosamine biosynthetic genes can be isolated from cosmid pKOS023-26, which was deposited with the American Type Culture Collection on 20 Aug 1998 under the Budapest Treaty and is available under the accession number ATCC 203141. Figure 3 shows a restriction site and function map of cosmid pKOS023-26. This cosmid contains a region of overlap with cosmid pKOS023-27 representing nucleotides 14252 to nucleotides 38506 of pKOS023-27.

The remaining desosamine biosynthesis genes on cosmid pKOS023-26 include the following genes. ORF11, also known as desR, encodes beta- glucosidase and has no ery gene homologue. The picCI gene, also known as desV, is a homologue of enyCI. ORF14, also known as deslV, has no known ery gene homologue and encodes an NDP glucose 4,6-dehydratase. ORF13, also known as deslll, has no known enj gene homologue and encodes an NDP glucose synthase.

The picCV gene, also known as desII, a homologue of eryCV is required for desosamine biosynthesis. The picCIV gene also known as desI, is a homologue of cn/CJV, and its product is believed to be a 3,4-dehydratase. Other ORFs on cosmid pKOS023-26 include ORF12, believed to be a regulatory gene; ORF15, which encodes an S-adenosyl methionine synthase; and ORF16, which is a homolog of the M. tuberculosis cbhK gene. Cosmid pKOS023-26 also encodes the picK gene, which encodes the cytochrome P450 hydroxylase that hydroxylates the C12 of narbomycin and the C10 and C12 positions of YC-17. This gene is described in more detail in the following section.

Below, the amino acid sequences or partial amino acid sequences of the gene products of the desosamine biosynthesis and transfer and beta-glucosidase genes are shown. These amino acid sequences are followed by the DNA sequences that encode them.

Amino acid sequence of PICCI I VSSRAETPRV PFLDLKAAYE ELRAETDAAI ARVLDSGRYL LGPELEGFEA EFAAYCETDH 61 AVGVNSGMDA LQLALRGLGI GPGDEVIVPS HTYIASWLAV SATGATPVPV EPHEDHPTLD 121 PLLVEKAITP RTRALLPVHL YGHPADMDAL RELADRHGLH IVEDAAQAHG ARYRGRRIGA 181 GSSVAAFSFY PGKNLGCFGD GGAVVTGDPE LAERLRMLRN YGSRQKYSHE TKGTNSRLDE 241 MQAAVLRIRL XHLDSWNGRR SALAAEYLSG LAGLPGIGLP VTAPDTDPVW HLFTVRTERR 301 DELRSHLDAR GIDTLTHYPV PVHLSPAYAG EAPPEGSLPR AESFARQVLS LPIGPHLERP 361 QALRVIDAVR EWAERVDQA Amino acid sequence of 3-keto-6-deoxyglucose isomerase, PICCII- 1 VADRELGTHL LETRGIHWIH AANGDPYATV LRGQADDPYP AYERVRARGA LSFSPTGSWV 61 TADHALAASI LCSTDFGVSG ADGVPVPQQV LSYGEGCPLE REQVLPAAGD VPEGGQRAW 121 EGIHRETLEG LAPDPSASYA FELLGGFVRP AVTAAAAAVL GVPADRRADF ADLLERLRPL 181 SDSLLAPQSL RTVRAADGAL AELTALLADS DDSPGALLSA LGVTAAVQLT GNAVLALLAH 241 PEQWRELCDR PGLAAAAVEE TLRYDPPVQL DARWRGETE LAGRRLPAGA HWVLTAATG 301 RDPEVFTDPE RFDLARPDAA AHLALHPAGP YGPVASLVRL QAEVALRTLA GRFPGLRQAG 361 DVLRPRRAPV GRGPLSVPVS SS Amino acid sequence of desosaminyl transferase, PICCIE-9 1 MRVLLTSFAH HTHYYGLVPL AWALLAAGHE VRVASQPALT DTITGSGLAA VPVGTDHLIH 61 EYRVRMAGEP RPNHPAIAFD EARPEPLDWD HALGIEAILA PYFYLLANND SMVDDLVDFA 121 RSWQPDLVLW EPTTYAGAVA AQVTGAAHAR VLWGPDVMGS ARRKFVALRD RQPPEHREDP 181 TAEWLTWTLD RYGASFEEEL LTGQFTIDPT PPSLRLDTGL PTVGMRYVPY NGTSVVPDWL 241 SEPPARPRVC LTLGVSAREV LGGDGVSQGD ILEALADLDI ELVATLDASQ RAEIRNYPKH 301 TRFTDFVPMH ALLPSCSAII HHGGAGTYAT AVINAVPQVM LAELWDAPVK ARAVAEQGAG 361 FFLPPAELTP QAVRDAVVRI LDDPSVATAA HRLREETFGD PTPAGIVPEL ERLAAQHRRP 421 PADARH Partial amino acid sequence of aminotransferase-dehydrase, PICCIV fY I VKSALSDLAF FGGPAAFDQP LLVGRPNRID RARLYERLDR ALDSQWLSNG GPLVREFEER 61 VAGLAGVRHA VATCNATAGL QLLAHAAGLT GEVIMPSMTF AATPHALRWI GLTPVFADID 121 PDTGNLDPDQ VAAAVTPRTS AWGVHLWGR PCAADQLRKV ADEHGLRLYF DAAHALGCAV 181 DGRPAGSLGD AEVFSFHATK AVNAFEGGAV VTDDADLAAR IRALHNFGFD LPGGSPAGGT 241 NAKMSEAAAA MGLTSLDAFP EVIDRNRRNH AXYREHLADL PGVLVADHDR HGLNNHQYVI 301 VEIDEATTGI HRDLVMEVLK AEGVHTRAYF S

Amino acid sequence of PICCV I MTAPALSATA PAERCAHPGA DLGAAVHAVG QTLAAGGLVP PDEAGTTARH LVRLAVRYGN 61 SPFTPLEEAR HDLGVDRDAF RRLLALFGQV PELRTAVETG PAGAYWKNTL LPLEQRGVFD 121 AALARKPVFP YSVGLYPGPT CMFRCHFCVR VTGARYDPSA LDAGNAMFRS VIDEIPAGNP 181 SAMYFSGGLE PLTNPGLGSL AAHATDHGLR PTVYTNSFAL TERTLERQPG LWGLHAIRTS 241 LYGLNDEEYE QTTGKKAAFR RVRENLRRFQ QLRAERESPI NLGFAYIVLP GRASRLLDLV 301 DFIADLNDAG QGRTIDFVNI REDYSGRDDG KLPQEERAEL QEALNAFEER VRERTPGLHI 361 DYGYALNSLR TGADAELLRI KPATMRPTAH PQVAVQVDLL GDVYLYREAG FPDLDGATRY 421 IAGRVTPDTS LTEVVRDFVE RGGEVAAVDG DEYFMDGFDQ VVTARLNQLE <BR> <BR> RDAADGWEEA<BR> <BR> <BR> <BR> <BR> 481RGFLR Amino acid sequence of 3-amino dimethyl transferase, PICCVI 1 VYEVDHADVY DLFYLGRGKD YAAEASDIAD LVRSRTPEAS SLLDVACGTG THLEHFTKEF 61 GDTAGLELSE DMLTHARKRL PDATLHQGDM RDFRLGRKFS AVVSMFSSVG YLKTTEELGA 121 AVASFAEHLE PGGVVVVEPW WFPETFADGW VSADVVRRDG RTVARVSHSV REGNATRMEV 181 HFTVADPGKG VRHFSDVHLI TLFHQAEYEA AFTAAGLRVE YLEGGPSGRG LFVGVPA Partial amino acid sequence of beta-glucosidase, ORF11 12 1 MTLDEKISFV HWALDPDRQN VGYLPGVPRL GIPELRAADG PNGIRLVGQT ATALPAPVAL 61 ASTFDDTMAD SYGKVMGRDG RALNQDMVLG PMMNNIRVPH GGRNYETFSE DPLVSSRTAV 121 AQIKGIQGAG LMTTAKHFAA NNQENNRFSV NANVDEQTLR EIEFPAFEAS SKAGAGSFMC 181 AYNGLNGKPS CGNDELLNNV LRTQWGFQGW VMSDWLATPG TDAITKGLDQ EMGVELPGDV 241 PKGEPSPPAK FFGEALKTAV LNGTVPEAAV TRSAERIVGQ MEKFGLLLAT PAPRPERDKA 301 GAQAVSRKVA ENGAVLLRNE GQALPLAGDA GKSIAVIGPT AVDPKVTGLG SAHVVPDSAA 361 APLDTIKARA GAGATVTYET GEETFGTQIP AGNLSPAFNQ GHQLEPGKAG ALYDGTLTVP 421 ADGEYRIAVR ATGGYATVQL GSHTIEAGQV YGKVSSPLLK LTKGTHKLTI SGFAMSATPL 481 SLELGWVTPA AADATIAKAV ESARKARTAV VFAYDDGTEG VDRPNLSLPG TQDKLISAVA 541 DANPNTIWL NTGSSVLMPW LSKTRAVLDM WYPGQAGAEA TAALLYGDVN PSGKLTQSFP 601 AAENQHAVAG DPTSYPGVDN QQTYREGIHV GYRWFDKENV KPLFPFGHGL SYTSFTQSAP 661 TVVRTSTGGL KVTVTVRNSG KRAGQEWQA YLGASPNVTA PQAKKKLVGY TKVSLAAGEA 721 KTVTVNVDRR QLQFWDAATD NWKTGTGNRL LQTGSSSADL RGSATVNVW Amino acid sequence of transcriptional activator, ORF12 1 MNLVERDGEI AHLRAVLDAS AAGDGTLLLV SGPAGSGKTE LLRSLRRLAA ERETPVWSVR 61 ALPGDRDIPL GVLCQLLRSA EQHGADTSAV RDLLDAASRR AGTSPPPPTR RSASTRHTAC 121 TTGCSPSPAG TPFLVAVDDL THADTASLRF LLYCAAHHDQ GGIGFVMTER ASQRAGYRVF 181 RAELLRQPHC RNMWLSGLPP SGVRQLLAHY YGPEAAERRA PAYHATTGGN PLLLRALTQD 241 RQASHTTLGA AGGDEPVHGD AFAQAVLDCL HRSAEGTLET ARWLAVLEQS DPLLVERLTG 301 TTAAAVERHI QELAAIGLLD EDGTLGQPAI REAALQDLPA GERTELHRRA AEQLHRDGAD 361 EDTVARHLLV GGAPDAPWAL PLLERGAQQA LFDDRLDDAF RILEFAVRSS TDNTQLARLA

421 PHLVAASWRM NPHMTTRALA LFDRLLSGEL PPSHPVMALI RCLVWYGRLP EAADALSRLR 481 PSSDNDALEL SLTRMWLAAL CPPLLESLPA TPEPERGPVP VRLAPRTTAL QAQAGVFQRG 541 PDNASVAQAE QILQGCRLSE ETYEALETAL LVLVHADRLD RALFWSDALL AEAVERRSLG 601 WEAVFAATRA MIAIRCGDLP TARERAELAL SHAAPESWGL AVGMPLSALL LACTEAGEYE 661 QAERVLRQPV PDAMFDSRHG MEYMHARGRY WLAXGRLHAA LGEFMLCGEI LGSWNLDQPS 721 IVPWRTSAAE VYLRLGNRQK ARALAEAQLA LVRPGRSRTR GLTLRVLAAA VDGQQAERLH 781 AEAVDMLHDS GDRLEHARAL AGMSRHQQAQ GDNYRARMTA RLAGDMAWAC GAYPLAEEIV 841 PGRGGRRAKA VSTELELPGG PDVGLLSEAE RRVAALAARG LTNRQIARRL CVTASTVEQH 901 LTRVYRKLNV TRRADLPISL AQDKSVTA Amino acid sequence of dNDP-glucose synthase (glucose-1-phosphate thymidyl transferase), ORF13 I MKGIVLAGGS GTRLHPATSV ISKQILPVYN KPMIYYPLSV LMLGGIREIQ IISTPQHIEL 61 FQSLLGNGRH LGIELDYAVQ KEPAGIADAL LVGAEHIGDD TCALILGDNI FHGPGLYTLL 121 RDSIARLDGC VLFGYPVKDP ERYGVAEVDA TGRLTDLVEK PVKPRSNLAV TGLYLYDNDV 181 VDLAKNIRPS PRGELEITDV NRVYLERGRA ELVNLGRGFA WLDTGTHDSL LRAAQYVQVL 241 EERQGVWIAG LEEIAFRMGF IDAEACHGLG EGLSRTEYGS YLMEIAGREG AP Amino acid sequence of dNDP-glucose 4, 6-dehydratase, ORF14 15 1 VRLLVTGGAG FIGSHFVRQL LAGAYPDVPA DEVIVLDSLT YAGNRANLAP VDADPRLRFV 61 HGDIRDAGLL ARELRGVDAI VHFAAESHVD RSIAGASVFT ETNVQGTQTL LQCAVDAGVG 121 RVVHVSTDEV YGSIDSGSWT ESSPLEPNSP YAASKAGSDL VARAYHRTYG LDVRITRCCN 181 NYGPYQHPEK LIPLFVTNLL DGGTLPLYGD GANVREWVHT DDHCRGIALV LAGGRAGEIY 241 HIGGGLELTN RELTGILLDS LGADWSSVRK VADRKGHDLR YSLDGGKIER ELGYRPQVSF 301 ADGLARTVRW YRENRGWWEP LKATAPQLPA TAVEVSA Partial amino acid sequence of S-adenosylmethionine synthase, ORF15 16 1 IGYDSSKKGF DGASCGVSVS IGSQSPDIAQ GVDTAYEKRV EGASQRDEGD ELDKQGAGDQ 61 GLMFGYASDE TPELMPLPIH LAHRLSRRLT EVRKNGTIPY LRPDGKTQVT IEYDGDRAVR 121 LDTVVVSSQH ASDIDLESLL APDVRKFVVE HVLAQLVEDG IKLDTDGYRL LVNPTGRFEI 181 GGPMGDAGLT GRKIIIDTYG GMARHGGGAF SGKDPSKVDR SAAYAMRWVA KNVVAAGLAS 241 RCEVQVAYAI GKAEPVGLFV ETFGTHKIET EKIENAIGEV FDLRPAAIIR DLDLLRPIYS 301 QTAAYGHFGR ELPDFTWERT DRVDALKKAA GL Partial amino acid sequence of ORF 16 (homologous to M. tuberculosis cbhK)/~' 1 MRIAVTGSIA TDHLMTFPGR FAEQILPDQL AHVSLSFLVD TLDIRHGGVA ANIAYGLGLL 61 GRRPVLVGAV GKDFDGYGQL LRAAGVDTDS VRVSDRQH-TA RFMCTTDEDG NQLASFYAGA 121 MAEARDIDLG ETAGRPGGID LVLVGADDPE AMVRHTRVCR ELGLRRAADP SQQLARLEGD 181 SVRELVDGAE LLFTNAYERA LLLSKTGWTE QEVLARVGTW ITTLGAKGCR While not all of the insert DNA of cosmid pKOS023-26 has been sequenced, five large contigs shown of Figure 3 have been assembled and provide sufficient sequence information to manipulate the genes therein in

accordance with the methods of the invention. The sequences of each of these five contigs are shown below.

Contig 001 from cosmid pKOS023-26 contains 2401 nucleotides, the first 100 bases of which correspond to 100 bases of the insert sequence of cosmid pKOS023-27. Nucleotides 80-2389 constitute ORF11, which encodes 1 beta glucosidase.

Contig 002 from cosmid pKOS023-26 contains 5970 nucleotides and the following ORFs : from nucleotide 995 to 1 is an ORF of picCIV that encodes a partial sequence of an amino transferase-dehydrase; from nucleotides 1356 to 2606 is an ORF of picK that encodes a cytochrome P450 hydroxylase; and from nucleotides 2739 to 5525 is ORF12, which encodes a transcriptional activator.

Contig 003 from cosmid pKOS023-26 contains 3292 nucleotides and the following ORFs : from nucleotide 104 to 982 is ORF13, which encodes dNDP glucose synthase (glucose-1-phosphate thymidyl transferase); from nucleotide 1114 to 2127 is ORF14, which encodes dNDP-glucose 4,6-dehydratase; and from nucleotide 2124 to 3263 is the picCI ORF.

Contig 004 from cosmid pKOS023-26 contains 1693 nucleotides and the following ORFs : from nucleotide 1692 to 694 is ORF15, which encodes a part of S-

adenosylmethionine synthetase; and from nucleotide 692 to 1 is ORF16, which encodes a part of a protein homologous to the M. hsberculosis cblzK gene.

Contig 005 from cosmid pKOS023-26 contains 1565 nucleotides and contains the ORF of the picCV gene that encodes PICCV, involved in desosamine biosynthesis.

The recombinant desosamine biosynthesis and transfer and beta- glucosidase genes and proteins provided by the invention are useful in the production of glycosylated polyketides in a variety of host cells, as described in Section IV below.

Section m. The picK Hvdroxylase Gene The present invention provides the picK gene in recombinant form as well as recombinant PicK protein. The availability of the hydroxylase encoded by the picK gene in recombinant form is of significant benefit in that the enzyme can convert narbomycin into picromycin and accepts in addition a variety of polyketide substrates, particularly those related to narbomycin in structure. The present invention also provides methods of hydroxylating polyketides, which method comprises contacting the polyketide with the recombinant PicK enzyme under conditions such that hydroxylation occurs. This methodology is applicable to large numbers of polyketides.

DNA encoding the picK gene can be isolated from cosmid pKOS023-26 of the invention. The DNA sequence of the picK gene is shown in the preceding section. This DNA sequence encodes one of the recombinant forms of the enzyme provided by the invention. The amino acid sequence of this form of the picK gene is shown below. The present invention also provides a recombinant picK gene that encodes a picK gene product in which the PicK protein is fused to a number of consecutive histidine residues, which facilitates purification from recombinant host cells.

Amino acid sequence of picromycin/methymycin cytochrome P450 hydroxylase, PicK ! 1 VRRTQQGTTA SPPVLDLGAL GQDFAADPYP TYARLRAEGP AHRVRTPEGD EVWLWGYDR 61 ARAVLADPRF SKDWRNSTTP LTEAEAALNH NMLESDPPRH TRLRKLVARE FTMRRVELLR 121 PRVQEIVDGL VDAMLAAPDG RADLMESLAW PLPITVISEL LGVPEPDRAA FRVWTDAFVF 181 PDDPAQAQTA MAEMSGYLSR LIDSKRGQDG EDLLSALVRT SDEDGSRLTS EELLGMAHIL 241 LVAGHETTVN LIANGMYALL SHPDQLAALR ADMTLLDGAV EEMLRYEGPV ESATYRFPVE 301 PVDLDGTVIP AGDTVLVVLA DAHRTPERFP DPHRFDIRRD TAGHLAFGHG IHFCIGAPLA 361 RLEARIAVRA LLERCPDLAL DVSPGELVWY PNPMIRGLKA LPIRWRRGRE AGRRTG The recombinant PicK enzyme of the invention hydroxylates narbomycin at the C12 position and YC-17 at either the C10 or C12 position. Hydroxylation of these compounds at the respective positions increases the antibiotic activity of the compound relative to the unhydroxylated compound. Hydroxylation can be achieved by a number of methods. First, the hydroxylation may be performed in vitro using purified hydroxylase, or the relevant hydroxylase can be produced recombinantly and utilized directly in the cell that produces it. Thus, hydroxylation may be effected by supplying the nonhydroxylated precursor to a cell that expresses the hydroxylase. These and other details of this embodiment of the invention are described in additional detail below in Section IV and the examples.

Section IV: Heterologous Expression of the Narbonolide PKS; the Desosamine Biosynthetic and transferase Genes; the Beta-Glucosidase Gene; and the PicK Hydroxylase Gene In one important embodiment, the invention provides methods for the heterologous expression of one or more of the genes involved in picromycin biosynthesis and recombinant DNA expression vectors useful in the method.

Thus, included within the scope of the invention in addition to isolated nucleic acids encoding domains, modules, or proteins of the narbonolide PKS, glycosylation, and/or hydroxylation enzymes, are recombinant expression systems. These systems contain the coding sequences operably linked to promoters, enhancers, and/or termination sequences that operate to effect

expression of the coding sequence in compatible host cells. The host cells are modified by transformation with the recombinant DNA expression vectors of the invention to contain these sequences either as extrachromosomal elements or integrated into the chromosome. The invention also provides methods to produce PKS and post-PKS tailoring enzymes as well as polyketides and antibiotics using these modified host cells.

As used herein, the term expression vector refers to a nucleic acid that can be introduced into a host cell or cell-free transcription and translation medium.

An expression vector can be maintained stably or transiently in a cell, whether as part of the chromosomal or other DNA in the cell or in any cellular compartment, such as a replicating vector in the cytoplasm. An expression vector also comprises a gene that serves to produce RNA, which typically is translated into a polypeptide in the cell or cell extract. To drive production of the RNA, the expression vector typically comprises one or more promoter elements.

Furthermore, expression vectors typically contain additional functional elements, such as, for example, a resistance-conferring gene that acts as a selectable marker.

The various components of an expression vector can vary widely, depending on the intended use of the vector. In particular, the components depend on the host cell (s) in which the vector will be introduced or in which it is intended to function. Components for expression and maintenance of vectors in E. coli are widely known and commercially available, as are components for other commonly used organisms, such as yeast cells and Streptomyces cells.

One important component is the promoter, which can be referred to as, or can be included within, a control sequence or control element, which drives expression of the desired gene product in the heterologous host cell. Suitable promoters include those that function in eucaryotic or procaryotic host cells. In addition to a promoter, a control element can include, optionally, operator sequences, and other elements, such as ribosome binding sites, depending on the nature of the host. Regulatory sequences that allow for regulation of expression

of the heterologous gene relative to the growth of the host cell may also be included. Examples of such regulatory sequences known to those of skill in the art are those that cause the expression of a gene to be turned on or off in response to a chemical or physical stimulus.

Preferred host cells for purposes of selecting vector components include fungal host cells such as yeast and procaryotic, especially E. coli and Streptomyces, host cells, but single cell cultures of, for example, mammalian cells can also be used. In hosts such as yeasts, plants, or mammalian cells that ordinarily do not produce polyketides, it may be necessary to provide, also typically by recombinant means, suitable holo-ACP synthases to convert the recombinantly produced PKS to functionality. Provision of such enzymes is described, for example, in PCT publication Nos. WO 97/13845 and 98/27203, each of which is incorporated herein by reference. Control systems for expression in yeast, including controls that effect secretion are widely available and can be routinely used. For E. coli or other bacterial host cells, promoters such as those derived from sugar metabolizing enzymes, such as galactose, lactose (lac), and maltose, can be used. Additional examples include promoters derived from genes encoding biosynthetic enzymes, and the tryptophan (trp), the beta-lactamase (bla), bacteriophage lambda PL, and T5 promoters. In addition, synthetic promoters, such as the tac promoter (U. S. Patent No. 4,551,433), can also be used.

Particularly preferred are control sequences compatible with Streptomyces spp. Particularly useful promoters for Streptomyces host cells include those from PKS gene clusters that result in the production of polyketides as secondary metabolites, including promoters from aromatic (Type II) PKS gene clusters.

Examples of Type II PKS gene cluster promoters are act gene promoters and tcm gene promoters; an example of a Type I PKS gene cluster promoter is the spiramycin PKS gene promoter.

If a Streptomyces or other host ordinarily produces polyketides, it may be desirable to modify the host so as to prevent the production of endogenous

polyketides prior to its use to express a recombinant PKS of the invention. Such hosts have been described, for example, in U. S. Patent No. 5,672,491, incorporated herein by reference. In such hosts, it may not be necessary to provide enzymatic activities for all of the desired post-translational modifications of the enzymes that make up the recombinantly produced PKS, because the host naturally expresses such enzymes. In particular, these hosts generally contain holo-ACP synthases that provide the pantotheinyl residue needed for functionality of the PKS.

Thus, in one important embodiment, the vectors of the invention are used to transform Streptomyces host cells to provide the recombinant Streptomyces host cells of the invention. Streptomyces is a convenient host for expressing narbonolide or 10-deoxymethynolide or derivatives of those compounds, because narbonolide and 10-deoxymethynolide are naturally produced in certain Streptomyces species, and Streptomyces generally produce the precursors needed to form the desired polyketide. The present invention also provides the narbonolide PKS gene promoter in recombinant form, located upstream of the pica gene on cosmid pKOS023-27. This promoter can be used to drive expression of the narbonolide PKS or any other coding sequence of interest in host cells in which the promoter functions, particularly S. venezuelae and generally any Streptomyces species. As described below, however, promoters other than the promoter of the narbonolide PKS genes will typically be used for heterologous expression.

For purposes of the invention, any host cell other than Streptomyces venezuelae is a heterologous host cell. Thus, S. narbonensis, which produces narbomycin but not picromycin is a heterologous host cell of the invention, although other host cells are generally preferred for purposes of heterologous expression. Those of skill in the art will recognize that, if a Streptomyces host that produces a picromycin or methymycin precursor is used as the host cell, the recombinant vector need drive expression of only a portion of the genes

constituting the picromycin gene cluster. As used herein, the picromycin gene cluster includes the narbonolide PKS, the desosamine biosynthetic and transferase genes, the beta-glucosidase gene, and the picK hydroxylase gene.

Thus, such a vector may comprise only a single ORF, with the desired remainder of the polypeptides encoded by the picromycin gene cluster provided by the genes on the host cell chromosomal DNA.

The present invention also provides compounds and recombinant DNA vectors useful for disrupting any gene in the picromycin gene cluster (as described above and illustrated in the examples below). Thus, the invention provides a variety of modified host cells (particularly, S. narbonensis and S. venezuelae) in which one or more of the genes in the picromycin gene cluster have been disrupted. These cells are especially useful when it is desired to replace the disrupted function with a gene product expressed by a recombinant DNA vector.

Thus, the invention provides such Streptomyces host cells, which are preferred host cells for expressing narbonolide derivatives of the invention. Particularly preferred host cells of this type include those in which the coding sequence for the loading module has been disrupted, those in which one or more of any of the PKS gene ORFs has been disrupted, and/or those in which the picK gene has been disrupted.

In a preferred embodiment, the expression vectors of the invention are used to construct a heterologous recombinant Streptomyces host cell that expresses a recombinant PKS of the invention. As noted above, a heterologous host cell for purposes of the present invention is any host cell other than S. venezuelae, and in most cases other than S. narbonensis as well. Particularly preferred heterologous host cells are those which lack endogenous functional PKS genes. Illustrative host cells of this type include the modified Streptomyces coelicolor CH999 and similarly modified S. lividans described in PCT publication No. WO 96/40968.

The invention provides a wide variety of expression vectors for use in Streptomyces. For replicating vectors, the origin of replication can be, for example and without limitation, a low copy number vector, such as SCP2* (see Hopwood et al., Genetic Marzipulation of Streptornyces : A Laboratony mantcal (The John Innes Foundation, Norwich, U. K., 1985); Lydiate et al., 1985, Gene 35: 223-235; and Kieser and Melton, 1988, Gene 65: 83-91, each of which is incorporated herein by reference), SLP1.2 (Thompson et al., 1982, Gene 20: 51-62, incorporated herein by reference), and pSG5 (ts) (Muth et al., 1989, Mol. Gen. Genet. 219 : 341-348, and Bierman et al., 1992, Gene 116 : 43-49, each of which is incorporated herein by reference), or a high copy number vector, such as pIJ101 and pJV1 (see Katz et al., 1983, J. Gen. Microbiol. 129 : 2703-2714; Vara et al., 1989, J. Bacteriol. 171 : 5782-5781; and Servin-Gonzalez, 1993, Plasmid 30: 131-140, each of which is incorporated herein by reference). High copy number vectors are generally, however, not preferred for expression of large genes or multiple genes. For non-replicating and integrating vectors and generally for any vector, it is useful to include at least an E. coli origin of replication, such as from pUC, plP, plI, and pBR. For phage based vectors, the phage phiC31 and its derivative KC515 can be employed (see Hopwood et al., supra). Also, plasmid pSET152, plasmid pSAM, plasmids pSE101 and pSE211, all of which integrate site-specifically in the chromosomal DNA of S. lividans, can be employed.

Preferred Streptomyces host cell/vector combinations of the invention include S. coelicolor CH999 and S. lividans K4-114 host cells, which do not produce actinorhodin, and expression vectors derived from the pRM1 and pRM5 vectors, as described in U. S. Patent No. 5,830,750 and U. S. patent application Serial Nos. 08/828,898, filed 31 Mar. 1997, and 09/181,833, filed 28 Oct. 1998, each of which is incorporated herein by reference.

As described above, particularly useful control sequences are those that alone or together with suitable regulatory systems activate expression during transition from growth to stationary phase in the vegetative mycelium. The

system contained in the illustrative plasmid pRM5, i. e., the actl/actlll promoter pair and the nctll-ORF4 activator gene, is particularly preferred. Other useful Streptonryces promoters include without limitation those from the enrlE gene and the ittelcl gene, which act constitutively, and the tipA gene and the tizera gene, which can be induced at any growth stage. In addition, the T7 RNA polymerase system has been transferred to Streptomyces and can be employed in the vectors and host cells of the invention. In this system, the coding sequence for the T7 RNA polymerase is inserted into a neutral site of the chromosome or in a vector under the control of the inducible merA promoter, and the gene of interest is placed under the control of the T7 promoter. As noted above, one or more activator genes can also be employed to enhance the activity of a promoter.

Activator genes in addition to the actII-ORF4 gene described above include dnrl, redD, and ptpA genes (see U. S. patent application Serial No. 09/181,833, supra).

Typically, the expression vector will comprise one or more marker genes by which host cells containing the vector can be identified and/or selected.

Selectable markers are often preferred for recombinant expression vectors. A variety of markers are known that are useful in selecting for transformed cell lines and generally comprise a gene that confers a selectable phenotype on transformed cells when the cells are grown in an appropriate selective medium.

Such markers include, for example, genes that confer antibiotic resistance or sensitivity to the plasmid. Alternatively, several polyketides are naturally colored, and this characteristic can provide a built-in marker for identifying cells.

Preferred selectable markers include antibiotic resistance conferring genes.

Preferred for use in Streptomyces host cells are the ermE (confers resistance to erythromycin and lincomycin), tsr (confers resistance to thiostrepton), aadA (confers resistance to spectinomycin and streptomycin), aacC4 (confers resistance to apramycin, kanamycin, gentamicin, geneticin (G418), and neomycin), hyg (confers resistance to hygromycin), and vph (confers resistance to viomycin) resistance conferring genes.

To provide a preferred host cell and vector for purposes of the invention, the narbonolide PKS genes were placed on a recombinant expression vector that was transferred to the non-macrolide producing host Streptomyces lizidans K4- 114, as described in Example 3. Transformation of S. lividnns K4-114 with this expression vector resulted in a strain which produced two compounds in similar yield (-5-10 mg/L each). Analysis of extracts by LC/MS followed by 1H-NMR spectroscopy of the purified compounds established their identity as narbonolide (Figure 5, compound 4) and 10-deoxymethynolide (Figure 5, compound 5), the respective 14 and 12-membered polyketide precursors of narbomycin and YC17.

To provide a host cell of the invention that produces the narbonolide PKS as well as an additional narbonolide biosynthetic gene and to investigate the possible role of the Pik TEII in picromycin biosynthesis, the picB gene was integrated into the chromosome to provide the host cell of the invention Streptomyces lividans K39-18. The picB gene was cloned into the Streptomyces genome integrating vector pSET152 (see Bierman et al., 1992, Gene 116 : 43, incorporated herein by reference) under control of the same promoter (PactI) as the PKS on plasmid pKOS039-86.

A comparison of strains Streptomyces lividans K39-18/pKOS039-86 and K4- 114/pKOS039-86 grown under identical conditions indicated that the strain containing TEII produced 4-7 times more total polyketide. This increased production indicates that the enzyme is functional in this strain and is consistent with the observation that yields fall to below 5% for both picromycin and methymycin when picB is disrupted in S. venezuelae. Because the production levels of compound 4 and 5 from K39-18/pKOS03986 increased by the same relative amounts, TEII does not appear to influence the ratio of 12 and 14- membered lactone ring formation. Thus, the invention provides methods of coexpressing the picB gene product or any other type II thioesterase with the narbonolide PKS or any other PKS in heterologous host cells to increase polyketide production.

In accordance with the methods of the invention, picromycin biosynthetic genes in addition to the genes encoding the PKS and Pik TEII can be introduced into heterologous host cells. In particular, the picK gene, desosamine biosynthetic genes, and the desosaminyl transferase gene can be expressed in the recombinant host cells of the invention to produce any and all of the polyketides in the picromycin biosynthetic pathway (or derivatives thereof). Those of skill will recognize that the present invention enables one to select whether only the 12- membered polyketides, or only the 14-membered polyketides, or both 12-and 14-membered polyketides will be produced. To produce only the 12-membered polyketides, the invention provides expression vectors in which the last module is deleted or the KS domain of that module is deleted or rendered inactive. To produce only the 14-membered polyketides, the invention provides expression vectors in which the coding sequences of extender modules 5 and 6 are fused to provide only a single polypeptide.

In one important embodiment, the invention provides methods for desosaminylating polyketides or other compounds. In this method, a host cell other than Streptomyces venezuelae is transformed with one or more recombinant vectors of the invention comprising the desosamine biosynthetic and desosaminyl transferase genes and control sequences positioned to express those genes. The host cells so transformed can either produce the polyketide to be desosaminylated naturally or can be transformed with expression vectors encoding the PKS that produces the desired polyketide. Alternatively, the polyketide can be supplied to the host cell containing those genes. Upon production of the polyketide and expression of the desosamine biosynthetic and desosaminyl transferase genes, the desired desosaminylated polyketide is produced. This method is especially useful in the production of polyketides to be used as antibiotics, because the presence of the desosamine residue is known to increase, relative to their undesosaminylated counterparts, the antibiotic activity of many polyketides significantly. The present invention also provides a method

for desosaminylating a polyketide by transforming an S. z, enezitelae or S. narbonensis host cell with a recombinant vector that encodes a PKS that produces the polyketide and culturing the transformed cell under conditions such that said polyketide is produced and desosaminylated. In this method, use of an S. verzezuelne or S. narbonensis host cell of the invention that does not produce a functional endogenous narbonolide PKS is preferred.

In a related aspect, the invention provides a method for improving the yield of a desired desosaminylated polyketide in a host cell, which method comprises transforming the host cell with a beta-glucosidase gene. This method is not limited to host cells that have been transformed with expression vectors of the invention encoding the desosamine biosynthetic and desosaminyl transferase genes of the invention but instead can be applied to any host cell that desosaminylates polyketides or other compounds. Moreover, while the beta- glucosidase gene from Streptomyces venezuelae provided by the invention is preferred for use in the method, any beta-glucosidase gene may be employed. In another embodiment, the beta-glucosidase treatment is conducted in a cell free extract.

Thus, the invention provides methods not only for producing narbonolide and 10-deoxymethynolide in heterologous host cells but also for producing narbomycin and YC-17 in heterologous host cells. In addition, the invention provides methods for expressing the picK gene product in heterologous host cells, thus providing a means to produce picromycin, methymycin, and neomethymycin in heterologous host cells. Moreover, because the recombinant expression vectors provided by the invention enable the artisan to provide for desosamine biosynthesis and transfer and/or C10 or C12 hydroxylation in any host cell, the invention provides methods and reagents for producing a very wide variety of glycosylated and/or hydroxylated polyketides. This variety of polyketides provided by the invention can be better appreciated upon

consideration of the following section relating to the production of polyketides from heterologous or hybrid PKS enzymes provided by the invention.

Section V : Hybrid PKS Genes The present invention provides recombinant DNA compounds encoding each of the domains of each of the modules of the narbonolide PKS, the proteins involved in desosamine biosynthesis and transfer to narbonolide, and the PicK protein. The availability of these compounds permits their use in recombinant procedures for production of desired portions of the narbonolide PKS fused to or expressed in conjunction with all or a portion of a heterologous PKS. The resulting hybrid PKS can then be expressed in a host cell, optionally with the desosamine biosynthesis and transfer genes and/or the picK hydroxylase gene to produce a desired polyketide.

Thus, in accordance with the methods of the invention, a portion of the narbonolide PKS coding sequence that encodes a particular activity can be isolated and manipulated, for example, to replace the corresponding region in a different modular PKS. In addition, coding sequences for individual modules of the PKS can be ligated into suitable expression systems and used to produce the portion of the protein encoded. The resulting protein can be isolated and purified or can may be employed in situ to effect polyketide synthesis. Depending on the host for the recombinant production of the domain, module, protein, or combination of proteins, suitable control sequences such as promoters, termination sequences, enhance, and the like are ligated to the nucleotide sequence encoding the desired protein in the construction of the expression vector.

In one important embodiment, the invention thus provides a hybrid PKS and the corresponding recombinant DNA compounds that encode those hybrid PKS enzymes. For purposes of the invention, a hybrid PKS is a recombinant PKS that comprises all or part of one or more extender modules, loading module,

and/or thioesterase/cyclase domain of a first PKS and all or part of one or more extender modules, loading module, and/or thioesterase/cyclase domain of a second PKS. In one preferred embodiment, the first PKS is most but not all of the narbonolide PKS, and the second PKS is only a portion or all of a non- narbonolide PKS. An illustrative example of such a hybrid PKS includes a narbonolide PKS in which the natural loading module has been replaced with a loading module of another PKS. Another example of such a hybrid PKS is a narbonolide PKS in which the AT domain of extender module 3 is replaced with an AT domain that binds only malonyl CoA.

In another preferred embodiment, the first PKS is most but not all of a non-narbonolide PKS, and the second PKS is only a portion or all of the narbonolide PKS. An illustrative example of such a hybrid PKS includes a DEBS PKS in which an AT specific for methylmalonyl CoA is replaced with the AT from the narbonolide PKS specific for malonyl CoA.

Those of skill in the art will recognize that all or part of either the first or second PKS in a hybrid PKS of the invention need not be isolated from a naturally occurring source. For example, only a small portion of an AT domain determines its specificity. See U. S. provisional patent application Serial No.

60/091,526, and Lau et al., infra, incorporated herein by reference. The state of the art in DNA synthesis allows the artisan to construct de novo DNA compounds of size sufficient to construct a useful portion of a PKS module or domain. Thus, the desired derivative coding sequences can be synthesized using standard solid phase synthesis methods such as those described by Jaye et al., 1984, J. Biol. Chem.

259: 6331, and instruments for automated synthesis are available commercially from, for example, Applied Biosystems, Inc. For purposes of the invention, such synthetic DNA compounds are deemed to be a portion of a PKS.

With this general background regarding hybrid PKSs of the invention, one can better appreciate the benefit provided by the DNA compounds of the invention that encode the individual domains, modules, and proteins that

comprise the narbonolide PKS. As described above, the narbonolide PKS is comprised of a loading module, six extender modules composed of a KS, AT, ACP, and zero, one, two, or three KR, DH, and ER domains, and a thioesterase domain. The DNA compounds of the invention that encode these domains individually or in combination are useful in the construction of the hybrid PKS encoding DNA compounds of the invention.

The recombinant DNA compounds of the invention that encode the loading module of the narbonolide PKS and the corresponding polypeptides encoded thereby are useful for a variety of applications. In one embodiment, a DNA compound comprising a sequence that encodes the narbonolide PKS loading module is inserted into a DNA compound that comprises the coding sequence for a heterologous PKS. The resulting construct, in which the coding sequence for the loading module of the heterologous PKS is replaced by that for the coding sequence of the narbonolide PKS loading module provides a novel PKS. Examples include the 6-deoxyerythronolide B, rapamycin, FK506, FK520, rifamycin, and avermectin PKS coding sequences. In another embodiment, a DNA compound comprising a sequence that encodes the narbonolide PKS loading module is inserted into a DNA compound that comprises the coding sequence for the narbonolide PKS or a recombinant narbonolide PKS that produces a narbonolide derivative.

In another embodiment, a portion of the loading module coding sequence is utilized in conjunction with a heterologous coding sequence. In this embodiment, the invention provides, for example, replacing the propionyl CoA specific AT with an acetyl CoA, butyryl CoA, or other.. CoA specific AT. In addition, the KSQ and/or ACP can be replaced by another inactivated KS and/or another ACP. Alternatively, the KSQ, AT, and ACP of the loading module can be replaced by an AT and ACP of a loading module such as that of DEBS. The resulting heterologous loading module coding sequence can be utilized in

conjunction with a coding sequence for a PKS that synthesizes narbonolide, a narbonolide derivative, or another polyketide.

The recombinant DNA compounds of the invention that encode the first extender module of the narbonolide PKS and the corresponding polypeptides encoded thereby are useful for a variety of applications. In one embodiment, a DNA compound comprising a sequence that encodes the narbonolide PKS first extender module is inserted into a DNA compound that comprises the coding sequence for a heterologous PKS. The resulting construct, in which the coding sequence for a module of the heterologous PKS is either replaced by that for the first extender module of the narbonolide PKS or the latter is merely added to coding sequences for modules of the heterologous PKS, provides a novel PKS coding sequence. In another embodiment, a DNA compound comprising a sequence that. encodes the first extender module of the narbonolide PKS is inserted into a DNA compound that comprises coding sequences for the narbonolide PKS or a recombinant narbonolide PKS that produces a narbonolide derivative.

In another embodiment, a portion or all of the first extender module coding sequence is utilized in conjunction with other PKS coding sequences to create a hybrid module. In this embodiment, the invention provides, for example, replacing the methylmalonyl CoA specific AT with a malonyl CoA, ethylmalonyl CoA, or carboxyglycolyl CoA specific AT; deleting (which includes inactivating) the KR; inserting a DH or a DH and ER; and/or replacing the KR with another KR, a DH and KR, or a DH, KR, and ER. In addition, the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements or insertions, the heterologous KS, AT, DH, KR, ER, or ACP coding sequence can originate from a coding sequence for another module of the narbonolide PKS, from a gene for a PKS that produces a polyketide other than narbonolide, or from chemical synthesis. The resulting heterologous first extender module

coding sequence can be utilized in conjunction with a coding sequence for a PKS that synthesizes narbonolide, a narbonolide derivative, or another polyketide.

In an illustrative embodiment of this aspect of the invention, the invention provides recombinant PKSs and recombinant DNA compounds and vectors that encode such PKSs in which the KS domain of the first extender module has been inactivated. Such constructs are especially useful when placed in translational reading frame with the remaining modules and domains of a narbonolide PKS or narbonolide derivative PKS. The utility of these constructs is that host cells expressing, or cell free extracts containing, the PKS encoded thereby can be fed or supplied with N-acetylcysteamine thioesters of novel precursor molecules to prepare narbonolide derivatives. See U. S. patent application Serial No.

60/117,384, filed 27 Jan. 1999, and PCT publication Nos. WO 99/03986 and 97/02358, each of which is incorporated herein by reference.

The recombinant DNA compounds of the invention that encode the second extender module of the narbonolide PKS and the corresponding polypeptides encoded thereby are useful for a variety of applications. In one embodiment, a DNA compound comprising a sequence that encodes the narbonolide PKS second extender module is inserted into a DNA compound that comprises the coding sequence for a heterologous PKS. The resulting construct, in which the coding sequence for a module of the heterologous PKS is either replaced by that for the second extender module of the narbonolide PKS or the latter is merely added to coding sequences for the modules of the heterologous PKS, provides a novel PKS. In another embodiment, a DNA compound comprising a sequence that encodes the second extender module of the narbonolide PKS is inserted into a DNA compound that comprises the coding sequences for the narbonolide PKS or a recombinant narbonolide PKS that produces a narbonolide derivative.

In another embodiment, a portion or all of the second extender module coding sequence is utilized in conjunction with other PKS coding sequences to

create a hybrid module. In this embodiment, the invention provides, for example, replacing the malonyl CoA specific AT with a methylmalonyl CoA, ethylmalonyl CoA, or carboxyglycolyl CoA specific AT; deleting (or inactivating) the KR, the DH, or both the DH and KR; replacing the KR or the KR and DH with a KR, a KR and a DH, or a KR, DH, and ER; and/or inserting an ER. In addition, the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements or insertions, the heterologous KS, AT, DH, KR, ER, or ACP coding sequence can originate from a coding sequence for another module of the narbonolide PKS, from a coding sequence for a PKS that produces a polyketide other than narbonolide, or from chemical synthesis. The resulting heterologous second extender module coding sequence can be utilized in conjunction with a coding sequence from a PKS that synthesizes narbonolide, a narbonolide derivative, or another polyketide.

The recombinant DNA compounds of the invention that encode the third extender module of the narbonolide PKS and the corresponding polypeptides encoded thereby are useful for a variety of applications. In one embodiment, a DNA compound comprising a sequence that encodes the narbonolide PKS third extender module is inserted into a DNA compound that comprises the coding sequence for a heterologous PKS. The resulting construct, in which the coding sequence for a module of the heterologous PKS is either replaced by that for the third extender module of the narbonolide PKS or the latter is merely added to coding sequences for the modules of the heterologous PKS, provides a novel PKS. In another embodiment, a DNA compound comprising a sequence that encodes the third extender module of the narbonolide PKS is inserted into a DNA compound that comprises coding sequences for the narbonolide PKS or a recombinant narbonolide PKS that produces a narbonolide derivative.

In another embodiment, a portion or all of the third extender module coding sequence is utilized in conjunction with other PKS coding sequences to create a hybrid module. In this embodiment, the invention provides, for

example, replacing the methylmalonyl CoA specific AT with a malonyl CoA, ethylmalonyl CoA, or carboxyglycolyl CoA specific AT; deleting the inactive KR; and/or inserting a KR, or a KR and DH, or a KR, DH, and ER. In addition, the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements or insertions, the heterologous KS, AT, DH, KR, ER, or ACP coding sequence can originate from a coding sequence for another module of the narbonolide PKS, from a gene for a PKS that produces a polyketide other than narbonolide, or from chemical synthesis. The resulting heterologous third extender module coding sequence can be utilized in conjunction with a coding sequence for a PKS that synthesizes narbonolide, a narbonolide derivative, or another polyketide.

The recombinant DNA compounds of the invention that encode the fourth extender module of the narbonolide PKS and the corresponding polypeptides encoded thereby are useful for a variety of applications. In one embodiment, a DNA compound comprising a sequence that encodes the narbonolide PKS fourth extender module is inserted into a DNA compound that comprises the coding sequence for a heterologous PKS. The resulting construct, in which the coding sequence for a module of the heterologous PKS is either replaced by that for the fourth extender module of the narbonolide PKS or the latter is merely added to coding sequences for the modules of the heterologous PKS, provides a novel PKS. In another embodiment, a DNA compound comprising a sequence that encodes the fourth extender module of the narbonolide. PKS is inserted into a DNA compound that comprises coding sequences for the narbonolide PKS or a recombinant narbonolide PKS that produces a narbonolide derivative.

In another embodiment, a portion of the fourth extender module coding sequence is utilized in conjunction with other PKS coding sequences to create a hybrid module. In this embodiment, the invention provides, for example, replacing the methylmalonyl CoA specific AT with a malonyl CoA, ethylmalonyl CoA, or carboxyglycolyl CoA specific AT; deleting any one, two, or all three of

the ER, DH, and KR; and/or replacing any one, two, or all three of the ER, DH, and KR with either a KR, a DH and KR, or a KR, DH, and ER. In addition, the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements or insertions, the heterologous KS, AT, DH, KR, ER, or ACP coding sequence can originate from a coding sequence for another module of the narbonolide PKS, from a coding sequence for a PKS that produces a polyketide other than narbonolide, or from chemical synthesis. The resulting heterologous fourth extender module coding sequence can be utilized in conjunction with a coding sequence for a PKS that synthesizes narbonolide, a narbonolide derivative, or another polyketide.

The recombinant DNA compounds of the invention that encode the fifth extender module of the narbonolide PKS and the corresponding polypeptides encoded thereby are useful for a variety of applications. In one embodiment, a DNA compound comprising a sequence that encodes the narbonolide PKS fifth extender module is inserted into a DNA compound that comprises the coding sequence for a heterologous PKS. The resulting construct, in which the coding sequence for a module of the heterologous PKS is either replaced by that for the fifth extender module of the narbonolide PKS or the latter is merely added to coding sequences for the modules of the heterologous PKS, provides a novel PKS. In another embodiment, a DNA compound comprising a sequence that encodes the fifth extender module of the narbonolide PKS is inserted into a DNA compound that comprises the coding sequence for the narbonolide PKS or a recombinant narbonolide PKS that produces a narbonolide derivative., In another embodiment, a portion or all of the fifth extender module coding sequence is utilized in conjunction with other PKS coding sequences to create a hybrid module. In this embodiment, the invention provides, for example, replacing the methylmalonyl CoA specific AT with a malonyl CoA, ethylmalonyl CoA, or carboxyglycolyl CoA specific AT; deleting (or inactivating) the KR; inserting a DH or a DH and ER; and/or replacing the KR with another

KR, a DH and KR, or a DH, KR, and ER. In addition, the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements or insertions, the heterologous KS, AT, DH, KR, ER, or ACP coding sequence can originate from a coding sequence for another module of the narbonolide PKS, from a coding sequence for a PKS that produces a polyketide other than narbonolide, or from chemical synthesis. The resulting heterologous fifth extender module coding sequence can be utilized in conjunction with a coding sequence for a PKS that synthesizes narbonolide, a narbonolide derivative, or another polyketide.

The recombinant DNA compounds of the invention that encode the sixth extender module of the narbonolide PKS and the corresponding polypeptides encoded thereby are useful for a variety of applications. In one embodiment, a DNA compound comprising a sequence that encodes the narbonolide PKS sixth extender module is inserted into a DNA compound that comprises the coding sequence for a heterologous PKS. The resulting construct, in which the coding sequence for a module of the heterologous PKS is either replaced by that for the sixth extender module of the narbonolide PKS or the latter is merely added to coding sequences for the modules of the heterologous PKS, provides a novel PKS. In another embodiment, a DNA compound comprising a sequence that encodes the sixth extender module of the narbonolide PKS is inserted into a DNA compound that comprises the coding sequences for the narbonolide PKS or a recombinant narbonolide PKS that produces a narbonolide derivative.

In another embodiment, a portion or all of the sixth extender module coding sequence is utilized in conjunction with other PKS coding sequences to create a hybrid module. In this embodiment, the invention provides, for example, replacing the methylmalonyl CoA specific AT with a malonyl CoA, ethylmalonyl CoA, or carboxyglycolyl CoA specific AT; and/or inserting a KR, a KR and DH, or a KR, DH, and an ER. In addition, the KS and/or ACP can be replaced with another KS and/or ACP. In each of these replacements or

insertions, the heterologous KS, AT, DH, KR, ER, or ACP coding sequence can originate from a coding sequence for another module of the narbonolide PKS, from a coding sequence for a PKS that produces a polyketide other than narbonolide, or from chemical synthesis. The resulting heterologous sixth extender module coding sequence can be utilized in conjunction with a coding sequence for a PKS that synthesizes narbonolide, a narbonolide derivative, or another polyketide.

The sixth extender module of the narbonolide PKS is followed by a thioesterase domain. This domain is important in the cyclization of the polyketide and its cleavage from the PKS. The present invention provides recombinant DNA compounds that encode hybrid PKS enzymes in which the narbonolide PKS is fused to a heterologous thioesterase or a heterologous PKS is fused to the narbonolide synthase thioesterase. Thus, for example, a thioesterase domain coding sequence from another PKS gene can be inserted at the end of the sixth extender module coding sequence in recombinant DNA compounds of the invention. Recombinant DNA compounds encoding this thioesterase domain are therefore useful in constructing DNA compounds that encode the narbonolide PKS, a PKS that produces a narbonolide derivative, and a PKS that produces a polyketide other than narbonolide or a narbonolide derivative.

The following Table lists references describing illustrative PKS genes and corresponding enzymes that can be utilized in the construction of the recombinant hybrid PKSs and the corresponding DNA compounds that encode them of the invention. Also presented are various references describing tailoring enzymes and corresponding genes that can be employed in accordance with the methods of the invention.

Avermectin U. S. Pat. No. 5,252,474 to Merck.

MacNeil et al., 1993, Industrial Microorganisms : Basic and Applied Molecular Genetics, Baltz, Hegeman, & Skatrud, eds. (ASM), pp. 245-256, A

Comparison of the Genes Encoding the Polyketide Synthases for Avermectin, Erythromycin, and Nemadectin.

MacNeil et al., 1992, Gene 115 : 119-125, Complex Organization of the Streptomyces avermitilis genes encoding the avermectin polyketide synthase.

Candicidin (FR008) Hu et al., 1994, Mol. Microbiol. 14: 163-172.

Epothilone U. S. patent application Serial No. 60/130,560, filed 22 Apr. 1999, and Serial No. 60/122,620, filed 3 Mar. 1999.

Erythromycin PCT Pub. No. 93/13663 to Abbott.

US Pat. No. 5,824,513 to Abbott.

Donadio et al., 1991, Science 252: 675-9.

Cortes et al., 8 Nov. 1990, Nature 348: 176-8, An unusually large multifunctional polypeptide in the erythromycin producing polyketide synthase of Saccharopolyspora erythraea.

Glycosylation Enzymes PCT Pat. App. Pub. No. 97/23630 to Abbott.

FK506 Motamedi et al., 1998, The biosynthetic gene cluster for the macrolactone ring of the immunosuppressant FK506, Eur. J. biochem. 256: 528-534.

Motamedi et al., 1997, Structural organization of a multifunctional polyketide synthase involved in the biosynthesis of the macrolide immunosuppressant FK506, Eur. J. Biochem. 244: 74-80.

Methyltransferase US 5,264,355, issued 23 Nov. 1993, Methylating enzyme from Streptomyces MA6858.31-O-desmethyl-FK506 methyltransferase.

Motamedi et al., 1996, Characterization of methyltransferase and hydroxylase genes involved in the biosynthesis of the immunosuppressants FK506 and FK520, J. Bacteriol. 178 : 5243-5248.

FK520 U. S. patent application Serial No. 60/123,810, filed 11 Mar. 1999.

Immunomycin Nielsen et al., 1991, Biochem. 30: 5789-96.

Lovastatin U. S. Pat. No. 5,744,350 to Merck.

Nemadectin MacNeil et al., 1993, supra. niddamycin Kakavas et al., 1997, Identification and characterization of the niddamycin polyketide synthase genes from Streptomyces caelestis, J. Bnctenol. 179 : 7515-7522.

Oleandomycin Swan et al., 1994, Characterisation of a Streptomyces antibioticus gene encoding a type I polyketide synthase which has an unusual coding sequence, Mol. Gen. Genet. 242: 358-362.

Olano et al., 1998, Analysis of a Streptomyces antibioticus chromosomal region involved in oleandomycin biosynthesis, which encodes two glycosyltransferases responsible for glycosylation of the macrolactone ring, Mol.

Gen. Genet. 259 (3): 299-308.

U. S. patent application Serial No. 60/120,254, filed 16 Feb. 1999, and Serial No. 60/106,000, filed 29 Oct. 1998.

Platenolide EP Pat. App. Pub. No. 791,656 to Lilly.

Pradimicin PCT Pat. Pub. No. WO 98/11230 to Bristol-Myers Squibb.

Rapamycin Schwecke et al., Aug. 1995, The biosynthetic gene cluster for the polyketide rapamycin, Proc. Natl. Acad. Sci. USA 92: 7839-7843.

Aparicio et al., 1996, Organization of the biosynthetic gene cluster for rapamycin in Sfreptomyces hygroscopicus : analysis of the enzymatic domains in the modular polyketide synthase, Gene 169 : 9-16.

Rifamycin August et al., 13 Feb. 1998, Biosynthesis of the ansamycin antibiotic rifamycin : deductions from the molecular analysis of the ? if biosynthetic gene cluster of Amycolstopsis mediterranei S669, Chemistny S Biologty, 5 (2) : 69-79.

Soraphen U. S. Pat. No. 5,716,849 to Novartis.

Schupp et al., 1995, J. Bacteriology 177: 3673-3679. A Sorangium cellulosum (Myxobacterium) Gene Cluster for the Biosynthesis of the Macrolide Antibiotic Soraphen A: Cloning, Characterization, and Homology to Polyketide Synthase Genes from Actinomycetes.

Spiramycin U. S. Pat. No. 5,098,837 to Lilly.

Activator Gene U. S. Pat. No. 5,514,544 to Lilly.

Tylosin EP Pub. No. 791,655 to Lilly.

Kuhstoss et al., 1996, Gene 183 : 231-6., Production of a novel polyketide through the construction of a hybrid polyketide synthase.

U. S. Pat. No. 5,876,991 to Lilly.

Tailoring enzymes Merson-Davies and Cundliffe, 1994, Mol. Microbiol. 13 : 349-355. Analysis of five tylosin biosynthetic genes from the tylBA region of the Streptomycesfradiae genome.

As the above Table illustrates, there are a wide variety of PKS genes that serve as readily available sources of DNA and sequence information for use in constructing the hybrid PKS-encoding DNA compounds of the invention.

Methods for constructing hybrid PKS-encoding DNA compounds are described without reference to the narbonolide PKS in U. S. Patent Nos. 5,672,491 and 5,712,146 and PCT publication No. 98/49315, each of which is incorporated herein by reference.

In constructing hybrid PKSs of the invention, certain general methods may be helpful. For example, it is often beneficial to retain the framework of the module to be altered to make the hybrid PKS. Thus, if one desires to add DH and ER functionalities to a module, it is often preferred to replace the KR domain of the original module with a KR, DH, and ER domain-containing segment from another module, instead of merely inserting DH and ER domains. One can alter the stereochemical specificity of a module by replacement of the KS domain with a KS domain from a module that specifies a different stereochemistry. See Lau et al., 1999, Dissecting the role of acyltransferase domains of modular polyketide synthases in the choice and stereochemical fate of extender units"Biochemistry 38 (5): 1643-1651, incorporated herein by reference. One can alter the specificity of an AT domain by changing only a small segment of the domain. See Lau et al., supra. One can also take advantage of known linker regions in PKS proteins to link modules from two different PKSs to create a hybrid PKS. See Gokhale et al., 16 Apr. 1999, Dissecting and Exploiting Intermodular Communication in Polyketide Synthases", Science 284 : 482-485, incorporated herein by reference.

The hybrid PKS-encoding DNA compounds of-the invention can be and often are hybrids of more than two PKS genes. Even where only two genes are used, there are often two or more modules in the hybrid gene in which all or part of the module is derived from a second (or third) PKS gene. Thus, as one illustrative example, the invention provides a hybrid narbonolide PKS that contains the naturally occurring loading module and thioesterase domain as well

as extender modules one, two, four, and six of the narbonolide PKS and further contains hybrid or heterologous extender modules three and five. Hybrid or heterologous extender modules three and five contain AT domains specific for malonyl CoA and derived from, for example, the rapamycin PKS genes.

To construct a hybrid PKS or narbonolide derivative PKS of the invention, one can employ a technique, described in PCT Pub. No. 98/27203, which is incorporated herein by reference, in which the large PKS gene cluster is divided into two or more, typically three, segments, and each segment is placed on a separate expression vector. In this manner, each of the segments of the gene can be altered, and various altered segments can be combined in a single host cell to provide a recombinant PKS gene of the invention. This technique makes more efficient the construction of large libraries of recombinant PKS genes, vectors for expressing those genes, and host cells comprising those vectors.

The invention also provides libraries of PKS genes, PKS proteins, and ultimately, of polyketides, that are constructed by generating modifications in the narbonolide PKS so that the protein complexes produced have altered activities in one or more respects and thus produce polyketides other than the natural product of the PKS. Novel polyketides may thus be prepared, or polyketides in general prepared more readily, using this method. By providing a large number of different genes or gene clusters derived from a naturally occurring PKS gene cluster, each of which has been modified in a different way from the native cluster, an effectively combinatorial library of polyketides can be produced as a result of the multiple variations in these activities. As will be further described below, the metes and bounds of this embodiment of the invention can be described on both the protein level and the encoding nucleotide sequence level.

As described above, a modular PKS"derived from"the narbonolide or other naturally occurring PKS includes a modular PKS (or its corresponding encoding gene (s)) that retains the scaffolding of the utilized portion of the

naturally occurring gene. Not all modules need be included in the constructs. On the constant scaffold, at least one enzymatic activity is mutated, deleted, replaced, or inserted so as to alter the activity of the resulting PKS relative to the original PKS. Alteration results when these activities are deleted or are replaced by a different version of the activity, or simply mutated in such a way that a polyketide other than the natural product results from these collective activities.

This occurs because there has been a resulting alteration of the starter unit and/or extender unit, and/or stereochemistry, and/or chain length or cyclization, and/or reductive or dehydration cycle outcome at a corresponding position in the product polyketide. Where a deleted activity is replaced, the origin of the replacement activity may come from a corresponding activity in a different naturally occurring PKS or from a different region of the narbonolide PKS. Any or all of the narbonolide PKS genes may be included in the derivative or portions of any of these may be included, but the scaffolding of the PKS protein is retained in whatever derivative is constructed. The derivative preferably contains a thioesterase activity from the narbonolide or another PKS.

In summary, a PKS derived from the narbonolide PKS includes a PKS that contains the scaffolding of all or a portion of the narbonolide PKS. The derived PKS also contains at least two extender modules that are functional, preferably three extender modules, and more preferably four or more extender modules, and most preferably six extender modules. The derived PKS also contains mutations, deletions, insertions, or replacements of one or more of the activities of the functional modules of the narbonolide PKS so that the nature of the resulting polyketide is altered. This definition applies. both at the protein and DNA sequence levels. Particular preferred embodiments include those wherein a KS, AT, KR, DH, or ER has been deleted or replaced by a version of the activity from a different PKS or from another location within the same PKS. Also preferred are derivatives where at least one non-condensation cycle enzymatic activity (KR, DH, or ER) has been deleted or added or wherein any of these

activities has been mutated so as to change the structure of the polyketide synthesized by the PKS.

Conversely, also included within the definition of a PKS derived from the narbonolide PKS are functional PKS modules or their encoding genes wherein at least one portion, preferably two portions, of the narbonolide PKS activities have been inserted. Exemplary is the use of the narbonolide AT for extender module 2 which accepts a malonyl CoA extender unit rather than methylmalonyl CoA to replace a methylmalonyl specific AT in a PKS. Other examples include insertion of portions of non-condensation cycle enzymatic activities or other regions of narbonolide synthase activity into a heterologous PKS. Again, the derived from definition applies to the PKS at both the genetic and protein levels.

Thus, there are at least five degrees of freedom for constructing a hybrid PKS in terms of the polyketide that will be produced. First, the polyketide chain length is determined by the number of modules in the PKS. Second, the nature of the carbon skeleton of the PKS is determined by the specificities of the acyl transferases that determine the nature of the extender units at each position, e. g., malonyl, methylmalonyl, ethylmalonyl, or other substituted malonyl. Third, the loading module specificity also has an effect on the resulting carbon skeleton of the polyketide. The loading module may use a different starter unit, such as acetyl, butyryl, and the like. As noted above and in the examples below, another method for varying loading module specificity involves inactivating the KS activity in extender module 1 (KS1) and providing alternative substrates, called diketides that are chemically synthesized analogs of extender module 1 diketide products, for extender module 2. This approach was illustrated in PCT publication Nos. 97/02358 and 99/03986, incorporated herein by reference, wherein the KS1 activity was inactivated through mutation. Fourth, the oxidation state at various positions of the polyketide will be determined by the dehydratase and reductase portions of the modules. This will determine the presence and location of ketone and alcohol moieties and C-C double bonds or

C-C single bonds in the polyketide. Finally, the stereochemistry of the resulting polyketide is a function of three aspects of the synthase. The first aspect is related to the AT/KS specificity associated with substituted malonyls as extender units, which affects stereochemistry only when the reductive cycle is missing or when it contains only a ketoreductase, as the dehydratase would abolish chirality.

Second, the specificity of the ketoreductase may determine the chirality of any beta-OH. Finally, the enoylreductase specificity for substituted malonyls as extender units may influence the result when there is a complete KR/DH/ER available.

Thus, the modular PKS systems, and in particular, the narbonolide PKS system, permit a wide range of polyketides to be synthesized. As compared to the aromatic PKS systems, a wider range of starter units including aliphatic monomers (acetyl, propionyl, butyryl, isovaleryl, etc.), aromatics (aminohydroxybenzoyl), alicyclics (cyclohexanoyl), and heterocyclics (thiazolyl) are found in various macrocyclic polyketides. Recent studies have shown that modular PKSs have relaxed specificity for their starter units (Kao et al., 1994, Science, supra). Modular PKSs also exhibit considerable variety with regard to the choice of extender units in each condensation cycle. The degree of beta-ketoreduction following a condensation reaction has also been shown to be altered by genetic manipulation (Donadio et al., 1991, Science, supra ; Donadio et al., 1993, Proc. Natl. Acad. Sci. USA 90: 7119-7123). Likewise, the size of the polyketide product can be varied by designing mutants with the appropriate number of modules (Kao et al., 1994, J. Am. Chem. Soc. 116 : 11612-11613). Lastly, these enzymes are particularly well known for generating an impressive range of asymmetric centers in their products in a highly controlled manner. The polyketides and antibiotics produced by the methods of the invention are typically single stereoisomeric forms. Although the compounds of the invention can occur as mixtures of stereoisomers, it may be beneficial in some instances to generate individual stereoisomers. Thus, the combinatorial potential within

modular PKS pathways based on any naturally occurring modular, such as the narbonolide, PKS scaffold is virtually unlimited.

The combinatorial potential is increased even further when one considers that mutations in DNA encoding a polypeptide can be used to introduce, alter, or delete an activity in the encoded polypeptide. Mutations can be made to the native sequences using conventional techniques. The substrates for mutation can be an entire cluster of genes or only one or two of them; the substrate for mutation may also be portions of one or more of these genes. Techniques for mutation include preparing synthetic oligonucleotides including the mutations and inserting the mutated sequence into the gene encoding a PKS subunit using restriction endonuclease digestion. See, e. g., Kunkel, 1985, Proc. Natl. Acad. Sci.

USA 82: 448; Geisselsoder et al., 1987, BioTechniques 5: 786. Alternatively, the mutations can be effected using a mismatched primer (generally 10-20 nucleotides in length) that hybridizes to the native nucleotide sequence, at a temperature below the melting temperature of the mismatched duplex. The primer can be made specific by keeping primer length and base composition within relatively narrow limits and by keeping the mutant base centrally located, See Zoller and Smith, 1983, Methods Enzymol. 100: 468. Primer extension is effected using DNA polymerase, the product cloned, and clones containing the mutated DNA, derived by segregation of the primer extended strand, selected.

Identification can be accomplished using the mutant primer as a hybridization probe. The technique is also applicable for generating multiple point mutations.

See, e. g., Dalbie-McFarland et al., 1982, Proc. Natl. Acad. Sci. USA 79: 6409. PCR mutagenesis can also be used to effect the desired mutations.

Random mutagenesis of selected portions of the nucleotide sequences encoding enzymatic activities can also be accomplished by several different techniques known in the art, e. g., by inserting an oligonucleotide linker randomly into a plasmid, by irradiation with X-rays or ultraviolet light, by incorporating incorrect nucleotides during in vitro DNA synthesis, by error-

prone PCR mutagenesis, by preparing synthetic mutants, or by damaging plasmid DNA in vitro with chemicals. Chemical mutagens include, for example, sodium bisulfite, nitrous acid, nitrosoguanidine, hydroxylamine, agents which damage or remove bases thereby preventing normal base-pairing such as hydrazine or formic acid, analogues of nucleotide precursors such as 5- bromouracil, 2-aminopurine, or acridine intercalating agents such as proflavine, acriflavine, quinacrine, and the like. Generally, plasmid DNA or DNA fragments are treated with chemicals, transformed into E. coli and propagated as a pool or library of mutant plasmids.

In constructing a hybrid PKS of the invention, regions encoding enzymatic activity, i. e., regions encoding corresponding activities from different PKS synthases or from different locations in the same PKS, can be recovered, for example, using PCR techniques with appropriate primers. By"corresponding" activity encoding regions is meant those regions encoding the same general type of activity. For example, a KR activity encoded at one location of a gene cluster "corresponds"to a KR encoding activity in another location in the gene cluster or in a different gene cluster. Similarly, a complete reductase cycle could be considered corresponding. For example, KR/DH/ER corresponds to KR alone.

If replacement of a particular target region in a host PKS is to be made, this replacement can be conducted in vitro using suitable restriction enzymes.

The replacement can also be effected in vivo using recombinant techniques involving homologous sequences framing the replacement gene in a donor plasmid and a receptor region in a recipient plasmid. Such systems, advantageously involving plasmids of differing temperature sensitivities are described, for example, in PCT publication No. WO 96/40968, incorporated herein by reference. The vectors used to perform the various operations to replace the enzymatic activity in the host PKS genes or to support mutations in these regions of the host PKS genes can be chosen to contain control sequences

operably linked to the resulting coding sequences in a manner such that expression of the coding sequences can be effected in an appropriate host.

However, simple cloning vectors may be used as well. If the cloning vectors employed to obtain PKS genes encoding derived PKS lack control sequences for expression operably linked to the encoding nucleotide sequences, the nucleotide sequences are inserted into appropriate expression vectors. This need not be done individually, but a pool of isolated encoding nucleotide sequences can be inserted into expression vectors, the resulting vectors transformed or transfected into host cells, and the resulting cells plated out into individual colonies.

The various PKS nucleotide sequences can be cloned into one or more recombinant vectors as individual cassettes, with separate control elements, or under the control of, e. g., a single promoter. The PKS subunit encoding regions can include flanking restriction sites to allow for the easy deletion and insertion of other PKS subunit encoding sequences so that hybrid PKSs can be generated.

The design of such unique restriction sites is known to those of skill in the art and can be accomplished using the techniques described above, such as site- directed mutagenesis and PCR.

The expression vectors containing nucleotide sequences encoding a variety of PKS enzymes for the production of different polyketides are then transformed into the appropriate host cells to construct the library. In one straightforward approach, a mixture of such vectors is transformed into the selected host cells and the resulting cells plated into individual colonies and selected to identify successful transformants. Each individual colony has the ability to produce a particular PKS synthase and ultimately a particular polyketide. Typically, there will be duplications in some, most, or all of the colonies; the subset of the transformed colonies that contains a different PKS in each member colony can be considered the library. Alternatively, the expression vectors can be used individually to transform hosts, which transformed hosts are

then assembled into a library. A variety of strategies are available to obtain a multiplicity of colonies each containing a PKS gene cluster derived from the naturally occurring host gene cluster so that each colony in the library produces a different PKS and ultimately a different polyketide. The number of different polyketides that are produced by the library is typically at least four, more typically at least ten, and preferably at least 20, and more preferably at least 50, reflecting similar numbers of different altered PKS gene clusters and PKS gene products. The number of members in the library is arbitrarily chosen; however, the degrees of freedom outlined above with respect to the variation of starter, extender units, stereochemistry, oxidation state, and chain length is quite large.

Methods for introducing the recombinant vectors of the invention into suitable hosts are known to those of skill in the art and typically include the use of CaCl2 or agents such as other divalent cations, lipofection, DMSO, protoplast transformation, infection, transfection, and electroporation. The polyketide producing colonies can be identified and isolated using known techniques and the produced polyketides further characterized. The polyketides produced by these colonies can be used collectively in a panel to represent a library or may be assessed individually for activity.

The libraries of the invention can thus be considered at four levels: (1) a multiplicity of colonies each with a different PKS encoding sequence; (2) colonies that contain the proteins that are members of the PKS library produced by the coding sequences; (3) the polyketides produced; and (4) antibiotics or compounds with other desired activities derived from the polyketides. Of course, combination libraries can also be constructed wherein members of a library derived, for example, from the narbonolide PKS can be considered as a part of the same library as those derived from, for example, the rapamycin PKS or DEBS.

Colonies in the library are induced to produce the relevant synthases and thus to produce the relevant polyketides to obtain a library of polyketides. The

polyketides secreted into the media can be screened for binding to desired targets, such as receptors, signaling proteins, and the like. The supernatants per se can be used for screening, or partial or complete purification of the polyketides can first be effected. Typically, such screening methods involve detecting the binding of each member of the library to receptor or other target ligand. Binding can be detected either directly or through a competition assay. Means to screen such libraries for binding are well known in the art. Alternatively, individual polyketide members of the library can be tested against a desired target. In this event, screens wherein the biological response of the target is measured can more readily be included. Antibiotic activity can be verified using typical screening assays such as those set forth in Lehrer et al., 1991, J. Immunol. Meth. 137 : 167-173, incorporated herein by reference, and in the examples below.

The invention provides methods for the preparation of a large number of polyketides. These polyketides are useful intermediates in formation of compounds with antibiotic or other activity through hydroxylation and glycosylation reactions as described above. In general, the polyketide products of the PKS must be further modified, typically by hydroxylation and glycosylation, to exhibit antibiotic activity. Hydroxylation results in the novel polyketides of the invention that contain hydroxyl groups at C6, which can be accomplished using the hydroxylase encoded by the eryF gene, and/or C12, which can be accomplished using the hydroxylase encoded by the picK or enyK gene. The presence of hydroxyl groups at these positions can enhance the antibiotic activity of the resulting compound relative to its unhydroxylated counterpart.

Gycosylation is important in conferring antibiotic activity to a polyketide as well. Methods for glycosylating the polyketides are generally known in the art; the glycosylation may be effected intracellularly by providing the appropriate glycosylation enzymes or may be effected in vitro using chemical synthetic means as described herein and in PCT publication No. WO 98/49315, incorporated herein by reference. Preferably, glycosylation with desosamine is

effected in accordance with the methods of the invention in recombinant host cells provided by the invention. In general, the approaches to effecting glycosylation mirror those described above with respect to hydroxylation. The purified enzymes, isolated from native sources or recombinantly produced may be used in vitro. Alternatively and as noted, glycosylation may be effected intracellularly using endogenous or recombinantly produced intracellular glycosylases. In addition, synthetic chemical methods may be employed.

The antibiotic modular polyketides may contain any of a number of different sugars, although D-desosamine, or a close analog thereof, is most common. Erythromycin, picromycin, narbomycin and methymycin contain desosamine. Erythromycin also contains L-cladinose (3-O-methyl mycarose).

Tylosin contains mycaminose (4-hydroxy desosamine), mycarose and 6-deoxy-D- allose. 2-acetyl-1-bromodesosamine has been used as a donor to glycosylate polyketides by Masamune et al., 1975, J. Am. atem. Soc. 97: 3512-3513. Other, apparently more stable donors include glycosyl fluorides, thioglycosides, and trichloroacetimidates; see Woodward et al., 1981, J. Am. Chem. Soc. 103: 3215; Martin et al., 1997, J. Am. Chem. Soc. 119 : 3193; Toshima et al., 1995, J. Am. Chem.

Soc. 117 : 3717; Matsumoto et al., 1988, Tetrahedron Lett. 29 : 3575. Glycosylation can also be effected using the polyketide aglycones as starting materials and using Saccharopolyspora enythraea or Streptomyces venezuelae to make the conversion, preferably using mutants unable to synthesize macrolides.

To provide an illustrative hybrid PKS of the invention as well as an expression vector for that hybrid PKS and host cells comprising the vector and producing the hybrid polyketide, a portion of the narbonolide PKS gene was fused to the DEBS genes. This construct also allowed the examination of whether the TE domain of the narbonolide PKS (pikTE) could promote formation of 12- membered lactones in the context of a different PKS. A construct was generated, plasmid pKOS039-18, in which the pikTE ORF was fused with the DEBS genes in place of the DEBS TE ORF (see Figure 5). To allow the TE to distinguish between

substrates most closely resembling those generated by the narbonolide PKS, the fusion junction was chosen between the AT and ACP to eliminate ketoreductase activity in DEBS extender module 6 (KR6). This results in a hybrid PKS that presents the TE with a 6-ketone heptaketide intermediate and a 6- (5)-hydroxy hexaketide intermediate to cyclize, as in narbonolide and 10-deoxymethynolide biosynthesis.

Analysis of this construct indicated the production of the 14-membered ketolide 3,6-dideoxy-3-oxo-erythronolide B (Figure 5, compound 6). Extracts were analyzed by LC/MS. The identity of compound 6 was verified by comparison to a previously authenticated sample (see PCT publication No.

98/49315, incorporated herein by reference). The predicted 12-membered macrolactone, (8R, 9S)-8, 9-dihydro-8-methyl-9-hydroxy-10-deoxymethynolide (see Kao et nl. « 1995, J. Am. Chem. Soc. 117, incorporated herein by reference) was not detected. This result, along with others reported herein, suggests that protein interactions between the narbonolide PKS modules play a role in formation of the 12 and 14-membered macrolides.

The above example illustrates also how engineered PKSs can be improved for production of novel compounds. Compound 6 was originally produced by deletion of the KR6 domain in DEBS to create a 3-ketolide producing PKS (see U. S. patent application Serial No. 09/073,538, filed 6 May 1998, and PCT publication No. WO 98/49315, each of which is incorporated herein by reference). Although the desired molecule was made, purification of compound 6 from this strain was hampered by the presence of 2-desmethyl ketolides that could not be easily separated. Extracts from Streptomyces lividans K4- 114/pKOS039-18, however, do not contain the 2-desmethyl compounds, greatly simplifying purification. Thus, the invention provides a useful method of producing such compounds. The ability to combine the narbonolide PKS with DEBS and other modular PKSs provides a significant advantage in the production of macrolide antibiotics.

Two other hybrid PKSs of the invention were constructed that yield this same compound. These constructs also illustrate the method of the invention in which hybrid PKSs are constructed at the protein, as opposed to the module, level. Thus, the invention provides a method for constructing a hybrid PKS which comprises the coexpression of at least one gene from a first modular PKS gene cluster in a host cell that also expresses at least one gene from a second PKS gene cluster. The invention also provides novel hybrid PKS enzymes prepared in accordance with the method. This method is not limited to hybrid PKS enzymes composed of at least one narbonolide PKS gene, although such constructs are illustrative and preferred. Moreover, the hybrid PKS enzymes are not limited to hybrids composed of unmodified proteins; as illustrated below, at least one of the genes can optionally be a hybrid PKS gene.

In the first construct, the cryA7 and eryAII genes were coexpressed with picAIV and a gene encoding a hybrid extender module 5 composed of the KS and AT domains of extender module 5 of DEBS3 and the KR and ACP domains of extender module 5 of the narbonolide PKS. In the second construct, the picAl V coding sequence was fused to the hybrid extender module 5 coding sequence used in the first construct to yield a single protein. Each of these constructs produced 3-deoxy-3-oxo-6-deoxyerythronolide B. In a third construct, the coding sequence for extender module 5 of DEBS3 was fused to the picAIV coding sequence, but the levels of product produced were below the detection limits of the assay.

A variant of the first construct hybrid PKS was constructed that contained an inactivated DEBS1 extender module 1 KS domain. When host cells containing the resultant hybrid PKS were supplied the appropriate diketide precursor, the desired 13-desethyl-13-propyl compounds were obtained, as described in the examples below.

Other illustrative hybrid PKSs of the invention were made by coexpressing the picAl and picAII genes with genes encoding DEBS3 or DEBS3

variants. These constructs illustrate the method of the invention in which a hybrid PKS is produced from coexpression of PKS genes unmodified at the modular or domain level. In the first construct, the enyAIII gene was coexpressed with the picAI and picAII genes, and the hybrid PKS produced 10-desmethyl- 10,11-anhydro-6-deoxyerythronolide B in Streptomyces lividnns. Such a hybrid PKS could also be constructed in accordance with the method of the invention by transformation of S. venzuelae with an expression vector that produces the enyAIII gene product, DEBS3. In a preferred embodiment, the S. venezuelae host cell has been modified to inactivate the picAIII gene.

In the second construct, the DEBS3 gene was a variant that had an inactive KR in extender module 5. The hybrid PKS produced 5,6-dideoxy-5-oxo-10- desmethyl-10,11-anhydroerythronolide B in Streptomyces lividans.

In the third construct, the DEBS3 gene was a variant in which the KR domain of extender module 5 was replaced by the DH and KR domains of extender module 4 of the rapamycin PKS. This construct produced 5,6-dideoxy- 5-oxo-10-desmethyl-10,11-anhydroerythronolide B and 5,6-dideoxy-4,5-anhydro- 10-desmethyl-10,11-anhydroerythronolide B in Streptomyces lividans, indicating that the rapamycin DH and KR domains functioned only inefficiently in this construct.

In the fourth construct, the DEBS3 gene was a variant in which the KR domain of extender module 5 was replaced by the DH, KR, and ER domains of extender module 1 of the rapamycin PKS. This construct produced 5,6-dideoxy- 5-oxo-10-desmethyl-10,11-anhydroerythronolide B as well as 5,6-dideoxy-10- desmethyl-10, 11-anhydroerythronolide B in Streptomyces lividans, indicating that the rapamycin DH, KR, and ER domains functioned only inefficiently in this construct.

In the fifth construct, the DEBS3 gene was a variant in which the KR domain of extender module 6 was replaced by the DH and KR domains of

extender module 4 of the rapamycin PKS. This construct produced 3,6-dideoxy- 2,3-anhydro-10-desmethyl-10,11-anhydroerythronolide B in Streptomyces lividans.

In the sixth construct, the DEBS3 gene was a variant in which the AT domain of extender module 6 was replaced by the AT domain of extender module 2 of the rapamycin PKS. This construct produced 2,10-didesmethyl- 10,11-anhydro-6-deoxyerythronolide B in Streptomyces lividans.

These hybrid PKSs illustrate the wide variety of polyketides that can be produced by the methods and compounds of the invention. These polyketides are useful as antibiotics and as intermediates in the synthesis of other useful compounds, as described in the following section.

Section VI: Compounds The methods and recombinant DNA compounds of the invention are useful in the production of polyketides. In one important aspect, the invention provides methods for making ketolides, polyketide compounds with significant antibiotic activity. See Griesgraber et al., 1996, J. Antibiot. 49: 465-477, incorporated herein by reference. Most if not all of the ketolides prepared to date are synthesized using erythromycin A, a derivative of 6-dEB, as an intermediate.

While the invention provides hybrid PKSs that produce a polyketide different in structure from 6-dEB, the invention also provides methods for making intermediates useful in preparing traditional, 6-dEB-derived ketolide compounds.

Because 6-dEB in part differs from narbonolide in that it comprises a 10- methyl group, the novel hybrid PKS genes of the invention based on the narbonolide PKS provide many novel ketolides that differ from the known ketolides only in that they lack a 10-methyl group. Thus, the invention provides the 10-desmethyl analogues of the ketolides and intermediates and precursor compounds described in, for example, Griesgraber et al., supra ; Agouridas et al., 1998, J. Med. Chem. 41 : 4080-4100, U. S. Patent Nos. 5,770,579; 5,760,233; 5,750,510;

5,747,467; 5,747,466; 5,656,607; 5,635,485; 5,614,614; 5,556,118; 5,543,400; 5,527,780; 5,444,051; 5,439,890; 5,439,889; and PCT publication Nos. WO 98/09978 and 98/28316, each of which is incorporated herein by reference. Because the invention also provides hybrid PKS genes that include a methylmalonyl-specific AT domain in extender module 2 of the narbonolide PKS, the invention also provides hybrid PKS that can be used to produce the 10-methyl-containing ketolides known in the art.

Thus, a hybrid PKS of the invention that produces 10-methyl narbonolide is constructed by substituting the malonyl-specific AT domain of the narbonolide PKS extender module 2 with a methylmalonyl specific AT domain from a heterologous PKS. A hybrid narbonolide PKS in which the AT of extender module 2 was replaced with the AT from DEBS extender module 2 was constructed using boundaries described in PCT publication No. 98/49315, incorporated herein by reference. However, when the hybrid PKS expression vector was introduced into Streptomyces venezuelae, detectable quantities of 10- methyl picromycin were not produced. Thus, to construct such a hybrid PKS of the invention, an AT domain from a module other than DEBS extender module 2 is preferred. One could also employ DEBS extender module 2 or another methylmalonyl specific AT but utilize instead different boundaries than those used for the substitution described above. In addition, one can construct such a hybrid PKS by substituting, in addition to the AT domain, additional extender module 2 domains, including the KS, the KR, and the DH, and/or additional extender module 3 domains.

Although modification of extender module 2 of the narbonolide PKS is required, the extent of hybrid modules engineered need not be limited to module 2 to make 10-methyl narbonolide. For example, substitution of the KS domain of extender module 3 of the narbonolide PKS with a heterologous domain or module can result in more efficient processing of the intermediate generated by

the hybrid extender module 2. Likewise, a heterologous TE domain may be more efficient in cyclizing 10-methyl narbonolide.

Substitution of the entire extender module 2 of the narbonolide PKS with a module encoding the correct enzymatic activities, i. e., a KS, a methylmalonyl specific AT, a KR, a DH, and an ACP, can also be used to create a hybrid PKS of the invention that produces a 10-methyl ketolide. Modules useful for such whole module replacements include extender modules 4 and 10 from the rapamycin PKS, extender modules 1 and 5 from the FK506 PKS, extender module 2 of the tylosin PKS, and extender module 4 of the rifamycin PKS. Thus, the invention provides many different hybrid PKSs that can be constructed starting from the narbonolide PKS that can be used to produce 10-methyl narbonolide. While 10- methyl narbonolide is referred to in describing these hybrid PKSs, those of skill recognize that the invention also therefore provides the corresponding derivatives produces by glycosylation and hydroxylation. For example, if the hybrid PKS is expressed in Streptomyces narbonensis or S. venezuelae, the compounds produced are 10-methyl narbomycin and picromycin, respectively.

Alternatively, the PKS can be expressed in a host cell transformed with the vectors of the invention that encode the desosamine biosynthesis and desosaminyl transferase and picK hydroxylase genes.

Other important compounds provided by the invention are the 6-hydroxy ketolides. These compounds include 3-deoxy-3-oxo erythronolide B, 6-hydroxy narbonolide, and 6-hydroxy-10-methyl narbonolide. In the examples below, the invention provides a method for utilizing EryF to hydroxylate 3-ketolides that is applicable for the production of any 6-hydroxy-3-ketolide.

Thus, the hybrid PKS genes of the invention can be expressed in a host cell that contains the desosamine biosynthetic genes and desosaminyl transferase gene as well as the required hydroxylase gene (s), which may be either picK (for the C12 position) or eryK (for the C12 position) and/or enyF (for the C6 position).

The resulting compounds have antibiotic activity but can be further modified, as

described in the patent publications referenced above, to yield a desired compound with improved or otherwise desired properties. Alternatively, the aglycone compounds can be produced in the recombinant host cell, and the desired glycosylation and hydroxylation steps carried out in ziitro or in 7 o, in the latter case by supplying the converting cell with the aglycone.

The compounds of the invention are thus optionally glycosylated forms of the polyketide set forth in formula (2) below which are hydroxylated at either the C6 or the C12 or both. The compounds of formula (2) can be prepared using the loading and the six extender modules of a modular PKS, modified or prepared in hybrid form as herein described. These polyketides have the formula: including the glycosylated and isolated stereoisomeric forms thereof ; wherein R* is a straight chain, branched or cyclic, saturated or unsaturated substituted or unsubstituted hydrocarbyl of 1-15C; each of Rl-R6 is independently H or alkyl (1-4C) wherein any alkyl at Rl may optionally be substituted; each of Xl-X5 is independently two H, H and OH, or =O ; or each of Xl-X5 is independently H and the compound of formula (2) contains a double-bond in the ring adjacent to the position of said X at 2-3,4-5,6- 7,8-9 and/or 10-11; with the proviso that:

at least two of Rl-R6 are alkyl (1-4C).

Preferred compounds comprising formula 2 are those wherein at least three of Rl-R5 are alkyl (1-4C), preferably methyl or ethyl; more preferably wherein at least four of RU-RUZ are alkyl (1-4C), preferably methyl or ethyl. Also preferred are those wherein X2 is two H, =O, or H and OH, and/or X3 is H, and/or Xl is OH and/or X4 is OH and/or X5 is OH. Also preferred are compounds with variable R* when Rl-R5 is methyl, X2 is =O, and Xl, X4 and X5 are OH. The glycosylated forms of the foregoing are also preferred.

The invention also provides the 12-membered macrolides corresponding to the compounds above but produced from a narbonolide-derived PKS lacking extender modules 5 and 6 of the narbonolide PKS.

The compounds of the invention can be produced by growing and fermenting the host cells of the invention under conditions known in the art for the production of other polyketides. The compounds of the invention can be isolated from the fermentation broths of these cultured cells and purified by standard procedures. The compounds can be readily formulated to provide the pharmaceutical compositions of the invention. The pharmaceutical compositions of the invention can be used in the form of a pharmaceutical preparation, for example, in solid, semisolid, or liquid form. This preparation will contain one or more of the compounds of the invention as an active ingredient in admixture with an organic or inorganic carrier or excipient suitable for external, enteral, or parenteral application. The active ingredient may be compounded, for example, with the usual non-toxic, pharmaceutically acceptable carriers for tablets, pellets, capsules, suppositories, solutions, emulsions, suspensions, and any other form suitable for use.

The carriers which can be used include water, glucose, lactose, gum acacia, gelatin, mannitol, starch paste, magnesium trisilicate, talc, corn starch, keratin, colloidal silica, potato starch, urea, and other carriers suitable for use in manufacturing preparations, in solid, semi-solid, or liquefied form. In addition,

auxiliary stabilizing, thickening, and coloring agents and perfumes may be used.

For example, the compounds of the invention may be utilized with hydroxypropyl methylcellulose essentially as described in U. S. Patent No.

4,916,138, incorporated herein by reference, or with a surfactant essentially as described in EPO patent publication No. 428,169, incorporated herein by reference.

Oral dosage forms may be prepared essentially as described by Hondo et al., 1987, Transplantation Proceedings XIX, Supp. 6: 17-22, incorporated herein by reference. Dosage forms for external application may be prepared essentially as described in EPO patent publication No. 423,714, incorporated herein by reference. The active compound is included in the pharmaceutical composition in an amount sufficient to produce the desired effect upon the disease process or condition.

For the treatment of conditions and diseases caused by infection, a compound of the invention may be administered orally, topically, parenterally, by inhalation spray, or rectally in dosage unit formulations containing conventional non-toxic pharmaceutically acceptable carriers, adjuvant, and vehicles. The term parenteral, as used herein, includes subcutaneous injections, and intravenous, intramuscular, and intrasternal injection or infusion techniques.

Dosage levels of the compounds of the invention are of the order from about 0.01 mg to about 50 mg per kilogram of body weight per day, preferably from about 0.1 mg to about 10 mg per kilogram of body weight per day. The dosage levels are useful in the treatment of the above-indicated conditions (from about 0.7 mg to about 3.5 mg per patient per day, assuming a 70 kg patient). In addition, the compounds of the invention may be administered on an intermittent basis, i. e., at semi-weekly, weekly, semi-monthly, or monthly intervals.

The amount of active ingredient that may be combined with the carrier materials to produce a single dosage form will vary depending upon the host

treated and the particular mode of administration. For example, a formulation intended for oral administration to humans may contain from 0.5 mg to 5 gm of active agent compounded with an appropriate and convenient amount of carrier material, which may vary from about 5 percent to about 95 percent of the total composition. Dosage unit forms will generally contain from about 0.5 mg to about 500 mg of active ingredient. For external administration, the compounds of the invention may be formulated within the range of, for example, 0.00001 % to 60% by weight, preferably from 0.001% to 10% by weight, and most preferably from about 0.005% to 0.8% by weight.

It will be understood, however, that the specific dose level for any particular patient will depend on a variety of factors. These factors include the activity of the specific compound employed ; the age, body weight, general health, sex, and diet of the subject; the time and route of administration and the rate of excretion of the drug; whether a drug combination is employed in the treatment; and the severity of the particular disease or condition for which therapy is sought.

A detailed description of the invention having been provided above, the following examples are given for the purpose of illustrating the invention and shall not be construed as being a limitation on the scope of the invention or claims.

Example 1 General Methodology Bacterial strains, plasmids, and culture conditions. Streptomyces coelicolor CH999 described in WO 95/08548, published 30 March 1995, or S. lividans K4- 114, described in Ziermann and Betlach, Jan. 99, Recombinant Polyketide Synthesis in Streptomyces : Engineering of Improved Host Strains, BioTechniques 26: 106-110, incorporated herein by reference, was used as an expression host.

DNA manipulations were performed in Eschenchia coli XL1-Blue, available from

Stratagene. E. coli MC1061 is also suitable for use as a host for plasmid manipulation. Plasmids were passaged through E. coli ET12567 (dam dcm hsdS Cmr) (MacNeil, 1988, J. Bacteriol. I70 : 5607, incorporated herein by reference) to generate unmethylated DNA prior to transformation of S. coelicolor. E. coli strains were grown under standard conditions. S. coelicolor strains were grown on R2YE agar plates (Hopwood et al., Genetic manipulation of Streptomyces. A laboratony manual. The John Innes Foundation: Norwich, 1985, incorporated herein by reference).

Many of the expression vectors of the invention illustrated in the examples are derived from plasmid pRM5, described in WO 95/08548, incorporated herein by reference. This plasmid includes a colEI replicon, an appropriately truncated SCP2* Streptomyces replicon, two act-promoters to allow for bidirectional cloning, the gene encoding the actII-ORF4 activator which induces transcription from act promoters during the transition from growth phase to stationary phase, and appropriate marker genes. Engineered restriction sites in the plasmid facilitate the combinatorial construction of PKS gene clusters starting from cassettes encoding individual domains of naturally occurring PKSs. When plasmid pRM5 is used for expression of a PKS, all relevant biosynthetic genes can be plasmid-borne and therefore amenable to facile manipulation and mutagenesis in E. coli. This plasmid is also suitable for use in Streptomyces host cells. Streptomyces is genetically and physiologically well- characterized and expresses the ancillary activities required for in vivo production of most polyketides. Plasmid pRM5 utilizes the act promoter for PKS gene expression, so polyketides are produced in a secondary metabolite-like manner, thereby alleviating the toxic effects of synthesizing potentially bioactive compounds in vivo.

Manipulation of DNA and organisms. Polymerase chain reaction (PCR) was performed using Pfu polymerase (Stratagene; Taq polymerase from Perkin Elmer Cetus can also be used) under conditions recommended by the enzyme

manufacturer. Standard in vitro techniques were used for DNA manipulations (Sambrook et al Molecular Cloning : A Lnborz2tony Manual (Current Edition)). E. coli was transformed using standard calcium chloride-based methods; a Bio-Rad E. coli pulsing apparatus and protocols provided by Bio-Rad could also be used.

S. coelicolor was transformed by standard procedures (Hopwood et al. Genetic maniptilatz'on of Streptomyces. A laboratory mnnual. The John Innes Foundation: Norwich, 1985), and depending on what selectable marker was employed, transformants were selected using 1 mL of a 1.5 mg/mL thiostrepton overlay, 1 mL of a 2 mg/mL apramycin overlay, or both.

Example 2 Cloning of the Picromycin Biosynthetic Gene Cluster from Streptomyces venezuelae Genomic DNA (100 Zg) isolated from Streptomyces venezuelae ATCC15439 using standard procedures was partially digested with Sau3AI endonuclease to generate fragments"'40 kbp in length. SuperCosI (Stratagene) DNA cosmid arms were prepared as directed by the manufacturer. A cosmid library was prepared by ligating 2.5 gg of the digested genomic DNA with 1.5 gg of cosmid arms in a 20 pL reaction. One microliter of the ligation mixture was propagated in E. coli XL1-Blue MR (Stratagene) using a GigapackIII XL packaging extract kit (Stratagene). The resulting library of-3000 colonies was plated on a 10x150 mm agar plate and replicated to a nylon membrane.

The library was initially screened by direct colony hybridization with a DNA probe specific for ketosynthase domain coding sequences of PKS genes.

Colonies were alkaline lysed, and the DNA was crosslinked to the membrane using UV irradiation. After overnight incubation with the probe at 42°C, the membrane was washed twice at 25°C in 2xSSC buffer + 0. 1% SDS for 15 minutes, followed by two 15 minute washes with 2xSSC buffer at 55°C. Approximately 30 colonies gave positive hybridization signals with the degenerate probe. Several

cosmids were selected and divided into two classes based on restriction digestion patterns. A representative cosmid was selected from each class for further analysis. The representative cosmids were designated pKOS023-26 and pKOS023-27. These cosmids were determined by DNA sequencing to comprise the narbonolide PKS genes, the desosamine biosynthesis and transferase genes, the beta-glucosidase gene, and the picK hydroxylase gene.

These cosmids were deposited with the American Type Culture Collection in accordance with the terms of the Budapest Treaty. Cosmid pKOS023-26 was assigned accession number ATCC 203141, and cosmid pKOS023-27 was assigned accession number ATCC 203142.

To demonstrate that the narbonolide PKS genes had been cloned and to illustrate how the invention provides methods and reagents for constructing deletion variants of narbonolide PKS genes, a narbonolide PKS gene was deleted from the chromosome of Streptomyces venezuelae. This deletion is shown schematically in Figure 4, parts B and C. A-2. 4 kb EcoRI-KpnI fragment and a -2. 1 kb Kpnl-Xhol fragment, which together comprise both ends of the picAI gene (but lack a large portion of the coding sequence), were isolated from cosmid pKOS023-27 and ligated together into the commercially available vector pLitmus 28 (digested with restriction enzymes EcoRI and XhoI) to give plasmid pKOS039- 07. The-4. 5 kb HindIII-SpeI fragment from plasmid pKOS039-07 was ligated with the 2.5 kb HindIII-NheI fragment of integrating vector pSET152, available from the NRRL, which contains an E. coli origin of replication and an apramycin resistance-conferring gene to create plasmid pKOS039-16. This vector was used to transform S. venezuelae, and apramycin-resistant transformants were selected.

Then, to select for double-crossover mutants, the selected transformants were grown in TSB liquid medium without antibiotics for three transfers and then plated onto non-selective media to provide single colony isolates. The isolated colonies were tested for sensitivity to apramycin, and the apramycin- sensitive colonies were then tested to determine if they produced picromycin.

The tests performed included a bioassay and LC/MS analysis of the fermentation media. Colonies determined not to produce picromycin (or methymycin or neomethymycin) were then analyzed using PCR to detect an amplification product diagnostic of the deletion. A colony designated K39-03 was identified, providing confirmation that the narbonolide PKS genes had been cloned.

Transformation of strain K39-03 with plasmid pKOS039-27 comprising an intact picA gene under the control of the ermE* promoter from plasmid pWHM3 (see Vara et al., 1989, J. Bact. 171 : 5872-5881, incorporated herein by reference) was able to restore picromycin production.

To determine that the cosmids also contained the picK hydroxylase gene, each cosmid was probed by Southern hybridization using a labeled DNA fragment amplified by PCR from the Sacdlaropolyspora enythraea C12-hydroxylase gene, eryK. The cosmids were digested with BamHI endonuclease and electrophoresed on a 1 % agarose gel, and the resulting fragments were transferred to a nylon membrane. The membrane was incubated with the end probe overnight at 42°C, washed twice at 25°C in 2XSSC buffer with 0.1 % SDS for 15 minutes, followed by two 15 minute washes with 2XSSC buffer at 50°C.

Cosmid pKOS023-26 produced an-3 kb fragment that hybridized with the probe under these conditions. This fragment was subcloned into the PCRscriptTM (Stratagene) cloning vector to yield plasmid pKOS023-28 and sequenced. The -1. 2 kb gene designated picK above was thus identified. The picK gene product is homologous to eryK and other known macrolide cytochrome P450 hydroxylases.

By such methodology, the complete set of picromycin biosynthetic genes were isolated and identified. DNA sequencing of the cloned DNA provided further confirmation that the correct genes had been cloned. In addition, and as described in the following example, the identity of the genes was confirmed by expression of narbomycin in heterologous host cells.

Example 3 Heterologous Expression of the Narbonolide PKS and the Picromycin Biosynthetic Gene Cluster To provide a preferred host cell and vector for purposes of the invention, the narbonolide PKS was transferred to the non-macrolide producing host Streptomyces lividans K4-114 (see Ziermann and Betlach, 1999, Biotechniques 26, 106-110, and U. S. patent application Serial No. 09/181,833, filed 28 Oct. 1998, each of which is incorporated herein by reference). This was accomplished by replacing the three DEBS ORFs on a modified version of pCK7 (see Kao et al., 1994, Science 265, 509-512, and U. S. Patent No. 5,672,491, each of which is incorporated herein by reference) with all four narbonolide PKS ORFs to generate plasmid pKOS039-86 (see Figure 5). The pCK7 derivative employed, designated pCK7'Kan', differs from pCK7 only in that it contains a kanamycin resistance conferring gene inserted at its HindIII restriction enzyme recognition site. Because the plasmid contains two selectable markers, one can select for both markers and so minimize contamination with cells containing rearranged, undesired vectors.

Protoplasts were transformed using standard procedures and transformants selected using overlays containing antibiotics. The strains were grown in liquid R5 medium for growth/seed and production cultures at 30°C.

Transformed strains produced two compounds in similar yield (-5-10 mg/L each). Polyketides produced in the host cells were analyzed by bioassay against Bacillus subtilis and by LC/MS analysis. Analysis of extracts by LC/MS followed by 1H-NMR spectroscopy of the purified compounds established their identity as narbonolide (Figure 5, compound 4; see Kaiho et al., 1982, J. Org. Chem. 47: 1612-1614, incorporated herein by reference) and 10-deoxymethynolide (Figure 5, compound 5; see Lambalot et al., 1992, 1. Antibiotics 45,1981-1982, incorporated herein by reference), the respective 14 and 12-membered polyketide aglycones of YC17, narbomycin, picromycin, and methymycin.

The production of narbonolide in Streptomyces lividans represents the expression of an entire modular polyketide pathway in a heterologous host. The combined yields of compounds 4 and 5 are similar to those obtained with expression of DEBS from pCK7 (see Kao et al., 1994, Science 265: 509-512, incorporated herein by reference). Furthermore, based on the relative ratios (-1 : 1) of compounds 4 and 5 produced, it is apparent that the narbonolide PKS itself possesses an inherent ability to produce both 12 and 14-membered macrolactones without the requirement of additional activities unique to S. veneztcelae. Although the existence of a complementary enzyme present in S. lividans that provides this function is possible, it would be unusual to find such a specific enzyme in an organism that does not produce any known macrolide.

To provide a heterologous host cell of the invention that produces the narbonolide PKS and the picB gene, the picS gene was integrated into the chromosome of Streptomyces lividans harboring plasmid pKOS039-86 to yield S. lividans K39-18/pKOS039-86. To provide the integrating vector utilized, the picB gene was cloned into the Streptomyces genome integrating vector pSET152 (see Bierman et al., 1992, Gene 116, 43, incorporated herein by reference) under control of the same promoter (PactI) as the PKS on plasmid pKOS039-86.

A comparison of strains K39-18/pKOS039-86 and K4-114/pKOS039-86 grown under identical conditions indicated that the strain containing TEII produced 4-7 times more total polyketide. Each strain was grown in 30 mL of R5 (see Hopwood et al., Genetic Manipulation of Streptomyces : A Laboratory Manual ; John Innes Foundation : Norwich, UK, 1985, incorporated herein by reference) liquid (with 20 ug/mL thiostrepton) at 30 °C for 9 days. The fermentation broth was analyzed directly by reverse phase HPLC. Absorbance at 235 nm was used to monitor compounds and measure relative abundance. This increased production indicates that the enzyme is functional in this strain. As noted above, because the production levels of compound 4 and 5 from K39-18/pKOS03986

increased by the same relative amounts, TEII does not appear to influence the ratio of 12 and 14-membered lactone ring formation.

To express the glycosylated counterparts of narbonolide (narbomycin) and 10-deoxymethynolide (YC17) in heterologous host cells, the desosamine biosynthetic genes and desosaminyl transferase gene were transformed into the host cells harboring plasmid pKOS039-86 (and, optionally, the picB gene, which can be integrated into the chromosome as described above).

Plasmid pKOS039-104, see Figure 6, comprises the desosamine biosynthetic genes, the beta-glucosidase gene, and the desosaminyl transferase gene. This plasmid was constructed by first inserting a polylinker oligonucleotide, containing a restriction enzyme recognition site for PacI, a Shine-Dalgarno sequence, and restriction enzyme recognition sites for NdeI, BglII, and HindIII, into a pUC19 derivative, called pKOS24-47, to yield plasmid pKOS039-98.

An-0. 3 kb PCR fragment comprising the coding sequence for the N- terminus of the desi gene product and an-0. 12 kb PCR fragment comprising the coding sequence for the C-terminus of the desR gene product were amplified from cosmid pKOS23-26 (ATCC 203141) and inserted together into pLitmus28 treated with restriction enzymes NsiI and EcoRI to produce plasmid pKOS039- 101. The-6 kb SphI-PstI restriction fragment of pKOS23-26 containing the desl, desll, desllI, desIV, and desV genes was inserted into plasmid pUC19 (Stratagene) to yield plasmid pKOS039-102. The-6 kb SphI-EcoRI restriction fragment from plasmid pKOS039-102 was inserted into pKOS039-101 to produce plasmid pKOS039-103. The-6 kb BgIII-PstI fragment from pKOS23-26 that contains the desR, desVI, desVII, and desVIII genes was inserted into pKOS39-98 to yield pKOS39-100. The-6 kb PacI-PstI restriction fragment of pKOS39-100 and the -6. 4 kb NsiI-EcoRI fragment of pKOS39-103 were cloned into pKOS39-44 to yield pKOS39-104.

When introduced into Streptomyces lividans host cells comprising the recombinant narbonolide PKS of the invention, plasmid pKOS39-104 drives expression of the desosamine biosynthetic genes, the beta-glucosidase gene, and the desosaminyl transferase gene. The glycosylated antibiotic narbomycin was produced in these host cells, and it is believed that YC17 was produced as well.

When these host cells are transformed with vectors that drive expression of the picK gene, the antibiotics methymycin, neomethymycin, and picromycin are produced.

In similar fashion, when plasmid pKOS039-18, which encodes a hybrid PKS of the invention that produces 3-deoxy-3-oxo-6-deoxyerythronolide B was expressed in Streptomyces lividans host cells transformed with plasmid pKOS39- 104, the 5-desosaminylated analog was produced. Likewise, when plasmid pCK7, which encodes DEBS, which produces 6-deoxyerythronolide B, was expressed in Streptomyces lividans host cells transformed with plasmid pKOS39- 104, the 5-desosaminylated analog was produced. These compounds have antibiotic activity and are useful as intermediates in the synthesis of other antibiotics.

Example 4 Expression Vector for Desosaminyl Transferase While the invention provides expression vectors comprising all of the genes required for desosamine biosynthesis and transfer to a polyketide, the invention also provides expression vectors that encode any subset of those genes or any single gene. As one illustrative example, the invention provides an expression vector for desosaminyl transferase. This vector is useful to desosaminylate polyketides in host cells that produce NDP-desosamine but lack a desosaminyl transferase gene or express a desosaminyl transferase that does not function as efficiently on the polyketide of interest as does the desosaminyl transferase of Streptomyces venezuelae. This expression vector was constructed by

first amplifying the desosaminyl transferase coding sequence from pKOS023-27 using the primers: N3917: 5'-CCCTGCAGCGGCAAGGAAGGACACGACGCCA-3' ; and N3918 : 5'-AGGTCTAGAGCTCAGTGCCGGGCGTCGGCCGG-3', 7-' to give a 1.5 kb product. This product was then treated with restriction enzymes Pstl and XbnI and ligated with HindIII and XbaI digested plasmid pKOS039-06 together with the 7.6 kb PstI-HindIII restriction fragment of plasmid pWHM1104 to provide plasmid pKOS039-14. Plasmid pWHM1104, described in Tang et al., 1996, Molec. Microbiol. 22 (5): 801-813, incorporated herein by reference, encodes the ermE* promoter. Plasmid pKOS039-14 is constructed so that the desosaminyl transferase gene is placed under the control of the ermE* promoter and is suitable for expression of the desosaminyl transferase in Streptomyces, Saccharopolyspora enythraea, and other host cells in which the ermE* promoter functions.

Example 5 Heterologous Expression of the picK Gene Product in E. coli The picK gene was PCR amplified from plasmid pKOS023-28 using the oligonucleotide primers: N024-36B (forward) : 5'-TTGCATGCATATGCGCCGTACCCAGCAGGGAACGACC; and N024-37B (reverse) : 5'-TTGAATTCTCAACTAGTACGGCGGCCCGCCTCCCGTCC. These primers alter the Streptomyces GTG start codon to ATG and introduce a SpeI site at the C-terminal end of the gene, resulting in the substitution of a serine for the terminal glycine amino acid residue. The blunt-ended PCR product was subcloned into the commercially available vector pCRscript at the SrfI site to yield plasmid pKOS023-60. An-1. 3 kb NdeI-XhoI fragment was then inserted into the NdeI/XhoI sites of the T7 expression vector pET22b (Novagen, Madison, WI) to generate pKOS023-61. Plasmid pKOS023-61 was digested with restriction

enzymes SpeI and EcoRI, and a short linker fragment encoding 6 histidine residues and a stop codon (composed of oligonucleotides 30-85a: .

5'-CTAGTATGCATCATCATCATCATCATTAA-3' ; and 30-85b: 5'-AATTTTAATGATGATGATGATGATGCATA-3') was inserted to obtain plasmid pKOS023-68. Both plasmid pKOS023-61 and pKOS023-68 produced active PicK enzyme in recombinant E. coli host cells.

Plasmid pKOS023-61 was transformed into E. coli BL21-DE3. Successful transformants were grown in LB-containing carbenicillin (100 pg/ml) at 37°C to an OD600 of 0.6. Isopropyl-beta-D-thiogalactopyranoside (IPTG) was added to a final concentration of 1 mM, and the cells were grown for an additional 3 hours before harvesting. The cells were collected by centrifugation and frozen at-80°C.

A control culture of BL21-DE3 containing the vector plasmid pET21c (Invitrogen) was prepared in parallel.

The frozen BL21-DE3/pKOS023-61 cells were thawed, suspended in 2 PL of cold cell disruption buffer (5 mM imidazole, 500 mM NaCI, 20 mM Tris/HCl, pH 8.0) and sorucated to facilitate lysis. Cellular debris and supernatant were separated by centrifugation and subjected to SDS-PAGE on 10-15% gradient gels, with Coomassie Blue staining, using a Pharmacia Phast Gel Electrophoresis system. The soluble crude extract from BL21-DE3/pKOS023-61 contained a Coomassie stained band of Mu~46 kDa, which was absent in the control strain BL21-DE3/pET21c.

The hydroxylase activity of the picK protein was assayed as follows. The crude supernatant (20 IlL) was added to a reaction mixture (100 uL total volume) containing 50 mM Tris/HCl (pH 7.5), 20 uM spinach ferredoxin, 0.025 Unit of spinach ferredoxin: NADP+ oxidoreductase, 0.8 Unit of glucose-6-phosphate dehydrogenase, 1.4 mM NADP+, 7.6 mM glucose-6 phosphate, and 20 nmol of narbomycin. The narbomycin was purified from a culture of Streptomyces narbonensis, and upon LC/MS analysis gave a single peak of [M+H] +=510. The reaction was allowed to proceed for 105 minutes at 30°C. Half of the reaction

mixture was loaded onto an HPLC, and the effluent was analyzed by evaporative light scattering (ELSD) and mass spectrometry. The control extract (BL21-DE3/pET21c) was processed identically. The BL21-DE3/pKOS023-61 reaction contained a compound not present in the control having the same retention time, molecular weight and mass fragmentation pattern as picromycin ([M+H] +=526). The conversion of narbomycin to picromycin under these conditions was estimated to be greater than 90% by ELSD peak area.

The poly-histidine-linked PicK hydroxylase was prepared from pKOS023- 68 transformed into E. coli BL21 (DE3) and cultured as described above. The cells were harvested and the PicK protein purified as follows. All purification steps were performed at 4°C. E. coli cell pellets were suspended in 32 ut of cold binding buffer (20 mM Tris/HCl, pH 8.0,5 mM imidazole, 500 mM NaCI) per mL of culture. and lysed by sonication. For analysis of E. coli cell-free extracts, the cellular debris was removed by low-speed centrifugation, and the supernatant was used directly in assays. For purification of PicK/6-His, the supernatant was loaded (0.5 mL/min.) onto a 5 mL HiTrap Chelating column (Pharmacia, Piscataway, New Jersey), equilibrated with binding buffer. The column was washed with 25 pL of binding buffer and the protein was eluted with a 35 ZL linear gradient (5-500 mM imidazole in binding buffer). Column effluent was monitored at 280 nm and 416 nm. Fractions corresponding to the 416 nm absorbance peak were pooled and dialyzed against storage buffer (45 mM Tris/HCl, pH 7.5,0.1 mM EDTA, 0.2 mM DTT, 10% glycerol). The purified 46 kDa protein was analyzed by SDS-PAGE using Coomassie blue staining, and enzyme concentration and yield were determined.

Narbomycin was purified as described above from a culture of Streptomyces narbonensis ATCC19790. Reactions for kinetic assays (100 uL) consisted of 50 mM Tris/HCl (pH 7.5), 100 uM spinach ferredoxin, 0.025 Unit of spinach ferredoxin: NADP+ oxidoreductase, 0.8 U glucose-6-phosphate dehydrogenase, 1.4 mM NADP+, 7.6 mM glucose-6-phosphate, 20-500 uM

narbomycin substrate, and 50-500 nM of PicK enzyme. The reaction proceeded at 30°C, and samples were withdrawn for analysis at 5,10,15, and 90 minutes.

Reactions were stopped by heating to 100°C for 1 minute, and denatured protein was removed by centrifugation. Depletion of narbomycin and formation of picromycin were determined by high performance liquid chromatography (HPLC, Beckman C-18 0.46x15 cm column) coupled to atmospheric pressure chemical ionization (APCI) mass spectroscopic detection (Perkin Elmer/Sciex API 100) and evaporative light scattering detection (Alltech 500 ELSD).

Example 6 Expression of the picK Gene Encoding the Hydroxylase in Streptomyces narbonensis To produce picromycin in Streptomyces narbonensis, a host that produces narbomycin but not picromycin, the methods and vectors of the invention were used to express the picK gene in this host.

The picK gene was amplified from cosmid pKOS023-26 using the primers: ' ;.' N3903: 5'-TCCTCTAGACGTTTCCGT-3' ; and N3904: 5'-TGAAGCTTGAATTCAACCGGT-3' to obtain an-1. 3 kb product. The product was treated with restriction enzymes XbaI and HindIII and ligated with the 7.6 kb XbaI-HindIII restriction fragment of plasmid pWHM1104 to provide plasmid pKOS039-01, placing the picK gene under the control of the ennE* promoter. The resulting plasmid was transformed into purified stocks of S. narbonensis by protoplast fusion and electroporation.

The transformants were grown in suitable media and. shown to convert narbomycin to picromycin at a yield of over 95%.

Example 7 Construction of a Hybrid DEBS/Narbonolide PKS This example describes the construction of illustrative hybrid PKS expression vectors of the invention. The hybrid PKS contains portions of the narbonolide PKS and portions of rapamycin and/or DEBS PKS. In the first constructs, pKOS039-18 and pKOS039-19, the hybrid PKS comprises the narbonolide PKS extender module 6 ACP and thioesterase domains and the DEBS loading module and extender modules 1-5 as well as the KS and AT domains of DEBS extender module 6 (but not the KR domain of extender module 6). In pKOS039-19, the hybrid PKS is identical except that the KS1 domain is inactivated, i. e., the ketosynthase in extender module 1 is disabled. The inactive DEBS KS1 domain and its construction are described in detail in PCT publication Nos. WO 97/02358 and 99/03986, each of which is incorporated herein by reference. To construct pKOS039-18, the 2.33 kb BamHI-EcoRI fragment of pKOS023-27, which contains the desired sequence, was amplified by PCR and subcloned into plasmid pUC19. The primers used in the PCR were: N3905: 5'-TTTATGCATCCCGCGGGTCCCGGCGAG-3' ; and N3906: 5'-TCAGAATTCTGTCGGTCACTTGCCCGC-3'.

The 1.6 kb PCR product was digested with PstI and EcoRI and cloned into the corresponding sites of plasmid pKOS015-52 (this plasmid contains the relevant portions of the coding sequence for the DEBS extender module 6) and commercially available plasmid pLitrnus 28 to provide plasmids pKOS039-12 and pKOS039-13, respectively. The BgIII-EcoRI fragment of plasmid pKOS039- 12 was cloned into plasmid pKOS011-77, which contains the functional DEBS gene cluster and into plasmid pJRJ2, which contains the mutated DEBS gene that produces a DEBS PKS in which the KS domain of extender module I has been rendered inactive. Plasmid pJRJ2 is described in PCT publication Nos. 99/03986 and 97/02358, incorporated herein by reference.

Plasmids pKOS039-18 and pKOS039-19, respectively, were obtained.

These two plasmids were transformed into Streptomyces coelicolor CH999 by protoplast fusion. The resulting cells were cultured under conditions such that expression of the PKS occurred. Cells transformed with plasmid pKOS039-18 produced the expected product 3-deoxy-3-oxo-6-deoxyerythronolide B. When cells transformed with plasmid pKOS039-19 were provided (2S, 3R)-2-methyl-3- hydroxyhexanoate NACS, 13-desethyl-13-propyl-3-deoxy-3-oxo-6- deoxyerythronolide B was produced.

Example 8 6-Hydroxylation of 3,6-dideoxy-3-oxoerythronolide B using the en ! F hydroxvlase Certain compounds of the invention can be hydroxylated at the C6 position in a host cell that expresses the cn/F gene. These compounds can also be hydroxylated in zritro, as illustrated by this example.

The 6-hydroxylase encoded by enyF was expressed in E. coli, and partially purified. The hydroxylase (100 pmol in 10 IlL) was added to a reaction mixture (100 pl total volume) containing 50 mM Tris/HCl (pH 7.5), 20 uM spinach ferredoxin, 0.025 Unit of spinach ferredoxin : NADP+ oxidoreductase, 0.8 Unit of glucose-6-phosphate dehydrogenase, 1.4 mM NADP+, 7.6 mM glucose-6- phosphate, and 10 nmol 6-deoxyerythronolide B. The reaction was allowed to proceed for 90 minutes at 30°C. Half of the reaction mixture was loaded onto an HPLC, and the effluent was analyzed by mass spectrometry. The production of erythronolide B as evidenced by a new peak eluting earlier in the gradient and showing [M+H] +=401. Conversion was estimated at 50% based on relative total ion counts.

Those of skill in the art will recognize the potential for hemiketal formation in the above compound and compounds of similar structure. To reduce the amount of hemiketal formed, one can use more basic (as opposed to

acidic) conditions or employ sterically hindered derivative compounds, such as 5-desosaminylated compounds.

Example 9 Measurement of Antibacterial Activity Antibacterial activity was determined using either disk diffusion assays with Bacillus cereus as the test organism or by measurement of minimum inhibitory concentrations (MIC) in liquid culture against sensitive and resistant strains of Staphylococcus pneumoniae.

Example 10 Construction of Desosamine Containing Polyketide Libraries Using a . Glycosyltransferase with Broad Substrate Specificity Desosamine is an important deoxyaminosugar present on a number of structurally related macrolide antibiotics such as erythromycin and is the only glycoside present on picromycin, methymycin, and the highly potent semisynthetic ketolides. In this example, a set of nine deoxysugar biosynthetic and auxiliary genes from the picromycin/methymycin (pik) cluster was integrated in the chromosome of Streptomyces lividans to create a host that synthesizes TDP-D-desosamine and can be used in combination with PKS expression plasmids to generate libraries of desosaminylated polyketides. The versatility of the DesVII desosaminyltransferase is demonstrated by formation of desosaminylated macrolides from more than twenty different 14-membered lactones. The attachment of desosamine is sufficient to confer antibiotic activity to each of the otherwise inactive aglycones, reinforcing the belief that this sugar plays a critical role in the molecular binding properties of erythromycin and related macrolides. This host and others that can be engineered to produce deoxysugar and polyketide tailoring pathways in accordance with the methods of the invention are valuable tools for expanding the size and diversity of

polyketides that can be generated by combinatorial biosynthesis. References cited in this example are indicated by a reference number; the numbered list of references is located at the end of this example. All references cited are incorporated herein by reference.

Much of the structural diversity and complexity among polyketides can be attributed to the chemistry performed by PKSs (1), and the modular architecture of catalytic domains within PKSs has been exploited by different rational and combinatorial engineering approaches to create polyketide diversity (2-4). However, structural variability among polyketides can also result from post-PKS biosynthetic steps, including oxidation and/or glycosylation with unique deoxy and amino sugars. Such modifications are often necessary to impart or enhance the specific biological activity of the molecule. For example, erythromycin A contains two deoxysugar moieties, L-cladinose and D- desosamine, that are required for antibacterial activity and the absence of either carbohydrate results in loss of potency. Although some chemical modifications to erythromycin have been discovered that can ameliorate the loss of the cladinose residue (5-7), there has been no substitution found for desosamine. This important deoxyaminosugar is also present in other macrolide antibiotics, such as oleandomycin and megalomicin, and is the only glycoside necessary to confer antibacterial activity to picromycin, methymycin, and the semisynthetic ketolide pharmacophores.

Polyketide libraries generated by genetic modification of macrolide PKSs in which enzymatic domains and entire protein subunits were removed, added, or exchanged in various combinations have been produced (3,4,8). Because these libraries were constructed in heterologous hosts lacking glycosylation pathways, only the corresponding aglycones were produced. The methods and reagents of the present invention can be used to expand the capabilities of the combinatorial biosynthesis strategies described to incorporate post-PKS tailoring steps, in particular the addition of deoxysugar components.

Some experiments have been performed in which structurally modified macrolactones are subsequently glycosylated in their native hosts (9-13), and also in bioconversion experiments in which a modified aglycone is fed to a PKS- blocked mutant strain (14) : These experiments indicate that glycosyltransferases are able to accept polyketide substrates with some amount of structural alteration. However, neither of these approaches is well-suited for the production and biological screening of large numbers of compounds, because most polyketide host organisms are difficult to manipulate genetically and the bioconversion of aglycones requires a tedious initial purification step.

A more practical approach is the heterologous expression of deoxysugar biosynthetic pathways in hosts that have been developed for library expression.

Although the effort to clone entire deoxysugar biosynthetic pathways in a heterologous. organism can be a significant initial investment (most deoxysugars require six or more enzymatic steps whose genes are typically scattered within a polyketide gene cluster), these expression vectors, once made, can be easily combined with those containing PKSs to engineer glycosylated libraries rapidly.

Olano et al. recently utilized a two-plasmid system to produce L-daunosamine, the deoxyaminosugar of daunorubicin and doxorubicin, in Streptomyces lividans (15).

Here we report the development of a single expression vector for the production of desosaminylated macrolides in Streptomyces. Desosamine was selected as the sugar constituent, because it was believed that addition of this single deoxysugar would be sufficient to confer antibacterial activity upon macrolactones to which it was attached. The expression vector was combined with a library of existing PKS expression plasmids to produce several novel glycosylated macrolide compounds in S. lividans, providing the first examples in which both polyketide and deoxysugar pathways have been placed in a single heterologous host.

A. Material and Methods (i) Strains, culture conditions, and DNA manipulation DNA manipulation was performed in Escherichia coli XL1-Blue (Stratagene) using standard protocols (16). Bacillis subtilis was grown in LB at 37 oC. PCR was performed with PAl polymerase (Stratagene) under conditions recommended by the manufacturer. S. Iizwidnns K4-114 (17) was used as the host for expression of engineered PKS and desosamine genes. S. lividans strains were maintained on R2YE agar plates (18) with appropriate antibiotic selection. S.

Iividnns protoplasts were transformed by the standard procedure (18) and transformants were selected using 1 ml of a 1 mg/ml thiostrepton and/or 1 ml of a 2 mg/ml apramycin overlay on R2YE regeneration plates.

(ii) Construction of expression plasmids Expression plasmid pKOS39-104 was constructed as follows. The 6.0 kb Bgl 11-Pst I fragment containing the picromycin desVIII, desVII, desVI and desR (partial) genes from cosmid pKOS23-26 (19) was subcloned into the Bgl 11-Pst I sites of pKOS39-98, a pUC19 derivative with a redesigned multiple cloning site.

The resulting plasmid, pKOS39-100, contains a Pac I site upstream of the Bgl II site which is used in a later cloning step. The 6 kb Sph I-Pst I fragment containing the desl (partial), desII, desIII, desIV and desV genes from pKOS23-26 was subcloned into the Sph I-Pst I of pUC19 to make pKOS39-102. The remaining 3'- end of the desR gene and 5'-end of the desI gene were PCR amplified from cosmid pKOS23-26 with the following oligonucleotides (restriction sites shown in italics): desRgene: forward 5'-AGATGCATTTCTGGGATGCCGCCACGGA ; and reverse 5'-CGTCTAGACGTCACCAGACGTTGACCGTG ; deskgene: forward 5'-TTTCTAGACGGTGGCCCGGAGGGAACATC ; and reverse 5'-CGGAATTCCGCAGCTGGTCGGCGGCGCA.

The two PCR fragments were digested with Nsi I-Xba I and Xba I-EcoR I, respectively, and ligated with Nsi I-EcoR I digested Litmus 28 (New England Biolabs) to obtain pKOS39-101B. The 6 kb Sph I-EcoR I fragment of pKOS39-102 was inserted into pKOS39-101B to make pKOS39-103. The 6.4 kb Nsi I-EcoR I fragment of pKOS39-103 and the 6 kb Pac I-Pst I fragment of pKOS39-100 were then ligated together with the 8.5 kb Pac I-EcoR I fragment of pKOS39-44 (20), yielding the final expression plasmid pKOS39-104. A restriction site and function map of this plasmid is shown below.

(iii) Production and analysis of compounds All strains were grown in 5 ml liquid R2YE medium at 30 oC and analyzed following 5 days growth. For bioconversion experiments, aglycones

(-10 mg/liter) were fed at the start of fermentation. Fermentation broth was analyzed directly by liquid chromatography/mass spectrometry (LC/MS) and evaporative light scattering detection (ELSD) as previously described (20). An authentic sample of narbomycin prepared from Streptomyces narbonensis (19) was used to validate production of this compound. For LC/MS analysis of strains containing PKS expression plasmids the cultures were extracted twice with 5 ml of ethyl acetate/triethylamine (99: 1), concentrated to dryness and resuspended in 0.5 ml of acetonitrile.

(iv) Antibacterial assays Extracts prepared from the culture broths as above were assayed for biological activity against B. slbhZis using an agar plate diffusion method (see Example 9). Samples (5 pl) from each of the extracts were pipetted to sterile filter disks, dried, and placed on an LB plate spread with 20 Ill of an overnight culture of B. subtilis. The plates were incubated overnight at 37 oc to visualize zones of growth inhibition.

B. Results (i) Construction and validation of a desosamine expression system The picromycin/methymycin (pik) gene cluster from Streptomyces venezuelae (21) was chosen as the source of desosamine biosynthetic genes rather than other available clusters (i. e. erythromycin, oleandomycin, or megalomicin) for several reasons. First, all of the genes required for biosynthesis of TDP- desosamine from glucose-1-phosphate, a primary metabolite, as well as the desosaminyl transferase are present in the pik cluster whereas one or more of the genes are missing or not yet identified in each of the other clusters. Second, the genes from the pik cluster are comprised in a single contiguous segment of DNA (the des cluster), compared to those in other clusters which are dispersed among other genes, facilitating cloning and plasmid construction. The organization of these genes in the picromycin biosynthetic gene cluster is shown below, followed by the depiction of the biosynthetic pathway.

Third, the natural substrates for the desosaminyl transferase from the pik gene cluster, narbonolide and 10-deoxymethynolide, are themselves aglycones; in each of the other cases, desosamine is attached subsequent to addition of at least one other sugar. Furthermore, the difference in macrolactone ring sizes between narbonolide and 10-deoxymethynolide (14 and 12 atoms, respectively) suggests that the desosaminyl transferase from this cluster is somewhat forgiving towards its polyketide substrate.

Seven genes in the des cluster, desk, desII, desIII, desIV, desV, desVI, and desVIII, are presumed to be responsible for the biosynthesis of TDP-D- desosamine (22). Also present is the desVII gene encoding the glycosyltransferase. In addition to catalyzing the transfer of desosamine to both 12-and 14-membered macrolactones, it has been shown that DesVII is able to incorporate non-natural deoxysugar substrates (22,23). The desR gene encodes a 9-glucosidase that removes a glucose residue attached to the C-2'hydroxyl of desosamine (24). It is believed that the glucosylation of desosamine containing

macrolides like methymycin, picromycin, and oleandomycin, causes inactivation and provides self-resistance to these compounds which are reactivated by a ß- glucosidase upon export (24,25). S. Iit7idnns is known to possess at least two such glucosyltransferases which inactivate erythromycin and picromycin by the same mechanism (26). Therefore, it was important to include this gene for expression in 5. lividans to produce desosaminylated compounds without the glucose modification.

The expression system used here was adopted from the multi-vector system developed for separate expression of erythromycin PKS, or 6- deoxyerythronolide B synthase (DEBS), subunits in Streptomyces (4,27; see also U. S. Patent No. 6,033,883). Plasmid pKOS39-104 contains the des genes cloned in a single orientation under control of the actI promoter and act44 activator.

Since pKOS39-104 is a derivative of pSET152 (28), it contains the phiC31-int-attP loci for chromosomal integration in Streptomyces and can be used in conjunction with the pRM5-based PKS expression plasmid library (3; see also U. S. Patent No.

5,672,491). S. lividans K4-114 was transformed with pKOS39-104 and designated K39-22. Confirmation that this strain produced TDP-D-desosamine was performed by feeding aglycones to the strain and looking for the presence of desosaminylated compounds by LC/MS analysis.

Four aglycones (-10 mg/liter each) were fed to liquid fermentations of S. lividans K39-22: narbonolide and 10-deoxymethynolide, the natural substrates for DesVII, 3-keto-6-deoxyerythronolide B (-6-dEB), and 6-dEB. Fermentation broth from all four aglycone fed strains displayed antibacterial activity against B. subtilis whereas S. lividans K39-22 alone produced no detectable activity. LC/MS analysis demonstrated that each of the corresponding desosaminylated compounds narbomycin, 10-deoxymethymycin (YC17), 3-keto-5-O-desosaminyl- 6-dEB, and 5-0-desosaminyl-6-dEB were produced. In each case, the parent ion (M+H+) of the expected compound was detected in addition to a characteristic ion at 158 amu produced by the desosamine fragment. Production of narbomycin

in the narbonolide fed strain was further confirmed by comparison to authentic narbomycin obtained from S. narbonensis. LC/MS also revealed that a significant amount (~50-90%) of the aglycone remained unconverted in each of the samples.

These results established that the des expression vector was functional and that the DesVII glycosyltransferase was able to glycosylate non-natural macrolactone substrates. The bioassay results also confirmed that desosamine is sufficient to confer antibacterial activity to these macrolactones. There were no 2'-O-glucosyl derivatives detected, which indicates that the DesR glucosidase included in pKOS39-104 was also operational, although minor glucosylated products were putatively found in subsequent experiments with the strain (see below).

(ii) Co-expression of desosamine and aglycone pathways in S. Uvidans.

Although expression of both a modular polyketide pathway and a deoxysugar pathway together in a heterologous host has not been reported, the bioconversion results suggested that transformation of S. lividans K39-22 with plasmids encoding macrolide PKSs would lead to production of desosaminylated compounds. Plasmids encoding the PKSs that, in S. lividans, produce the same four aglycones used in the bioconversion studies were therefore transformed into S. lividans K39-22. Plasmid pKOS39-86 contains the picromycin/methymycin PKS and produces both narbonolide and 10- deoxymethynolide (20). Plasmid pKA0127 contains DEBS and produces 6-dEB (17). Plasmid pKOS39-18 contains DEBS with a modified terminal module that produces 3-keto-6-dEB (20).

Culture broth from each of the transformed strains displayed activity against B. subtilis. LC/MS analysis as above confirmed the presence of each of the expected desosaminylated compounds as well as their aglycone precursors and minor amounts of the corresponding 2'-O-glucosyl derivatives. The total yield of narbomycin and 10-deoxymethymycin in S. lividans K39-22/pKOS39-86 was approximately 1 mg/liter each and represents about a 20% conversion of the

total aglycone produced. Thus, although both PKS and deoxysugar pathways function as expected, complete glycosylation of even the natural substrates for DesVII did not occur under these conditions. S. lit) iwans K39-22 contains a copy of the ermE macrolide resistance gene, and no obvious growth defects were observed with production of the biologically active compounds. These results suggest that a limiting amount of TDP-desosamine is being produced by the strain under these conditions.

(iii) Production and biological screening of a glycosylated macrolide library Over 50 PKS expression plasmids have been constructed and tested in using DEBS and other macrolide PKS genes (3,8,20). These PKSs produce a variety of 14- membered macrolactones in which single or multiple carbon centers have been altered.

Each plasmid contains the same pRM5-based vector as above, providing a convenient opportunity to expand and diversify any existing aglycone library by routine transformation of S. lividans K39-22. Because a C-5 hydroxyl would be necessary for glycosylation, a subset of 19 additional plasmids encoding PKSs that produce compounds containing this functional group was selected and tested. The desired desosaminylated polyketides would theoretically possess antibiotic activity, and the transformed strains can therefore be readily analyzed in a simple bioassay for production of glycosylated macrolides.

All of the strains transformed and tested displayed antimicrobial activity against B. subtilis. The presumed structures of the desosamine containing compounds, based on the structures of the aglycones produced by the PKS on each plasmid, are shown below.

Culture extracts from six of these stains (those containing plasmids pKOS15-22, pKOS15-106, pKOS39-20, pKOS11-62, pKOS15-30, and pKOS24-15) were examined by LC/MS and, in each case, the expected parent ion was found along with the 158 amu desosamine fragment. Two compounds were detected in the strain containing pKOS15-106 with molecular weights corresponding to 3-

hydroxy and 3-keto derivatives. This is consistent with both aglycones being produced by plasmid pKOS15-109 in S. Iilidans. Two compounds were also detected in the strain with pKOS11-62, the predicted molecule, 5-0-desosaminyl- 10-desmethyl-6-dEB, and a putative dehydrated derivative at carbons C-10 and C-11. Both aglycones were also produced when the plasmid was originally analyzed in S. Iividnns K4-114 (3), although only the former was reported at that time. As with the first set of plasmids tested, small amounts of 2'-O-glucosylated derivatives could also be detected in some of the culture extracts. The yields of the desosamine containing compounds were too low to determine absolute titers (<1 mg/L) and, therefore, the relative antibacterial activity of the compounds could not be determined from these assays.

C. Discussion This example demonstrates that a minimal set of seven genes (desl, li, iri, IV, V, VI, VIII) is sufficient for biosynthesis of TDP-desosamine from glucose-1- phosphate in S. Ii7 ! idans. The apparent low abundance of TDP-desosamine in the engineered host could be due either to the availability of glucose-1-phosphate in this host or to poor expression of the sugar biosynthesis and/or transferase genes. Alternatively, it is interesting to note that narbonolide and 10- deoxymethynolide are present in the natural picromycin/methymycin producing organism, S. venezuelae, and could therefore reflect that one or more of the enzymes from the des cluster is relatively inefficient. One can increase the amount of TDP-desosamine either by increasing expression levels of these genes and/or by complementing one or more of the enzymes in the pathway with homologs from other clusters such as erythromycin or oleandomycin.

Expression of the minimal desosamine biosynthesis genes together with the DesVII desosaminyltransferase in S. lividans has enabled the production of more than 20 glycosylated macrolides with detectable antibacterial activity. The structures of the macrolides that were glycosylated highlight both the

remarkable substrate tolerance of the DesVII glycosyltransferase as well as the ability of desosamine to impart biological activity to structurally diverse macrolactones. In addition to their antibacterial properties the desosamine containing compounds presented here may possess additional biological properties that are associated with erythromycin and other macrolides, including motilin antagonism and anti-inflammatory activities. Furthermore, the demonstration by others that DesVII and other glycosyltransferases can also tolerate modifications of the sugar substituent (22,23,29) opens the door to manipulation of both polyketide and deoxysugar pathways for the production of 'unnatural'natural product libraries.

References 1. O'Hagan, D. (1991) The polyketide metabolites (Ellis Horwood, Chichester, UK).

2. Hutchinson, C. R. (1998) Curr. Opin. Microbiol. 1,319-329.

3. McDaniel, R., Thamchaipenet, A., Gustafsson, C., Fu, H., Betlach, M., Betlach, M. & Ashley, G. (1999) Proc. Natl. Acad. Sci. USA 96,1846-1851.

4. Xue, Q., Ashley, G., Hutchinson, C. R. & Santi, D. V. (1999) Proc. Natl. Acad.

Sci. USA96,11740-11745.

5. Asaka, T., Misawa, Y., Kashimura, M., Morimoto, S. & Hatayama, K. (1997) U. S. Patent 5,631, 354.

6. Elliot, R. L., Or, Y. S., Pireh, D. & Chu, D. T. (1998) U. S. Patent 5,747,466.

7. Agouridas, C., Denis, A., Auger, J.-M., Benedetti, Y., Bonnefoy, A., Bretin, F., Chantot, J.-F., Dussarat, A., Fromentin, C., D'Ambrierès, S. G., et al. (1998) J.

Med. Chem. 41,4080-4100.

8. Tang, L., Fu, H. & McDaniel, R. (2000) Chem. & Biol. 7,77-84.

9. Donadio, S., Staver, M. J., McAlpine, J. B., Swanson, S. J. & Katz, L. (1991) Science252,675-679.

10. Donadio, S., McAlpine, J. B., Sheldon, P. J., Jackson, M. & Katz, L. (1993) Proc.

Natl. Acad. Sci. USA 90,7119-7123.

11. Ruan, X. R., Pereda, A., Stassi, D. L., Zeidner, D., Summers, R. G., Jackson, M., Shivakumar, A., Kakavas, S., Staver, M. J., Donadio, S., et al. (199) J. Bacteriol.

179,6416-6425.

12. Stassi, D. L., Kakavas, S. J., Reynolds, K. A., Gunawardana, G., Swanson, S., Zeidner, D., Jackson, M., Liu, H., Buko, A. & Katz, L. (1998) Proc. Nntl. Acad.

Sci. USA 95,7305-7309.

13. Marsden, A. F. A., Wilkinson, B., Cortès, J., Dunster, N. J., Staunton, J. & Leadlay, P. F. (1998) Science 279,199-202.

14. Jacobsen, J. R., Hutchinson, C. R., Cane, D. E. & Khosla, C. (1997) Science 277, 367-369.

15. Olano, C., Lomovskaya, N., Fonstein, L., Roll, J. T. & Hutchinson, C. R. (1999) Chem. & Biol. 6,845-855.

16. Sambrook ; J., Fritsch, E. F. & Maniais, T. (1989) Molecular Cloning : A Laboratory Manual (Cold Spring Harbor Laboratory Press, Plainview, NY) 17. Ziermann, R. & Betlach, M. C. (1999) Biotechniques 26,106-110.

18. Hopwood, D. A., Bibb, M. J., Chater, K. F., Kieser, T., Bruton, C. J., Kieser, H.

M., Lydiate, D. J., Smith, C. P., Ward, J. M. & Schrempf, H. (1985) Genetic Manipulation of Streptomyces : A Laboratory Manual (The John Innes Foundation, Norwich, UK).

19. Betlach, M. C., Kealey, J. T., Betlach, M. C., Ashley, G. A. & McDaniel, R.

(1998) Biochemistry 37,14937-14942.

20. Tang, L., Fu, H., Betlach, M. C. & McDaniel, R. (1999) Chem. ) Biol. 6,553-558.

21. Xue, Y., Zhao, L., Liu, H.-w. & Sherman, D. H. (1998) Proc. Natl. Acnd. Sci.

USA 95,12111-12116.

22. Zhao, L., Sherman, D. H. & Liu, H.-w. (1998) J. Am. Chem. Soc. 120,10256- 10257.

23. Zhao, L., Ahlert, J., Xue, Y., Thorson, J. S., Sherman, D. H. & Liu, H.-w. (1999) J. Am. Chem. Soc. 121,9881-9882.

24. Zhao, L., Sherman, D. H. & Liu, H.-w. (1998) J. Am. Chem. Soc. 120,9374-9375.

25. Quiros, L. M., Aguirrezabalaga, I., Olano, C., Mendez, C. & Salas, J. A. (1998) Mol. Microbiol. 28, 1177-1185.

26. Jenkins, G. & Cundliffe, E. (1991) Gene 108,55-62.

27. Ziermann, R. & Betlach, M. (2000) J. Ind. Microbiol. Biotech. 24,46-50.

28. Bierman, M., Logan, R., O'Brien, K., Seno, E. T., Nagaraja, R. & Schoner, B. E.

(1992) Gene 116,43-49.

29. Gaisser, S., Reather, J., Wirtz, G., Kellenberger, L., Staunton, J. & Leadlay, P. F.

(2000) Mol. Microbiol. 36,391-401.

The invention having now been described by way of written description and example, those of skill in the art will recognize that the invention can be practiced in a. variety of embodiments and that the foregoing description and examples are for purposes of illustration and not limitation of the following claims.