Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
REGULATABLE FUSOGENIC ONCOLYTIC HERPES SIMPLEX VIRUS TYPE 1 VIRUS AND METHODS OF USE
Document Type and Number:
WIPO Patent Application WO/2020/106566
Kind Code:
A1
Abstract:
Malignant tumors that are resistant to conventional therapies represent significant therapeutic challenges. An embodiment of the present invention provides a regulatable fusogenic oncolytic herpes simplex virus-1 that is more effective at selective killing target cells, such as tumor cells. In various embodiments presented herein, the oncolytic virus described herein is suitable for treatment of solid tumors, as well as other cancers.

Inventors:
YAO FENG (US)
Application Number:
PCT/US2019/061662
Publication Date:
May 28, 2020
Filing Date:
November 15, 2019
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BRIGHAM & WOMENS HOSPITAL INC (US)
International Classes:
C12N15/86; A61K35/763; A61P35/00; C07K14/035; C12N15/869
Domestic Patent References:
WO2017189754A12017-11-02
Foreign References:
US20080008686A12008-01-10
Other References:
AVITABILE ET AL.: "Herpes simplex virus glycoprotein K, but not its syncytial allele, inhibits cell - cell fusion mediated by the four fusogenic glycoproteins, gD, gB, gH, and gL.", JOURNAL OF VIROLOGY,, vol. 77, no. 12, June 2003 (2003-06-01), pages 6836 - 6844, XP055710170, DOI: 10.1128/JVI.77.12.6836-6844.2003
DATABASE UniProtKB UniProt; 20 December 2017 (2017-12-20), "SubName: Full=Envelope glycoprotein K {ECO:0000313|EMBL:AFE62882.1}; SubName: Full=Glycoprotein K {ECO:0000313|EMBL:AAB60558.1}; SubName: Full=UL53 {ECO:0000313|EMBL:AJE59999.1};", XP055710181, Database accession no. Q69472
Attorney, Agent or Firm:
RESNICK, David S. et al. (US)
Download PDF:
Claims:
CLAIMS

What is claimed is:

1) An oncolytic Herpes Simplex Vims (HSV) comprising recombinant DNA, wherein the

recombinant DNA has both ICPO and ICP34.5 gene product deleted or does not express functional ICPO and ICP34.5 gene product.

2) An oncolytic Herpes Simplex Vims (HSV) comprising recombinant DNA, wherein the recombinant DNA comprises:

a) a gene comprising a 5’ untranslated region and a HSV -1, or HSV-2, ICP27 gene that is operably linked to an ICP27 promoter comprising a TATA element;

b) a tetracycline operator sequence positioned between 6 and 24 nucleotides 3’ to said TATA element, wherein the ICP27 gene lies 3’ to said tetracycline operator sequence;

c) a ribozyme sequence located in said 5’ untranslated region of said gene;

d) a gene sequence encoding tetracycline repressor operably linked to an HSV immediate- early promoter, wherein the gene sequence is located at the ICPO locus; and

e) a variant gene that increases syncytium formation as compared to wild type, wherein the HSV-1, or HSV-2, variant gene is selected from the group consisting of: a glycoprotein K (gK) variant; a glycoprotein B (gB) variant; a UL24 variant; and UL20 gene variant,

wherein said oncolytic HSV does not encode functional ICPO and functional ICP34.5 protein.

3) The oncolytic HSV of claim 2, wherein the variant gene is a gK variant gene that encodes an amino acid substitution selected from the group consisting of: an Ala to Val amino acid substitution corresponding to amino acid 40 of SEQ ID NO: 2; an Ala to“x” amino acid substitution corresponding to amino acid 40 of SEQ ID NO: 2, wherein“x” is any amino acid; an Asp to Asn amino acid substitution corresponding to amino acid 99 of SEQ ID NO: 2; a Leu to Pro amino acid substitution corresponding to amino acid 304 of SEQ ID NO: 2; and an Arg to Leu amino acid substitution corresponding to amino acid 310 of SEQ ID NO: 2.

4) The oncolytic HSV of claim 2, wherein the variant gene is a UL24 gene that encodes a Ser to Asn amino acid substitution corresponding to amino acid 113 of SEQ ID NO: 3.

5) The oncolytic HSV of claim 3, further comprising a variant UL24 gene that encodes a Ser to Asn amino acid substitution corresponding to amino acid 113 of SEQ ID NO: 3.

6) The oncolytic HSV of any of claims 2-5, wherein the tetracycline operator sequence comprises two Op2 repressor binding sites.

7) The oncolytic HSV of any of claims 2-6, wherein the ICP27 promoter is an HSV-1 or HSV-2 ICP27 promoter.

8) The oncolytic HSV of any of claims 2-7, wherein the immediate-early promoter is an HSV-1 or HSV-2 immediate-early promoter. 9) The oncolytic HSV of any of claims 2-8, wherein the HSV immediate-early promoter is selected from the group consisting of: ICPO promoter and ICP4 promoter.

10) The oncolytic HSV of any of claims 2-9, wherein the recombinant DNA is part of the HSV-1 genome.

11) The oncolytic HSV of any of claims 2-9, wherein the recombinant DNA is part of the HSV-2 genome.

12) The oncolytic HSV of any of claims 2-11, further comprising a pharmaceutically acceptable carrier.

13) The oncolytic HSV of any of claims 1-12, further encoding at least one polypeptide that can increase the efficacy of the oncolytic HSV to induce an anti-tumor-specific immunity.

14) The oncolytic HSV of claim 13, wherein the at least one polypeptide encodes a product selected from the group consisting of: interleukin 2 (IL2), interleukin 12 (IL12), interleukin 15 (IL15), an anti-PD- 1 antibody or antibody reagent, an anti-PD-Ll antibody or antibody reagent, an anti-OX40 antibody or antibody reagent, CTLA-4 antibody or antibody reagent, TIM-3 antibody or antibody reagent, and TIGIT antibody or antibody reagent.

15) A composition comprising an oncolytic HSV of any of claims 1-14.

16) The composition of claim 15, further comprising a pharmaceutically acceptable carrier.

17) A method for treating cancer, the method comprising administering the oncolytic HSV of any of claims 1-14 or the composition of any of claims 15-16 to a subject having cancer.

18) The method of claim 17, wherein the cancer is a solid tumor.

19) The method of claim 18, wherein the tumor is benign or malignant.

20) The method of any of claims 17-19, wherein the subject is diagnosed or has been diagnosed as having cancer is selected from the list consisting of: a carcinoma, a melanoma, a sarcoma, a germ cell tumor, and a blastoma.

21) The method of any of claims 17-19, wherein the subject is diagnosed or has been diagnosed as having a cancer selected from the group consisting of: non-small-cell lung cancer, breast cancer, brain cancer, colon cancer, prostate cancer, liver cancer, lung cancer, ovarian cancer, skin cancer, and pancreatic cancer.

22) The method of any of claims 17-21, wherein the cancer is metastatic.

23) The method of any of claims 17-21, further comprising administering an agent that regulates the tet operator-containing promoter.

24) The method of claim 23, wherein the agent is doxycycline or tetracycline.

25) The method of claim 23, wherein the agent is administered locally or systemically.

26) The method of any of claims 17-25, wherein the oncolytic virus is administered directly to the tumor.

Description:
REGULATABLE FUSOGENIC ONCOLYTIC HERPES SIMPLEX VIRUS TYPE 1 VIRUS AND

METHODS OF USE

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims benefit under 35 U.S.C. § 119(e) of U.S. Provisional Application No. 62/769,280 filed November 19, 2018, the contents of which is incorporated herein by reference in its entirety.

SEQUENCE LISTING

[0002] The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on November 6, 2019, is named 043214-089130WOPT_SL.txt and is 210,810 bytes in size.

FIELD OF INVENTION

[0003] The present invention is directed compositions and methods of treating cancer using regulatable fusogenic oncolytic herpes simplex vims I (HSV-1 ) virus.

BACKGROUND

[0004] Oncolytic viral therapy entails harnessing the ability of a vims to reproduce in and lyse human cells and directing this viral replication-dependent lysis preferentially toward cancerous cells. Advances in cancer biology, together with a detailed understanding of the roles of host factors and virus-encoded gene products in controlling vims production in infected cells, have facilitated the use of some vimses as potential therapeutic agents against cancer (Aghi and Martuza, 2005; Parato et al., 2005). Herpes simplex vims (HSV) possesses several unique properties as an oncolytic agent (Aghi and Martuza, 2005). It can infect a broad range of cell types, leading to the replication of new vims and cell death. HSV has a short replication cycle (9 to 18 h) and encodes many non-essential genes that, when deleted, greatly restrict the ability of the vims to replicate in non-dividing normal cells. Because of its large genome, multiple therapeutic genes can be packaged into the genome of oncolytic recombinants.

[0005] The use of a replication-conditional strain of HSV-1 as an oncolytic agent was first reported for the treatment of malignant gliomas (Martuza et al., 1991). Since then, various efforts have been made in an attempt to broaden their therapeutic efficacy and increase the replication specificity of the vims in tumor cells. Not surprisingly, however, deletion of genes that impair viral replication in normal cells also leads to a marked decrease in the oncolytic activity of the vims for the targeted tumor cells (Advani et al., 1998; Chung et al, 1999). Currently, no oncolytic vimses that are able to kill only tumor cells while leaving normal cells intact are available. Consequently, the therapeutic doses of existing oncolytic viruses are significantly restricted (Aghi and Martuza, 2005). The availability of an oncolytic virus whose replication can be tightly controlled and adjusted pharmacologically would offer greatly increased safety and therapeutic efficacy. Such a regulatable oncolytic virus would minimize unwanted replication in adjacent and distant tissues as well as undesirable progeny virus overload in the target area after the tumor has been eliminated. This regulatory feature would also allow the oncolytic activity of the virus to be quickly shut down should adverse effects be detected (Aghi and Martuza, 2005; Shen and Nemunaitis, 2005). Work described herein presents a regulatable fusogenic variant of a oncolytic HSV that is significantly more effective at killing cancer cells than its non-fiisogenic parent.

SUMMARY OF THE INVENTION

[0006] The invention described herein is based, in part, on an isolated fusogenic variant of a novel oncolytic HSV-1 recombinant, KTR27, whose replication can be tightly controlled and regulated by tetracycline in a dose-dependent manner (Y ao et ah, J Virol, 2010) (U.S. Patent No.: 8,236,941). Work described herein demonstrates that this fusogenic variant, KTR27-F, is significantly more superior to its non-fiisogenic parent in lysing various tested human cancer cells. Like KTR27, replication of KTR27-F in primary human fibroblasts is markedly reduced compared with various human tumor cells. The yield of KTR27-F in human breast cancer cells (MCF-7) is 21,800-fold higher than in growth-arrested normal human breast fibroblasts. Moreover, while infection of growth-arrested human breast fibroblasts with KTR27 induced little or no cytotoxicity in the infected cells, over 99% of infected MCF7 cells were non- viable compared with the mock-infected control. Collectively, KTR27-F represents proof-of-concept advancement in the design of safer and more effective oncolytic viruses.

[0007] Accordingly, one aspect described herein provides an oncolytic Herpes Simplex Virus (HSV) comprising recombinant DNA, wherein the recombinant DNA has both ICP0 and ICP34.5 gene deleted or does not express functional ICP0 and ICP34.5

[0008] Another aspect described herein provides an oncolytic Herpes Simplex Virus (HSV) comprising recombinant DNA, wherein the recombinant DNA comprises: a gene comprising a 5’ untranslated region and a HSV -1, or HSV-2, ICP27 gene that is operably linked to an ICP27 promoter comprising a TATA element; a tetracycline operator sequence positioned between 6 and 24 nucleotides 3’ to said TATA element, wherein the ICP27 gene lies 3’ to said tetracycline operator sequence; a ribozyme sequence located in said 5’ untranslated region of said gene; a gene sequence encoding tetracycline repressor operably linked to an immediate-early promoter, wherein the gene sequence is located at the ICP0 locus; and a variant gene that increases syncytium formation as compared to wild type, wherein the HSV-1, or HSV-2, variant gene is selected from the group consisting of: a glycoprotein K (gK) variant; a glycoprotein B (gB) variant; a UL24 variant; and UL20 gene variant, wherein said oncolytic HSV does not encode functional ICP0 and functional ICP34.5 protein. [0009] In one embodiment of any aspect, the variant gene is a gK variant gene that encodes an amino acid substitution selected from the group consisting of: an Ala to Val amino acid substitution corresponding to amino acid 40 of SEQ ID NO: 2; an Ala to“x” amino acid substitution corresponding to amino acid 40 of SEQ ID NO: 2, wherein“x” is any amino acid; an Asp to Asn amino acid substitution corresponding to amino acid 99 of SEQ ID NO: 2; a Leu to Pro amino acid substitution corresponding to amino acid 304 of SEQ ID NO: 2; and an Arg to Leu amino acid substitution corresponding to amino acid 310 of SEQ ID NO: 2. In one embodiment, the oncolytic HSV further comprises a variant UL24 gene that encodes a Ser to Asn amino acid substitution corresponding to amino acid 113 of SEQ ID NO: 3. In one embodiment of any aspect, the variant gene is a UL24 gene that encodes a Ser to Asn amino acid substitution corresponding to amino acid 113 of SEQ ID NO: 3. In one embodiment, the amino acids described herein can be substituted for any known amino acid.

[0010] In one embodiment of any aspect, the tetracycline operator sequence comprises two Op2 repressor binding sites.

[0011] In one embodiment of any aspect, the ICP27 promoter is an HSV-1 or HSV-2 ICP27 promoter.

[0012] In one embodiment of any aspect, the immediate-early promoter is an HSV-1 or HSV-2 immediate-early promoter or the HCMV immediate-early promoter.

[0013] In one embodiment of any aspect, the HSV immediate-early promoter is selected from the group consisting of: ICP0 promoter, ICP4 promoter, ICP27 promoter, and ICP22 promoter.

[0014] In one embodiment of any aspect, the recombinant DNA is part of the HSV-1 genome. In one embodiment of any aspect, the recombinant DNA is part of the HSV-2 genome.

[0015] In one embodiment of any aspect, the oncolytic HSV described herein further comprises a pharmaceutically acceptable carrier

[0016] In one embodiment of any aspect, the oncolytic HSV described herein further encodes at least one polypeptide that can increase the efficacy of the oncolytic HSV to induce an anti-tumor-specific immunity. In one embodiment, the at least one polypeptide encodes a product selected from the group consisting of: interleukin 2 (IL2), interleukin 12 (IL12), interleukin 15 (IL15), an anti-PD-1 antibody or antibody reagent, an anti-PD-Ll antibody or antibody reagent, an anti-OX40 antibody or antibody reagent, CTLA-4 antibody or antibody reagent, TIM-3 antibody or antibody reagent, and TIGIT antibody or antibody reagent.

[0017] Another aspect described herein provides a composition comprising any of the oncolytic HSV described herein. In one embodiment, the composition further comprises a pharmaceutically acceptable carrier.

[0018] Another aspect described herein provides a method for treating cancer comprising administering any of the oncolytic HSV described herein or a composition thereof to a subject having cancer.

[0019] In one embodiment of any aspect, the cancer is a solid tumor. [0020] In one embodiment of any aspect, the tumor is benign or malignant.

[0021] In one embodiment of any aspect, the subject is diagnosed or has been diagnosed as having a carcinoma, a melanoma, a sarcoma, a germ cell tumor, or a blastoma. In one embodiment of any aspect, the subject is diagnosed or has been diagnosed as having non-small-cell lung cancer, breast cancer, brain cancer, colon cancer, prostate cancer, liver cancer, lung cancer, ovarian cancer, skin cancer, and pancreatic cancer.

[0022] In one embodiment of any aspect, the cancer is metastatic.

[0023] In one embodiment of aspect, the oncolytic HSV is administered directly to the tumor.

[0024] In one embodiment of any aspect, the method further comprises administering an agent that regulates the tet operator. In one embodiment, the agent is doxycycline or tetracycline. In one embodiment, the agent is administered locally or systemically.

Definitions

[0025] All references cited herein are incorporated by reference in their entirety as though fully set forth.

[0026] Unless otherwise defined herein, scientific and technical terms used in connection with the present application shall have the meanings that are commonly understood by those of ordinary skill in the art to which this disclosure belongs. It should be understood that this invention is not limited to the particular methodology, protocols, and reagents, etc., described herein and as such can vary. Definitions of common terms can be found in Singleton el al., Dictionary of Microbiology and Molecular Biology 3 rd ed., J. Wiley & Sons New York, NY (2001); March, Advanced Organic Chemistry Reactions,

Mechanisms and Structure 5 th ed., J. Wiley & Sons New York, NY (2001); Michael Richard Green and Joseph Sambrook, Molecular Cloning: A Laboratory Manual, 4th ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., USA (2012); Davis et al., Basic Methods in Molecular Biology, Elsevier Science Publishing, Inc., New York, USA (2012); Jon Uorsch (ed.) Laboratory Methods in Enzymology: DNA, Elsevier, (2013); Frederick M. Ausubel (ed.), Current Protocols in Molecular Biology (CPMB), John Wiley and Sons, (2014); John E. Coligan (ed.), Current Protocols in Protein Science (CPPS), John Wiley and Sons, Inc., (2005); and Ethan M Shevach, Warren Strobe, (eds.) Current Protocols in Immunology (CPI) (John E. Coligan, ADA M Kruisbeek, David H Margulies, John Wiley and Sons, Inc., (2003); each of which provide one skilled in the art with a general guide to many of the terms used in the present application.

[0027] As used herein, a "subject" means a human or animal. Usually the animal is a vertebrate such as a primate, rodent, domestic animal or game animal. Primates include, for example, chimpanzees, cynomologous monkeys, spider monkeys, and macaques, e.g., Rhesus. Rodents include, for example, mice, rats, woodchucks, ferrets, rabbits and hamsters. Domestic and game animals include, for example, cows, horses, pigs, deer, bison, buffalo, feline species, e.g., domestic cat, canine species, e.g., dog, fox, wolf, avian species, e.g., chicken, emu, ostrich, and fish, e.g., trout, catfish and salmon. In some embodiments, the subject is a mammal, e.g., a primate, e.g., a human. The terms,“individual,”“patient” and“subject” are used interchangeably herein.

[0028] Preferably, the subject is a mammal. The mammal can be a human, non-human primate, mouse, rat, dog, cat, horse, or cow, but is not limited to these examples. Mammals other than humans can be advantageously used as subjects that represent animal models of disease e.g., cancer. A subject can be male or female.

[0029] A subject can be one who has been previously diagnosed with or identified as suffering from or having a condition in need of treatment (e.g. cancer) or one or more complications related to such a condition, and optionally, have already undergone treatment for the condition or the one or more complications related to the condition. Alternatively, a subject can also be one who has not been previously diagnosed as having such condition or related complications. For example, a subject can be one who exhibits one or more risk factors for the condition or one or more complications related to the condition or a subject who does not exhibit risk factors.

[0030] As used herein, the terms "treat,” "treatment," "treating,” or“amelioration” refer to therapeutic treatments, wherein the object is to reverse, alleviate, ameliorate, inhibit, slow down or stop the progression or severity of a condition associated with a disease or disorder, e.g. cancer. The term “treating" includes reducing or alleviating at least one adverse effect or symptom of a condition, disease or disorder. Treatment is generally“effective" if one or more symptoms or clinical markers are reduced. Alternatively, treatment is“effective" if the progression of a disease is reduced or halted. That is, “treatment" includes not just the improvement of symptoms or markers, but also a cessation of, or at least slowing of, progress or worsening of symptoms compared to what would be expected in the absence of treatment. Beneficial or desired clinical results include, but are not limited to, alleviation of one or more symptom(s), diminishment of extent of disease, stabilized (i.e., not worsening) state of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, remission (whether partial or total), and/or decreased mortality, whether detectable or undetectable. The term "treatment" of a disease also includes providing relief from the symptoms or side-effects of the disease (including palliative treatment).

[0031] In the various embodiments described herein, it is further contemplated that variants (naturally occurring or otherwise), alleles, homologs, conservatively modified variants, and/or conservative substitution variants of any of the particular polypeptides described are encompassed. As to amino acid sequences, one of ordinary skill will recognize that individual substitutions, deletions or additions to a nucleic acid, peptide, polypeptide, or protein sequence which alters a single amino acid or a small percentage of amino acids in the encoded sequence is a“conservatively modified variant" where the alteration results in the substitution of an amino acid with a chemically similar amino acid and retains the desired activity of the polypeptide. Such conservatively modified variants are in addition to and do not exclude polymorphic variants, interspecies homologs, and alleles consistent with the disclosure.

[0032] A given amino acid can be replaced by a residue having similar physiochemical characteristics, e.g., substituting one aliphatic residue for another (such as lie, Val, Leu, or Ala for one another), or substitution of one polar residue for another (such as between Lys and Arg; Glu and Asp; or Gin and Asn). Other such conservative substitutions, e.g., substitutions of entire regions having similar hydrophobicity characteristics, are well known. Polypeptides comprising conservative amino acid substitutions can be tested in any one of the assays described herein to confirm that a desired activity, e.g. ligan-mediated receptor activity and specificity of a native or reference polypeptide is retained.

[0033] Amino acids can be grouped according to similarities in the properties of their side chains (in A. L. Lehninger, in Biochemistry, second ed., pp. 73-75, Worth Publishers, New York (1975)): (1) non polar: Ala (A), Val (V), Leu (L), lie (I), Pro (P), Phe (F), Trp (W), Met (M); (2) uncharged polar: Gly (G), Ser (S), Thr (T), Cys (C), Tyr (Y), Asn (N), Gin (Q); (3) acidic: Asp (D), Glu (E); (4) basic: Lys (K), Arg (R), His (H). Alternatively, naturally occurring residues can be divided into groups based on common side-chain properties: (1) hydrophobic: Norleucine, Met, Ala, Val, Leu, lie; (2) neutral hydrophilic: Cys, Ser, Thr, Asn, Gin; (3) acidic: Asp, Glu; (4) basic: His, Lys, Arg; (5) residues that influence chain orientation: Gly, Pro; (6) aromatic: Trp, Tyr, Phe. Non-conservative substitutions will entail exchanging a member of one of these classes for another class. Particular conservative substitutions include, for example; Ala into Gly or into Ser; Arg into Lys; Asn into Gin or into His; Asp into Glu; Cys into Ser; Gin into Asn; Glu into Asp; Gly into Ala or into Pro; His into Asn or into Gin; lie into Leu or into Val; Leu into lie or into Val; Lys into Arg, into Gin or into Glu; Met into Leu, into Tyr or into lie; Phe into Met, into Leu or into Tyr; Ser into Thr; Thr into Ser; Trp into Tyr; Tyr into Trp; and/or Phe into Val, into He or into Leu.

[0034] In some embodiments, a polypeptide described herein (or a nucleic acid encoding such a polypeptide) can be a functional fragment of one of the amino acid sequences described herein. As used herein, a“functional fragment” is a fragment or segment of a peptide which retains at least 50% of the wildtype reference polypeptide’s activity according to an assay known in the art or described below herein. A functional fragment can comprise conservative substitutions of the sequences disclosed herein.

[0035] In some embodiments, a polypeptide described herein can be a variant of a polypeptide or molecule as described herein. In some embodiments, the variant is a conservatively modified variant. Conservative substitution variants can be obtained by mutations of native nucleotide sequences, for example. A“variant," as referred to herein, is a polypeptide substantially homologous to a native or reference polypeptide, but which has an amino acid sequence different from that of the native or reference polypeptide because of one or a plurality of deletions, insertions or substitutions. Variant polypeptide encoding DNA sequences encompass sequences that comprise one or more additions, deletions, or substitutions of nucleotides when compared to a native or reference DNA sequence, but that encode a variant protein or fragment thereof that retains activity of the non- variant polypeptide. A wide variety of PCR-based site-specific mutagenesis approaches are known in the art and can be applied by the ordinarily skilled artisan.

[0036] A variant amino acid or DNA sequence can be at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or more, identical to a native or reference sequence. The degree of homology (percent identity) between a native and a mutant sequence can be determined, for example, by comparing the two sequences using freely available computer programs commonly employed for this purpose on the world wide web (e.g. BLASTp or BLASTn with default settings).

[0037] Alterations of the native amino acid sequence can be accomplished by any of a number of techniques known to one of skill in the art. Mutations can be introduced, for example, at particular loci by synthesizing oligonucleotides containing a mutant sequence, flanked by restriction sites permitting ligation to fragments of the native sequence. Following ligation, the resulting reconstructed sequence encodes an analog having the desired amino acid insertion, substitution, or deletion. Alternatively, oligonucleotide-directed site-specific mutagenesis procedures can be employed to provide an altered nucleotide sequence having particular codons altered according to the substitution, deletion, or insertion required. Techniques for making such alterations are well established and include, for example, those disclosed by Walder et al. (Gene 42: 133, 1986); Bauer et al. (Gene 37:73, 1985); Craik (BioTechniques, January 1985, 12-19); Smith et al. (Genetic Engineering: Principles and Methods, Plenum Press, 1981); and U.S. Pat. Nos. 4,518,584 and 4,737,462, which are herein incorporated by reference in their entireties. Any cysteine residue not involved in maintaining the proper conformation of a polypeptide also can be substituted, generally with serine, to improve the oxidative stability of the molecule and prevent aberrant crosslinking. Conversely, cysteine bond(s) can be added to a polypeptide to improve its stability or facilitate oligomerization.

[0038] As used herein, the term "DNA" is defined as deoxyribonucleic acid. The term "polynucleotide" is used herein interchangeably with "nucleic acid" to indicate a polymer of nucleosides. Typically, a polynucleotide is composed of nucleosides that are naturally found in DNA or RNA (e.g., adenosine, thymidine, guanosine, cytidine, uridine, deoxyadenosine, deoxythymidine, deoxyguanosine, and deoxycytidine) joined by phosphodiester bonds. However, the term encompasses molecules comprising nucleosides or nucleoside analogs containing chemically or biologically modified bases, modified backbones, etc., whether or not found in naturally occurring nucleic acids, and such molecules may be preferred for certain applications. Where this application refers to a polynucleotide it is understood that both DNA, RNA, and in each case both single- and double -stranded forms (and complements of each single -stranded molecule) are provided. "Polynucleotide sequence" as used herein can refer to the polynucleotide material itself and/or to the sequence information (i.e. the succession of letters used as abbreviations for bases) that biochemically characterizes a specific nucleic acid. A polynucleotide sequence presented herein is presented in a 5' to 3' direction unless otherwise indicated.

[0039] The term“operably linked,” as used herein, refers to the arrangement of various nucleic acid molecule elements relative to each other such that the elements are functionally connected and are able to interact with each other. Such elements may include, without limitation, a promoter, an enhancer, a polyadenylation sequence, one or more introns and/or exons, and a coding sequence of a gene of interest to be expressed. The nucleic acid sequence elements, when operably linked, can act together to modulate the activity of one another, and ultimately may affect the level of expression of the gene of interest, including any of those encoded by the sequences described above.

[0040] The term“vector,” as used herein, refers to a carrier nucleic acid molecule into which a nucleic acid sequence can be inserted for introduction into a cell where it can be replicated. A nucleic acid sequence can be“exogenous,” which means that it is foreign to the cell into which the vector is being introduced or that the sequence is homologous to a sequence in the cell but in a position within the host cell nucleic acid in which the sequence is ordinarily not found. Vectors include plasmids, cosmids, viruses (bacteriophage, animal viruses, and plant viruses), and artificial chromosomes (e.g., YACs). One of skill in the art would be well equipped to construct a vector through standard recombinant techniques (see, for example, Maniatis et al, 1988 and Ausubel et ah, 1994, both of which are incorporated herein by reference). Additionally, the techniques described herein and demonstrated in the referenced figures are also instructive with regard to effective vector construction.

[0041] The term“oncolytic HSV-1 vector” refers to a genetically engineered HSV-1 virus corresponding to at least a portion of the genome of HSV-1 that is capable of infecting a target cell, replicating, and being packaged into HSV-1 virions. The genetically engineered virus comprises deletions and or mutations and or insertions of nucleic acid that render the virus oncolytic such that the engineered virus replicates in- and kills- tumor cells by oncolytic activity. The virus may be attenuated or non-attenuated. The virus may or may not deliver a transgene-that differs from the HSV viral genome. In one embodiment, the oncolytic HSV-1 vector does not express a transgene to produce a protein foreign to the virus.

[0042] The term“promoter,” as used herein, refers to a nucleic acid sequence that regulates, either directly or indirectly, the transcription of a corresponding nucleic acid coding sequence to which it is operably linked. The promoter may function alone to regulate transcription, or, in some cases, may act in concert with one or more other regulatory sequences such as an enhancer or silencer to regulate transcription of the gene of interest. The promoter comprises a DNA regulatory sequence, wherein the regulatory sequence is derived from a gene, which is capable of binding RNA polymerase and initiating transcription of a downstream (3 '-direction) coding sequence. A promoter generally comprises a sequence that functions to position the start site for RNA synthesis. The best-known example of this is the TATA box, but in some promoters lacking a TATA box, such as, for example, the promoter for the mammalian terminal deoxynucleotidyl transferase gene and the promoter for the SV40 late genes, a discrete element overlying the start site itself helps to fix the place of initiation. Additional promoter elements regulate the frequency of transcriptional initiation. Typically, these are located in the region 30- 110 bp upstream of the start site, although a number of promoters have been shown to contain functional elements downstream of the start site as well. To bring a coding sequence“under the control of’ a promoter, one can position the 5' end of the transcription initiation site of the transcriptional reading frame“downstream” of (i.e., 3' of) the chosen promoter. The“upstream” promoter stimulates transcription of the DNA and promotes expression of the encoded RNA.

[0043] The spacing between promoter elements frequently is flexible, so that promoter function is preserved when elements are inverted or moved relative to one another. Depending on the promoter used, individual elements can function either cooperatively or independently to activate transcription.

The promoters described herein may or may not be used in conjunction with an“enhancer,” which refers to a cis-acting regulatory sequence involved in the transcriptional activation of a nucleic acid sequence, such as those for the genes, or portions or functional equivalents thereof, listed herein.

[0044] A promoter may be one naturally associated with a nucleic acid sequence, as may be obtained by isolating the 5' non-coding sequences located upstream of the coding segment and/or exon. Such a promoter can be referred to as“endogenous.” Similarly, an enhancer may be one naturally associated with a nucleic acid sequence, located either downstream or upstream of that sequence. Alternatively, certain advantages may be gained by positioning the coding nucleic acid segment under the control of a recombinant or heterologous promoter, which refers to a promoter that is not normally associated with a nucleic acid sequence in its natural environment. A recombinant or heterologous enhancer refers also to an enhancer not normally associated with a nucleic acid sequence in its natural environment. Such promoters or enhancers may include promoters or enhancers of other genes, and promoters or enhancers isolated from any other virus, or prokaryotic or eukaryotic cell, and promoters or enhancers not“naturally occurring,” i.e., containing different elements of different transcriptional regulatory regions, and/or mutations that alter expression. For example, promoters that are most commonly used in recombinant DNA construction include, the HCMV immediate -early promoter, the beta-lactamase (penicillinase), lactose and tryptophan (trp) promoter systems.

[0045] A“gene,” or a“sequence which encodes” a particular protein, is a nucleic acid molecule which is transcribed (in the case of DNA) and translated (in the case of mRNA) into a polypeptide in vitro or in vivo when placed under the control of one or more appropriate regulatory sequences. A gene of interest can include, but is no way limited to, cDNA from eukaryotic mRNA, genomic DNA sequences from eukaryotic DNA, and even synthetic DNA sequences. A transcription termination sequence will usually be located 3' to the gene sequence. Typically, a polyadenylation signal is provided to terminate transcription of genes inserted into a recombinant virus.

[0046] The term " polypeptide " as used herein refers to a polymer of amino acids. The terms "protein" and "polypeptide" are used interchangeably herein. A peptide is a relatively short polypeptide, typically between about 2 and 60 amino acids in length. Polypeptides used herein typically contain amino acids such as the 20 L-amino acids that are most commonly found in proteins. However, other amino acids and/or amino acid analogs known in the art can be used. One or more of the amino acids in a polypeptide may be modified, for example, by the addition of a chemical entity such as a carbohydrate group, a phosphate group, a fatty acid group, a linker for conjugation, functionalization, etc. A polypeptide that has a nonpolypeptide moiety covalently or noncovalently associated therewith is still considered a "polypeptide." Exemplary modifications include glycosylation and palmitoylation. Polypeptides can be purified from natural sources, produced using recombinant DNA technology or synthesized through chemical means such as conventional solid phase peptide synthesis, etc. The term "polypeptide sequence" or "amino acid sequence" as used herein can refer to the polypeptide material itself and/or to the sequence information (i.e., the succession of letters or three letter codes used as abbreviations for amino acid names) that biochemically characterizes a polypeptide. A polypeptide sequence presented herein is presented in an N-terminal to C-terminal direction unless otherwise indicated.

[0047] The term“transgene” refers to a particular nucleic acid sequence encoding a polypeptide or a portion of a polypeptide to be expressed in a cell into which the nucleic acid sequence is inserted. The term“transgene” is meant to include (1) a nucleic acid sequence that is not naturally found in the cell (i.e., a heterologous nucleic acid sequence); (2) a nucleic acid sequence that is a mutant form of a nucleic acid sequence naturally found in the cell into which it has been inserted; (3) a nucleic acid sequence that serves to add additional copies of the same (/. e. , homologous) or a similar nucleic acid sequence naturally occurring in the cell into which it has been inserted; or (4) a silent naturally occurring or homologous nucleic acid sequence whose expression is induced in the cell into which it has been inserted. A“mutant form” or“modified nucleic acid” or“modified nucleotide” sequence means a sequence that contains one or more nucleotides that are different from the wild-type or naturally occurring sequence, i.e., the mutant nucleic acid sequence contains one or more nucleotide substitutions, deletions, and/or insertions. In some cases, the gene of interest may also include a sequence encoding a leader peptide or signal sequence such that the transgene product may be secreted from the cell.

[0048] As used herein, the term“antibody reagent" refers to a polypeptide that includes at least one immunoglobulin variable domain or immunoglobulin variable domain sequence and which specifically binds a given antigen. An antibody reagent can comprise an antibody or a polypeptide comprising an antigen-binding domain of an antibody. In some embodiments of any of the aspects, an antibody reagent can comprise a monoclonal antibody or a polypeptide comprising an antigen-binding domain of a monoclonal antibody. For example, an antibody can include a heavy (H) chain variable region (abbreviated herein as VH), and a light (L) chain variable region (abbreviated herein as VL). In another example, an antibody includes two heavy (H) chain variable regions and two light (L) chain variable regions. The term "antibody reagent" encompasses antigen-binding fragments of antibodies (e.g., single chain antibodies, Fab and sFab fragments, F(ab')2, Fd fragments, Fv fragments, scFv, CDRs, and domain antibody (dAb) fragments (see, e.g. de Wildt et al., Eur J. Immunol. 1996; 26(3):629-39; which is incorporated by reference herein in its entirety)) as well as complete antibodies. An antibody can have the structural features of IgA, IgG, IgE, IgD, or IgM (as well as subtypes and combinations thereof).

Antibodies can be from any source, including mouse, rabbit, pig, rat, and primate (human and non-human primate) and primatized antibodies. Antibodies also include midibodies, nanobodies, humanized antibodies, chimeric antibodies, and the like.

[0049] The term“oncolytic activity,” as used herein, refers to cytotoxic effects in vitro and/or in vivo exerted on tumor cells without any appreciable or significant deleterious effects to normal cells under the same conditions. The cytotoxic effects under in vitro conditions are detected by various means as known in prior art, for example, by staining with a selective stain for dead cells, by inhibition of DNA synthesis, or by apoptosis. Detection of the cytotoxic effects under in vivo conditions is performed by methods known in the art.

[0050] A“biologically active” portion of a molecule, as used herein, refers to a portion of a larger molecule that can perform a similar function as the larger molecule. Merely by way of non-limiting example, a biologically active portion of a promoter is any portion of a promoter that retains the ability to influence gene expression, even if only slightly. Similarly, a biologically active portion of a protein is any portion of a protein which retains the ability to perform one or more biological functions of the full- length protein (e.g. binding with another molecule, phosphorylation, etc.), even if only slightly.

[0051] As used herein, the term "administering," refers to the placement of a therapeutic or

pharmaceutical composition as disclosed herein into a subject by a method or route which results in at least partial delivery of the agent at a desired site. Pharmaceutical compositions comprising agents as disclosed herein can be administered by any appropriate route which results in an effective treatment in the subject.

[0052] The term“statistically significant" or“significantly" refers to statistical significance and generally means a two standard deviation (2SD) or greater difference.

[0053] Other than in the operating examples, or where otherwise indicated, all numbers expressing quantities of ingredients or reaction conditions used herein should be understood as modified in all instances by the term“about.” The term“about” when used in connection with percentages can mean ±1%. [0054] As used herein, the term "comprising" means that other elements can also be present in addition to the defined elements presented. The use of "comprising" indicates inclusion rather than limitation. The term "consisting of" refers to compositions, methods, and respective components thereof as described herein, which are exclusive of any element not recited in that description of the embodiment. As used herein the term "consisting essentially of" refers to those elements required for a given embodiment. The term permits the presence of additional elements that do not materially affect the basic and novel or functional characteristic(s) of that embodiment of the technology.

[0055] The singular terms "a," "an," and "the" include plural referents unless context clearly indicates otherwise. Similarly, the word "or" is intended to include "and" unless the context clearly indicates otherwise. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of this disclosure, suitable methods and materials are described below. The abbreviation, "e.g." is derived from the Latin exempli gratia, and is used herein to indicate a non-limiting example. Thus, the abbreviation "e.g." is synonymous with the term "for example."

[0056] In some embodiments, the numbers expressing quantities of ingredients, properties such as molecular weight, reaction conditions, and so forth, used to describe and claim certain embodiments of the application are to be understood as being modified in some instances by the term“about.”

Accordingly, in some embodiments, the numerical parameters set forth in the written description and attached claims are approximations that can vary depending upon the desired properties sought to be obtained by a particular embodiment. In some embodiments, the numerical parameters should be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of some embodiments of the application are approximations, the numerical values set forth in the specific examples are reported as precisely as practicable.

[0057] With the aforementioned preliminary descriptions and definitions in mind, additional background is provided herein below to provide context for the genesis and development of the inventive vectors, compositions and methods described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

[0058] Exemplary embodiments are illustrated in the referenced figures. It is intended that the embodiments and figures disclosed herein are to be considered illustrative rather than restrictive.

[0059] Fig. 1 shows U20S cells seeded at 1 x 10 6 cells per 60 mm dish. Cells were infected with KTR27 or KTR27-F at 200 PFU/dish at 72 h post-cell seeding in the presence of tetracycline. KTR27 and KTR27-F plaques were photographed at 48 and 72 h post-infection.

[0060] Fig. 2 shows KTR27-F replication is highly regulated by tetracycline. Vero cells were seeded at 7.5 x 10 5 cells per 60 mm dish. At 48 h post-seeding, triplicate dishes of cells were infected with KTR27 and KTR27-F at a MOI of 1 PFU/cell in a volume of 0.5 ml. After 1.5 h of incubation at 37°C, the inocula were removed and the cells were washed twice with acid-glycine saline (to remove membrane- bound extracellular virions) and then twice by DMEM. KTR27 infections were carried out in the presence of tetracycline at 2.5 pg/ml. and KTR27-F infections were carried out in the presence and absence of tetracycline. Infected cells were harvested at 48 and 72 h post-infection. Viral titers were determined on U20S monolayers in the presence of tetracycline. KTR27-F production in the absence of tetracycline was not detected. Viral titers are expressed as means ± standard deviation.

[0061] Figs 3A and 3B show KTR27-F replication is efficient and highly regulated in various human tumor cell lines. Human cancer cells H1299 (lung), U87 (glioma), MDA MB 231 (breast), and MCF7 (breast) were seeded at 7.5 x 10 5 , lxlO 6 , 7.5 x 10 5 , and 7.5 x 10 5 cells per 60 mm dish, respectively. At 48, 24, 72, and 48 h post-seeding, respectively, triplicate dishes were infected. (Fig. 3A) H1299, U87, MDA-MB-231, and MCF-7 dishes were infected with KTR27 and KTR27-F at a MOI of 1 PFU/cell in a volume of 0.5 ml. After 1.5 h of incubation at 37°C, the inocula were removed and the cells were washed twice with acid-glycine saline and then twice by DMEM. Infections were then carried out in the absence or presence of tetracycline at 2.5 pg/ml. Infected cells were harvested at 48, 72, 72, and 40 h post infection, respectively, and viral titers were determined on U20S monolayers in the presence of tetracycline. Numbers located above the brackets indicate the fold difference in viral yield between the indicated conditions. (Fig. 3B) H1299, U87, MDA-MB- 231, and MCF-7 cells were mock-infected and infected with KTR5 and KTR27 at MOIs 0.25, 1, 1, and 0.25 PFU/cell, respectively. Cells were harvested at 72, 72, 96, and 72 h post-infection. Viable cells were counted by trypan blue exclusion and graphed as a percentage of viable cells in the mock-infected controls, expressed as means ± standard deviation.

[0062] Figs 4A-4C show cytotoxicity and replication of KTR27-F are significantly enhanced in human breast cancer cells versus in normal human breast fibroblasts. For results labeled“HF-serum free,” primary human fibroblasts (HF) were seeded at 1.5 x 10 6 cells per 60 mm dish in normal growth medium. 24 h post-seeding, normal medium was removed and replaced with serum-free DMEM containing antibiotics. These cells were infected at 42 h post-serum starvation. All other cells were seeded at 7.5 x 10 5 cells per 60 mm dish in normal growth medium and infected 66 h post-seeding. All cells described above were either mock infected or infected with KTR27-F at a MOI of 1 PFU/cell in the absence or presence of tetracycline at 2.5 pg/ml in DMEM containing 2% FBS. (Fig. 4A) Triplicate dishes of infected cells were harvested at 48 h post-infection and viral titers were determined on U20S monolayers in the presence of tetracycline. (Fig. 4B) Mock-infected and infected cells in the presence of tetracycline in triplicate dishes were harvested at 48 h post-infection. Viable cells were counted by trypan blue exclusion and graphed as a percentage of viable cells in the mock-infected controls, expressed as means ± standard deviation. (FIG. 4C) Selective lysis of MCF7 cells. Images cells infected with KTR27-F in the absence and presence of tetracycline, photographed at 48 h post-infection. [0063] Fig. 5 shows KTR27-F is avirulent following intracerebral inoculation. Female CD1 mice were intracerebrally inoculated with 20 mΐ of DMEM or DMEM containing 1 x 10 7 PFU of indicated viruses. Half of the mice injected with KTR27-F were fed a doxy cy cline -containing diet beginning three days prior to inoculation (T+). The mice were examined for signs of illness for 29 days.

DESCRIPTION OF THE INVENTION

[0064] Oncolytic viruses are genetically modified viruses that preferentially replicate in host cancer cells, leading to the production of new viruses, lysis of cancer cells, and ultimately, induction of tumor- specific immunity. Using the T-REx™ (Invitrogen, CA) gene switch technology and a self-cleaving ribozyme, a novel oncolytic HSV-1 recombinant, KTR27, was constructed, whose replication can be tightly controlled and regulated by tetracycline in a dose-dependent manner. This virus is further described in Yao et al., J Virol, 2010 and U.S. Patent No. 8,236,941, which are incorporated herein by reference in their entirety. Infection of normal replicating cells as well as multiple human cancer cell types with KTR27 in the presence of tetracycline led to 1000- to 250,000-fold higher progeny virus production than in the absence of tetracycline, while little viral replication and virus-associated cytotoxicity are observed in infected growth-arrested normal human cells. Importantly, KTR27 is very effective against pre-established Non-Small cell lung cancer in nude mice and can prevent the growth of pre-established M3 mouse melanoma in immuno-competent mice. Intratumoral inoculation of KTR27 can elicit systemic immune response that can effectively prevent the growth of a distant tumor in immuno-competent mice.

[0065] In an effort to further enhance the therapeutic efficacy of KTR27 and its effectiveness in eliciting tumor specific immunity following oncolytic virotherapy, a fusogenic variant of KTR27, KTR27-F, was isolated. Work described herein demonstrate that KTR27-F is significantly more superior to its non- fusogenic parent in lysing various tested human cancer cells. Like KTR27, replication of KTR27-F in primary human fibroblasts is markedly reduced compared with various human tumor cells. The yield of KTR27-F in human breast cancer cells (MCF-7) is 21,800-fold higher than in growth-arrested normal human breast fibroblasts. Moreover, while infection of growth-arrested human breast fibroblasts with KTR27-F induced little or no cytotoxicity in the infected cells, over 99% of infected MCF7 cells were non-viable compared with the mock-infected control. Collectively, KTR27-F represents an advancement in the design of safer and more effective oncolytic viruses.

[0066] HSV-1 is a human neurotropic virus that is capable of infecting virtually all vertebrate cells. Natural infections follow either a lytic, replicative cycle or establish latency, usually in peripheral ganglia, where the DNA is maintained indefinitely in an episomal state. HSV-1 contains a double- stranded, linear DNA genome, about 152 kilobases in length, which has been completely sequenced by McGeoch (McGeoch et al., J. Gen. Virol. 69: 1531 (1988); McGeoch et al., Nucleic Acids Res 14: 1727 (1986); McGeoch et al., J. Mol. Biol. 181: 1 (1985); Perry and McGeoch, J. Gen. Virol. 69:2831 (1988); Szpara ML et al., J Virol. 2010, 84:5303; Macdonald SJ et al., J Virol. 2012, 86:6371). DNA replication and virion assembly occurs in the nucleus of infected cells. Late in infection, concatemeric viral DNA is cleaved into genome length molecules which are packaged into virions. In the CNS, herpes simplex virus spreads transneuronally followed by intraaxonal transport to the nucleus, either retrograde or anterograde, where replication occurs.

[0067] One aspect described herein provides an oncolytic Herpes Simplex Virus (HSV) comprising recombinant DNA, wherein the recombinant DNA has both ICP0 and ICP34.5 gene product deleted or does not express functional ICP0 and ICP34.5.

[0068] Infected cell protein 34.5 (ICP34.5) is a protein (e.g., a gene product) expressed by the g34.5 gene in viruses, such as the herpes simplex virus. IPC34.5 has been shown to block the cellar stress response to a viral infection (Agarwalla, P.K., et al. Method in Mol. Bio., 2012). Infected cell polypeptide 0 (ICP0) is a protein encoded by the HSV-1 a0 gene. ICP0 is generated during the immediate-early phase of viral gene expression. ICP0 is synthesized and transported to the nucleus of the infected host cell, where it promotes transcription from viral genes, disrupts nuclear and cytoplasmic cellular structures, such as the microtubule network, and alters the expression of host genes.

[0069] One skilled in the art can determine if the ICP0 or ICP34.5 gene products have been deleted or if the virus does not express functional forms of these gene products using PCR-based assays to detect the presence of the gene in the viral genome or the expression of the gene products, or using functional assays to assess their function, respectively.

[0070] In one embodiment, the gene that encodes these gene products contain a mutation, for example, an inactivating mutation, that inhibits proper expression of the gene product. For example, the gene may encode a mutation in the gene product that inhibits proper folding, expression, function, ect. of the gene product. As used herein, the term“inactivating mutation” is intended to broadly mean a mutation or alteration to a gene wherein the expression of that gene is significantly decreased, or wherein the gene product is rendered nonfunctional, or its ability to function is significantly decreased. The term“gene” encompasses both the regions coding the gene product as well as regulatory regions for that gene, such as a promoter or enhancer, unless otherwise indicated.

[0071] Ways to achieve such alterations include: (a) any method to disrupt the expression of the product of the gene or (b) any method to render the expressed gene nonfunctional. Numerous methods to disrupt the expression of a gene are known, including the alterations of the coding region of the gene, or its promoter sequence, by insertions, deletions and/or base changes. (See, Roizman, B. and Jenkins, F. J., Science 229: 1208-1214 (1985)).

[0072] Further described herein is an oncolytic Herpes Simplex Virus (HSV) comprising recombinant DNA, wherein the recombinant DNA comprises: (a) a gene comprising a 5’ untranslated region and a HSV -1, or HSV-2, ICP27 gene that is operably linked to an ICP27 promoter comprising a TATA element; (b) a tetracycline operator sequence positioned between 6 and 24 nucleotides 3’ to said TATA element, wherein the ICP27 gene lies 3’ to said tetracycline operator sequence; (c) a ribozyme sequence located in said 5’ untranslated region of said gene; (d) a gene sequence encoding tetracycline repressor operably linked to an immediate early promoter, wherein the gene sequence is located at the ICPO locus; and (e) a variant gene that increases syncytium formation as compared to wild type, wherein the HSV-1, or HSV-2, variant gene is selected from the group consisting of: a glycoprotein K (gK) variant; a glycoprotein B (gB) variant; a UL24 variant; and UL20 gene variant, wherein said oncolytic HSV does not encode functional ICPO and functional ICP34.5 protein. In one embodiment, the recombinant DNA is derived from the HSV-1 genome. In an alternative embodiment, the recombinant DNA is derived from the HSV-2 genome. In one embodiment, the genome of the HSV comprising recombinant DNA consists of, consists essentially of, or comprises the sequence of SEQ ID NO: 1. The nucleotide sequence of SEQ ID NO: 1 contains the plasmid vector sequence present in pSH-tetR (SEQ ID NO: 9).

[0073] An essential feature of the DNA of the present invention is the presence of a gene needed for virus replication that is operably linked to a promoter having a TATA element. A tet operator sequence is located between 6 and 24 nucleotides 3' to the last nucleotide in the TATA element of the promoter and 5' to the gene. The strength with which the tet repressor binds to the operator sequence is enhanced by using a form of operator which contains two op2 repressor binding sites (each such site having the nucleotide sequence: TCCCTATCAGTGATAGAGA (SEQ ID NO: 8)) linked by a sequence of 2-20, preferably 1-3 or 10-13, nucleotides. When repressor is bound to this operator, very little or no transcription of the associated gene will occur. If DNA with these characteristics is present in a cell that also expresses the tetracycline repressor, transcription of the gene will be blocked by the repressor binding to the operator and replication of the virus will not occur. However, if tetracycline is introduced, it will bind to the repressor, cause it to dissociate from the operator, and virus replication will proceed.

[0074] During productive infection, HSV gene expression falls into three major classes based on the temporal order of expression: immediate-early (a), early (b), and late (g), with late genes being further divided into two groups, gΐ and g2. The expression of immediate-early genes does not require de novo viral protein synthesis and is activated by the virion-associated protein VP 16 together with cellular transcription factors when the viral DNA enters the nucleus. The protein products of the immediate -early genes are designated infected cell polypeptides ICPO, ICP4, ICP22, ICP27, and ICP47 and it is the promoters of these genes that are preferably used in directing the expression of tet repressor (tetR). The expression of a gene needed for virus replication is under the control of the tetO-containing promoters and these essential genes may be immediate-early, early or late genes, e.g., ICP4, ICP27, ICP8, UL9, gD and VP5. In one embodiment, the tetR has the sequence of SEQ ID NO: 9. [0075] ICPO plays a major role in enhancing the reactivation of HSV from latency and confers a significant growth advantage on the virus at low multiplicities of infection. ICP4 is the major transcriptional regulatory protein of HSV-1, which activates the expression of viral early and late genes. ICP27 is essential for productive viral infection and is required for efficient viral DNA replication and the optimal expression of subset of viral b genes and gΐ genes as well as viral y2 genes. The function of ICP47 during HSV infection appears to be to down-regulate the expression of the major histocompatibility complex (MHC) class I on the surface of infected cells.

[0076] The recombinant DNA may also include at least one, and preferably at least two, sequences coding for the tetracycline repressor with expression of these sequences being under the control of an immediate early promoter, preferably ICPO or ICP4. The sequence for the HSV ICPO and ICP4 promoters and for the genes whose regulation they endogenously control are well known in the art (Perry, et al., J. Gen. Virol. 67:2365-2380 (1986); McGeoch et al., J. Gen. Virol. 72:3057-3075 (1991); McGeoch et al., Nucl. Acid Res. 14: 1727-1745 (1986)) and procedures for making viral vectors containing these elements have been previously described (see US published application 2005 -02665641h one embodiment, the tetR has the sequence of SEQ ID NO: 9.

[0077] These promoters are not only very active in promoting gene expression, they are also specifically induced by VP 16, a transactivator released when HSV-1 infects a cell. Thus, transcription from ICPO promoter is particularly high when repressor is most needed to shut down virus replication. Once appropriate DNA constructs have been produced, they may be incorporated into HSV-1 virus using methods that are well known in the art. One appropriate procedure is described in US 2005-0266564 but other methods known in the art may also be employed.

[0078] In various embodiments, the variant gene comprises at least one amino acid change that deviates from the wild-type sequence of the gene. In one embodiment, an oncolytic HSV described herein can contain two or more amino acid substitutions in at least one variant gene. The at least two amino acid substitutions can be found in the same gene, for example, the gK variant gene contains at least two amino acid substitutions. Alternatively, the at least two amino acid substitutions can be found in the at least two different genes, for example, the gK variant gene and the UU24 variant gene each contains at least one amino acid substitutions.

[0079] SEQ ID NO: 2 is the amino acid sequence encoding gK (strain KOS).

MLAVRSLQHLSTWLITAYGLVLVWYTVFGASPLHRCIYAVRPT

GTNNDTALVWMKMNQTLLFLGAPTHPPNGGWRNHAHICYANLIAGRWPFQVPPDATN

RRIMNVHEAWCLETLWYTRVRLVWGWFLYLAFVALHQRRCMFGWSPAHKMVAPAT

YLLNYAGRIVSSVFLQYPYTKITRLLCELSVQRQNLVQLFETDPVTFLYHRPAIGVI V

GCELMLRFVAVGLIVGTAFISRGACAITYPLFLTITTWCFVSTIGLTELYCILRRGP A

PKNADKAAAPGRSKGLSGVCGRCCSIILSGIAMRLCYIAWAGWLVALHYEQEIQRR

LFDV (SEQ ID NO: 2)

[0080] SEQ ID NO: 3 is the amino acid sequence encoding UL24 (strain KOS).

MAARTRSLVERRRVLMAGVRSHTRFYKALAKEVREFHATKICGT LLTLLSGSLQGRSVFEATRVTLICEVDLGPRRPDCICVFEFANDKTLGGVCVIIELKT

CKYISSGDTASKREQRATGMKQLRHSLKLLQSLAPPGDKIVYLCPVLVFVAQRTLRVS RVTRLVPQKVSGNITAWRMLQSLSTYTVPMEPRTQRARRRRGGAARGSASRPKRSHS GARDPPEPAARQVPPADQTPASTEGGGVLKRIAALFCVPVATKTKPRAASE (SEQ ID NO: 3)

[0081] Exemplary amino acid substitutions present in the variant gene are described in Table 1.

[0082] In Table 1,“X” refers to any known amino acid. It is specifically contemplated herein that any amino acid in a variant gene can be substituted for any known amino acid. The list provided in Table 1 is meant to be exemplary, and is in no way supposed to be limiting to the invention. All mutations listed in table 1 for gK are derived from the HSV-1 KOS strain.

[0083] The oncolytic HSV described herein comprises a sequence encoding a ribozyme. A ribozyme is an RNA molecule that is capable of catalyzing a biochemical reaction in a similar manner as a protein enzyme. For example, a ribozyme is commonly known to facilitate cleavage or ligation of RNA and DNA, and peptide bond formation. Ribozymes have further roles in RNA processing, such as RNA splicing, viral replication, and transfer RNA biosynthesis. In one embodiment, the oncolytic HSV described herein has a ribozyme sequence that is naturally occurring. In an alternative embodiment, the oncolytic HSV described herein has a synthetic ribozyme sequence, e.g., a non-naturally occurring ribozyme. Ribozymes are further described in, e.g., Yen et ah, Nature 431:471-476, 2004, the contents of which are incorporated herein by reference in its entirety. In one embodiment, the ribozyme is N 107 ribozyme.

[0084] SEQ ID NO: 4 is a nucleotide sequence encoding N107 ribozyme.

ctgaggtgcaggtacatccagctgacgagtcccaaataggacgaaacgcgcttcggtgtg tcctggattcc actgctatcc (SEQ ID NO: 4)

[0085] In one embodiment, the oncolytic HSV described herein further comprises at least one polypeptide that encodes a product (e.g., a protein, a gene, a gene product, or an antibody or antibody reagent) that can increase the efficacy of the oncolytic HSV to induce an anti-tumor-specific immunity. Exemplary products include, but are not limited to, interleukin 2 (IL2), interleukin 12 (IL12), interleukin 15 (IL15), an anti -PD- 1 antibody or antibody reagent, an anti-PD-Ll antibody or antibody reagent, an anti-OX40 antibody or antibody reagent, CTLA-4 antibody or antibody reagent, TIM-3 antibody or antibody reagent, and TIGIT antibody or antibody reagent. In one embodiment, the product is a fragment of IL-2, IL-12, or IL-15, that comprises the same functionality of IL-2, IL-12, or IL-15, as described herein below. One skilled in the art can determine if an anti-tumor specific immunity is induced using stand techniques in the art, which are further described in, for example, Clay, TM, et al. Clinical Cancer Research (2001); Malyguine, A, et al. J Transl Med (2004); or Macchia I, et al. BioMed Research International (2013), each of which are incorporated herein by reference in their entireties.

[0086] Interleukin-2 (IL-2) is an interleukin, a type of cytokine signaling molecule in the immune system. IL-2 regulates the activities of white blood cells (for example, leukocytes and lymphocytes) that are responsible for immunity. IL-2 is part of the body's natural response to microbial infection, and in discriminating between foreign "non-self and "self 1 . It mediates its effects by binding to IL-2 receptors, which are expressed by lymphocytes. Sequences for IL-2, also known TCGF and lympokine, are known for a number of species, e.g., human IL-2 (NCBI Gene ID: 3558) polypeptide (e.g., NCBI Ref Seq NP_000577.2) and mRNA (e.g., NCBI Ref Seq NM_000586.3). IL-2 can refer to human IL-2, including naturally occurring variants, molecules, and alleles thereof. IL-2refers to the mammalian IL-2of, e.g., mouse, rat, rabbit, dog, cat, cow, horse, pig, and the like. The nucleic sequence of SEQ ID NO: 5 comprises the nucleic sequence which encodes IL-2.

[0087] SEQ ID NO: 5 is the nucleotide sequence encoding IL-2.

atgta

61 caggatgcaa ctcctgtctt gcattgcact aagtcttgca cttgtcacaa acagtgcacc

121 tacttcaagt tctacaaaga aaacacagct acaactggag catttactgc tggatttaca

181 gatgattttg aatggaatta ataattacaa gaatcccaaa ctcaccagga tgctcacatt

241 taagttttac atgcccaaga aggccacaga actgaaacat cttcagtgtc tagaagaaga

301 actcaaacct ctggaggaag tgctaaattt agctcaaagc aaaaactttc acttaagacc

361 cagggactta atcagcaata tcaacgtaat agttctggaa ctaaagggat ctgaaacaac

421 attcatgtgt gaatatgctg atgagacagc aaccattgta gaatttctga acagatggat

481 taccttttgt caaagcatca tctcaacact gacttgataa (SEQ ID NO: 5)

[0088] Interleukin- 12 (IL-12) is an interleukin naturally produced by dendritic cells, macrophages, neutrophils, and human B-lymphoblastoid cells (NC-37) in response to antigenic stimulation. IL-12 is involved in the differentiation of naive T cells into Thl cells. It is known as a T cell-stimulating factor, which can stimulate the growth and function of T cells. It stimulates the production of interferon-gamma

(IFN-g) and tumor necrosis factor-alpha (TNF-a) from T cells and natural killer (NK) cells, and reduces

IL-4 mediated suppression of IFN-g. Sequences for IL-12a, also known P35, CLMF, NFSK, and KSF1, are known for a number of species, e.g., human IL-12a (NCBI Gene ID: 3592) polypeptide (e.g., NCBI

Ref Seq NP_000873.2) and mRNA (e.g., NCBI Ref Seq NM_000882.3). IL-12 can refer to human IL-

12, including naturally occurring variants, molecules, and alleles thereof. IL-12 refers to the mammalian

IL-12 of, e.g., mouse, rat, rabbit, dog, cat, cow, horse, pig, and the like. The nucleic sequence of SEQ ID

NO:6 comprises the nucleic sequence which encodes IL-12a.

[0089] SEQ ID NO: 6 is the nucleotide sequence encoding IL-12a.

aatgtggccc cctgggtcag

241 cctcccagcc accgccctca cctgccgcgg ccacaggtct gcatccagcg gctcgccctg 301 tgtccctgca gtgccggctc agcatgtgtc cagcgcgcag cctcctcctt gtggctaccc 361 tggtcctcct ggaccacctc agtttggcca gaaacctccc cgtggccact ccagacccag 421 gaatgttccc atgccttcac cactcccaaa acctgctgag ggccgtcagc aacatgctcc 481 agaaggccag acaaactcta gaattttacc cttgcacttc tgaagagatt gatcatgaag 541 atatcacaaa agataaaacc agcacagtgg aggcctgttt accattggaa ttaaccaaga 601 atgagagttg cctaaattcc agagagacct ctttcataac taatgggagt tgcctggcct 661 ccagaaagac ctcttttatg atggccctgt gccttagtag tatttatgaa gacttgaaga 721 tgtaccaggt ggagttcaag accatgaatg caaagcttct gatggatcct aagaggcaga 781 tctttctaga tcaaaacatg ctggcagtta ttgatgagct gatgcaggcc ctgaatttca 841 acagtgagac tgtgccacaa aaatcctccc ttgaagaacc ggatttttat aaaactaaaa 901 tcaagctctg catacttctt catgctttca gaattcgggc agtgactatt gatagagtga 961 tgagctatct gaatgcttcc taa (SEQ ID NO: 6)

[0090] Interleukin- 15 (IL-15) is an interleukin secreted by mononuclear phagocytes (and some other cells) following infection by virus(es). This cytokine induces cell proliferation of natural killer cells; cells of the innate immune system whose principal role is to kill virally infected cells. Sequences for IL-15 are known for a number of species, e.g., human IL-15 (NCBI Gene ID: 3600) polypeptide (e.g., NCBI Ref Seq NP_000585.4) and mRNA (e.g., NCBI Ref Seq NM_000576.1). IL-15 can refer to human IL-15, including naturally occurring variants, molecules, and alleles thereof. IL-15 refers to the mammalian IL- 15 of, e.g., mouse, rat, rabbit, dog, cat, cow, horse, pig, and the like. The nucleic sequence of SEQ ID NO: 7 comprises the nucleic sequence which encodes IL-15.

[0091] SEQ ID NO: 7 is the nucleotide sequence encoding IL-15.

atgaga atttcgaaac cacatttgag aagtatttcc atccagtgct

421 acttgtgttt acttctaaac agtcattttc taactgaagc tggcattcat gtcttcattt

481 tgggctgttt cagtgcaggg cttcctaaaa cagaagccaa ctgggtgaat gtaataagtg

541 atttgaaaaa aattgaagat cttattcaat ctatgcatat tgatgctact ttatatacgg

601 aaagtgatgt tcaccccagt tgcaaagtaa cagcaatgaa gtgctttctc ttggagttac

661 aagttatttc acttgagtcc ggagatgcaa gtattcatga tacagtagaa aatctgatca

721 tcctagcaaa caacagtttg tcttctaatg ggaatgtaac agaatctgga tgcaaagaat

781 gtgaggaact ggaggaaaaa aatattaaag aatttttgca gagttttgta catattgtcc

841 aaatgttcat caacacttct tga (SEQ ID NO: 7)

[0092] Antibodies or antibody reagents that bind to PD-1, or its ligand PD-L1, are described in US Patent Nos. 7,488,802; 7,943,743; 8,008,449; 8,168,757; 8,217,149, and PCT Published Patent Application Nos: W003042402, WO2008156712, W02010089411, W02010036959, WO2011066342, WO2011159877, WO2011082400, and WO2011161699; which are incorporated by reference herein in their entireties. In certain embodiments the PD-1 antibodies include nivolumab (MDX 1106, BMS 936558, ONO 4538), a fully human IgG4 antibody that binds to and blocks the activation of PD-1 by its ligands PD-L1 and PD- L2; lambrolizumab (MK-3475 or SCH 900475), a humanized monoclonal IgG4 antibody against PD-1; CT-011 a humanized antibody that binds PD-1; AMP -224, a fusion protein of B7-DC; an antibody Fc portion; BMS-936559 (MDX- 1105-01) for PD-L1 (B7-H1) blockade. Also specifically contemplated herein are agents that disrupt or block the interaction between PD-1 and PD-L1, such as a high affinity PD-L1 antagonist. [0093] Non-limiting examples of PD-1 antibodies include: pembrolizumab (Merck); nivolumab (Bristol Meyers Squibb); pidilizumab (Medivation); and AUNP12 (Aurigene). Non-limiting examples of PD-L1 antibodies can include atezolizumab (Genentech); MPDL3280A (Roche); MEDI4736 (AstraZeneca); MSB0010718C (EMD Serono); avelumab (Merck); and durvalumab (Medimmune).

[0094] Antibodies that bind to 0X40 (also known as CD134), are described in US Patent Nos.

US9006399, US9738723, US9975957, US9969810, US9828432; PCT Published Patent Application Nos: WO2015153513, WO2014148895, W02017021791, W02018002339; and US Application Nos:

US20180273632; US20180237534; US20180230227; US20120269825; which are incorporated by reference herein in their entireties.

[0095] Antibodies that bind to CTLA-4, are described in US Patent Nos. US9714290, US6984720, US7605238, US6682736, US7452535; PCT Published Patent Application No: W02009100140; and US Application Nos: US200901 17132A, US20030086930, US20050226875, US20090238820; which are incorporated by reference herein in their entireties.

[0096] Non-limiting examples of CTLA-4 antibodies include: ipilimumab (Bristol-Myers Squibb)

[0097] Antibodies that bind to TIM3, are described in US Patent Nos. US8552156, US9605070, US9163087, US8329660; PCT Published Patent Application No: WO2018036561, WO2017031242, WO2017178493; and US Application Nos: US20170306016, US20150110792, US20180057591, US20160200815; which are incorporated by reference herein in their entireties.

[0098] Antibodies that bind to TIGIT (also known as CD134), are described in US Patent Nos. US 10017572, US9713641; PCT Published Patent Application No: W02017030823; and US Application Nos: US20160355589, US20160176963, US20150322119; which are incorporated by reference herein in their entireties.

[0099] One aspect of the invention described herein provides a composition comprising any of the oncolytic HSV described herein. In one embodiment, the composition is a pharmaceutical composition. As used herein, the term“pharmaceutical composition” refers to the active agent in combination with a pharmaceutically acceptable carrier e.g. a carrier commonly used in the pharmaceutical industry.

[00100] In one embodiment, the composition further comprises at least one pharmaceutically acceptable carrier. Pharmaceutically acceptable carriers are well known in the art and include aqueous solutions such as physiologically buffered saline or other solvents or vehicles such as glycols, glycerol, vegetable oils (e.g., olive oil) or injectable organic esters. A pharmaceutically acceptable carrier can be used to administer the compositions of the invention to a cell in vitro or to a subject in vivo. A pharmaceutically acceptable carrier can contain a physiologically acceptable compound that acts, for example, to stabilize the composition or to increase the absorption of the agent. A physiologically acceptable compound can include, for example, carbohydrates, such as glucose, sucrose or dextrans, antioxidants, such as ascorbic acid or glutathione, chelating agents, low molecular weight proteins or other stabilizers or excipients. Other physiologically acceptable compounds include wetting agents, emulsifying agents, dispersing agents or preservatives, which are particularly useful for preventing the growth or action of

microorganisms. Various preservatives are well known and include, for example, phenol and ascorbic acid. One skilled in the art would know that the choice of a pharmaceutically acceptable carrier, including a physiologically acceptable compound, depends, for example, on the route of administration of the oncolytic HSV.

[00101] The oncolytic viruses described herein or composition thereof can be administered to a subject having cancer. In one embodiment, an agent that regulates the tet operator is further administered with the oncolytic viruses described herein or composition thereof. Exemplary agents include, but are not limited to, doxy cy cline or tetracycline.

[00102] In one embodiment, the cancer is a solid tumor. The solid tumor can be malignant or benign. In one embodiment, the subject is diagnosed or has been diagnosed with having a carcinoma, a melanoma, a sarcoma, a germ cell tumor, and a blastoma. Exemplary cancers include, but are in no way limited to, non-small-cell lung cancer, breast cancer, brain cancer, colon cancer, prostate cancer, liver cancer, lung cancer, ovarian cancer, skin cancer, and pancreatic cancer. In one embodiment, the cancer is metastatic. These types of cancers are known in the art and can be diagnosed by a skilled clinician using standard techniques known in the art, for example blood analysis, blood cell count analysis, tissue biopsy non- invasive imaging, and review of family history.

[00103] In cases where tumors are readily accessible, e.g., tumors of the skin, mouth or which are accessible as the result of surgery, virus can be applied topically. In other cases, it can be administered by injection or infusion. The agent that regulates the tet operator, for example doxycycline or tetracycline, used prior to infection or at a time of infection can also be administered in this way or it can be administered systemically.

[00104] Although certain routes of administration are provided in the foregoing description, according to the invention, any suitable route of administration of the vectors may be adapted, and therefore the routes of administration described above are not intended to be limiting. Routes of administration may including but are not limited to, intravenous, oral, buccal, intranasal, inhalation, topical application to a mucosal membrane or injection, including intratumoral, intradermal, intrathecal, intracistemal, intralesional or any other type of injection. Administration can be effected continuously or intermittently and will vary with the subject and the condition to be treated. One of skill in the art would readily appreciate that the various routes of administration described herein would allow for the inventive vectors or compositions to be delivered on, in, or near the tumor or targeted cancer cells. One of skill in the art would also readily appreciate that various routes of administration described herein will allow for the vectors and compositions described herein to be delivered to a region in the vicinity of the tumor or individual cells to be treated. “In the vicinity” can include any tissue or bodily fluid in the subject that is in sufficiently close proximity to the tumor or individual cancer cells such that at least a portion of the vectors or compositions administered to the subject reach their intended targets and exert their therapeutic effects.

[00105] Prior to administration, the oncolytic viruses can be suspended in any pharmaceutically acceptable solution including sterile isotonic saline, water, phosphate buffered saline, 1,2-propylene glycol, polyglycols mixed with water, Ringer's solution, etc. The exact number of viruses to be administered is not crucial to the invention but should be an "effective amount," i.e., an amount sufficient to cause cell lysis extensive enough to generate an immune response to released tumor antigens. Since virus is replicated in the cells after infection, the number initially administered will increase rapidly with time. Thus, widely different amounts of initially administered virus can give the same result by varying the time that they are allowed to replicate, i.e., the time during which cells are exposed to tetracycline. In general, it is expected that the number of viruses (PFU) initially administered will be between 1 x 10 6 and l x 10 10 .

[00106] Tetracycline or doxycycline will be administered either locally or systemically to induce viral replication at a time of infection or 1-72 h prior to infection. The amount of tetracycline or doxycycline to be administered will depend upon the route of delivery. In vitro, 1 pg/ml of tetracycline is more than sufficient to allow viral replication in infected cells. Thus, when delivered locally, a solution containing anywhere from 0.01 pg/ml to 100 pg/ml may be administered. However, much higher doses of tetracycline or doxycycline (e.g., 10-500 mg/ml) can be employed if desired. The total amount given locally at a single time will depend on the size of the tumor or tumors undergoing treatment but in general, it is expected that between 0.5 and 200 ml of tetracycline solution would be used at a time. When given systemically, higher doses of tetracycline will be given but it is expected that the total amount needed will be significantly less than that typically used to treat bacterial infections (usually 1-2 grams per day in adults divided into 2-4 equal doses and, in children, 10-20 mg per pound of body weight per day). It is expected that 100-200 mg per day should be effective in most cases.

[00107] The effectiveness of a dosage, as well as the effectiveness of the overall treatment can be assessed by monitoring tumor size using standard imaging techniques over a period of days, weeks and/or months. A shrinkage in the size or number of tumors is an indication that the treatment has been successful. If this does not occur or continue, then the treatment can be repeated as many times as desired. In addition, treatment with virus can be combined with any other therapy typically used for solid tumors, including surgery, radiation therapy or chemotherapy. In addition, the procedure can be combined with methods or compositions designed to help induce an immune response.

[00108] As used herein, the term“therapeutically effective amount” is intended to mean the amount of vector which exerts oncolytic activity, causing attenuation or inhibition of tumor cell proliferation, leading to tumor regression. An effective amount will vary, depending upon the pathology or condition to be treated, by the patient and his or her status, and other factors well known to those of skill in the art. Effective amounts are easily determined by those of skill in the art. In some embodiments a therapeutic range is from 10 3 to 10 12 plaque forming units introduced once. In some embodiments a therapeutic dose in the aforementioned therapeutic range is administered at an interval from every day to every month via the intratumoral, intrathecal, convection-enhanced, intravenous or intra-arterial route.

[00109] The invention provided herein can further be described in the following numbered paragraphs:

1. An oncolytic Herpes Simplex Virus (HSV) comprising recombinant DNA, wherein the recombinant DNA has both ICP0 and ICP34.5 gene product deleted or does not express functional ICP0 and ICP34.5 gene product.

2. An oncolytic Herpes Simplex Virus (HSV) comprising recombinant DNA, wherein the recombinant DNA comprises:

a) a gene comprising a 5’ untranslated region and a HSV -1, or HSV -2, ICP27 gene that is operably linked to an ICP27 promoter comprising a TATA element;

b) a tetracycline operator sequence positioned between 6 and 24 nucleotides 3’ to said TATA element, wherein the ICP27 gene lies 3’ to said tetracycline operator sequence;

c) a ribozyme sequence located in said 5’ untranslated region of said gene;

d) a gene sequence encoding tetracycline repressor operably linked to an HSV immediate-early promoter, wherein the gene sequence is located at the ICP0 locus; and

e) a variant gene that increases syncytium formation as compared to wild type, wherein the HSV-1, or HSV-2, variant gene is selected from the group consisting of: a glycoprotein K (gK) variant; a glycoprotein B (gB) variant; a UL24 variant; and UL20 gene variant,

wherein said oncolytic HSV does not encode functional ICP0 and functional ICP34.5 protein.

3. The oncolytic HSV of paragraph 2, wherein the variant gene is a gK variant gene that encodes an amino acid substitution selected from the group consisting of: an Ala to Val amino acid substitution corresponding to amino acid 40 of SEQ ID NO: 2; an Ala to“x” amino acid substitution corresponding to amino acid 40 of SEQ ID NO: 2, wherein“x” is any amino acid; an Asp to Asn amino acid substitution corresponding to amino acid 99 of SEQ ID NO: 2; a Leu to Pro amino acid substitution corresponding to amino acid 304 of SEQ ID NO: 2; and an Arg to Leu amino acid substitution corresponding to amino acid 310 of SEQ ID NO: 2.

4. The oncolytic HSV of any preceding paragraph, wherein the variant gene is a UL24 gene that encodes a Ser to Asn amino acid substitution corresponding to amino acid 113 of SEQ ID NO: 3. 5. The oncolytic HSV of any preceding paragraph, further comprising a variant UL24 gene that encodes a Ser to Asn amino acid substitution corresponding to amino acid 113 of SEQ ID NO: 3.

6. The oncolytic HSV of any preceding paragraph, wherein the tetracycline operator sequence comprises two Op2 repressor binding sites.

7. The oncolytic HSV of any preceding paragraph, wherein the ICP27 promoter is an HSV-1 or HSV-2 ICP27 promoter.

8. The oncolytic HSV of any preceding paragraph, wherein the immediate-early promoter is an HSV-1 or HSV-2 immediate-early promoter.

9. The oncolytic HSV of any preceding paragraph, wherein the HSV immediate- early promoter is selected from the group consisting of: ICPO promoter and ICP4 promoter.

10. The oncolytic HSV of any preceding paragraph, wherein the recombinant DNA is part of the HSV-1 genome.

11. The oncolytic HSV of any preceding paragraph, wherein the recombinant DNA is part of the HSV-2 genome.

12. The oncolytic HSV of any preceding paragraph, further comprising a pharmaceutically acceptable carrier.

13. The oncolytic HSV of any preceding paragraph, further encoding at least one polypeptide that can increase the efficacy of the oncolytic HSV to induce an anti-tumor-specific immunity.

14. The oncolytic HSV of any preceding paragraph, wherein the at least one polypeptide encodes a product selected from the group consisting of: interleukin 2 (IL2), interleukin 12 (IL12), interleukin 15 (IL15), an anti-PD-1 antibody or antibody reagent, an anti-PD-Ll antibody or antibody reagent, an anti-OX40 antibody or antibody reagent, CTLA-4 antibody or antibody reagent, TIM-3 antibody or antibody reagent, and TIGIT antibody or antibody reagent.

15. A composition comprising an oncolytic HSV of any preceding paragraph.

16. The composition of any preceding paragraph, further comprising a

pharmaceutically acceptable carrier.

17. A method for treating cancer, the method comprising administering the oncolytic HSV of any preceding paragraph or the composition of any preceding paragraph to a subject having cancer.

18. The method of any preceding paragraph, wherein the cancer is a solid tumor.

19. The method of any preceding paragraph, wherein the tumor is benign or malignant. 20. The method of any preceding paragraph, wherein the subject is diagnosed or has been diagnosed as having cancer is selected from the list consisting of: a carcinoma, a melanoma, a sarcoma, a germ cell tumor, and a blastoma.

21. The method of any preceding paragraph, wherein the subject is diagnosed or has been diagnosed as having a cancer selected from the group consisting of: non-small-cell lung cancer, breast cancer, brain cancer, colon cancer, prostate cancer, liver cancer, lung cancer, ovarian cancer, skin cancer, and pancreatic cancer.

22. The method of any preceding paragraph, wherein the cancer is metastatic.

23. The method of any preceding paragraph, further comprising administering an agent that regulates the tet operator-containing promoter.

24. The method of any preceding paragraph, wherein the agent is doxy cy cline or tetracycline.

25. The method of any preceding paragraph, wherein the agent is administered locally or systemically.

26. The method of any preceding paragraph, wherein the oncolytic virus is administered directly to the tumor.

EXAMPLES

[00110] HSV replicates in epithelial cells and fibroblasts and establishes life-long latent infection in neuronal cell bodies within the sensory ganglia of infected individuals. During productive infection, HSV genes fall into three major classes based on the temporal order of their expression: immediate -early (IE), early (E), and late (L) (Roizman, 2001). The HSV-1 viral proteins directly relevant to the current study are two IE regulatory proteins, ICP27 and ICP0. ICP27 is an essential viral IE protein that modifies and transports viral transcripts to the cytoplasm (Sandri-Goldin, 2008). Although not essential for productive infection, ICP0 is required for efficient viral gene expression and replication at low multiplicities of infection in normal cells and efficient reactivation from latent infection (Cai and Schaffer, 1989; Leib et al., 1989; Yao and Schaffer, 1995). Studies have revealed that ICP0 is needed to stimulate translation of viral mRNA in quiescent cells (Walsh and Mohr, 2004) and plays a key role in blocking IFN-induced inhibition of viral infection (Eidson et al., 2002; Mossman et al., 2000). ICP0 also has E3 ubiquitin ligase activity and induces the disruption and degradation of ND10 proteins that have been implicated in controlling cell senescence and DNA repair (Everett, 2006). Given that tumor cells are impaired in various cellular pathways, such as DNA repair, interferon signaling, and translation regulation (Kastan and Bartek, 2004; Mohr, 2005), it is not surprising that ICP0 deletion mutants replicate more efficiently in cancer cells than in normal cells, in particular, quiescent cells and terminally differentiated cells. The oncolytic potential of ICPO mutants was first illustrated by Yao and Schaffer (Y ao and Schaffer, 1995), who showed that the plaque -forming efficiency of an ICPO null mutant in human osteoscarcoma cells (U20S) is 100- to 200-fold higher than in non tumorigenic African green monkey kidney cells (Vero). The preferential ability of ICPO mutants to replicate in selected types of cancer cells has been further explored in the recent study of Hummel et al. with an HSV-1 virus lacking both ICPO and HSV-1 virion- associated transactivator, VP16 (Hummel et al., 2005).

[00111] Using the T-REx™(Invitrogen, CA) gene switch technology and a self-cleaving ribozyme, a novel regulatable oncolytic HSV-1 recombinant, KTR27, which encodes the tetR gene controlled by the ICPO promoter at the ICPO locus and the essential ICP27 gene under control of the tetO-bearing ICP27 promoter was constructed (Y ao et al., 2010). Infection of normal replicating cells as well as multiple human cancer cell types with KTR27 in the presence of tetracycline led to 1000- to 250,000-fold higher progeny virus production than in the absence of tetracycline, while little viral replication and virus- associated cytotoxicity are observed in infected growth-arrested normal human cells. Intratumoral inoculation with KTR27 was shown to markedly inhibit tumor growth in a xenograft model of human non-small -cell lung cancer in nude mice. It was shown further that replication of KTR27 in the inoculated tumors can be efficiently controlled by local co-delivery of tetracycline to the target tumors at the time of KTR27 inoculation. Collectively, KTR27 possesses a unique pharmacological feature that can limit its replication to the targeted tumor microenvironment with localized tetracycline delivery, thus minimizing unwanted viral replication in distant tissues following local virotherapy. This regulatory mechanism would also allow the replication of the virus to be quickly shut down should adverse effects be detected.

[00112] Human cancers are heterogeneous and contain multiple barriers that limit viruses from efficiently infecting distant tumor cells following initial viral replication (McKee et al, 2006; Nagano et al, 2008; Pluen et al., 2001). In an effort to overcome the inability of oncolytic viruses or viral vectors to infect or deliver therapeutic gene to large number of tumor cells within the tumor mass, a viral fusogentic glycoprotein approach has been employed. It was specifically contemplated that a fusogenic variant of KTR27 could offer a significant immunological benefit in augmenting the anti-tumor response induced by KTR27.

[00113] HSV encodes several surface glycoproteins that involve the fusion of the viral envelope with the cell membrane as well as the fusion of an infected cell with adjacent cells, leading to syncytia. HSV variants exhibiting extensive syncytium formation consisting of as many as thousands of nuclei can be isolated by the propagation of virus in cell cultures (Pertel and Spear, 1996). Studies have shown that mutations in the cytoplasmic domain of HSV-1 glycoprotein B (gB) can lead to extensive syncytial (Baghian A et al., J Virol. 67:2396-2401, 1993; Bzik DJ et al., Virology 137: 185-190, 1984; Cai WH et al., J Virol 62:2596-2604, 1988; Engel JP et al., Virology 192: 112-120, 1993; Diakidi-Kosta A et al., Gage PJ et al., J Virol 67:2191-2201, 1993; Virus Res 93-99-108, 2003). HSV-1 syncytial mutations have also been identified in gene encoding for glycoprotein K (gK) (Bond VC et al., J Gen Virol 61:245-254, 1982; Bond VC and Person S, Virology 132:368-376, 1984; Debroy C et al., et al., Virology 145:36-48, 1985; Hutchinson et al., J Virol 66:5603-5609; Pogue-Geile KL et al., Virology 136: 100-109, 1984; Pogue-Geile KL et al., Virology 157:67-74, 1987), the UL20 gene (Melancon JM et al., J Virol 78:7329- 7343, 2004) and the UL24 gene (Sanders PG et al., J Gen Virol 63:277-95, 1982; Jacobson JG et al., J Virol 63: 1839-1843; Jacobson JG et al., Virology 242: 161-169, 1998). Notably, UL20 interacts with both gB and gK (Foster TP et al., J Virol 82:6310-6323, 2008; Chouljenko VN et al., J Virol 84:8596- 8606).

[00114] During the propagation of KTR27 in U20S cells, the presence of fusogenic forms of KTR27 was noticed in addition to the non-fiisogenic regular KTR27 in passage 3 KTR27 stock. KTR27-F was a second-round plaque-purified syncytium -forming KTR27 variant (KTR27-F) with a plaque size ~12 times larger than that of parental KTR27 and exhibited similar replication efficiency as KTR27 in U20S cells. While the replication efficiency of KTR27-F and KTR27 is comparable in the tested various human cancer cell lines, it was shown that KTR27-F exhibits more stringent tet-dependent regulation in these cells lines with regulatability ranges from ~65, 000-fold to ~881,000-fold, whereas the degrees of KTR27 regulation ranged from ~785-fold to ~37, 000-fold. The effectiveness of KTR27-F in killing tested human lung and breast tumor cell lines is enhanced 11 to 37-fold at a low multiplicity of infection.

[00115] Sequence analyses of KTR27-F genome confirms that KTR27-F encodes tetR at the HSV-1 ICP0 locus, and ICP27 under the control of the tetO-containing ICP27 promoter with a self-cleaving ribozyme present at the 5’untranslated region of ICP27 gene. Using the parental wild-type HSV-1 strain KOS genome as the reference, a single amino acid substitution, Ala to Val at residue 40, is identified in the gK gene of KTR27-F, while no mutation is found in the gB gene and the UL20 gene. KTR27-F also contains a single amino acid substitution, Ser to Asn at the residue 113 in UL24 gene. Because the same Ala to Val substitution has been identified in the HSV-1 syncytial mutants, synl02, synl05 and syn 33 (Dolter KE et al., J Virol 68:8277-8281, 1994), which were isolated from KOS-infected cells in the presence of mutagens, 2-aminopurine (Bond VC et al., J Gen Virol 61:245-254, 1982) or 5-bromodeoxyuridine (Read GS et al., J Virol 35: 105-113, 1980), it is specifically contemplated that the Ala to Val substitution at residue 40 of the gK gene in KTR27-F is a key factor for the observed fusogenic phenotype. Previous studies identified several additional syncytial mutations in the gK gene, which include Ala to Thr at residue 40 in syn20, Asp to Asn at residue 99 in syn31 and syn32, Leu to Pro at residue 304 in syn30, and Arg to Leu at residue 310 (Dolter KE et al., J Virol 68:8277-8281, 1994). Whether the Ser to Asn substitution at residue 113 in the UL24 gene contributes to the fusogenic activity of KTR27-F remains to be determined. [00116] Surprisingly, sequencing analysis indicates that KTR27-F does not encode the HSV-1 ICP34.5 gene. Like ICPO, the ICP34.5 gene is located in the inverted repeat region that flanks the unique long region of the HSV-1 genome. PCR analyses with primers specific for the ICP34.5 gene indicate that the ICP34.5 gene is likely non-specifically lost during the construction of K0R27-lacZ, the parental virus of KTR27.

MATERIALS AND METHODS

[00117] Cells and viruses.

[00118] The osteosarcoma line U20S and the African green monkey kidney cell line (Vero) were grown in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS)

(Y ao and Schaffer, 1995). U20S cells express a cellular activity that can effectively complement the function of the HSV-1 IE regulatory protein ICPO lacking in ICPO- mutant viruses (Y ao and Schaffer, 1995). Primary human fibroblasts were grown in DMEM containing 10% FBS plus 1 x non-essential amino acids (Y ao and Eriksson, 1999).

[00119] Human non-small-cell lung cancer cells (H1299), human breast cancer cells (MCF7), human prostate cancer cells (PC1435), and pancreatic cancer cells (Pane 1) were cultured in DMEM containing 10% FBS. PC1435 and MCF7 were kindly provided by Dr. Sheng Xiao (Brigham and Women’s Hospital). Pane 1 was the kind gift of Dr. Edward Hwang (Brigham and Women’s Hospital).

[00120] 7134 is an ICPO-null mutant derived from HSV-1 strain KOS, in which both copies of the ICPO coding sequence are replaced by the LacZ gene of Escherichia coli (Cai and Schaffer, 1989). 7134 was propagated and assayed in U20S cells (Yao and Schaffer, 1995). K0R is an HSV-1 recombinant generated by recombinational replacement of the LacZ gene in 7134 with the DNA sequence encoding tetR (Y ao et ak, 2006). K0R27-lacZ was derived from K0R in which the ICP27 coding sequence was replaced with the LacZ gene by homologous recombination (Y ao et ak, 2010). KTR27 is a 7134-derived recombinant virus that encodes tetR under the control of HSV-1 ICPO promoter at the ICPO locus, and the essential ICP27 gene under the control of the tetO-containing ICP27 promoter and a self-cleaving ribozyme located at the 5’ untranslated region of ICP27 coding sequence (Yao et ak, J Virol, 2010) (U.S. Patent No.: 8,236,941).

[00121] Neurovirulence of KTR27-F.

[00122] A mouse model for the evaluation of the neurovirulence of KTR27-F was established by injecting 4-6 week female CD1 outbred mice (Charles River Laboratories, Wilmington, MA) with 20 pi of medium containing lxlO 7 PFU of KTR27-F or 7134. Intracerebral inoculation was performed with a 28 ½ gauge needle with a needle guard such that the distance from the guard to the needle tip was 5.5 mm, and to the beginning of the bevel of the needle was 4.5 mm. The needle was inserted at a point equidistant between the outer canthus of the eye, the front of the pinna, and midline of the head (Lynas et ak, 1993). Half of the mice inoculated with KTR27-F were given a normal diet, and the other half were fed a doxy cy cline -containing diet at 200 mg/kg (Bio-Serv, Frenchtown, NJ), beginning 3 days prior to inoculation and lasting for the duration of the experiment. Mice were examined for signs of illness for 29 days following inoculation.

[00123] All mouse studies were conducted in accordance with the protocols set forth by the Harvard Medical Area Standing Committee on Animals and the American Veterinary Medical Association. The Harvard Medical School animal management program is accredited by the Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC) and meets National Institutes of Health standards as set forth in“The Guide for the Care and Use of Laboratory Animals” (National Academy Press, 1996).

[00124] Illumina sequencing.

[00125] KTR27-F viral DNA was prepared from KTR27-F -infected U20S cells with Qiagen Genomic DNA kit. Quantitative real-time PCR analysis reveals close to 55% of total DNA represents KTR27F viral DNA. The isolated DNA (2.2 pig) was used for library construction with TruSeq DNA OCR-Free Library Preparation Kits at Translational Genomics Core Facility, Partners Healthcare, Cambrige, MA, targeting 550 bp fragments, and were sequenced on a 250 bp MiSeq run. The resulting contigs were assembled and analyzed in Illumina MiSeq Reporter Resequencing workflow using HSV-1 strain KOS genome as the reference.

RESULTS

[00126] Selection ofKTR27-F. During the propagation of KTR27 in U20S cells, the presence of fusogenic forms of KTR27 was noticed in addition to the non-fusogenic regular KTR27 in passage 3 KTR27 stock. To isolate fusogenic variants of KTR27, passage 3 KTR27 was diluted with DMEM containing 10% FBS followed by plaque purification. Specifically, 10 x 100 mm dishes of confluent 72 h-old U20S cells were infected with the diluted passage 3 KTR27 at either 100 PFU/dish or 200 PFU/dish. After 1 h incubation at 37 C, inoculation medium was removed and 10 ml/dish of DMEM growth medium containing tetracycline at 10 pg/ml were added to each dish. After an additional 3 h incubation at 37 C, tetracycline-containing medium was removed from individual dishes followed by addition of 1 ml/dish of fresh tetracycline-containing DMEM growth medium, Infected cells were then overlaid with 1% methylcellulose prepared in DMEM containing 5% FBS at 25 ml/dish. After incubation at 37 C for 72 h, infected dishes were stained with 10 ml/dish of 0.02% neutral-red prepared in DMEM. Individual single fusogenic plaques were picked at 20 h post neutral-red staining and suspended in 1.5 ml of DMEM growth medium followed by amplification in U20S cells in the presence of tetracycline. KTR27-F was a second-round plaque-purified syncytium-forming KTR27 variant with a plaque size -12-13 times larger than that of parental KTR27 at 48 and 72 h post-infection (Fig. 1), while exhibited similar replication efficiency as KTR27 in U20S cells. [00127] Control of KTR27-F replication by tetracycline. To assess the dependence of KTR27-F replication on the presence of tetracycline, Vero cells were infected with KTR27-F at a MOI of 1 PFU/cell in the presence and absence of tetracycline and the infected cells were harvested at 48 and 72 h post-infection (Fig. 2). While the yield of KTR27-F at 72 h post-infection was 1.26 x 10 6 PFU/ml, no infectious KTR27-F was detectable in cells infected in the absence of tetracycline at either time point, indicating that the regulation of KTR27-F viral replication by tetracycline is greater than 1 ,260,000-fold in Vero cells.

[00128] Tetracycline-dependent replication ofKTR27-Fin cultured human tumor cells and primary cells. Having demonstrated that the replication of KTR27-F is as productive as that of KTR27 in Vero cells, and that KTR27-F is unable to replicate in Vero cells in the absence of tetracycline, the replicative and regulative abilities of KTR27-F in various human tumor cell lines were then investigated. As a control, KTR27 was also used in these experiments. As depicted in Fig. 3 A, KTR27-F infection of human lung, brain, and breast tumor cell lines demonstrated that KTR27-F regulatability ranges from ~52, 000-fold to -880, 000-fold, whereas the degrees of KTR27 regulation ranged from -785-fold to -37, 000-fold. The enhanced regulatability of KTR27-F relative to that of KTR27 is a combination of slightly increased viral yields in the presence of tetracycline and significantly reduced yields in the absence of tetracycline.

[00129] The drastic enhancement of the cytotoxic effect of KTR27-F relative to that of KTR27 is best visualized by the cytotoxicity assays depicted in Fig. 3B. In the human cancer cell lines H1299, U87, MDA-MB-231, and MCF-7, cell death following KTR27-F infection in the presence of tetracycline was -11-fold, -2.3-fold, -28-fold, and -37-fold higher, respectively, than cell death following KTR27 infection in the presence of tetracycline. To directly examine the oncoselectivity of KTR27-F in non tumor primary human cells relative to a cancer line of similar tissue type, MCF-7 cells and dividing and non-dividing human breast fibroblasts were infected with KTR27-F in the presence and absence of tetracycline as described by Yao et al. (2010). The results of Fig. 4A demonstrate that replication of KTR27-F in primary human fibroblasts, particularly non-dividing fibroblasts, is reduced compared with replication in MCF-7. Yields of KTR27-F at 72 h post-infection in MCF7 cells were approximately 21,800-fold higher than those in the serum-starved fibroblasts, and 1,530-fold higher than in fibroblasts grown in normal growth medium. Additionally, the cytotoxic effect of KTR27-F infection in the presence of tetracycline was evaluated (Fig. 4B). The results show that KTR27-F exhibits little cytotoxic effect in non-dividing fibroblasts, modest cytotoxic effect in dividing fibroblasts (88% of infected cells remained viable), and drastic cytotoxic effect in MCF-7 cells (0.8% of infected cells remained viable). The corresponding morphological images of cells from the cytotoxicity assay (Fig. 4C) depict this cytopathic effect in MCF-7 (note the extensive formation of syncytia). In contrast, very little or no cytotoxic effects are visible among the infected or mock-infected human fibroblasts. Together, the results presented in Figs 4A and 4B indicate that the ability of KTR27-F to replicate in and kill normal primary human fibroblasts is markedly reduced relative to various human tumor cell lines.

[00130] Neurovirulence ofKTR27-F. The ability of an oncolytic viral recombinant to replicate efficiently in tumor cells must be balanced against the potentially dangerous side effects of its replication in non tumor tissues. HSV is highly neurotropic, and thus a clinically-relevant HSV recombinant ideally causes little to no neurovirulence. KTR27 was previously demonstrated to be avirulent following intracerebral inoculation in mice (Y ao et ak, 2010), herein, a similar assay was conducted with KTR27-F to investigate should the enhanced cytotoxicity of KTR27-F in the presence of tetracycline in cancer cells lead to a higher degree of neurovirulence. In brief, mice receiving a doxycycline-containing diet or normal diet were intracerebrally inoculated with KTR27-F at a dose of 1 x 10 7 PFU/mouse (Fig. 5), along with control groups injected with DMEM or 7134 at a dose of 1 x 10 7 PFU/mouse, and monitored the mice for 29 days. The groups injected with DMEM, KTR27-F in the presence of doxycycline (T+), and KTR27-F in the absence of doxycycline (T-) showed no signs of neurovirulence throughout the course of the experiment, whereas all of the mice injected with 7134 showed signs of central nervous system (CNS) illness commonly associated with HSV-1 infection, including roughened fur, hunched posture, ataxia, and anorexia. Six of the eight 7134-inoculated mice died by day 8 post-inoculation, and two of the eight fully recovered from CNS illness within 11 days post-inoculation. In light of the demonstration that the doxycycline concentration in the brains of mice receiving the doxycycline-containing diet can efficiently release the tetR-mediated repression of gene expression following intracerebral inoculation of the T-REx- encoding replication-defective HSV-1 recombinant virus (Y ao et ak, 2006), the study indicates that the observed avirulence of KTR27-F in mice receiving a doxycycline-containing diet is primarily the result of impairment in the ability of KTR27 to replicate in the mouse brain.

[00131] Sequence analyses of KTR27-F genome. As expected, sequence analysis of KTR27-F viral genome confirms that KTR27-F encodes tetR at the HSV-1 ICP0 locus, and ICP27 under the control of the tetO-containing ICP27 promoter with a self-cleaving ribozyme present at the 5’untranslated region of ICP27 gene. Using the parental wild-type HSV-1 strain KOS genome as the reference, a total of 58 missense mutations and 2 frame shift mutations are identified in the KTR27-F genome. The UL36 gene of KTR27-F contains 16 missense mutations and 2 frame shift mutations. Other missense mutations are located in the UL5 gene, the UL8 gene, the UL12 gene, the UL13 gene, the UL16 gene, UL17 gene, UL19 gene, the UL24 gene, the UL25 gene, UL26 gene, the UL28 gene, the UL29 gene, the UL30 gene, the UL37 gene, the UL39 gene, the UL40 gene, the UL44 gene, UL47 gene, the UL52 gene, the UL53 gene (gK), the US 1 gene, and the US 8 gene.

[00132] A single amino acid substitution, Ala to Val at residue 40, is identified in the gK gene of KTR27- F. The same Ala to Val substitution has been identified in the HSV-1 syncytial mutants, synl02, synl05 and syn 33 (Dolter KE et ak, J Virol 68:8277-8281, 1994), which were isolated from KOS-infected cells in the presence of mutagens, 2-aminopurine (Bond VC et al., J Gen Virol 61:245-254, 1982) or 5- bromodeoxyuridine (Read GS et al, J Virol 35: 105-113, 1980), indicating that the Ala to Val substitution at residue 40 of the gK gene in KTR27-F is a key factor for the observed fusogenic phenotype. Syncytial mutations in the gK gene also include Ala to Thr at residue 40 in syn20, Asp to Asn at residue 99 in syn31 and syn32, Leu to Pro at residue 304 in syn30, and Arg to Leu at residue 310 (Dolter KE et al, J Virol 68:8277-8281, 1994). In addition to the single amino acid substitution in the gK gene, KTR27-F contains a single amino acid substitution of Ser to Asn in UL24 gene at residue 113. Whether this Ser to Asn substitution contributes to the fusogenic activity of KTR27-F remains to be determined. No mutation is found in the gene encoding gB and the UL20 gene.

[00133] Unexpectedly, sequencing analysis of KTR27-F reveals that the HSV-1 ICP34.5 gene is missing from the KTR27-F genome. To date, most of HSV-1 based oncolytic viruses are based on deletion of the ICP34.5 gene or through conditional regulations of ICP34.5 expression (Aghi M and Martuza RL, Oncogen 24:7802-7816, 2005; Lawler SE et al., JAMA Oncology, 2016). The ICP35.5 deletion mutant- based HSV-1 oncolytic virus, T-Vec (Amgen) has been approved for the treatment of advanced-stage melanoma in late 2015. Like ICP0, the ICP34.5 gene is located in the inverted repeat region that flanks the unique long region of the HSV-1 genome. PCR analyses with primers specific for the ICP34.5 gene indicate that while both 7134 and K0R yield a predicated ICP34.5-specific amplified PCR fragment, no ICP34.5-specific DNA fragment was detected in PCR reactions with KTR27, KTR27-F, and K0R27-lacZ viral DNA. PCR analysis with tetR-specific primers confirm that KTR27, KTR27-F, and K0R27-lacZ encode tetR at the ICP0 locus. Collectively, these results indicate that the ICP34.5 gene was likely lost during the construction of K0R27-lacZ virus.

[00134] The various methods and techniques described above provide a number of ways to carry out the application. Of course, it is to be understood that not necessarily all objectives or advantages described can be achieved in accordance with any particular embodiment described herein. Thus, for example, those skilled in the art will recognize that the methods can be performed in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other objectives or advantages as taught or suggested herein. A variety of alternatives are mentioned herein. It is to be understood that some preferred embodiments specifically include one, another, or several features, while others specifically exclude one, another, or several features, while still others mitigate a particular feature by inclusion of one, another, or several advantageous features.

[00135] Furthermore, the skilled artisan will recognize the applicability of various features from different embodiments. Similarly, the various elements, features and steps discussed above, as well as other known equivalents for each such element, feature or step, can be employed in various combinations by one of ordinary skill in this art to perform methods in accordance with the principles described herein. Among the various elements, features, and steps some will be specifically included and others specifically excluded in diverse embodiments.

[00136] Although the application has been disclosed in the context of certain embodiments and examples, it will be understood by those skilled in the art that the embodiments of the application extend beyond the specifically disclosed embodiments to other alternative embodiments and/or uses and modifications and equivalents thereof.

[00137] In some embodiments, the terms“a” and“an” and“the” and similar references used in the context of describing a particular embodiment of the application (especially in the context of certain of the following claims) can be construed to cover both the singular and the plural. The recitation of ranges of values herein is merely intended to serve as a shorthand method of referring individually to each separate value falling within the range. Unless otherwise indicated herein, each individual value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (for example,“such as”) provided with respect to certain embodiments herein is intended merely to better illuminate the application and does not pose a limitation on the scope of the application otherwise claimed. No language in the specification should be construed as indicating any non-claimed element essential to the practice of the application.

[00138] Other than in the operating examples, or where otherwise indicated, all numbers expressing quantities of ingredients or reaction conditions used herein should be understood as modified in all instances by the term "about." The term "about" when used in connection with percentages can mean ±1%.

[00139] Preferred embodiments of this application are described herein, including the best mode known to the inventors for carrying out the application. Variations on those preferred embodiments will become apparent to those of ordinary skill in the art upon reading the foregoing description. It is contemplated that skilled artisans can employ such variations as appropriate, and the application can be practiced otherwise than specifically described herein. Accordingly, many embodiments of this application include all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the application unless otherwise indicated herein or otherwise clearly contradicted by context.

[00140] All patents, patent applications, publications of patent applications, and other material, such as articles, books, specifications, publications, documents, things, and/or the like, referenced herein are hereby incorporated herein by this reference in their entirety for all purposes, excepting any prosecution file history associated with same, any of same that is inconsistent with or in conflict with the present document, or any of same that may have a limiting affect as to the broadest scope of the claims now or later associated with the present document. By way of example, should there be any inconsistency or conflict between the description, definition, and/or the use of a term associated with any of the incorporated material and that associated with the present document, the description, definition, and/or the use of the term in the present document shall prevail.

[00141] References

Advani, S.J., Sibley, G.S., Song, P.Y., Hallahan, D.E., Kataoka, Y., Roizman, B., and

Weichselbaum, R.R. (1998). Enhancement of replication of genetically engineered herpes simplex viruses by ionizing radiation: a new paradigm for destruction of therapeutically intractable tumors. Gene Ther J, 160-165.

Aghi, M., and Martuza, R.L. (2005). Oncolytic viral therapies - the clinical experience. Oncogene 24, 7802-7816.

Cai, W.Z., and Schaffer, P.A. (1989). Herpes simplex virus type 1 ICP0 plays a critical role in the de novo synthesis of infectious virus following transfection of viral DNA. J Virol 63, 4579-4589.

Chung, R.Y., Saeki, Y., and Chiocca, E.A. (1999). B-myb promoter retargeting of herpes simplex virus gamma34.5 gene- mediated virulence toward tumor and cycling cells. J Virol 73, 7556-7564.

Eidson, K.M., Hobbs, W.E., Manning, B.J., Carlson, P., and DeLuca, N.A. (2002). Expression of herpes simplex virus ICP0 inhibits the induction of interferon-stimulated genes by viral infection. J Virol 76, 2180-2191.

Everett, R.D. (2006). Interactions between DNA viruses, ND10 and the DNA damage response. Cell Microbiol 8, 365-374.

Hummel, J.L., Safroneeva, E., and Mossman, K.L. (2005). The role of ICPO-Null HSV-1 and interferon signaling defects in the effective treatment of breast adenocarcinoma. Mol Ther 12, 1101- 1110

Kastan, M.B., and Bartek, J. (2004). Cell-cycle checkpoints and cancer. Nature 432, 316-323.

Leib, D.A., Coen, D M., Bogard, C.L., Hicks, K.A., Yager, D.R., Knipe, D M., Tyler, K.L., and Schaffer, P.A. (1989). Immediate-early regulatory gene mutants define different stages in the establishment and reactivation of herpes simplex virus latency. J Virol 63, 759-768.

Martuza, R.L., Malick, A., Markert, J.M., Ruffher, K.L., and Coen, D.M. (1991). Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 252, 854-856.

McKee, T.D., Grandi, P., Mok, W., Alexandrakis, G., Insin, N., Zimmer, J.P., Bawendi, M.G., Boucher, Y., Breakefield, X.O., and Jain, R.K. (2006). Degradation of fibrillar collagen in a human melanoma xenograft improves the efficacy of an oncolytic herpes simplex virus vector. Cancer Res 66, 2509-2513. Mohr, I. (2005). To replicate or not to replicate: achieving selective oncolytic virus replication in cancer cells through translational control. Oncogene 24, 7697-7709.

Mossman, K.L., Saffran, H.A., and Smiley, J.R. (2000). Herpes simplex virus ICP0 mutants are hypersensitive to interferon. J Virol 74, 2052-2056.

Nagano, S., Perentes, J.Y., Jain, R.K., and Boucher, Y. (2008). Cancer cell death enhances the penetration and efficacy of oncolytic herpes simplex virus in tumors. Cancer Res 68, 3795-3802.

Parato, K.A., Senger, D., Forsyth, P.A., and Bell, J.C. (2005). Recent progress in the battle between oncolytic viruses and tumours. Nat Rev Cancer 5, 965-976.

Pluen, A., Boucher, Y., Ramanujan, S., McKee, T.D., Gohongi, T., di Tomaso, E., Brown, E.B., Izumi, Y., Campbell, R.B., Berk, D.A., et al. (2001). Role of tumor-host interactions in interstitial diffusion of macromolecules: cranial vs. subcutaneous tumors. Proc Natl Acad Sci U S A 98, 4628- 4633.

Roizman, B., and D. M. Knipe (2001). Herpes simplex viruses and their replication. In Fields Virology, a.P.M.H. D. M. Knipe, ed. (Philadelphia, Pa: Lippincott Williams & Wilkins), pp. 2399- 2459.

Sandri-Goldin, R.M. (2008). The many roles of the regulatory protein ICP27 during herpes simplex virus infection. Front Biosci 12, 5241-5256.

Shen, Y., and Nemunaitis, J. (2005). Fighting cancer with vaccinia virus: teaching new tricks to an old dog. Mol Ther 11, 180-195.

Walsh, D., and Mohr, I. (2004). Phosphorylation of eIF4E by Mnk-1 enhances HSV-1 translation and replication in quiescent cells. Genes Dev 18, 660-672.

Yao, F., and Eriksson, E. (1999). A novel anti-herpes simplex virus type 1-specific herpes simplex virus type 1 recombinant. Hum Gene Ther 10, 1811-1818.

Yao, F., Murakami, N., Bleiziffer, O., Zhang, P., Akhrameyeva, N.V., Xu, X., and Brans, R. (2010). Development of a regulatable oncolytic herpes simplex virus type 1 recombinant virus for tumor therapy. J Virol 84, 8163-8171.

Yao, F., and Schaffer, P.A. (1995). An activity specified by the osteosarcoma line U20S can substitute functionally for ICP0, a major regulatory protein of herpes simplex virus type 1. J Virol 69, 6249-6258.

Yao, F., Theopold, C., Hoeller, D., Bleiziffer, O., and Lu, Z. (2006). Highly efficient regulation of gene expression by tetracycline in a replication-defective herpes simplex viral vector. Mol Ther 13, 1133-1141.

Sequence Listing

SEQ ID NO: 1 is a nucleotide sequence that encodes KTR27-F Linear Genome (147,630 bp) CCCTAGAGGATCTGCGGCTGGAGGGTCGCTGACGGAGGGTCCCTGGGGGTCGCAACGTAG GCTTTTCTTCTTTTTTT CTTCTTCCCTCCCCCGCCCGAGGGGGCGCCCGAGTCTGCCTGGCTGCTGCGTCTCGCTCC GAGTGCCGAGGTGCAAA TGCGACCAGACCGTCGGGCCAGGGCTAACTTATACCCCACGCCTTTCCCCTCCCCAAAGG GGCGGCAGTGACGATTC CCCCAATGGCCGCGCGTCCCAGGGGAGGCAGGCCCACCGCGGAGCGGCCCCGTCCCCGGG GACCAACCCGGCGCCCC CAAAGAATATCATTAGCATGCACGGCCCGGCCCCCGATTTGGGGGACCAACCCGGTGTCC CCCAAAGAACCCCATTA GCATGCCCCTCCCGCCGACGCAACAGGGGCTTGGCCTGCGTCGGTGCCCCGGGGCTTCCC GCCTTCCCGAAGAAACT CATTACCATACCCGGAACCCCAGGGGACCAATGCGGGTTCATTGAGCGACCCGCGGGCCA CTGCGCGAGGGGCCGTG TGTTCCGCCAAAAAAGCAATTAACATAACCCGGAACCCCAGGGGAGTGGTTACGCGCGGC GCGGGAGGCGGGGAATA CCGGGGTTGCCCATTAAGGGCCGCGGGAATTGCCGGAAGCGGGAAGGGCGGCCGGGGCCG CCCATTAATGAGTTTCT AATTACCATCCCGGGAAGCGGAACAAGGCCTCTGCAAGTTTTTAATTACCATACCGGGAA GTGGGCGGCCCGGCCCA CTGGGCGGGAGTTACCGCCCAGTGGGCCGGGCCCCGACGACTCGGCGGACGCTGGTTGGC CGGGCCCCGCCGCGCTG GCGGCCGCCGATTGGCCAGTCCCGCCCCCCGAGGGCGGGCCCGCCTCGGGGGCGGGCCGG CCCCAAGCGAATATGCG CGGCTCCTGCCTTCGTCTCTCCGGAGAGCGGCTTGGTGGCGGGGCCCGGCCACCAGCGTC CGCCGAGTCGTCGGGGC CCGGCCCACTGGGCGGTAACTCCCGCCCAGTGGGCCGGGCCGCCCACTTCCCGGTATGGT AATTAAAAACTTGCAGA GGCCTTGTTCCGCTTCCCGGTATGGTAATTAGAAACTCATTAATGGGCGGCCCCGGCCGC CCTTCCCGCTTCCGGCA ATTCCCGCGGCCCTTAATGGGCAACCCCGGTATTCCCCGCCTCCCGCGCCGCGCGTAACC ACTCCCCTGGGGTTCCG GGTTATGTTAATTGCTTTTTTGGCGGAACACACGGCCCCTCGCGCATTGGCCCGCGGGTC GCTCAATGAACCCGCAT TGGTCCCCTGGGGTTCCGGGTATGGTAATGAGTTTCTTCGGGAAGGCGGGAAGCCCCGGG GCACCGACGCAGGCCAA GCCCCTGTTGCGTCGGCGGGAGGGGCATGCTAATGGGGTTCTTTGGGGGACACCGGGTTG GTCCCCCAAATCGGGGG CCGGGCCGTGCATGCTAATGATATTCTTTGGGGGCGCCGGGTTGGTCCCCGGGGACGGGG CCGCTCCGCGGTGGGCC TGCCTCCCCTGGGACGCGCGGCCATTGGGGGAATCGTCACTGCCGCCCCTTTGGGGAGGG GAAAGGCGTGGGGTATA AGTTAGCCCTGGCCCGACGGTCTGGTCGCATTTGCACCTCGGCACTCGGAGCGAGACGCA GCAGCCAGGCAGACTCG GGCCGCCCCCTCTCCGCATCACCACAGAAGCCCCGCCTACGTTGCGACCCCCAGGGACCC TCCGTCAGCGACCCTCC AGCCGCATACGACCCCCCGGGGATCCTCTAGGGCCTCTGAGCTATTCCAGAAGTAGTGAA GAGGCTTTTTTGGAGGC CTAGGCTTTTGCAAAAAGCTCCGGATCGATCCTGAGAACTTCAGGGTGAGTTTGGGGACC CTTGATTGTTCTTTCTT TTTCGCTATTGTAAAATTCATGTTATATGGAGGGGGCAAAGTTTTCAGGGTGTTGTTTAG AATGGGAAGATGTCCCT TGTATCACCATGGACCCTCATGATAATTTTGTTTCTTTCACTTTCTACTCTGTTGACAAC CATTGTCTCCTCTTATT TTCTTTTCATTTTCTGTAACTTTTTCGTTAAACTTTAGCTTGCATTTGTAACGAATTTTT AAATTCACTTTTGTTTA TTTGTCAGATTGTAAGTACTTTCTCTAATCACTTTTTTTTCAAGGCAATCAGGGTATATT ATATTGTACTTCAGCAC AGT T T T AGAGAAC AAT T GT T AT AAT T AAAT GAT AAG GT AGAAT AT T T C T G C AT AT AAAT TCTGGCTGGCGTG GAAAT ATTCTTATTGGTAGAAACAACTACATCCTGGTCATCATCCTGCCTTTCTCTTTATGGTTA CAACGATATACACTGTT TGAGATGAGGATAAAATACTCTGAGTCCAAACCGGGCCCCTCTGCTAACCATGTTCATGC CTTCTTCTTTTTCCTAC AGCTCCTGGGCAACGTGCTGGTTATTGTGCTGTCTCATCATTTTGGCAAAGAATTGTAAT ACGACTCACTATAGGGC GAAT T GAT AT GT C T AGAT T AGAT AAAAGT AAAGT GAT T AAC AG C G CAT T AGAG C T G C T T AAT GAG GT C G GAAT C GAA GGTTTAACAACCCGTAAACTCGCCCAGAAGCTAGGTGTAGAGCAGCCTACATTGTATTGG CATGTAAAAAATAAGCG GGCTTTGCTCGACGCCTTAGCCATTGAGATGTTAGATAGGCACCATACTCACTTTTGCCC TTTAGAAGGGGAAAGCT GGCAAGATTTTTTACGTAATAACGCTAAAAGTTTTAGATGTGCTTTACTAAGTCATCGCG ATGGAGCAAAAGTACAT T T AG GT AC AC G G C C T AC AGAAAAAC AGT AT GAAAC T C T C GAAAAT C AAT TAGCCTTTT TAT G C C AAC AAG GT T T T T C AC T AGAGAAT G CAT TAT AT G C AC T C AG CGCTGTGGGG CAT TTTACTTTAGGTTGC GT AT T G GAAGAT C AAGAG CAT C AAGT C G C T AAAGAAGAAAG G GAAAC AC CTACTACT GAT AGT AT G C C G C CAT TAT T AC GAC AAG C TAT C GAAT TAT T T GATCACCAAGGTGCAGAGCCAGCCTTCTTATTCGGCCTTGAATTGATCATATGCGGATTA GAAAAACAACTTAAATG TGAAAGTGGGTCCGCGTACAGCGGATCCCGGGAATTCAGATCTTATTAAAGCAGAACTTG TTTATTGCAGCTTATAA TGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTTCACTGCA TTCTAGTTGTGGTTTGT CCAAACTCATCAATGTATCTTATCATGTCTGGTCGACCCGGGACGAGGGAAAACAATAAG GGACGCCCCCGTGTTTG TGGGGAGGGGGGGGTCGGGCGCTGGGTGGTCTCTGGCCGCGCCCACTACACCAGCCAATC CGTGTCGGGGAGGTGGA AAGTGAAAGACACGGGCACCACACACCAGCGGGTCTTTTGTGTTGGCCCTAATAAAAAAA ACTCAGGGGATTTTTGC TGTCTGTTGGGAAATAAAGGTTTACTTTTGTATCTTTTCCCTGTCTGTGTTGGATGTATC GCGGGGGTGCGTGGGAG TGGGGGCCCCCACTCCCACGCACCCCCACTCCCACGCACCCCCACTCCCACGCACCCCCG CGATACATCCAACACAG AC AG G GAAAAGAT AC AAAAGT AAAC C T T TAT T T C C C AAC AGAC AG C AAAAAT C C C C T GAGT t T T T T T TAT T AG G G C C AACACAAAAGACCCGCTGGTGTGTGGTGCCCGTGTCTTTCACTTTCCACCTCCCCGACAC GGATTGGCTGGTGTAGT GGGCGCGGCCAGAGACCACCCAGCGCCCGCCCCCCCCCCCCCCACAACCCCGGGGGCGTC CCTTATTGTTTCCCTCG TCCCGGGTCGACGTCGACCCGGGACGAGGGAAAACAATAAGGGACGCCCCCGTGTTTGTG GGGAGGGGGGGGTCGGG CGCTGGGTGGTCTCTGGCCGCGCCCACTACACCAGCCAATCCGTGTCGGGGAGGTGGAAA GTGAAAGACACGGGCAC CACACACCAGCGGGTCTTTTGTGTTGGCCCTAATAAAAAAAACTCAGGGGATTTTTGCTG TCTGTTGGGAAATAAAG GTTTACTTTTGTATCTTTTCCCTGTCTGTGTTGGATGTATCGCGGGGGTGCGTGGGAGTG GGGGTGCGTGGGAGTGG GGGTGCGTGGGAGTGGGGGTGGGGGGGGGGGTGCGTGGGGGAGGGGGGGCGTGGGAGTGG GGGTGCGTGGGGGTGGG GGTGCGTGGGAGTGGCCCGGAGAGCCGCGGCCCCCGGACGCGCCCGGAAAGTCTTTCGCC CACCGGCGATCGGCACG G C C G C AC CCCCGCTTT T AT AAAG G C T C AGAT GAC G C AG C AAAAAC AG G C C AC AG C AC C AC AT GGGTAGGG GAT GT AA TTTTATTTTCCTCGTCTGCGGCCTAATGGATTTCCGGGCGCGGTGCCCCTGTCTGCAGAG CACTTAACGGATTGATA TCTCGCGGGCACGCGCGCCCTTAAGGGGCCGGGGGGGGCGGGGGGCCGGATACCCACACG GGCGGGGGGGGGTGTCG CGGGCCGTCTGCTGGCCCGCGGCCACATAAACAATGACTCGGGGCCTTTCTGCCTCTGCC GCTTGTGTGTGCGCGCG CCGGCTCTGCGGTGTCGGCGGCGGCGGCGGCGGTGGCCGCCGTGTTCGGTCTCGGTAGCC GGCCGGCGGGGGACTCG CGGGGGGCCGGAGGGTGGAAGGCAGGGGGGTGTAGGATGGGTATCAGGACTTCCACTTCC CGTCCTTCCATCCCCCG TTCCCCTCGGTTGTTCCTCGCCTCCCCCAACACCCCGCCGCTTTCCGTTGGGGTTGTTAT TGTTGTCGGGATCGTGC GGGCCGGGGGTCGCCGGGGCAGGGGCGGGGGCGTGGGCGGGGGTGCTCGTCGATCGACCG GGCTCAGTGGGGGCGTG GGGTGGGTGGGAGAAGGCGAGGAGACTGGGGTGGGGGCGCCCCCACTGAGCCCGGTCGAT CGACGAGCACCCCCGCC CCCCCCCGCCCCTGCCCCGGCGACCCCCGGCCCGCACGATCCCGACAACAATAACAACCC CAACGGAAAGCGGCGGG GTGTTGGGGGAGGCGAGGAACAACCGAGGGGAACGGGGGATGGAAGGACGGGAAGTGGAA GTCCTGATACCCATCCT ACCCCCCCCTGCCTTCCCCCCTCCGGCCCCCCGCGAGTCCACCCGCCGGCCGGCTACCGA GACCGAACACGGCGGCC ACCGCCGCCGCCGCCGCCGACACCGCAGAGCCGGCGCGCGCACACACAAGCGGCAGAGGC AGAAAGGCCCCGAGTCA TTGTTTATGTGGCCGCGGGCCAGCAGACGGCCCGCGACACCCCCCCCCGCCCGTGTGGGT ATCCGGCCCCCCGCCCC GCGCCGGCCCCTTAAGGGCGCGCGTGCCCGCGAGATATCAATCCGTTAAGTGCTCTGCAG ACAGGGGCACCGCGCCC GGAAATCCATTAGGCCGCAGACGAGGAAAATAAAATTACATCACCTACCCATGTGGGCTG TGGCCTGTTTTGCTGCG TCATCTGAGCCTTTATAAAAGCGGGGGCGCGGTCGTTCCGATCGCCGGTGGTGCGAAAGA CTTTCCGGGCGCTGGGG TGGGGGTGTCGGTGGGTGGTTGTTTTTTTTTTTGTGGTTGTTTTTTGTGTCTGTTTCCGT CCCCCGTCACCCCCCTC CCTCCGTCCCCTCCGTCCCCCCGTCGCGGGTGTTTGTGTTTGTTTATTCCGACATCGGTT TATTTAAAATAAACACA GCCGTTCTGCGTGTCTGTTCTTGCGTGTGGCTGGGGGCTTATATGTGGGGTCCCGGGGGC GGGATGGGGTTTAGCGG CGGGGGGCGGCGCGCCGGACGGGGCGCTGGAGATAACGGCCCCCGGGGAACGGGGGACCG GGGCTGGGTATCCCGAG GTGGGTGGGTGGGCGGCGGTGGCCGGGCCGGGCCGGGCCGGGCCGGGCCAGCGCCCCGCC GGCCCCCCCCCCCGCCG CTAAACCCCATCCCGCCCCCGGGACCCCACATATAAGCCCCCAGCCACACGCAAGAACAG ACACGCAGAACGGCTGT GT T TAT T T T AAAT AAAC C GAT GT C G GAAT AAAC AAAC AC AAAC AC C C G C GAC G G G G G GAC G GAG G G GAC G GAG G GAG G G G G GT GAC G G G G GAC G GAAAC AGAC AC AAAAAAC AAC C AC AAAAAAAAAAAC AAC C AC C C AC C G C AC CCCCCCCCT TCTCCTCCTCCTCCTCGTTTTCCAACCCCGCCCACCCGGCCCGGCCCGGCCCGGCCCGGC CCCGCCGCCCACCCACC CACCTCGGGATACCCAGCCCCGGTCCCCCGTTCCCCGGGGGCCGTTATCTCCAGCGGGGG TTTGGAAAAACGAGGAG GAGGAGGAGAAGGCGGGGGGGGAGACGGGGGGAAAGCAAGGACACGGCCCGGGGGGTGGG AGCGCGGGCCGGGCCGC TCGTAAGAGCCGCGACCCGGCCGCCGGGGAGCGTTGTCGCCGTCGGTCTGCCGGCCCCCG TCCCTCCCTTTTTTGAC CAACCAGCGCCCTCCCCCCCACCACCATTCCTACTACCACCACCACCACCACCCCCACCA CCGACACCTCCCGCGCA CCCCCGCCCACATCCCCCCACCCCGCACCACGAGCACGGGGTGGGGGTAGCAGGGGATCA AAGGGGGGCAAAGCCGG CGGGGCGGTTCGGGGGGGCGGGAGACCGAGTAGGCCCGCCCATACGCGGCCCCTCCCGGC AGCCACGCCCCCCAGCG TCGGGTGTCACGGGGAAAGAGCAGGGGAGAGGGGAGAGGGGGGGAGAGGGGGTATATAAA CCAACGAAAAGCGCGGG AACGGGGATACGGGGCTTGTGTGGCACGACGTCGTGGTTGTGTTACTGGGCAAACACTTG GGGACTGTAGGTTTCTG TGGGTGCCGACCCTAGGCGCTATGGGGATTTTGGGTTGGGTCGGGCTTATTGCGGTTGGG GTTTTGTGTGTGCGGGG GGGCTTGTCTTCAACCGAATATGTTATTCGGAGTCGGGTGGCTCGAGAGGTGGGGGATAT ATTAAAGGTGCCTTGTG TGCCGCTCCCGTCTGACGATCTTGATTGGCGTTACGAGACCCCCTCGGCTATAAACTATG CTTTGATAGACGGTATA TTTTTGCGTTATCACTGTCCCGGATTGGACACGGTCTTGTGGGATAGGCATGCCCAGAAG GCATATTGGGTTAACCC CTTTTTATTTGTGGCGGGTTTTCTGGAGGACTTGAGTCACCCCGCGTTTCCTGCCAACAC CCAGGAAACAGAAACGC GCTTGGCCCTTTATAAAGAGATACGCCAGGCGCTGGACAGTCGCAAGCAGGCCGCCAGCC ACACACCTGTGAAGGCT GGGTGTGTGAACTTTGACTATTCGCGCACCCGCCGCTGTGTAGGGCGACAGGATTTGGGA CCTACCAACGGAACGTC TGGACGGACCCCGGTTCTGCCGCCGGACGATGAAGCGGGCCTGCAACCGAAGCCCCTCAC CACGCCGCCGCCCATCA TCGCCACGTCGGCCCCCACCCCGCGACGGGACGCCGCCACAAAAAGCAGACGCCGACGAC CCCACTCCCGGCGCCTC TAACGATGCCTCGACGGAAACCCGTCCGGGTTCGGGGGGCGAACCGGCCGCCTGTCGCTC GTCAGGGCCGGCGGGCG CTCCTCGCCGCCCTAGAGGCTGTCCCGCTGGTGTGACGTTTTCCTCGTCCGCGCCCCCCG ACCCTCCCATGGATTTA ACAAACGGGGGGGTGTCGCCTGCGGCGACCTCGGCGCCTCTGGACTGGACCACGTTTCGG CGTGTGTTTCTGATCGA CGACGCGTGGCGGCCCCTGATGGAGCCTGAGCTGGCGAACCCCTTAACCGCCCACCTCCT GGCCGAATATAATCGTC GGTGCCAGACCGAAGAGGTGCTGCCGCCGCGGGAGGATGTGTTTTCGTGGACTCGTTATT GCACCCCCGACGAGGTG

CGCGTGGTTATCATCGGCCAGGACCCATATCACCACCCCGGCCAGGCGCACGGACTT GCGTTTAGCGTGCGCGCGAA

CGTGCCGCCTCCCCCGAGTCTTCGGAATGTCTTGGTGGCCGTCAAGAACTGTTATCC CGAGGCACGGATGAGCGGCC

ACGGTTGCCTGGAAAAGTGGGCGCGGGACGGCGTCCTGTTACTAAACACGACCCTGA CCGTCAAGCGCGGGGCGGCG

GCGTCCCACTCTAGAATCGGTTGGGACCGCTTCGTGGGCGGAGTTATCCGCCGGTTG GCCGCGCGCCGCCCCGGCCT

GGTGTTTATGCTCTGGGGCGCACACGCCCAGAATGCCATCAGGCCGGACCCTCGGGT CCATTGCGTCCTCAAGTTTT

CGCACCCGTCGCCCCTCTCCAAGGTTCCGTTCGGAACCTGCCAGCATTTCCTCGTGG CGAACCGATACCTCGAGACC

CGGTCGATTTCACCCATCGACTGGTCGGTTTGAAAGGCATCGACGTCCGGGGTTTTT GTCGGTGGGGGCTTTTGGGT

ATTTCCGATGAATAAAGACGGTTAATGGTTAAACCTCTGGTCTCATACGGGTCGGTG ATGTCGGGCGTCGGGGGAGA

GGGAGTTCCCTCTGCGCTTGCGATTCTAGCCTCGTGGGGCTGGACGTTCGACACGCC AAACCACGAGTCGGGGATAT

CGCCAGATACGACTCCCGCAGATTCCATTCGGGGGGCCGCTGTGGCCTCACCTAACC AACCTTTACCGGGGGCCCGG

AACGGGAGGCCCAGCGCCGTCTTTCTCCCCAACGCGCGCGGATGACGGCCCGCCCTG TACCGACGGGCCCTACGTGA

CGTTTGATACCCTGTTTATGGTGTCGTCGATCGACGAATTAGGGCGTCGCCAGCTCA CGGACACCATCCGCAAGGAC

CTGCGGTTGTCGCTGGCCAAGTTTAGCATTGCGTGCACCAAGACCTCCTCGTTTTCG GGAAACGCCCCGCGCCACCA

CAGACGCGGGGCGTTCCAGCGCGGCACGCGGGCGCCGCGCAGCAACAAAAGCCTCCA GATGTTTGTGTTGTGCAAAC

GCGCCCACGCCGCTCGAGTGCGAGAGCAGCTTCGGGTCGTTATTCAGTCCCGCAAGC CGCGCAAGTATTACACGCGA

TCTTCGGACGGGCGGCTCTGCCCCGCCGTCCCCGTGTTCGTCCACGAGTTCGTCTCG TCCGAGCCAATGCGCCTCCA

CCGAGATAACGTCATGCTGGCCTCGGGGGCCGAGTAACCGCCCCCCCCCCATGCCAC CCTCACTGCCCGTCGCGCGT

GTTTGATGTTAATAAATAACACATAAATTTGGCTGGTTGTTTGTTGTCTTTAATGGA CCGCCCGCAAGGGGGGGGGG

GCGTTTCAGTGTCGGGTGACGAGCGCGATCCGGCCGGGATCCTAGGACCCCAAAAGT TTGTCTGCGTATTCCAGGGT

GGGGCTCAGTTGAATCTCCCGCAGCACCTCTACCAGCAGGTCCGCGGTGGGCTGGAG AAACTCGGCCGTCCCGGGGC

AGGCGGTTGTCGGGGGTGGAGGCGCGGCGCCCACCCCGTGTGCCGCGCCTGGCGTCT CCTCTGGGGGCGACCCGTAA

ATGGTTGCAGTGATGTAAATGGGTCCGCGGTCCAGACCACGGTCAAAATGCCGGCCG TGGCGCTCCGGGCGCTTTCG

CCGCGCGAGGAGCTGACCCAGGAGTCGAACGGATACGCGTACATATGGGCGTCCCAC CCGCGTTCGAGCTTCTGGTT

GCTGTCCCGGCCTATAAAGCGGTAGGCACAAAATTCGGCGCGACAGTCGATAATCAC CAACAGCCCAATGGGGGTGT

GCTGGATAACAACGCCTCCGCGCGGCAGGCGGTCCTGGCGCTCCCGGCCCCGTACCA TGATCGCGCGGGTGCCGTAC

TCAAAAACATGCACCACCTGCGCGGCGTCGGGCAGTGCGCTGGTCAGCGAGGCCCTG GCGTGGCATAGGCTATACGC

GATGGTCGTCTGTGGATTGGACATCTCGCGGTGGGTAGTGAGTCCCCCGGGCCGGGT TCGGTGGAACTGTAAGGGGA

CGGCGGGTTAATAGACAATGACCACGTTCGGATCGCGCAGAGCCGATAGTATGTGCT CACTAATGACGTCATCGCGC

TCGTGGCGCTCCCGGAGCGGATTTAAGTTCATGCGAAGGAATTCGGAGGAGGTGGTG CGGGACATGGCCACGTACGC

GCTGTTGAGGCGCAGGTTGCCGGGCGTAAAGCAGATGGCGACCTTGTCCAGGCTAAG GCCCTGGGAGCGCGTGATGG

TCATGGCAAGCTTGGAGCTGATGCCGTAGTCGGCGTTTATGGCCATGGCCAGCTCCG TAGAGTCAATGGACTCGACA

AACTCGCTGATGTTGGTGTTGACGACGGACATGAAGCCGTGTTGGTCACGCAAGACC ACGTAAGGCAGGGGGGCCTC

TTCCAGTAACTCGGCCACGTTGGCCGTCGCGTGCCGCCTCCGCAGCTCGTCCGCAAA GGCAAACACCCGTGTGTACG

TGTATCCCATGAGCGTATAATTGTCCGTCTGCAGGGCGACGGACATCAGCCCCCCGC GCGGCGAGCCGGTCAGCATC

TCGCAGCCCCGGAAGATAACGTTGTCCACGTACGTGCTAAAGGGGGCGACTTCAAAT GCCTCCCCGAAGAGCTCTTG

GAGGATTCGGAATCTCCCGAGGAAGGCCCGCTTCAGCAGCGCAAACTGGGTGTGAAC GGCGGCGGTGGTCTCCGGTT

CCCCGGGGGTGTAGTGGCAGTAAAACACGTCGAGCTGTTGTTCGTCCAGCCCCGCGA AAATAACGTCGAGGTCGTCG

TCGGGAAAATCGTCCGGGCCCCCGTCCCGCGGCCCCAGTTGCTTAAAATCAAACGCA CGCTCGCCGGGGGCGCCTGC

GTCGGCCATTACCGACGCCTGCGTCGGCACCCCCGAAGATTTGGGGCGCAGAGACAG AATCTCCGCCGTTAGTTCTC

CCATGCGGGCGTACGCGAGGGTCCTCTGGGTCGCATCCAGGCCCGGGCGCTGCAGAA AGTTGTAAAAGGAGATAAGC

CCGCTAAATATGAGCCGCGACAGGAACCTGTAGGCAAACTCCACCGAAGTCTCCCCC TGAGTCTTTACAAAGCTGTC

GTCACGCAACACTGCCTCGAAGGCCCGGAACGTCCCACTAAACCCAAAAACCAGTTT TCGCAGGCGCGCGGTCACCG

CGATCTGGCTGTTGAGGACGTAAGTGACGTCGTTGCGGGCCACGACCAGCTGCTGTT TGCTGTGCACCTCGCAGCGC

ATGTGCCCCGCGTCCTGGTCCTGGCTCTGCGAGTAGTTGGTGATGCGGCTGGTGTTG GCCGTGAGCCACTTTTCAAT

AGTCAGGCCGGGCTGGTGTGTCAGCCGTCGGTAGTGTTCAAACTCCTTGACCGACAC GAACGTAAGCACGGGGAGGT

GTAGCCGTCGGTATTCGTCAAACTCCTTTCCCTCCCCTCCCTTCCTCCCTTTTCTTT TTCCCACTCCGCCCTCCCCC

TCACGGGTCACCTTCAGGTAGGCGTGGAGCTTGGCCATGTACGCGCTCACCTCTTTG TGGGAGGAGAACAGCCGCGT

CCAGCCGGGGAGGTTGGCGGGGTTGGTGATGTAGTTTTCCGGGACGACGAAGCGATC CACGAACTGCATGTGCTCCT

CGGTGATGGGCAGGCCGTACTCCAGCACCTTCATGAGGTTACCGAACTCGTGCTCGA CGCACCGTTTGTTGTTAATA

AAAATGGCCCAGCTATACGAGAGGCGGGCGTACTCGCGCAGCGTGCGGTTGCAGATG AGGTACGTGAGCACGTTCTC

GCTCTGGCGGACGGAACACCGCAGTTTCTGGTGCTCGAAGGTCGACTCCAGGGACGC CGTCTGCGTCGGCGAGCCCC CACACACCAACACGGGCCGCAGGCGGGCCGCGTACTGGGGGGTGTGGTACAGGGCGTTAA TCATCCACCAGCAATAC

ACCACGGCCGTGAGGAGGTGACGCCCAAGGAGCCCGGCCTCGTCGATGACGATCACG TTGCTGCGGGTAAAGGCCGG

CAGCGCCCCGTGGGTGGCCGGGGCCAACCGCGTCAGGGCGCCCTCGGCCAACCCCAG GGTCCGTTCCAGGGCGGCCA

GGGCGCGAAACTCGTTCCGCAACTCCTCGCCCCCGGAGGCGGCCAGGGCGCGCTTCG TGAGGTCCAAAATCACCTCC

CAGTAGTACGTCAGATCTCGTCGCTGCAGGTCCTCCAGCGAGGCGGGGTTGCTGGTC AGGGGGTACGGGTACTGTCC

CAGTTGGGCCTGGACGTGATTCCCGCGAAACCCAAATTCATGAAAGATGGTGTTGAT GGGTCGGCTGAGAAAGGCGC

CCGAGAGTTTGGCGTACATGTTTTGGGCCGCAATGCGCGTGGCGCCCGTCACCACAC AGTCCAAGACCTCGTTGATT

GTCTGCACGCACGTGCTCTTTCCGGAGCCAGCGTTGCCGGTGATAAGATACACCGCG AACGGAAACTCCCTGAGGGG

CAGGCCTGCGGGGGACTCTAAGGCCGCCACGTCCCGGAACCACTGCAGACGGGGCAC TTGCGCTCCGTCGAGCTGTT

GTTGCGAGAGCTCTCGGATGCGCTTAAGGATTGGCTGCACCCCGTGCATAGACGTAA AATTTAAAAAGGCCTCGGCC

CTCCCTGGAACGGCTGGTCGGTCCCCGGGTTGCTGAAGGTGCGGCGGGCCGGGTTTC TGTCCGTCTAGCTGGCGCTC

CCCGCCGGCCGCCGCCATGACCGCACCACGCTCGTGGGCCCCCACTACGCGTGCGCG GGGGGACACGGAAGCGCTGT

GCTCCCCCGAGGACGGCTGGGTAAAGGTTCACCCCACCCCCGGTACGATGCTGTTCC GTGAGATTCTCCACGGGCAG

CTGGGGTATACCGAGGGCCAGGGGGGGTACAACGTCGTCCGGTCCAGCGAGGCGACC ACCCGGCAGCTGCAGGCGGC

GATCTTTCACGCGCTCCTCAACGCCACCACTTACCGGGACCTCGAGGCGGACTGGCT CGGCCACGTGGCGGCCCGCG

GTCTGCAGCCCCAACGGCTGGTTCGCCGGTACAGGAACGCCCGGGAGGCGGATATCG CCGGGGTGGCCGAGCGGGTG

TTCGACACGTGGCGGAACACGCTTAGGACGACGCTGCTGGACTTTGCCCACGGGTTG GTCGCCTGCTTTGCGCCGGG

CGGCCCGAGCGGCCCGTCAAGCTTCCCCAAATATATCGACTGGCTGACGTGCCTGGG GCTGGTCCCCATATTACGCA

AGCGACAAGAAGGGGGTGTGACGCAGGGTCTGAGGGCGTTTCTCAAGCAGCACCCGC TGACCCGCCAGCTGGCCACG

GTCGCGGAGGCCGCGGAGCGCGCCGGCCCCGGGTTTTTTGAGCTGGCGCTGGCCTTC GACTCCACGCGCGTGGCGGA

CTACGACCGCGTGTATATCTACTACAACCACCGCCGGGGCGACTGGCTCGTGCGAGA CCCCATCAGCGGGCAGCGCG

GAGAATGTCTGGTGCTGTGGCCCCCCTTGTGGACCGGGGACCGTCTGGTCTTCGATT CGCCCGTCCAGCGGCTGTTT

CCCGAGATCGTCGCGTGTCACTCCCTCCGGGGACACGCGCACGTCTGCCGGCTGCGC AATACCGCGTCCGTCAAGGT

GCTGCTGGGGCGCAAGAGCGACAGCGAGCGCGGGGTGGCCGGTGCCGCGCGGGTCGT TAACAAGGTGTTGGGGGAGG

ACGACGAGACCAAGGCCGGGTCGGCCGCCTCGCGCCTCGTGCGGCTTATCATCAACA TGAAGGGCATGCGCCACGTA

GGCGACATTAACGACACCGTGCGTGCCTACCTCGACGAGGCCGGGGGGCACCTGATA GACGCCCCGGCCGTCGACGG

TACCCTCCCTGGATTCGGCAAGGGCGGAAACAACCGCGGGTCTGCGGGCCAGGACCA GGGGGGGCGGGCGCCGCAGC

TTCGCCAGGCCTTCCGCACGGCCGTGGTTAACAACATCAACGGCGTGTTGGAGGGCT ATATAAATAACCTGTTTGGA

ACCATCGAGCGCCTGCGCGAGACCAACGCGGGCCTGGCGACCCAATTGCAGGAGCGC GACCGCGAGCTCCGGCGCGC

AACAGCGGGGGCCCTGGAGCGCCAGCAGCGCGCGGCCGACCTGGCGGCCGAGTCCGT GACCGGTGGATGCGGCAGCC

GCCCTGCGGGGGCGGACCTGCTCCGGGCCGACTATGACATTATCGACGTCAGCAAGT CCATGGACGACGACACGTAC

GTCGCCAACAGCTTTCAGCACCCGTACATCCCTTCGTACGCCCAGGACCTGGAGCGC CTGTCGCGCCTCTGGGAGCA

CGAGCTGGTGCGCTGTTTTAAAATTCTGTGTCACCGCAACAACCAGGGCCAAGAGAC GTCGATCTCGTACTCCAGCG

GGGCGATCGCCGCATTCGTCGCCCCCTACTTTGAGTCAGTGCTTCGGGCCCCCCGGG TAGGCGCGCCCATCACGGGC

TCCGATGTCATCCTGGGGGAGGAGGAGTTATGGGATGCGGTGTTTAAGAAAACCCGC CTGCAAACGTACCTGACAGA

CATCGCGGCCCTGTTCGTCGCGGACGTCCAGCACGCAGCGCTGCCCCCGCCCCCCTC CCCGGTCGGCGCCGATTTCC

GGCCCGGCGCGTCCCCGCGGGGCCGGTCCAGACGCGGTCGCCCGGAAGGAAGAACGG CGCCAGGCGCGCCGGACCAG

GGCGGGGGCATCGGGCACCGGGATGGCCGCCGCGACGGCCGACGATGAGGGGTCGGC CGCCACCATCCTCAAGCAGG

CCATCGCCGGGGACCGCAGCCTGGTCGAGGCGGCCGAGGCGATTAGCCAGCAGACGC TGCTCCGCCTGGCCTGCGGG

TGCGCCAGGTCGGCGCCGCCAGCCGCGGTTTACCGCCACCAGCATCGCGCGCGTCGA CGTCGCGCCTGGGTGCCGGT

TGCGGTTCGTTCTGGACGGGAGTCCCGAGGACGCCTATGTGACGTCGGAGGATTACT TTAAGCGCTGCTGCGGCCAG

TCCAGTTATCGCGGCTTCGCGGTGGCGGTCCTGACGGCCAACGAGGACCACGTGCAC AGCCTGGCCGTGCCCCCCCT

CGTTCTGCTGCACCGGTTCTCCCTGTTCAACCCCAGGGACCTCCTGGACTTTGAGCT TGCCTGTCTGCTGATGTACC

TGGAGAACTGCCCCCGAAGCCACGCCACCCCGTCGACCTTTGCCAAGGTTCTGGCGT GGCTCGGGGTCGCGGGTCGC

CGCACGTCCCCATTCGAACGCGTTCGCTGCCTTTTCCTCCGCAGTTGCCACTGGGTC CTAAACACACTCATGTTCAT

GGTGCACGTAAAACCGTTCGACGACGAGTTCGTCCTGCCCCACTGGTACATGGCCCG GTACCTGCTGGCCAACAACC

CGCCCCCCGTTCTCTCGGCCCTGTTCTGTGCCACCCCGACGAGCTCCTCATTCCGGC TGCCGGGGCCGCCCCCCCGC

TCCGACTGCGTGGCCTATAACCCCGCCGGGATCATGGGGAGCTGCTGGGCGTCGGAG GAGGTGCGCGCGCCTCTGGT

CTATTGGTGGCTTTCGGAGACCCCAAAACGACAGACGTCGTCGCTGTTTTATCAGTT TTGTTGAATTTTAGGAAATA

AACCCGGTTTTGTTTCTGTGGCCTCCCGACGGATGCGCGTGTCCTTCCTCCGTCTTG GTGGGTGGGTGTCTGTGTAT

CCGTCCCATCTGTGCGGAGAGGGGGGGCATGTCGGCACGTATTCGGACAGACTCAAG CACACACGGGGGAGCGCTCT

TGTCTCAGGGCAATGTTTTTATTGGTCAAACTCAGGCAAACAGAAACGACATCTTGT CGTCAAAGGGATACACAAAC TTCCCCCCCTCTCCCCATACTCCCGCCAGCACCCCGGTAAACACCAACTCAATCTCGCGC AGGATTTCGCGCAGGTG

ATGAGCGCAGTCCACGGGGGGGAGCACAAGGGGCCGCGGGTGTAGATCGAGGGGACG CCGACCGACTCACCGCCTCC

GGGACAGACACGCACGACGCGCCGCCAGTAGTGCTCTGCGTCCAGCAAGGCGCCGCC GCGGAAGGCAGTGGGGGGCA

AGGGGTCGCTAGCCTCAAGGGGGACACCCGAACGCTCCAGTACTCCGCGTCCAACCG TTTATTAAACGCGTCCACGA

TAAGGCGGTCGCAGGCGTCCTCCATAAGGCCCCGGGCCGTGAGTGCGTCCTCCTCCG GCACGCCTGCCGTTGTCAGG

CCCAGGACCCGTCGCAGCGTGTCGCGTACGACCCCGGCCGCCGTGGTGTACGCGGGC CCGCGGAGAGGAAATCCCCC

AAGATGGTCAGTGTTGTCGCGGGAGTTCCAGAACCACACTCCCGCCTGGTTCCAGGC GACTGCGTGGGTGTAGACGC

CCTCGAGGGCCAGGCACAGTGGGTGCCGCAGCCGGAGGCCGTTGGCCCTAAGCACGC TCCACGGCCGTCTCGATGGC

CCGCCGGGCGTCCTCGATCCCCCGGAAGCCGCATCCGCGTCTTGGGGGTCCACGTTA AAGACACCCCAGAACGCACC

CCCATCGCCCCCGCAGACCGCGAACTTCACCGAGCTGGCCGTCTCCTCGATCTGCAG GCAGACGGCGGCCATTACCC

CACCCAGGAGCTGCCGCAGCGCAGGGCAGGCGTCGCACGTGTCCGGGACCAGGCGCT CCAAGACGGCCCCGGCCCAG

GGCTCTGAGGGAGCGGCCACCACCAGCGCGTCCAGTCTTGCTAGGCCCGTCCGGCCG TGGGGGTCCGCCAGCCCGCT

CCCCCCGAGGTCGGCAAGGACAAAAGGAGCTGGGCGCGAAGTCCGGGGAAGCAAAAC CGCGCCGTCCAGACGGGCCC

GACGGCCGCGGGCGGGTCTAACAGTTGGATGATTTTAGTGGCGGGATGCCACCGCGC CACCGCCTCCCGCACCGCGG

GCAGGAGGCATCCGGCTGCCGCCGAGGCCACGCCGGGCCAGGCTCGCGGGGGGAGGA CGACCCTGGCCCCCACCGCG

GGCCAGGCCCCCAGGAGCGCGGCGTAAGCGGCCGCGGCCCCGCGCACCAGGTCCCGT GCCGACTCGGCCGTGGCCGG

CACGGTGAACGTGGGCCAACCCGGAAACCCCAGGACGGCAAAGTACGGGACGGGTCC CCCCCGGACCTCAAACTCGG

GCCCCAGAAAGGCAAAGACGGGGGCCAGGGCCCCGGGGGCGGCGTGGACCGTGGTAT GCCACTGCCGGAAAAGGGCG

ACGAGCGCCGGCGCGGAGAACTTCTCGCCGGCGCTTACAAAGTAGTCGTAATCGCGG GGCAGCAGCACCCGTGCCGT

GACTCGTTGCGGGTGCCCGCGTGGCCGCAGGCCCACCTCGCACACCTCGACCAGGTC CCCGAACGCGCCCTCCTTCT

TGATCGGCGGAAACGCAAGAGTCTGGTATTCGCGCGCAAATAGCGCGGTTCCGGTGG TGATGTTAACGGTCAGCGAA

GCGGCGGACGCGCACTGGGGGGTGTCGCGATCCGCCAGGCGCGCCCCGCCACGCCGC GCGTCGGGATGCTCGGCAAC

GCGCGCCGCCAGGGCCATAGGGTCGATGTCAATGTTGGCCTCCGCGACCAGGAGAGC GGCGCGAGGGGCGGCGGGCG

GGCCCCACGACGCTCTCTCAACTTTCACCCCCAGTCCCGTGCGTGGGTCCGAGCCGA TACGCAGCGGGGCGAACAGG

GCCACCGGCCCGGTCTGGCGCTCCAGGGCCGCCAGGACGCACGCGTACAGCGCCCGC CACAGAGTCGGGTTCTCCAG

GGGCTCCAGCGGGGAGGCGGCCGGCGTCGTCGCGGCGCGGGCGGCCGCCACGACGGC CTGGACGGAGACGTCCGCGG

AGCCGTAGAAATCCCGCAGCTCCGTCGCGGTGACGGAGACCTCCGCAAAGCGCGCGC GACCCTCCCCTGCGGCGTTG

CGACATACAAAATACACCAGGGCGTGGAAGTACTCGCGAGCGCGGGGGGGCAGCCAT ACCGCGTAAAGGGTAATGGC

GCTGACGCTCTCCTCCACCCACACGATATCTGCGGTGTCCATCGCACGGCCCCTAAG GATCACGGGCGGTCTGTGGG

TCCCATGCTGCCGTGCCTGGCCGGGCCCGGTGGGTCGCGGAAACCGGTGACGGGGGG GGGGCGGTTTTTGGGGTTGG

GGTGGGGGTGGGAAACGGCCCGGGTCCGGGGGCCAACTTGGCCCCTCGGTGCGTTCC GGCAACAGCGCCGCCGGTCC

GCGGACGACCACGTACCGAACGAGTGCGGTCCCGAGACTTATAGGGTGCTAAAGTTC ACCGCCCCCTGCATCATGGG

CCAGGCCTCGGTGGGGAGCTCCGACAGCGCCGCCTCCAGGATGATGTCAGCGTTGGG GTTGGCGCTGGATGAGTGCG

TGCGCAAACAGCGCCCCCACGCAGGCACGCGTAGCTTGAAGCGCGCGCCCGCAAACT CCCGCTTGTGGGCCATAAGC

AGGGCGTACAGCTGCCTGTGGGTCCGGCAGGCGCTGTGGTCGATGTGGTGGGCGTCC AACACCCCACGATTGTCTGT

TTGGTGAGGTTTTTAACGCGCCCCGCCCCGGGAAACGTCTGCGTGCTTTTGGCCATC TGCACGCCAAACAGTTCGCC

CCAGATTATCTTGAACAGCGCCACCGCGTGGTCCGTCTCGCTAACGGACCCGCGCGG GGGACAGCCGCTTAGGGCGT

CGGCGACGCGCTTGACGGCTTCCTCCGAGAGCAGAAGTCCGTCGGTTACGTTACAGT GGCCCAGTTCGAACACCAGC

TGCATGTAGCGGTCGTAGTGGGGGGTCAGTAGGTCCAGCACGTCATCGGGGCCGAAG GTCCTCCCAGATCCCCCGGC

CGCCGAGTCCCAATGCAGGCGCGCGGCCATGGTGCTGCACAGGCACAACAGCTCCCA GACGGGGGTTACGTTCAGGG

TGGGGGGCAGGGCCACGAGCTCCAGCTCTCCGGTGACGTTGATCGTGGGGATGACGC CCGTGGCGTAGTGGTCATAG

ACCGCCGATATGGCGCTGCTGCGGGTGGCCATGGGAACGCGGAGACAGGCCTCCAGC AACGCCAGGTAAATAAACCG

CGTGCGTCCCATCAGGCTGTTGAGGTTGCGCATGAGCGCGACAATTTCCGCCGGCGC GACATCGGACCGGAGGTATT

TTTCGACGAAAAGACCCACCTCCTCCGTCTCGGCGGCCTGGGCCGGCAGCGACGCCT CGGGATCCCGGCACCGCAGC

TCCCGTAGATCGCGCTGGGCCCTGAGGGCGTCGAAATGTACGCCCCGCAAAAACAGA CAGAAGTCCTTTGGGGTCAG

GGTATCGTCGTGTCCCCAGAAGCGCACGCGTATGCAGTTTAGGGTCAGCAGCATGTG AAGGATGTTAAGGCTGTCCG

AGAGACACGCCAGCGTGCATCTCTCAAAGTAGTGTTTGTAACGGAATTTGTTGTAGA TGCGCGACCCCCGCCCCAGC

GACGTGTCGCATGCCGACGCGTCACAGCGCCCCTTGAACCGGCGACACAGCAGGTTT GTGACCTGGGAGAACTGCGC

GGGCCACTGGCCGCAGGAACTGACCACGTGATTAAGGAGCATGGGCGTAAAGACGGG CTCCGAGCGCGCCCCGGAGC

CGTCCATGTAAATCAGTAGCTCCCCCTTGCGGAGGGTGCGCACCCGTCCCAGGGACT GGTACACGGACACCATGTCC

GGTCCGTAGTTCATGGGTTTTACGTAGGCGAACATGCCATCAAAGTGCAGGGGATGA AGCGGAGGCCCACGGTTACG

ACCGTCGTGTATATAACCACGCGGTATTGGCCCCACGTGGTCACGTCCCCGAGGGGG GTGAGCGAGTGAAGCAACAG CACGCGGTCCGTAAACTGACGGCAGAACCGGGCCACGATCTCCGCGAAGGAGACCGTCGA CGAAAAAATGCAGATGT TATCGCCCCCGCCAAGGCGCGCTTCCAGCTCCCCAAAGAACGTGGCCCCCCGGGCGTCCG GAGAGGCGTCCGGAGAC GGGCCGCTCGGCGGCCCGGGCGGGCGCAGGGCAGCCTGCAGGAGCTCGGTCCCCAGACGC GGGAGAAACAGGCACCG GCGCGCCGAAAACCCGGGCATGGCGTACTCGCCGACCACCACATGCACGTTTTTTTCGCC CCGGAGACCGCACAGGA AGTCCACCAACTGCGCGTTGGCGGTTGCGTCCATGGCGATGATCCGAGGACAGGTGCGCA GCAGGCGTAGCATTAAC GCATCCACGCGGCCCAGTTGCTGCATCGTTGGCGAATAGAGCTGGCCCAGCGTCGACATA ACCTCGTCCAGAACGAG GACGTCGTAGTTGTTCAGAAGGTTGGGGCCCACGCGATGAAGGCTTTCCACCTGGACGAT AAGTCGGTGGAAGGGGC GGTCGTTCATAATGTAATTGGTGGATGAGAAGTAGGTGACAAAGTCGACCAGGCCTGACT CAGCGAACCGCGTCGCC AGGGTCTGGGTAAAACTCCGACGACAGGAGACGACGAGCACACTCGTGTCCGGAGAGTGG ATCGCTTCCCGCAGCCA GCGGATCAGCGCGGTAGTTTTTCCCGACCCCATTGGCGCGCGGACCACAGTCACGCACCT GGCCGTCGGGGCGCTCG CGTTGGGGAAGGTGACGGGTCCGTGCTGCTGCCGCTCGATCGTTGTTTTCGGGTGAACCC GGGGCACCCATTCGGCC AAATCCCCCCCGTACAACATCCGCGCTAGCGATACGCTCGACGTGTACTGTTCGCACTCG TCGTCCCCAATGGGACG CCCGGCCCCAGAGGATCTCCCGACTCCGCGCCCCCCACGAAAGGCATGACCGGGGCGCGG ACGGCGTGGTGGGTCTG GTGTGTGCAGGTGGCGACGTTTGTGGTCTCTGCGGTCTGCGTCACGGGGCTCCTCGTCCT GGCCTCTGTGTTCCGGG CACGGTTTCCCTGCTTTTACGCCACGGCGAGCTCTTATGCCGGGGTGAACTCCACGGCCG AGGTGCGCGGGGGTGTA GCCGTGCCCCTCAGGTTGGACACGCAGAGCCTTGTGGGCACTTATGTAATCACGGCCGTG TTGTTGTTGGCCGCGGC CGTGTATGCCGTGGTCGGCGCCGTGACCTCCCGCTACGACCGCGCCCTGGACGCGGGCCG CCGTCTGGCTGCGGCCC GCATGGCCATGCCGCACGCCACGCTGATCGCCGGAAACGTCTGCTCTTGGTTGCTGCAGA TCACCGTCCTGTTGCTG GCCCATCGCACCAGCCAGCTGGCCCACCTGGTTTACGTCCTGCACTTTGCGTGTCTGGTG TATTTTGCGGCCCATTT TTGCACCAGGGGGGTCCTGAGCGGGACGTATCTGCGTCAGGTGCACGGCCTGATGGAGCC GGCCCCGACTCATCATC GCGTCGTTGGCCCGGCTCGAGCCGTGCTGACAAACGCCTTGCTGTTGGGCGTCTTCCTGT GCACGGCCGACGCCGCG GTATCCCTGAATACCATCGCCGCGTTCAACTTTAATTTTTCGGCCCCGGGCATGCTCATA TGCCTGACCGTGCTGTT CGCCCTTCTCGTCGTATCGCTGTTGTTGGTGGTCGAGGGGGTGTTGTGTCACTACGTGCG CGTGTTGGTGGGCCCCC ACCTGGGGGCCGTGGCCGCCACGGGCATCGTCGGCCTGGCATGCGAGCACTATTACACCA ACGGCTACTACGTTGTG GAGACGCAGTGGCCGGGGGCCCAGACGGGAGTCCGCGTCGCCCTCGCCCTGGTCGCCGCC TTTGCCCTCGGCATGGC CGTGCTCCGCTGCACCCGCGCCTATCTGTATCACAGGCGGCACCACACCAAATTTTTTAT GCGCATGCGCGACACGC GACACCGCGCACATTCCGCCCTCAAGCGCGTACGCAGTTCCATGCGCGGATCGCGAGACG GCCGCCACAGGCCCGCA CCCGGCAGCCCGCCCGGGATTCCCGAATCCTTCGAAGACCCCTACGCGATCTCATACGGC GGCCAGCTCGACCGGTA C G GAGAT T C C GAC G G G GAG C C GAT T T AC GAC GAG GT G G C G GAC GAC C AAAC C GAC GT AT T GT AC G C C AAGAT AC AAC ACCCGCGGCACCTGCCCGACGACGAGCCCATCTATGACACCGTTGGGGGGTACGACCCCG AGCCCGCCGAGGACCCC GTGTACAGCACCGTCCGCCGTTGGTAGCTGTTTGGTTCCGTTTTAATAAACCGTTTGTGT TTAACCCGACCGTGGTG TATGTCTGGTGTGTGGCGTCCGATCCCGTTACTATCACCGTTCCCCCCAAACCCCGGCGA TTGTGGGTTTTTTTAAA AACGACACGCGTGCGACCGTATACAGAACATTGTTGTTTTTTATTCGCTATCGGACATGG GGGGTGGAAACTGGGTG GCGGGGCAGGCGCCTCCGGGGGTTCGCCGGTGAGTGTGGCGCGAGGGGGATCCGACGAAC GCAGGCGCTGTCTCCCC GGGGCCCGCGTAACCCCGCGCATATCCGGGGGCACGTAGAAATTACCTTCCTCTTCGGAC TCGATATCCACGACGTC AAAGTCGTGGGCGGTCAGCGAGACGACCTCCCCGTCGTCGGTGATGAGGACGTTGTTTCG GCAGCAGCAGGGCCGGG TTTCCTTTTCCCCCGAGCCCATAGCTCGGCGAGCGTGTCGTCGAACGCCAGGCGGCTGCT TCGCTGTATGGCCTTAT AGATCTCCGGATCGATGCGGACGGGGGTAATGATCAGGGCGATCGGAACGGCCTGGTTCG GGAGAATGGACGCCTTG CTGGGTCCTGCGGCCCCGAGAGCCCCGGCGCCGTCCTCCAGGCGGAACGTTACGCCCTCC TCCGCGCTAGTGCGGTG CCTGCCGATAAACGTCACCAGATGCGGGTGGGGGGGGCAGTCGGGGAAGTGGCTGTCGAG CACGTAGCCCGCACCAA GATCTGCTTAAAGTTCGGGGACGGGGGGTCGCGAAGACGGGCTCGCGGCGTACCAGATCC CCGGAGCTCCAGGACAC GGGGGAGATGGTGTGGCGTCCGAGGTCGGGGGTGCCAAACAGAAGCACCTCCGAGACAAC GCCGCTATTTAACTCCA CCAAGGCCCGATCCGCGGCGGAGCACCGCCTTTTTTCGCCCGAGGCGTGGGCCTCTGACC AGGCCTGGTCTTGCGTG ACGAGAGCCTCCTCCGGGCCGGGGACGCGCCCGGGCGCGAAGTATCGCACGCTGGGCTTC GGGATCGACCGGATAAA TGCCCGGAACGCCTCCGGGGACCGGTGTGCCATCAAGTCCTCGTACGCGGAGGCCGTGGG GTCGCTGGGGTCCATGG GGTCGAAAGCGTACTTGGCCCGGCATTTGACCTCGTAAAAGGCCAGGGGGGTCTTGGGGA CTGGGGCCAAGTAGCCG T GAAT GT C C C GAG GAC AGAC GAGAAT AT C C AG G GAC G C C C C GAC CAT CCCCGTGT GAC C GT C CAT GAG GAC C C C AC A CGTATGCACGTTCTCTTCGGCGAGGTCGCCGGGTTCGTGGAAGATAAAGCGCCGCGTGTC GGCGCCGGCCTCGCCGC CGTCGTCCGCGCGGCCCACGCAGTAGCGAAACAGCAGGCTTCGGGCCGTCGGCTCGTTCA CCCGCCCGAACATCACC GCCGAAGACTGTACATCCGGCCGCAGGCTGGCGTTGTGCTTCAGCCACTGGGGCGAGAAA CACGGACCCTGGGGGCC CCAGCGGAGGTGGTATGCGGTCGTGAGGCCGCGGAGCAGGGCCCATAGCTGGCAGTCGGC CTGGTTTTGCGTGGCCG CCTCGTAAAACCCCATGAGGGGCCGGGGCGCCACGGCGTCCGCGGCGGCCGGGGGCCCGC GGCGCGTCAGGCGCCAT AGGTGCCGGCCGAGTCCGCGGTCCACCATACCCGCCTCCTCGAGGACCACGGCCAGGGAA CACAGATAATCCAGGCG

GGCCCCCCCCCTCTCCCCTCTCCCCCCCTCTCCCCTGCTCTTTCCCCGCGACACCCG ACGCTGGGGGGCGTGGCTGC

CGGGAGGGGCCGCGTATGGGCGGGCCTACTCGGTCTCCCGCCCCCCCGAACCGCCCC GCCGGCTTTGCCCCCCTTTG

ATCCCCTGCTACCCCCACCCCGTGCTCGTGGTGCGGGGTGGGGGGATGTGGGCGGGG GTGCGCGGGAGGTGTCGGTG

GTGGGGGTGGTGGTGGTGGTGGTAGTAGGAATGGTGGTGGGGGGGAGGGCGCTGGTT GGTCAAAAAAGGGAGGGACG

GGGGCCGGCAGACCGACGGCGACAACGCTCCCCGGCGGCCGGGTCGCGGCCTTACGG CGGCCCGCCCGCGCCCCCCC

CCCCGGGCCGTGTCCTTGCTTTCCCCCCGTCTCCCCCCTTTTGCGTGGCCGCCTCGT AAACCCCCAGAGGGGCCGGG

GCGCCACGGCGTCCGCGGCGGCCGGGGGCCCGCGGCGCGTCAGGCGCCATAGGTGCC GGCCGAGTCCGCGGTCCACC

ATACCCGCCTCCTCGAGGACCACGGCCAGGGAACACAGATAATCCAGGCGGGCCCAG AGGGGACCGATGGCCAGAGG

GGCGCGGACGCCGCGCAGCAACCCGCGCAGGTGGCGCTCGAACGTCTCGGCTAGTAT ATGGGAGGGCAGCGCGTTGG

GGATCACCGACGCCGACCACATAGAGTCAAGGTCCGGGGAGTCGGGATCGGCGTCCG GGTCGCGGGCGTGGGTGCCC

CCAGGAGATAGCGGAATGTCTGGGGTCGGAGGCCTGAGGCGTCAGAAAGTGCCGGCG ACGCGGCCCGGGGCTTTTCG

TCTGCGGTGTCGGTGGCGTGCTGATCACGTGGGGGGTTAACGGGCGAATGGGGAGCT CGGGTCCACAGCTGACGTCG

TCTGGGGTGGGGGGGGCAGGGGACGGAAGGTGGTTGTTAGCGGAAGACTGTTAGGGC GGGGGCGCTTGGGGGGGCTG

TCGGGGCCACGAGGGGTGTCCTCGGCCAGGGCCCAGGAACGCTTAGTCACGGTGCGT CCCGGCGGACATGCTGGGCC

TCCCGTGGACTCCATTTCCGAGACGACGTGGGGGAGCGGTGGTTGAGCGCGCCGCCG GGTGAACGCTGATTCTCACG

ACAGCGCGTGCCGCGCGCACGGGTTGGTGTGACACAGGCGGGCCCGCCTCCTCGAGG ACCACGGCCAGGGAACACAG

ATAATCCAGGCGGGCCCAGAGGGGACCGATGGCCAGAGGGGCGCGGACGCCGCGCAG CAACCCGCGCAGGTGGCGCT

CGAACGTCTCGGCTAGTATATGGGAGGGCAGCGCGTTGGGGATCACCGACGCCGACC ACATAGAGTCAAGGTCCGGG

GAGTCGGGATCGGCGTCCGGGTCGCGGGCGTGGGTGCCCCCAGGAGATAGCGGAATG TCTGGGGTCGGAGGCCCTGA

GGCGTCAGAAAGTGCCGGCGACGCGGCCCGGGGCTTTTCGTCTGCGGTGTCGGTGGC GTGCTGATCACGTGGGGGGT

TAACGGGCGAATGGGAGCTCGGGTCCACAGCTGACGTCGTCTGGGGTGGGGGGGGCA GGGGACGGAAGGTGGTTGTT

AGCGGAAGACTGTTAGGGCGGGGGCGCTTGGGGGGGCTGTCGGGGCCACGAGGGGTG TCCTCGGCCAGGGCCCAGGA

ACGCTTAGTCACGGTGCGTCCCGGCGGACATGCTGGGCCTCCCGTGGACTCCATTTC CGAGACGACGTGGGGGAGCG

GTGGTTGAGCGCGCCGCCGGGTGAACGCTGATTCTCACGACAGCGCGTGCCGCGCGC ACGGGTTGGTGTGACACAGG

CGGGACACCAGCACCAGGAGAGGCTTAAGCTCGGGAGGCAGCGCCACCGACGACAGT ATCGCCTTGTGTGTGTGCTG

GTAATTTATACACCGATCCGTAAACGCGCGCCGAATCTTGGGATTGCGGAGGTGGCG CCGGATGCCCTCTGGGACGT

CATACGCCAGGCCGTGGGTGTTGGTCTCGGCCGAGTTGACAAACAGGGCTGGGTGCA GCACGTGGCGATAGGCGAGC

AGGGCCAGGGCGAAGTCCAGCGACAGCTGGTTGTTGAAATACTGGTAACCGGGAAAC CGGGTCACGGGTACGCCCAG

GCTCGGGGCGACGTACACGCTAACCACCAACTCCAGCAGCGTCTGGCCAAGGGCGTA CAGGTCAACCGCTAACCCGA

CGTCGTGCTTCAGGCGGTGGTTGGTAAATTCGGCCCGTTCGTTGTTAAGGTATTTCA CCAACAGCTCCGGGGGCTGG

TTATACCCGTGACCCACCAGGGGTGAAAGTTGGCTGTGGTTAGGGCGGTGGGCATGC CAAACATCCGGGGGGACTTG

AGGTCCGGCTCCTGGAGGCAAAACTGCCCCCGGGCGATCGTGGAGTTGGAGTTGAGG GTGACGAGGCTAAAGTCGGC

GAGGACGGCCCGCCGGAGCGAGACGGCGTCCGACCGCAGCATGACGAGGATGTTGGC GCGTGAATCGGGTGGCTCCC

CAGGTGGTGTTTAAAAACACAACGGCGCGGGCCAGCTCCGTGAAGCACTGGTGGAGG GCCGTCGAGACCGAGGGGTT

TGTTGTGCGCAGGGACGCCAGTTGGCCGATATACTTACCGAGGTCCATGTCGTACGC GGGGAACACTATCTGTCGTT

GTTGCAGCGAGAACCCGAGGGGCGCGATGAAGCCGCGGATGTTGTGGGTGCGGCCGG CGCGTAGAGCGCACTCCCCG

ACCAACAGGGTCGCGATGAGCTCAACGGCAAACCACTCCTTTTCCTTTATGGTCTTA ACGGCAAGCTTATGTTCGCG

AATCAGTTGGACGTCGCCGTATCCCCCAGACCCCCCGAAGCTTCGGGCCCCGGGGAT CTCGAGGGTCGTGTAGTGTA

GGGCGGGGTTGATGGCGAACACGGGGCTGCATAGCTTGCGGATGCGCGTGAGGGTAA GGATGTGCGAGGGGGACGAG

GGGGGTGCGGTTAACGCCGCCTGGGATCTGCGCAGGGGCGGGCGGTTCAGTTGGCCG CCGTACCGGGCGGCTCGGGG

GACGCGCGGCGATGAGACGAGCGGCTCATTCGCCATCGGGATAGTCCCGCGCGAAGC CGCTCGCGGAGGCCGGATCG

GTGGCGGGACCCGTGGGAGGAGCGGGAGCCGGCGGCGTCCTGGAGAGAGGGGCCGCT GGGGCGCCCGGAGGCCCCGT

GTGGGTTGGGTGTATGTAGGATGCGAGCCAATCCTTGAAGGACTGTTGGCGTGCATT GGGGGTGAGGTGAGAGGAAA

AATGACCAGCAGGTCGCTGTCTGCGGGACTCATCCATCCTTCGGCCAGGTCGCCGTC TTCCCACAGAGAAGCGTTGG

TCGCTGCTTCCTCGAGTTGCTCCTCCTGGTCCGCAAGACGATCGTCCACGGCGTCCA GGCGCTCACCAAGCGCCGGA

TCGAGGTACCGTCGGTGTGCGGTTAGAAAGTCACGACGCGCCGCTTGCTCCTCCACG CGAATTTTAACACAGGTCGC

GCGCTGTCGCATCATCTCTAAGCGCGCGCGGGACTTTAGCCGCGCCTCCAATTCCAA GTGGGCCGCCTTTGCAGCCA

TAAAGGCGCCAACAAACCGAGGATCTTGGGTGCGACGCCCCCCGGTGCAGCGCAGGG TCTGGTCCTTGTAAATCTCG

GCTCGGAGGTGCGTCTCGGCCAGGCGTCGGCGCAGGGCCGCGTGGGCGGCATCTCGG TCCATTCCGCCCCCTGCGGG

CGACCCGGGGGGTGCTCTGATAGTCTCGCGTGCCCAAGGCCCGTGATCGGGGTACTT CGCCGCCGCGACCCGCCACC

CGGTGTGCGCGATGTTTGGTCAGCAGCTGGCGTCCGACGTCCAGCAGTACCTGGAGC GCCTCGAGAAACAGAGGCAA CTTAAGGTGGGCGCGGACGAGGCGTCGGCGGGCCTCACAATGGGCGGCGATGCCCTACGA GTGCCCTTTTTAGATTT CGCGACCGCGACCCCCAAGCGCCACCAGACCGTGGTCCCGGGCGTCGGGACGCTCCACGA CTGCTGCGAGCACTCGC CGCTCTTCCGGCCGTGGCGCGGCGGCTGCTGTTTAATAGCCTGGTGCCGGCGCAACTAAA GGGGCGGGAGGGCGGGG GCGACCACACGGCCAAGCTGGAATTCCTGGCCCCCGAGTTGGTACGGGCGGTGGCGCGAC TGCGGTTTAAGGAGTGC GCGCCGGCGGACGTGGTGCCTCAGCGTAACGCCTACTATAGCGTTCTGAACACGTTTCAG GCCCTCCACCGCTCCGA AGCCTTTCGCCAGCTGGTGCACTTTGTGCGGGACTTTGCCCAGCTGCTTAAAACCTCCTT CCGGGCCTCCAGCCTCA CGGAGACCACGGGCCCCCCAAAAAAACGGGCCAAGGTGGACGTGGCCACCCACGGCCGGA CGTACGGCACGCTGGAG CTGTTCCAAAAAATGATCCTTATGCACGCCACCTACTTTCTGGCCGCCGTGCTCCTCGGG GACCACGCGGAGCAGGT CAACACGTTCCTGCGTCTCGTGTTTGAGATCCCCCTGTTTAGCGACGCGCCGTGCGCCAC TTCCGCCAGCGCGCCAC CGTGTTTCTCGTCCCCCGGCGCCACGGCAAGACCTGGTTTCTAGTGCCCCTCATCGCGCT GTCGCTGGCCTCCTTTC GGGGGATCAAGATCGGCTACACGGCGCACATCCGCAAGGCGACCGAGCCGGTGTTTGAGG AGATCGACGCCTGCCTG CGGGGCTGGTTCGGTTCGGCCCGAGTGGACCACGTTAAAGGGGAAACCATCTCCTTCTCG TTTCCGGACGGGTCGCG CAGTACCATCGTGTTTGCCTCCAGCCACAACACAAACGTAAGTCCTCTTTTCTTTCGCAT GGCTCTCCCAAGGGGCC C C G G GT C GAC C C GAC C C AC AC C C AC C C AC C C AC C C AC AT AC AC AC AC AAC C AGAC G C G G GAG GAAAGT CGGCCCCGT GGGCACTGATTTTTATTCGGGATCGCTTGAGGAGGCCCGGGCAACGGCCCGGGCAACGGT GGGGCAACTCGTAGCAA ATAGGCGACTGATGTACGAAGAGAAGACACACAGGCGCCACCCGGCGCTGGTCGGGGGGA TGTTGTCCGCGCCGCAC CGTCCCCCGACGACCTCTTGCAGACGGTCCGTGATGCAAGGACGGCGGGGGGCCTGCAGC AGGGTGACCGTATCCAC GGGATGGCCAAAGAGAAGCGGACACAGGCTAGCATCCCCCTGGACCGCCAGGGTACACTG GGCCATCTTGGCCCACA GACACGGGGCGACGCAGGGACAGGACTCCGTTACGACGGAGGAGAGCCACAGTGCGTTGG CGGAATCGATGTGGGGC GGCGGGGCGCAGGACTCGCAGCCCCCCGGGTGGTTGGTGATCCTGGCCAGGAGCCATCCC AGATGGCGGGCCCTGCT TCCCGGTGGACAGAGCGACCCCAGGTCGCTGTCCATGGCCCAGCAGTAGATCTGGCCGCT GGGGAGGTGCCACCAGG CCCCCGGGCCCAAGGCGCAACACGCGCCCGGCTCCGGGGGGGTCTTCGCGGGGACCAGAT ACGCGCCATCCAGCTCG CCGACCACTGGCTCCTCCGCGAGCTGTTCGGTGGTTGGGTCGGGGGTTTCCTCCGGGGGG GTGGCCGCCCGTATGCG GGCGAACGTGAGGGTGCACAGGAGCGGGGTCAGGGGGTGCGTCACGCTCCGGAGGTGGAC GATCGAGCAGTAGCGGC GCTCGCGGTTAAAGAAAAAGAGGGCAAAGAAGGTGTTCGGGGGCAACCGCAGCGCCTTGG GGGCGTCAGAAAGAAAA ATCTCGCAGAAGAGGGGGCCCGGGGTCTGGGTTAGGAAGGGCCACCTGACACAGAGGCTC GGTGAGGACCGTTAGAC ACCGAAAGATCTTGAGCCGCTCGTCCACCCGAACGACGCGCCACACAAAGACGGAGTTGA CAATGCGCGCGATAGAG TCGACGTCCGTCCCCAGGGCGTCGACTCTGTCGCGCGTGCCGCGAGCTCCGACCCGGGAA TCCGGCCGGGGCAAGGT CCCCGGGGGACCAGGCGGCGCCAGGGGCCGCCGGGGTCCCAGCTGCGCCATGCCGGGGGC GGGGGGAGGGCAAACCC CAGAGGCGGGGGCCAACGGCGCGGGGAGGAGTGGGTGGGCGAGGTGGCCGGGGGAAGGCG CCCGCTAGCGAGAACGG CCGTTCCCGGACGACACCTTGCGACAAAACCTAAGGACAGCGGCCCGCGCGACGGGGTCC GAGAGGCTAAGGTAGGC CGCGATGTTAATGGTGAACGCAAAGCCGCCGGGAAAGACAACTATGCCACAGAGGCGGCG ATTAAACCCCAGGCAGA GGTAGGCGTAGCTTTCCCCGGGCAGGTATTGCTCGCAGACCCTGCGTGGGGCTGTGGAGG GGACGGCCTCCATGAAG CGACATTTACTCTGCTCGCGTTTACTGACGTCATCATCCATCGCCACGGCGATTGGACGA TTGTTAAGCCGCAGCGT GTCTCCGCTTGTGCTGTAGTAGTCAAAAACGTAATGGCCGTCGGAGTCGGCAAAGCGGGC CGGGAGGTCGTCGCCGA GCGGGACGACCCGCCGCCCCCGACCGCCCCGTCCCCCCAGGTGTGCCAGGACGGCCAGGG CATACGCGGTGTGAAAA AAGGCGTCGGGGGCGGTCCCCTCGACGGCGCGCATCAGGTTCTCGAGGAGAATGGGGAAG CGCCTGGTCACCTCCCC CAGCCACGCGCGTTGGTCGGGGCCAAAGTCATAGCGCAGGCGCTGTGAGATTCGAGGGCC GCCCTGAAGCGCGGCCC GGATGGCCTGGCCCAGGGCCCGGAGGCACGCCAGATGTATGCGCGCAGTAAAGGCGACCT CGGCGGCGATGTCAAAG GGCGGCAGGACGGGGCGCGGGTGGCGCAGGGGCACCTCGAGCGCGGGAAAGCGGAGCAGC AGCTCCGCCTGCCCAGC GGGAGACAGCTGGTGGGGGCGCACGACGCGTTCTGCGGCGCAGGCCTCGGGTCGGGGCCG TGGCCAGCGCCGAGGAC AGCAGCGGAGGGCGGGCGCGTCGCCCGCCCCACGCCACGGAGTTCTCGTAGGAGACGACG ACGAAGCGCTGCTTGGT TCCGTAGTGGTGGCGCAGGACCACGGAGATAGAACGACGGCTCCACAGCCAGTCCGGCCG GTCGCCGCCGGCCAGGG CTTCCCATCCGCGATCCAACCACTCGACCAGCGACCGCGGCTTTGCGGTACCAGGGGTCA GGGTTAGAACGTCGTTC AGGATGTCCTCGCCCCCGGGCCCGTGGGGCACTGGGGCCACAAAGCGGCCCCCGCCTGGG GGCTCCAGACCCGCCAA CACCGCATCTGCGTCAGCCGCCCCCATGGCGCCCCCGCTGACGGCCTGGTGAACCAGGGC GCCCTGGCGGAGCCCCG ATGCAACGCCACAGGCCGCACGCCCGGTCCGAGCGCGGACCGGGTGGCGGCGGGTGACGT CCTGCACTGCCCGCTGA ACCAACGCGAGGATCTCCTCGTTCTCCTGCGCGATGGACACGTCCTGGGCCGCGGTCGTG TCGCCGCCGGGGGCCGT CAGCTGCTCCTCCGGGGAGATGGGGGGGTCGGACGCCCCGACGATGGGCGGGTCTGCGGG CGCCCCCGCGTGGGGCC GGGCCAAGGGCTGCGGACGCGGGGACGCGCTTTCCCCCAGACCCATGGACAGGTGGGCCG CAGCCTCCTTCGCGGCC GGCGGGGCGGCGGCGCCAAGCAGAGCGACGTAGCGGCACAAATGCCGACAGACGCGCATG ATGCGCGTGCTGTCGGC CGCGTAGCGCGTGTTGGGGGGGACGAGCTCGTCGGAACTAAACAGAATCACGCGGGCACA GCTCGCCCCCGAGCCCC ACGCAAGGCGCAGCGCCGCCACGGCGTACGGGTCATAGACGCCCTGTGCGTCACACACCA CGGGCAAGGAGACGAAC

AACCCCCCGGCGCTGGACGCACGCGGAAGGAGGCCAGGGTGTGCCGGCACGACGGGG GCCAGAAGCTCCCCCACCGC

ATCCGCGGGCACGTAGGCGGCAAACGCCGTGCACCACGGGGTACAGTCGCCGGTGGC ATGAGCCCGAGTCTGGATTT

CGACCTGGAAGTTTGCGGCCGTCCCGAGTCCGGGGCGGCCGCGCATCAGGGCGGCCA GAGGGATTCCCGCGGCCGCC

AGGCACTCGCTGGATATGATGACGTGAACCAAAGACGAGGGCCGACCCGGGACGTGG CCGAGATCGTACTGGACCTC

GTTGGCCAAGTGCGCGTTCATGGTTCGGGGGTGGGTGTGGGTGTGTAGGCGATGCGG GTCCCCCGAGTCCGCGGGAA

GGGCGCGGGTTTGGCGCGCGTATGCGTATTCGCCAACGGAGGCGTGCGTGCTTATGC GCGGCGCGTTTCTTCTGTCT

CCAGGGAATCCGAGGCCAGGACTTTAACCTGCTCTTTGTCGACGAGGCCAACTTTAT TCGCCCGGATGCGGTCCAGA

CGATTATGGGCTTTCTCAACCAGGCCAACTGCAAGATTATCTTCGTGTCGTCCACCA ACACCGGGAAGGCCAGTACG

AGCTTTTTGTACAACCTCCGCGGGGCCGCCGACGAGCTTCTCAACGTGGTGACCTAT ATATGCGATGATCACATGCC

GCGGGTGGTGACGCACACAAACGCCACGGCCTGTTCTTGTTATATCCTCAACAAGCC CGTTTCAGCACGATGGACGG

GGCGGTTCGCCGGACCGCCGATTTGTTTCTGGCCGATTCCTTCATGCAGGAGATCAT CGGGGGCCAGGCCAGGGAGA

CCGGCGACGACCGGCCCGTTCTGACCAAGTCTGCGGGGGAGCGGTTTCTGTTGTACC GCCCCTCGACCACCACCAAC

AGCGGCCTCATGGCCCCCGATTTGTACGTGTACGTGGATCCCGCGTTCACGGCCAAC ACCCGAGCCTCCGGGACCGG

CGTCGCTGTCGTCGGGCGGTACCGCGACGATTATATCATCTTCGCCCTGGAGCACTT TTTTCTCCGCGCGCTCACGG

GCTCGGCCCCCGCCGACATCGCCCGCTGCGTCGTCCACAGTCTGAGGTAGGGCCAGG CCCTGCATCCCGGGGCGTTT

CGCGGCGTCCGGGTGGCGGTCGAGGGAAATAGCAGCCAGGACTCGGCCGTCGCCATC GCCACGCACGTGCACACAGA

GATGCACCGCCTATGGCCTCGGAGGGGGCCGACGCGGGCTCGGGCCCCGAGCTTCTC TTCTACCACTGCGAGCCTCC

CGGGAGCGCGGTGCTGTACCCCTTGGTCCTGCTCAACAAACAGAAGACGCCCGCCTT TGAACACTTTATTAAAAAGT

TTAACTCCGGGGGCGTCATGGCCTCCCAGGAGATCGTTTCCGCGACGGTGCGCCTGC AGACCGACCCGGTCGAGTAT

CTGCTCGAGCAGCTGAATAACCTCACCGAAACCGTCTCCCCCAACACGGACGTCCGT ACGTATTCCGGAAAACGGAA

CGGCGCCTCGGATGACCTTATGGTCGCCGTCATTATGGCCATCTACCTTGCGGCCCA GGCCGGACCTCCGCACACAT

TCGCTCCCATCACACGCGTTTCGTGAGCGCCCAATAAACACACCCAGGTATGCTACG CACGACCACGGTGTCGCCTG

TTAAGGGGGGGGGAAGGGGGTGTTGGCGGGAAGCGTGGGAACACGGGGGATTCTCTC ACGACCGGCACCAGTACCAC

CCCCCTGTGAACACAGAAACCCCAACCCAAATCCCATAAACATACGACACCCGGCAT ATTTTGGAATTTCTTCGGTT

TTTATTTATTTAGGTATGCTGGGGTTTCTCCCTGGATGCCCACCCCCACCCCCCCCG TGGGTCTAGCCGGGCCTTAG

GGATAGCGTATAACGGGGGCCATGTCTCCGGACCGCACAACGGCCGCGCCGTCAAAG GTGCACACCCGAACCACGGG

AGCCAGGGCCAAGGTGTCTCCTAGTTGGCCCGCGTGGGTCAGCCAGGCGACGAGCGC CTCGTAGAGCGGCAGCCTTC

GCTCTCCATCCTGCATCAGGGCCGGGGCTTCGGGGTGAATGAGCTGGGCGGCCTCCC GCGTGACACTCTGCATCTGC

AGGAGAGCGTTCACGTACCCGTCCTGGGCACTTAGCGCAAAGAGCCGGGGGATTAGC GTAAGGATGATGGTGGTTCC

CTCCGTGATCGAGTAAACCATGTTAAGGACCAGCGATCGCAGCTCGGCGTTTACGGG GCCGAGTTGTTGGACGTCCG

CCAGCAGCGAGAGGCGACTCCCGTTGTAGTACAGCACGTTGAGGTCTGGCAGCCCTC CGGGGTTTCTGGGGCTGGGG

TTCAGGTCCCGGATGCCCCTGGCCACGAGCCGCGCCACGATTTCGCGCGCCAGGGGC GATGGAAGCGGAACGGGAAA

CCGCAACGTGAGGTCCAGCGAATCCAGGCGCACGTCCGTCGCTTGGCCCTCGAACAC GGGCGGGACGAGGCTGATGG

GGTCCCCGTTACAGAGATCTACGGGGGAGGTGTTGCGAAGGTTAACGGTGCCGGCGT GGGTGAGGCCCACGTCCAGG

GGGCAGGCGACGATTCGCGTGGGAAGCACCCGGGTGATGACCGCGGGGAAGCGCCTT CGGTACGCCAGCAACAGCCC

CAACGTGTCGGGACTGACGCCTCCGGAGACGAAGGATTCGTGCGCCACGTCGGCCAG CGTCAGTTGCCGGCGGATGG

TCGGAGGAATACCACCCGCCCTTCGCAGCGCTGCAGCGCCGCCGCATCGGGGCGCGA GATGCCCGAGGGTATCGCGA

TGTCAGTTTCAAAGCCGTCCGCCAGCATGGCGCCGATCCACGCGGCAGGGAGTGCAG TGGTGGTTCGGGTGGCGGGA

GGAGCGCGGTGGGGGTCAGCGGCGTAGCAGAGACGGGCGACCAACCTCGCATAGGAC GGGGGGTGGGTCTTAGGGGG

TTGGGAGGCGACAGGGACCCCAGAGCATGCGCGGGGAGGTCTGTCGGGCCCAGACGC ACCGAGAGCGAATCCGCCAT

GGGCCCGGCCTGGGTTTTATGGGGCCCGGCCCTCGGAATCGCGGCTTGTCGGCGGGG GCAAAGGGGGCGGGGCTAGG

GGGCTTGCGGGAACAGAGACGGGTGGGGTAAAAGAATCGCACTACCCCAAGGAAGGG CGGGGCGGTTTATTACAGAG

CCAGTCCCTTGAGCGGGGATGCGTCATAGACGAGATACTGCGCGAAGTGGGTCTCCC GCGCGTGGGCTTCCCCGTTG

CGGGCGCTGCGGAGGAGGGCGGGGTCGCTGGCGCAGGTGAGCGGGTAGGCCTCCTGA AACAGGCCACACGGGTCCTC

CACGAGTTCGCGGCACCCCGGGGGGCGCTTAAACTGTACGTCGCTGGCGGCGGTGGC CGTGGACACCGCCGAACCCG

TCTCCACGATCAGGCGCTCCAGGCAGCGATGTTTGGCGGCGATGTCGGCCGACGTAA AGAACTTAAAGCAGGGGCTG

AGCACCGGCGAGGCCCCGTTGAGGTGGTAGGCCCCGTTATAGAGCAGGTCCCCGTAC GAAAATCGCTGCGACGCCCA

CGGGTTGGCCGTGGCCGCGAAGGCCCGGGACGGGTCGCTCTGGCCGTGGTCGTACAT GAGGGCGGTGACACCCCCTC

CTTGCCCCCGCGTAAACGCCCCCGGGGCGCGCCCCGGGGGGTTGCGGGGCCGGCGGA AGTAGTTGACGTCGGTCGAC

ACGGGGGTGGCGATAAACTCACACACGGCGTCCTGGCCGTGGTCCATCCCTGCGCGC CGCGGCCCCTGGGCGCACCC

GAACACGGGGACGGGCTGGGCCGGCCCCAGGCGGTTTCCCGCCACGACCGCGTTCCG CAGGTACACGGCTGCCGCGT TGTCCAGTAGAGGGGGAGCCCCGCGGCCCAGGTAAAAGTTTTGGGGAAGGTTGCCCATGT CGGTGACGGGGTTGCGG

ACGGTTGCCGTGGCCACGACGGCGGTGTAGCCCACGCCCAGGTCCACGTTCCCGCGC GGCTGGGTGAGCGTGAAGTT

TACCCCCCCGCCAGTTTCATGCCGGGCCACCTGGAGCTGGCCCAGGAAGTACGCCTC CGACGCGCGCTCCGAGAACA

GCACGTTCTCAGTCACAAAGCGGTCCTGTCGGACGACGGTGAACCCAAACCCGGGAT GGAGGCCCGTCTTGAGCTGA

TGATGCAAGGCCACGGGACTGATCTTGAAGTACCCCGCCATGAGCGCGTAGGTCAGC GCGTTCTCCCCGGCCGCGCT

CTCGCGGACGTGCTGCACGACGGGCTGTCGGATCGACGAAAAGTAGTTGGCCCCCAG AGCCGGGGGGACCAGGGGGA

CCTGCCGCGACAGGTCGCGCAGGGCCGGGGGGAAATTGGGCGCGTTCGCCACGTGGT CGGCCCCGGCGAACAGCGCG

TGGACGGGGAGGGGGTAAAAATAGTCGCCATTTTGGATGGTATGGTCCAGATGCTGG GGGGCCATCAGCAGGATTCC

GGCGTGCAACGCCCCGTCGAATATGCGCATGTTGGTGGTGGACGCGGTGTTGGCGCC CGCGTCGGGCGCCGCCGAGC

AGAGCAGCGCCGTTGTGCGTTCGGCCATGTTGTGGGCCAGCACCTGCAGCGTGAGCA TGGCGGGCCCGTCCACTACC

ACGCGCCCGTTGTGAAACATGGCGTTGACCGTGTTGGCCACCAGATTGGCCGGGTGC AGGGGGGGCGCGGGGTCCGT

CACGGGGTCGCTGGGGCAATCCTCGCCGGGGGTGATCTCCGGGACCACCATGTTCTG CAGGGTGGCGTATACGCGGT

CGAAGCGAACCCCCGCGGTGCAGCAGCGGCCCCGCGAGAAGGCGGGCACCATCACGT AGTAGTAAATCTTGTGGTGC

ACGGTCCAGTCCGCCCCCCGGTGCGCCGGTCGTCCGCGGCGTCCGCGGCTCGGGCCT GGGTGTTGTGCAGCAGCTGG

CCGTCGTTGCGGTTGAAGTCCGCGGTCGCCACGTTACACGCCGCTGCGTACACGGGG TCGTGGCCCCCCGCGCTAAC

CCGGCAGTCGCGATGGCGGTCCAGGGCCGCGCGCCGCATCAGGGCGTCGCAGTCCCA CACGAGGGGTGGCAGCAGCG

CCGGGTCTCGCATTAGGTGATTCAGTTCGGCTTGCGCCTGCCCGCCCAGTTCCGGGC CGGTCAGGGTAAAGTCATCA

ACCAGCTGGGCCAGGGCCTCGACGTGCGCCACCAGGTCCCGGTACACGGCCATGCAC TCCTCGGGAAGGTCTCCCCC

GAGGTAGGTCACGACGTACGAGACCAGCGAGTAGTCGTTCACGAACGCCGCGCACCG CGTGTTGTTCCAGTAGCTGG

TGATGCACTGGACCACGAGCCGGGCCAGGGCGCAGAAGACGTGCTCGCTGCCGTGTA TGGCGGCCTGCAGCAGGTAA

AACCCGCCGGGTAGTTGCGGTCTTCGAACGCCCCGCGAACGGCGGCGATGGTGGCGG GGGCCATGGCGTGGCGTCCC

ACCCCCAGCTCCAGGCCCCGGGCGTCCCGGAACGCCGCCGGACATAGCGCCAGGGGC AAGTTGCCGTTCACCACGCG

CCAGGTGGCCTGGATCTCCCCCGGGCCGGCCGGGGGAACGTCCCCCCCCGGCAGCTC CACGTCGGCCACCCCCACGA

AGAAGTCGAACGCGGGGTGCAGCTCAAGAGCCAGGTTGGCGTTGTCGGGCTGCATAA ACTGCTCCGGGGTCATCTGG

CCTTCCGCGACCCATCGGACCCGCCCGTGGGCCAGGCGCTGCCCCCAGGCGTTCAAA AACAGCTGCTGCATGTCTGC

GGCGGGGCCGGCCGGGGCCGCCACGTACGCCCCGTACGGATTGGCGGCTTCGACGGG GTCGCGGTAAGGCCCCCGAC

CGCCGCGTCAACGTTCATCAGCGAAGGGTGGCACACGGTCCCGATCGCGTGTTCCAG AGACAGGCGCAGCACCTGGC

GGTCCTTCCCCCAAAAAAACAGCTGGCGGGGCGGGAAGGCGCGGGGATCCGGGTGGC CGGGGGCGGGGACTAGGTCC

CCGGCGTGCGCGGCAAACCGTTCCATGACCGGATTGAACAGGCCCAGGGGCAGGACG AACGTCAGGTCCATGGCGCC

CACCAGGGGGTAGGGAACGTTGGTGGCGGCGTAGATGCGCTTCTCCAGGGCCTCCAA AAAGATCAGCTTCTCGCCGA

TGGACACCAGATCCGCGCGCACGCGCGTCGTCTGGGGGGCGCTCTCGAGCTCGTCCA GCGTCTGCCGGTTCAGGTCG

AGCTGCTCCTCCTGCATCTCCAGCAGGTGGCGGCCCACGTCGTCCAGACTTCGCACG GCCTTGCCCATCACGAGCGC

CGTGACCAGGTTGGCCCCGTTCAGGACCATCTCGCCGTACGTCACCGGCACGTCGGC TTCGGTGTCCTCCACTTTCA

GGAAGGACTGCAGGAGGCGCTGTTTGATCGGGGCGGTGGTGACGAGCACCCCGTCGA CCGGACGCCCGCGCGTGTCG

GCATGCGTCAGACGGGGCACGGCCATGGAGGGCTGCGTGGCCGTGGTGAGGTCCACG AGCCAGGCCTCGACGGCCTC

CCGGCGGTGGCCCGCCTTGCCCAGGAAAAAGCTCGTCTCGCAGAAGCTTCGCTTTAG CTCGGCGACCAGGGTCGCCC

GGGCCACCCTGGTGGCCAGGCGGCCGTTGTCCAGGTATCGTTGCATCGGCAACAACA AAGCCAGGGGCGGCGCCTTT

TCCAGCAGCACGTGCAGCATCTGGTCGGCCGTGCCGCGCTCAAACGCCCCGAGGACG GCCTGGACGTTGCGAGCGAG

TTGTTGGATGGCGCGCAACTGGCGATGCGCGCTGATACCCGTCCCGTCCAGGGCCTC CCCCGTGGCAGGGCGATGGC

CTCGGTGGCCAGGCTGAAGGCGGCGTTCAGGGCCCGGCGGTCGATAATCTTGGTCAT GTAATTGTGTGTGGGTTGCT

CGATGGGGTGCGGGCCGTCGCGGGCAATCAGCGGCTGGTGGACCTCGAACTGTACGC GCCCCTCGTTCATGTAGGCC

AGCTCCGGAAACTTGGTACACACGCACGCCACCGACAACCGCGCTCCAGAAAGCGCA CGAGCGACAGGGTGTTGCAA

TACGACCCCAACAGGGCGTCGAACTCGACGTCATACAGGCTGTTTGCATCGGAGCGC ACGCGGGAAAAAAAATCGAA

CAGGCGTCGATGCGACGCCACCTCGATCGTGCTAAGGAGGGACCCGGTCGGCACCAT GGCCGCGGCATACCGGTATC

CCGGAGGGTCGCGGTTGGGAGCGGCCATGGGGTCGCGTGGAGATCGGCTGTCTCTAG TGATATTGGCCCGGGGAGGC

TAAGATCCACCCCAACGCCCGGCCACCCGTGTACGTGCCCGACGGCCCAAGGTCCAC CGAAAGACACGACGGGCCCG

GACCCAAAAAGGCGGGGGATGCTGTGTGAGAGGCCGGGTGTCGGTCGGGGGGGAAAG GCACCGGGAGAAGGCTGCGG

CCTCGTTCCAGGAGAACCCAGTGTCCCCAACAGACCCGGGGACGTGGGATCCCAGGC CTTATATACCCCCCCCGCCC

CACCCCCGTTAGAACGCGACGGGTGCATTCAAGATGGCCCTGGTCCAAAAGCGTGCC AGGAAGAAATTGGCAGAGGC

GGCAAAGCTGTCCGCCGCCGCCACCCACATCGAGGCCCCGGCCGCGCAGGCTATCCC CAGGGCCCGTGTGCGCAGGG

GATCGGTGGGCGGCAGCATTTGGTTGGTGGCGATAAAGTGGAAAAGCCCGTCCGGAC TGAAGGTCTCGTGGGCGGCG

GCGAACAAGGCACACAGGGCCGTGCCTCCCAAAAACACGGACATCCCCCAAAACACG GGCGCCGACAACGGCAGACG ATCCCTCTTGATGTTAACGTACAGGAGGAGCGCCCGCACCGCCCACGTAACGTAGTAGCC GACGATGGCGGCCAGGA TACAGGCCGGCGCCACCACCCTTCCGGTCAGCCCGTAATACATGCCCGCTGCCACCATCT CCAACGGCTTCAGGACC AAAAACGACCAAAGGAACAGAATCACGCGCTTTGAAAAGACCGGCTGGGTATGGGGCGGA AGACGCGAGTATGCCGA ACTGACAAAAAAGTCAGAGGTGCCGTACGAGGACAATGAAAACTGTTCCTCCAGTGGCAG TTCTCCCTCCTCCCCCC CAAAGGCGGCCTCGTCGACCAGATCTCGATCCACCAGAGGAAGGTCATCCCGCATGGTCA TGGGGTGTGCGGTGGAG GTGGGGAGACCGAAACCGCAAAGGGTCGCTTACGTCAGCAGGATCCCGAGATCAAAGACA CCCGGGTTCTTGCACAA ACACCACCCGGGTTGCATCCGCGGAGGCGAGTGTTTTGATAAGGCCGTTCCGCGCCTTGA TATAACCTTTGATGTTG ACCACAAAACCCGGAATTTACGCCTACGCCCCAATGCCCACGCAAGATGAGGTAGGTAAC CCCCCCCCGTGGGTGTG ACGTTGCGTTTAGTTCATTGGAGGCCAAGGGGAAAATGGGGTGGGGAGGAAACGGAAAAC CCAGTAGGCCGTGTTGG GAACACGCCCGGGGTTGTCCTCAAAAGGCAGGGTCCATACTACGGAAGCCGTCGTTGTAT TCGAGACCTGCCTGTGC GACGCACGTCGGGGTTGCCTGTGTCCGGTTCGGCCCCACCGCGTGCGGCACGCACGAGGA CGAGTCCGCGTGCTTTA TTGGCGTTCCAAGCGTTGCCCTCCAGTTTCTGTTGTCGGTGTTCCCCCATACCCACGCCC ACATCCACCGTAGGGGG CCTCTGGGCCGTGCACGTCGCCGCCCGCGATGGAGCTTAGCTACGCCACCACCATGCACT ACCGGGACGTTGTGTTT TACGTCACAACGGACCGAAACCGGGCCTACTTTGTGTGCGGGGGGTGTGTTTATTCCGTG GGGCGGCCGTGTGCCTC GCAGCCCGGGGAGATTGCCAAGTTTGGTCTGGTCGTTCGAGGGACAGGCCCAGACGACCG CGTGGTCGCCAACTATG TACGAAGCGAGCTCCGACAACGCGGCCTGCAGGACGTGCGTCCCATTGGAGGACGAGGTG TTTCTGGACAGCGTGTG TCTTCTAAACCCGAACGTGAGCTCCGAGCTGGATGTGATTAACACGAACGACGTGGAAGT GCTGGACGAATGTCTGG CCGAGTACTGCACCTCGCTGCGAACCAGCCCGGGTGTGCTAATATCCGGGCTGCGCGTGC GGGCGCAGGACAGAATC ATCGAGTTGTTTGAACACCCAACGATAGTCAACGTTTCCTCGCACTTTGTGTATACCCCG TCCCCATACGTGTTCGC CCTGGCCCAGGCGCACCTCCCCCGGCTCCCGAGCTCGCTGGAGGCCCTGGTGAGCGGCCT GTTTGACGGCATCCCCG CCCCACGCCAGCCACTTGACGCCCACAACCCGCGCACGGATGTGGTTATCACGGGCCGCC GCGCCCCACGACCCATC GCCGGGTCGGGGGCGGGGTCGGGGGGCGCGGGCGCCAAGCGGGCCACCGTCAGCGAGTTC GTGCAAGTCAAACACAT TGACCGCGTGGGCCCCGCTGGCGTTTCGCCGGCGCCTCCGCCAAACAACACCGCTCAAGT TCCCGGTGCCCGGGGCC CAGGATTCCGCCCCGCCCGGCCCCACGCTAAGGGAGCTGTGGTGGGTGTTTTATGCCGCA GACCGGGCGCTGGAGGA GCCCCGCGCCGACTCTGGCCTCACCCGCGAGGAGGTACGTGCCGTACGTGGGTTCCGGGA GCAGGCGTGGAAACTGT TTGGCTCCGCGGGGGCCCCGCGGGCGTTTATCGGGGCCGCGTTGGGCCTGAGCCCCCTCC AAAAGCTAGCCGTTTAC TACTATATCATCCACCGAGAGAGGCGCCTGTCCCCCTTCCCCGCGCTAGTCCGGCTCGTA GGCCGGTACACACAGCG CCACGGCCTGTACGTCCCTCGGCCCGCGCTGGAGGCCCTGGTGAGCGGCCTGTTTGACGG CATCCCCGCCCCACGCC AGCCACTTGACGCCCACAACCCGCGCACGGATGTGGTTATCACGGGCCGCCGCGCCCCAC GACCCATCGCCGGGTCG GGGGCGGGGTCGGGGGGCGCGGGCGCCAAGCGGGCCACCGTCAGCGAGTTCGTGCAAGTC AAACACATTGACCGCGT GGGCCCCGCTGGCGTTTCGCCGGCGCCTCCGCCAAACAACACCGACTCAAGTTCCCTGGT GCCCGGGGCCCAGGATT CCGCCCCGCCCGGCCCCACGCTAAGGGAGCTGTGGTGGGTGTTTTATGCCGCAGACCGGG CGCTGGAGGAGCCCCGC GCCGACTCTGGCCTCACCCGCGAGGAGGTACGTGCCGTACGTGGGTTCCGGGAGCAGGCG TGGAAACTGTTTGGCTC CGCGGGGGCCCCGCGGGCGTTTATCGGGGCCGCGTTGGGCCTGAGCCCCCTCCAAAAGCT AGCCGTTTACTACTATA TCATCCACCGAGAGAGGCGCCTGTCCCCCTTCCCCGCGCTAGTCCGGCTCGTAGGCCGGT ACACACAGCGCCACGGC CTGTACGTCCCTCGGCCCGACGACCCAGTCTTGGCCGATGCCATCAACGGGCTGTTTCGC GACGCGCTGGCGGCCGG AACCACAGCCGAGCAGCTCCTCATGTTCGACCTTCTCCCCCCAAAGGACGTGCCGGTGGG AAGCGACGTGCAGGCCG ACAGCACCGCTCTGCTGCGCTTTATAGAATCGCAACGTCTCGCCGTCCCCGGGGGGGTGA TCTCCCCCGAGCACGTC GCGTACCTTGGTGCGTTCCTGAGCGTGCTGTACGCTGGCCGCGGGCGCATGTCCGCAGCC ACGCACACCGCGCGGCT GACAGGGGTGACCTCCCTGGTGCTAGCGGTGGGTGACGTGGACCGTCTTTCCGCGTTTGA CCGCGGAGCGGCGGGCG CGGCCAGCCGCACGCGGGCCGCCGGGTACCTGGATGTGCTTCTTACCGTTCGTCTCGCTC GCTCCCAACACGGACAG TCTGTGTAACAGACCCCAATAAACGTATGTCGCTACCACACCCTTGTGTGTCAATGGACG CCTCTCCGGGGGGGAAG G GAAAAC AAAGAG GGGCTGGGG GAG C G G C AC C AC CGGGGCCT GAAC AAAC AAAC C AC AGAC AC G GT T AC AGT T TAT T CGGTCGGGCGGAGAAACGGCCGAAGCCACGCCCCCTTTATTCGCGTCTCCAAAAAAACGG GACACTTGTCCGGAGAA CCTGTAGGATGCCAGCCAGGGCGGCGGTAATCATAACCACGCCCAGCGCAGAGGCGGCCA GAAACCCGGGCGCAATT GCGGCCACGGGCTGCGTGTCAAAGGCTAGCAAATGAATGACGGTTCCGTTTGGAAATAGC AACAAGGCCGTGGACGG CACGTCGCTCGAAAACACGCTTGGGGCGCCCTCCGTCGGCCCGGCGGCGATTTGCTGCTG TGTGTTGTCCGTATCCA CCAGCAACACAGACATGACCTCCCCGGCCGGGGTGTAGCGCATAAACACGGCCCCCACGA GCCCCAGGTCGCGCTGG GTTTGGGTGCGCACCAGCCGCTTGGACTCGATATCCCGGGTGGAGCCTTCGCATGTCGCG GGAGGTAGGTTAGGAAC AGTGGGCGTCGGACGTCGACGCCGGTGAGCTTGTAGCCGATCCCCCGGGGGAGAGGGGAG GGGGAAGAGAAGAGGGC GTTGTGGGTGATGGGTACCAGGATCCGTGGCTCGACGTTGGCAGACTGCCCCCCGCACCG ATGTGAGGCCTCAGGGA CGAAGGCGCGGATCAGGGCGTTGTAGTGTGCCCAGCGCGTCAGGGTCGAGGCGAGGCCGT GGGTCTGCTGGGCCAGG ACTTCGACCGGGGTCTCGGATCGGGTGGCTTGAGCCAGCGCGTCCAGGATAAACACGCGC TCGTCTAGATCAAAGCG

CAGGGAGGCCGCGCATGGCGAAAAGTGGTCCGGAAGCCAAAAGAGGGTTTTCTGGTG GTCGGCCCGGGCCAGCGCGG

TCCGGAGGTCGGCGTTGGTCGCTGCGGCGACGTCGGACGTACACAAGGCCGAGGCTA TCAGAAGGCTCCGGCGGGCG

CGTTCCCGCTGCACCGCCGAGGGGACGCCCGCCAAGAACGGCTGCCGGAGGACAGCC GAGGCGTAAAATAGCGCCCG

GTGGACGACCGGGGTGGTCAGCACGCGGCCCCCTAGAAACTCGGCATACAGGGCGTC GATGAGATGGGCTGCGCTGG

GCGCCACTGCGTCGTACGCCGAGGGGCTATCCAGCACGAAGGCCAGCTGATAGCCCA GCGCGTGTAATGCCAAGCTC

TGTTCGCGCTCCAGAATCTCGGCCACCAGGTGCTGGAGCCGAGCCTCTAGCTGCAGG CGGGCCGTGGGATCCAAGAC

TGACACATTAAAAAACACAGAATCCGCGGCACAGCCCGCGGCCCCGCGGGCGGCCAA CCCGGCAAGCGCGCGCGAGT

GGGCCAAAAAGCCTAGCAGGTCGGAGAGGCAGACCGCGCCGTTTGCGTGGGCGGCGT TCACGAAAGCAAAACCCGAC

GTCGCGAGCAGCCCCGTTAGGCGCCAGAAGAGAGGGGGACGCGGGCCCTGCTCGGCG CCCGCGTCCCCCGAGAAAAA

CTCCGCGTATGCCCGCGACAGGAACTGGGCGTAGTTCGTGCCCTCCTCCGGGTAGCC GCCCACGCGGCGGAGGGCGT

CCAGCGCGGAGCCGTTGTCGGCCCGCGTCAGGGACCCTAGGACAAAGACCCGATACC GGGGGCCGCCCGGGGGCCCG

GGAAGAGCCCCCGGGGGGTTTTCGTCCGCGGGGTCCCCGACCCGATCTAGCGTCTGG CCCGCGGGGACCACCATCAC

TTCCACCGGAGGGCTGTCGTGCATGGATATCACGAGCCCCATGAATTCCCGCCCGTA GCGCGCGCGCACCAGCGCGG

CATCGCACCCGAGCACCAGCTCCCCCGTCGTCCAGATGCCCACGGGCCACGTCGAGG CCGACGGGGAGAAATACACG

TACCTACCTGGGGATCTCAACAGGCCCCGGGTGGCCAACCAGGTCGTGGACGCGTTG TGCAGGTGCGTGATGTCCAG

CTCCGTCGTCGGGTGCCGCCGGGCCCCAACCGGCGGTCGGGGGGGCGGCTGCAGGCG GGCCGTGGGATCCAAGACTG

ACACATTAAAAAACAGAATCCGCGGCACAGCCCGCGGCCCCGCGGGCGGCCAACCCG GCAAGCGCGCGCGAGTGGGC

CAAAAAGCCTAGCAGGTCGGAGAGGCAGACCGCGCCGTTGCGTGGGCGGCGTTCACG AAAGCAAAACCCGACGTCGC

GAGCAGCCCCGTTAGGCGCCAGAAGAGAGGGGGACGCGGGCCCTGCTCGGCGCCCGC GTCCCCCGAGAAAAACTCCG

CGTATGCCCGCGACAGGAACTGGGCGTAGTTCGTGCCCTCCTCCGGGTAGCCGCCCA CGCGGCGGAGGGCGTCCAGC

GCGGAGCCGTTGTCGGCCCGCGTCAGGGACCCTAGGACAAAGACCCGATACCGGGGG CCGCCCGGGGGCCCGGGAAG

AGCCCCCGGGGGGTTTCGTCCGCGGGGTCCCCGACCCGATCTAGCGTCTGGCCCGCG GGGACCACCATCACTTCCAC

CGGAGGGCTGTCGTGCATGGATATCACGAGCCCCATGAATTCCCGCCCGTAGCGCGC GCGCACCAGCGCGGCATCGC

ACCCGAGCACCAGCTCCCCCGTCGTCCAGATGCCCACGGGCCACGTCGAGGCCGACG GGGAGAAATACACGTACCTA

CCTGGGGATCTCAACAGGCCCCGGGTGGCCAACCAGGTCGTGGACGCGTTGTGCAGG TGCGTGATGTCCAGCTCCGT

CGTCGGGTGCCGCCGGGCCCCAACCGGCGGCGGGGGGGCGGTGTATCACGCGGCCCG CTCGGGTGGCTCGCCGTCGC

CACGTTGGCTCCCCGCGGGAAAAGAGGGAACGTCAGGGCCTCGGGGTCAGGGACGGC CGAAAACGTTACCCAGGCCC

GGGAACGCAGCAACACGGAGGCGGTTGGATTGTGCAAGAGACCCTTAAGGGGGGCGA CCGCGGGGGGAGGCTGGGCG

GTCGGCTCGACCGTGATGGGGGCGGGCAGGCTCGCGTTCGGGGGCCGGCCGAGCAGG TAGGTCTTCGAGATGTAAAG

CAGCTGGCCGGGGTCCCGCGGAAACTCGGCCGTGGTGACCAATACAAAACAAAAGCG CTCCTCGTACCAGCGAAGAA

GGGGCAGAGATGCCGTAGTCAGGTTTAGTTCGTCCGGCGGCGCCAGAAATCCGCGCG GTGGTTTTTGGGGGTCGGGG

GTGTTTGGCAGCCACAGACGCCCGGTGTTCGTGTCGCGCCAGTACATGCGGTCCATG CCCAGGCCATCCAAAAACCA

TGGGTCTGTCTGCTCAGTCCAGTCGTGGACCTGACCCCACGCAACGCCCAAAAGAAT AACCCCCACGAACCATAAAC

CATTCCCCATGGGGGACCCCGTCCCTAACCCACGGGGCCCGTGGCTATGGCAGGGCT TGCCGCCCCGACGTTGGCTG

CGAGCCCTGGGCCTTCACCCGAACTTGGGGGTTGGGGTGGGGAAAAGGAAGAAACGC GGGCGTATTGGCCCCAATGG

GGTCTCGGTGGGGTATCGACAGAGTGCCAGCCCTGGGACCGAACCCCGCGTTTATGA ACAAACGACCCAACACCCGT

GCGTTTTATTCTGTCTTTTTATTTCCGTCATAGCGCGGGTTCCTTCCGGTATTGTCT CCTTCCGTGTTTCAGTTAGC

CTCCCCCATCTCCCGGGCAAACGTGCGCGCCAGGTCGCAGATCGTCGGTATGGAGCC TGGGGTGGTGACGTGGGTCT

GGACCATCCCGGAGGTAAGTTGCAGCAGGGCGTCCCGGCAGCCGGCGGGCGATTGGT CGTAATCCAGGATAAAGACG

TGCATGGGACGGAGGCGTTTGGCCAAGACGTCCAAGGCCCAGGCAAACACGTTATAC AGGTCGCCGTTGGGGGCCAG

CAACTCGGGGGCCCGAAACAGGGTAAATAACGTGTCCCCGATATGGGGTCGTGGGCC CGCGTTGCTCTGGGGCTCGG

CACCCTGGGGCGGCACGGCCGTCCCCGAAAGCTGTCCCCAATCCTCCCGCCACGACC CGCCGCCCTGCAGATACCGC

ACCGTATTGGCAAGCAGCCCGTAAACGCGGCGAATCGCGGCCAACATAGCCAGGTCA AGCCGCTCGCCGGGGCGCTG

GCGTTTGGCCAGGCGGTCGATGTGTCTGTCCTCCGGAAGGGCCCCCAACACGATGTT TGTGCCGGGCAAGGTCGGCG

GGATGAGGGCCACGAACGCCAGCACGGCCTGGGGGGTCATGCTGCCCATAAGGTATC GCGCGGCCGGGTAGCACAGG

AGGGCGGCGATGGGATGGCGGTCGAAGATGAGGGTGAGGGCCGGGGGCGGGGCATGT GAGCTCCCAGCCTCCCCCCC

GATATGAGGAGCCAGAACGGCGTCGGTCACGGCATAAGGCATGCCCATTGTTATCTG GGCGCTTGTCATTACCACCG

CCGCGTCCCCGGCCGATATCTCACCCTGGTCGAGGCGGTGTTGTGTGGTGTAGATGT TCGCGATTGTCTCGGAAGCC

CCCAGCACCTGCCAGTAAGTCATCGGCTCGGGTACGTAGACGATATCGTCGCGCGAA CCCAGGGCCACCAGCAGTTG

CGTGGTGGTGGTTTTCCCCATCCCGTGAGGACCGTCTATATAAACCCGCAGTAGCGT GGGCATTTTCTGCTCCAGGC

GGACTTCCGTGGCTTCTTGCTGCCGGCGAGGGCGCAACGCCGTACGTCGGTTGCTAT GGCCGCGAGAACGCGCAGCC TGGTCGAACGCAGACGCGTGTTGATGGCAGGGGTACGAAGCCATACGCGCTTCTACAAGG CGCTTGCCAAAGAGGTG

CGGGAGTTTCACGCCACCAAGATCTGCGGCACGCTGTTGACGCTGTTAAGCGGGTCG CTGCAGGGTCGCTCGGTGTT

CGAGGCCACACGCGTCACCTTAATATGCGAAGTGGACCTGGGACCGCGCCGCCCCGA CTGCATCTGCGTGTTCGAAT

TCGCCAATGACAAGACGCTGGGCGGGGTTTGTGTCATCATAGAACTAAAGACATGCA AATATATTTCTTCCGGGGAC

ACCGCCAACAAACGCGAGCAACGGGCCACGGGGATGAAGCAGCTGCGCCACTCCCTG AAGCTCCTGCAGTCCCTCGC

GCCTCCGGGTGACAAGATAGTGTACCTGTGCCCCGTCCTGGTGTTTGTCGCCCAACG GACGCTCCGCGTCAGCCGCG

TGACCCGGCTCGTCCCGCAGAAGGTCTCCGGTAATATCACCGCAGTCGTGCGGATGC TCCAGAGCCTGTCCACGTAT

ACGGTCCCCATGGAGCCTAGGACCCAGCGAGCCCGTCGCCGCCGCGGCGGCGCTGCC CGGGGGTCTGCGAGCAGACC

GAAAAGGTCACACTCTGGGGCGCGCGACCCGCCCGAGCCAGCGGCCCGCCAGGTACC ACCCGCCGACCAAACCCCCG

CCTCCACGGAGGGCGGGGGGGTGCTTAAGAGGATCGCGGCGCTCTTCTGCGTGCCCG TGGCCACCAAGACCAAACCC

CGAGCTGCCTCCGAATGAGAGTGTTTCGTTCCTTCCCCCTCCCCCCGCGTCAGACAA ACCCTAACCACCGCTTAAGC

GGCCCCCGCGAGGTCCGAAGACTCATTTGGATCCGGCGGGAGCCACCTGACAACAAC CCCTGGGTTTCCCCACACCA

GACGCCGGTCCGCTGTGCCATCGCTCCCCTTCATCCCACCCCCATCTTGTCCCCAAA TAAAACAAGGTCTGGTAGTT

AGGACAACGACCGCAGTTCTCGTGTGTTATTGTCGCTCTCCGCCTCTCGCAGATGGA CCCGTATTGCCCATTTGACG

CTCTGGACGTCTGGGAACACAGGCGCTTCATAGTCGCCGATTCCCGAAACTTCATCA CCCCCGAGTTCCCCCGGGAC

TTTTGGCTGTCGCCCGTCTTTAACCTCCCCCGGGAGACGGCGGCGGAGCAGGTGGTC GTCCTGCAGGCCCAGCGCCC

AGCGGCTGCCGCTGCCCTGGAGAACGCCGCCATGCAGGCGGCCGAGCTCCCCGTCGA TATCGAGCGCCGGTTACGCC

CGATCGAACGGAACGTGCACGAGATCGCAGGCGCCCTGGAGGCGCTGGAGACGGCGG CGGCCGCCGCCGAAGAGGCG

GATGCCGCGCGCGGGGATGAGCCGGCGGGTGGGGGCGACGGGGGGGCGCCCCCGGGC TGGCCGTCGCGGAGATGGAG

GGCCAGATCGTGCGCAACGACCCGCCGCTACGATACGACACCAACCTCCCCGTGGAT CTGCTACATATGGTGTACGC

GGGCCGCGGGGCGACCGGCTCGTCGGGGGTGGTGTTCGGGACCTGGTACCGCACTAT CCAGGACCGCACCATCACGG

ACTTTCCCCTGACCACCCGCAGTGCCGACTTTCGGGACGGCCGGATGTCCAAGACCT TCATGACGGCGCTGGTCCTG

TCCCTGCAGTCGTGCGGCCGGCTGTATGTGGGCCAGCGCCACTATTCCGCCTTCGAG TGCGCCGTGTTGTGTCTCTA

CCTGCTGTACCGAAACACGCACGGGGCCGCCGACGATAGCGACCGCGCTCCGGTCAC GTTCGGGGATCTGCTGGGCC

GGCTGCCCCGCTACCTGGCGTGCCTGGCCGCGGGATCGGGACCGAGGGCGGCCGGCC ACAGTACCGCTACCGCGACG

ACAAGCTCCCCAAGACGCAGTTCGCGGCCGGCGGGGGCCGCTACGAACACGGAGCGC TGGCGTCGCACATCGTGATC

GCCACGCTGATGCACCACGGGGTGCTCCCGGCGGCCCCGGGGGACGCCCCCGGGACG CGAGCACCCACGGTAACCCC

GACGGCGTGGCGCACCACGACGACATAAACCGCGCCGCCGCCGCGTTCCTCAGCCGG GGCCACAACCTATTCCTGTG

GGAGGACCAGACTCTGCTGCGGGCAACCGCGAACACCATAACGGCCCTGGGCGTTAC CCAGCGGCTCCTCGCGAACG

GCAACGTGTACGCGGACCGCCTCAACAACCGCCTGCAGCTGGGCATGCTGATCCCCG GAGCCGTCCCTTCGGAGGCC

ATCGCCCGTGGGGCCTCCGGGTCCGACTCGGGGGCCATCAAGAGCGGAGACAACAAT CTGGAGGCGCTATGTGCCAA

TTACGTGCTTCCGCTGTACCGGGCCGACCCGGCGGTCGAGCTGACCCAGCTGTTTCC CGGCCTGGCCGCCCTGTGTC

TTGACGCCCAGGCGGGGCGGCCGGTCGGGTCGACGCGGCGGGTGGTGGATATGTCAT CGGGGGCCCGCCAGGCGGCG

CTGGTGCGCCTCACCGCCCTGGAACTCATCAACCGCACCCGCACAAACCCCACCCCC GTGGGGGAGGTTATCCACGC

CCACGACGCCCTGGCGATCCAATACGAACAGGGGCTTGGCCTGCTGGCGCAGCAGGC ACGCATTGGCTTGGGCTCCA

ACACCAAGCGTTTCTCCGCGTTCAACGTTAGCAGCGACTACGACATGTTGTACTTTT TATGTCTGGGGTTCATTCCA

CAGTACCTGTCGGCGGTTTAGTGGGTGGTGGGCGAGGGGGGAGGGGGCATTAGGGAG AAAGAACAAGAGCCTCCGTT

GGGTTTTCTTTGTGCCTGTCTCAAAAGGTCATCCCCGTAAACGGCGGGCTCCAGTCC CGGCCCGGCGGTTGGCGTGA

ACGCAACGGCGGGGCTGGGTTAGCGTTTAGTTTAGCATTCGCTCTCGCCTTTCCGCC CGCCCCCGACCGTTGAGCCT

TTTTTTTTTTTTTTTTTTTTTTTTTTTTT CGT CCACCAAAGT CT CT GT GGGT GCGCGCAT GGCAGCCGAT GCCCCGG

GAGACCGGATGGAGGAGCCCCTGCCAGACAGGGCCGTGCCCATTTACGTGGCTGGGT TTTTGGCCCTGTATGACAGC

GGGGACTCGGGCGAGTTGGCATTGGATCCGGATACGGTGCGGGCGGCCCTGCCTCCG GATAACCCACTCCCGATTAA

CGTGGACCACCGCGCTGGCTGCGAGGTGGGGCGGGTGCTGGCCGTGGTCGACGACCC CCGCGGGCCGTTTTTTGTGG

GACTGATCGCCTGCGTGCAACTGGAGCGCGTCCTCGAGACGGCCGCCAGCGCTGCGA TTTTCGAGCGCCGCGGGCCG

CCGCTCTCCCGGGAGGAGCGCCTGTTGTACCTGATCACCAACTACCTGCCCTCGGTC TCCCTGGCCACAAAACGCCT

GGGGGGCGAGGCGCACCCCGATCGCACGCTGTTCGCGCACGTAGCGCTGTGCGCGAT CGGGCGGCGCCTTGGCACTA

TCGTCACCTACGACACCGGTCTCGACGCCGCCATCGCGCCCTTTCGCCCCTGTCGCC GGCGTCTCGCGAGGGGGCGC

GGCGACTGGCCGCCGAGGCCGAGCTCGCGCTATCCGGACGCCCCTGGGCGCCCGGCG TGGAGGCGCTGCCCCACACG

CTGCTTTCCACCGCCGTTAACAACATGATGCTGCGGGACCGCTGGAGCCTGGTGGCC GAGCGGCGGCGGCAGGCCGG

GATCGCCGGACACACCTACCTCCAGGCGAGCGAAAAATTCAAAATGTGGGGGGCGGA GCCTGTTTCCGCGCCGGCGC

GCGGGTATAAGAACGGGGCCCCGGAGTCCACGGACAACCGCCCGGCTCGATCGCTGC CGCGCCGCAGGGTGACCGGT

GCCCAATCGTCCGTCAGCGCGGGGTCGCCTCGCCCCCGGTACTGCCCCCCATGAACC CCGTTCCAACATCGGGCACC CCGGCCCCCGCGCCGCCCGGCGACGGGAGCTACCTGTGGATCCCGGCCTCCCATACAACC AGCTCGTCGCCGGCCAC GCCGCGCCCCAACCCCAGCCGCATTCCGCGTTTGGTTCCCGGCTGCGGCGGGGGCCGTGG CCTATGGGCCTCACGGC GCGGGTCTTTCCCAGCATTACCCTCCCCACGTCGCCCATCAGTATCCCGGGGTGCTGTTC TCGGGACCCAGCCCACT CGAGGCGCAGATAGCCGCGTTGGTGGGGGCCATAGCCGCGGACCGCCAAGCGGGCGGTCA GCCGGCCGCGGGAGACC CTGGGGTCCGGGGGTCGGGAACTCCCTTCCTCTTCCTTTGCCTCGGAGTCCTACTGCCCC ACCGACGAACCGGACGC GGACTACCCGTACTACCCCGGGGAGGCTCGAGGCGGGCCGCGCGGGGGCGACTCTCGGCG CGCGGCCCGCCAGTCTC CCGGGACCAACGAGACCATCACGGCGCTGATGGGGGCGGGACGTCTCTGCAGCAGGAACT GGCGCACATGCGGGCTC GGACCAGCGCCCCCTATGGAATGTACACGCCGGTGGCGCACTATCGCCCTCAGGTGGGGG AGCCGGAACCAACAACG ACCCACCCGGCCCTTTGTCCCCCGGAGGCCGTGTATCGCCCCCCCCCACACAGCGCCCCC TACGGTCCTCCCCAGGG TCCGGCGTCCCATGCCCCCACTCCCCCGTATGCCCCAGCTGCCTGCCCGCCAGGCCCGCC ACCGCCCCCATGTCCTT CCACCCAGACGCGCGCCCCTCTACCGACGGAGCCCGCGTTCCCCCCCGCCGCCACCGGAT CCCAACCGGAGGCATCC AACGCGGAGGCCGGGGCCCTTGTCAACGCCAGCAGCGCAGCACACGTGGACGTTGACACG GCCCGCGCCGCCGATTT GTTCGTCTCTCAGATGATGGGGGCCCGCTGATTCGCCCCGGTCTTTGGTACCATGGGATG TCTTACTGTATATCTTT TTAAATAAACCAGGTAATACCAAATAAGACCCATTGGTGTATGTTCTTTTTTTTTTATTG GGAGGGGCGGGTAGGCG GGTAGCTTTACAATGCAAAAGCCTTTGACGTGGAGGAAGGCGTGGGGGGGAGGAAATCGG CACTGACCAAGGGGGTC CGTTTTGTCACGGGAAAGGAAAGAGGAAACAGGCCGCGGACACCCGGGGGAGTTTATGTG TTCCTTTTTCTTTCTTC C C AC AC AC AC AC AAAAG G C GT AC C AAAC AAAAAAAC C AAAAGAT G C G CAT G C G GT T T AAC AC CCGTGGTTTT TAT T T ACAACAAACCCCCCGTCACAGGTCGTCCTCGTCGGCGTCACCGTCTTTGTTGGGAACTTG GGTGTAGTTGGTGTTGC GGCGCTTGCGCATGACCATGTCGGTGACCTTGGCGCTGAGCAGCGCGCTCGTGCCCTTCT TCTTGGCCTTGTGTTCC GTGCGCTCCATGGCCGACACCAGGGCCATGTACCGTATCATCTCCCTGGCCTCGGCTAGC TTGGCCTCGTCAAAGTC GCCGCCCTCCTCGCCCTCCCCGGACGCGTCCGGGTTGGTGGGGTTCTTGAGCTCCTTGGT GGTTAGAGGGTACAGGG CCTTCATGGGGTTGCTCTGCAGCCGCATGACGTAACGAAAGGCGAAGAAGGCCGCCGCCA GGCCGGCCAGGCCAACA GCCCACGGCCAGCGCCCCAAAGGGGTTGGACATGAAGGAGGACACGCCCGACACGGCCGA TACCACGCCGCCCACGA TGCCCATCACCACCTTGCCGACCGCGCGCCCCAGGTCGCCCATCCCCTCGAAGAACGCGC CCAGGCCCGCGAACATG GCGGCGTTGGCGTCGGCGTGGATGACCGTGTCGATGTCGGCGAAGCGCAGGTCGTGCAGC TGGTTGCGGCGCTGGAC CTCCGTGTAGTCCAGCAGGCCGCTGTCCTTGATCTCGTGGCGGGTGTACACCTCCAGGGG GACAAACTCGTGATCCT CCAGCATGGGGATGTTGAGGTCGATGAAGGGCTGACGGTGGTGATGTCGGCGCGGCTCAG CTGGTGGGAGTACGCGT ACTCCTCGAAGTACACGTAGCCCCCACCGAAGGTGAAGTAGCGCCGGTGTCCCACGGTGC ACGGCTCGATCGCATCG CGCGTCAGCCGCAGCTCGTTGTTCTCCCCCAGCTGCCCCTCGACCAACGGGCCCTGGTCT TCGTACCGAAAGCTGAC CAGGGGGCGGCTGTAGCAGGCCCCGGGCCGCGAGCTGATGCGCATCGAGTTTTGGACGAT CACGTTGTCCGCGGCGA CCGGCCCGCACGTGGAGACGGCCATCACGTCGCCGAGCATCCGCGCGCTCACCCGCCGGC CCACGGTGACCGAGGCG ATGGCGTTGGGGTTCAGCTTGCGGGCCTCGTTCCACAGGGTCAGCTCGTGATTCTGTAGC TCGCACCACGCGATGGC AACGCGGCCCAACATATCGTTGACATGGCGCTGTATGTGGTTGTACGTAAACTGCAGCCG GGCGAACTCGATGGAGG AGGTGGTCTTGATGCGCTCCACGGACGCGTTGGCGCTGGCCCCGGGCGGCGGGGGCGTGG GGTTTGGGGGCTTGCGG CTCTGCTCTCGGAGGTGTCCCGCACGTACAGCTCCGCGAGCGTGTTGCTGAGAAGGGGCT GGTACGCGATCAGAAAG CCCCCATTGGCCAGGTAGTACTGCGGCTGGCCCACCTTGATGTGCGTCGCGTTGTACCTG CGGGCGAAGATGCGGTC CATGGCGTCGCGGGCGTCCTTGCCGATGCAGTCCCCCAGGTCCACGCGCGAGAGCGGGTA CTCGGTCAGGTTGGTGG TGAAGGTGGTGGATATGGCGTCGGAGGAGAATCGGAAGGAGCCGCCGTACTCGGAGCGCA GCATCTCGTCCACTTCC TGCCACTTGGTCATGGTGCAGACCGACGGGCGCTTTGGCACCCAGTCCCAGGCCACGGTG AACTTGGGGGTCGTGAG CAGGTTCCGGGTGGTCGGCGCCGGGCCCGGGCCTTGGTGGTGAGGTCGCGCGCGTAGAAG CCGTCGACCTGCTTGAA GCGGTCGGCGGCGTAGCTGGTGTGTTCGGTGTGCGACCCCTCCCGGTAGCCGTAAAACGG GGACATGTACACAAAGT CGCCAGTCGCCAGCACAAACTCGTCGTACGGGTACACCGAGCGCGCGTCCACCTCCTCGA CGATGCAGTTTACCGTC GTCCCGTACCGGTGGAACGCCTCCACCCGCGAGGGGTTGTACTTGAGGTCGGTGGTGTGC CAGCCCCGGCTCGTGCG GGTCGCGGCGTTGGCCGGTTTCAGCTCCATGTCGGTCTCGTGGTCGTCCCGGTGAAACGC GGTGGTCTCCAGGTTGT TGCGCACGTACTTGGCCGTGGACCGACAGACCCCCTTGGCGTGATCTTGTCGATCACCTC CTCGAAGGGGACGGGGG CGCGGTCCTCAAAGATCCCCATAAACTGGGAGTAGCGGTGGCCGAACCACACCTGCGAAA CGGTGACGTCTTTGTAG TACATGGTGGCCTTGAACTTGTACGGGGCGATGTTCTCCTTGAAGACCACCGCGATGCCC TCCGTGTAGTTCTGACC CTCGGGCCGGGTCGGGCAGCGGCGCGGCTGCTCGAACTGCACCACCGTGGCGCCCGTGGG GGGTGGGCACACGTAAA AGTTTGCATCGGTGTTCTCCGCCTTGATGTCCCGCAGGTGCTCGCGCAGGGTGGCGTGGC CCGCGGCGACGGTCGCG TTGTCGCCGGCGGGGCGTGGGGGCGTTGGGTTTTTCGGTTTTTTGTTCTTCTTCGGTTTC GGGTCCCCCGTTGGGGC GGCGCCAAGGGCGGGCGGCGCCGGAGTGGCAGGGCCCCCGTTCGCCGCCTGGGTCGCGGC CGCGACCCCAGGCGTGC CGGGGGAACTCGGAGCCGCCGACGCCACCAGGACCCCCAGCGTCAACCCCAAGAGCGCCC ATACGACGAACCACCGG CGCCCCCACGAGGGGGCGCCCTGGTGCATGGCGGGACTACGGGGGCCCGTCGTGCCCCCC GTCAGGTAGCCTGGGGG

CGAGGTGCTGGAGGACCGAGTAGAGGATCGAGAAAACGTCGCGGTCGTAGACCACGA CGACCGGGGGCCGATACAGC

CGTCGGGGGCGCTCTCGACGATGGCCACCAGCGGACAGTCGGAGTCGTACGTGAGAT ATACGCCGGGCGGGTAACGG

TAACGACCTTCGGAGGTCGGGCGGCTGCAGTCCGGGCGGGCAACTCGAGCTCCCCGC ACCGGTAGACCGAGGCAAAG

AGTGTGGTGGCGATAATCAGCTCGCGAATATATCGCCAGGCGGCGCGCTGAGTGGGC GTTATTCCGGAAATGCCGTC

AAAACAGTAAAACCTCTGAAATTCGCTGACGGCCCAATCAGCACCCGAGCCCCCCGC CCCCATGATGAACCGGGCGA

GCTCCTCCTTCAGGTGCGGCAGGAGCCCCACGTTCTCGACGCTGTAATACAGCGCGG TGTTGGGGGGCTGGGCGAAG

CTGTGGGTGGAGTGATCAAAGAGGGGCCCGTTGACGAGCTCGAAGAAGCGATGGGTG ATGCTGGGGAGCAGGGCCGG

GTCCACCTGGTGTCGCAGGAGAGACGCTCGCATGAACCGGTGCGCGTCGAACACGCC CGGCGCCGAGGGTTGTCGAT

GACCGTGCCCGCGCCCGCCGTCAGGGCGCAGAAGCGCGCGCGCGCCGCAAAGCCGTT GGCGACCGCGGCGAACGTCG

CGGGCAGCACCTCGCCGTGGACGCTGACCCGCAGCATCTTCTCGAGCTCCCCGCGCT GCTCGCGGACGCAGCGCCCC

AGGCTGGCCAACGACCGCTTCGTCAGGCGGTCCGCGTACAGCCGCCGTCGCTCCCGT ACGTCCGCGGCCGCTTGCGT

GGCGATGTCCCCCCACGTCTCGGGCCCCTGCCCCCCGGGCCCGCGGCGACGGTCTTC GTCCTCGCCCCCGCCCCCAG

GAGCTCCCAACCCCCGTGCCCCTTCCTCTACGGCGACACGGTCCCCGTCGTCGTCGG GGCCCGCGCCGCCCTTGGGC

GCGTCCGCCGCGCCCCCCGCCCCCATGCGCGCCAGCACGCGACGCAGCGCCTCCTCG TCGCACTGTTCGGGGCTGAC

GAGGCGCCGCAAGAGCGGCGTCGTCAGGTGGTGGTCGTAGCACGCGCGGATGAGCGC CTCGATCTGATCGTCGGGTG

ACGTGGCCTGACCGCCGATTATTAGGGCGTCCACCATATCCAGCGCCGCCAGGTGGC TCCCGAACGCGCGATCGAAA

TGCTCCGCCCGCCGCCCGAACAGCGCCAGTTCCACGGCCACCGCGGCGGTCTCCTGC TGCAACTCGCGCCGCGCCAG

CGCGGTCAGGTTGCTGGCAAACGCGTCCATGGTGGTCTGGCCGGCGCGGTCGCCGGA CGCGAGCCAGAATCGCAATT

CGCTGATGGCGTACAGGCCGGGCGTGGTGGCCTGAAACACGTCGTGCGCCTCCAGCA GGGCGTCGGCCTCCTTGCGG

ACCGAGTCGTTCTCGGGCGACGGGTGGGGCTGCCCGTCGCCCCCCGCGGTCCGGGCC AGCGCATGGTCCAACACGGA

GAGCGCCCGCGCGCGGTCGGCGTCCGACAGCCCGGCGGCGTGGGGCAGGTACCGCCG CAGCTCGTTGGCGTCCAGCC

GCACCTGCGCCTGCTGGGTGACGTGGTTACAGATACGGTCCGCCAGGCGGCGGGCGA TCGTCGCCCCCTGGTTCGCC

GTCACACACAGTTCCTCGAAACAGACCGCGCAGGGGTGGGACGGGTCGCTAAGCTCC GGGGGGACGATAAGGCCCGA

CCCCACCGCCCCCACCATAAACTCCCGAACGCGCTCCAGCGCGGCGGGGGGCAGGTA CCGCCGCAGCTCGTTGGCGT

CCAGCCGCACCTGCGCCTGCTGGGTGACGTGGTTACAGATACGGTCCGCCAGGCGGC GGGCGATCGTCGCCCCCTGG

TTCGCCGTCACACACAGTTCCTCGAAACAGACCGCGCAGGGGTGGGACGGGTCGCTA AGCTCCGGGGGGACGATAAG

GCCCGACCCCACCGCCCCCACCATAAACTCCCGAACGCGCTCCAGCGCGGCGGTGGC GCCGCGCGAGGGGGTGATGA

GGGGCAGTAGTTTAGCTGCTTTAGAAAGTTCTCGACGTCGTGCAGGAAACACAGCTC CATATGGACGGTCCCGCCAT

ACGTATCCAGCCTGACCCGTTGGTGATACGGACAGGGTCGGGCCAGGCCCATGGTCT CGGTGAAAAACGCCGCGACG

TCTCCCGCGTACGCGAACGTCTCCAGGTTGCCCAGGAGCCGCTCGCCCTCGCGCCAC GCGTACTCTAGCAGCAACTC

CAGGGTGACCGACAGCGGGGTGAGAAAGGCCCCGGCCTGGGCCTCCAGGCCCGGCCT CAGACGACGCCGCAGCGCCC

GCACCTGAAGCGCGTTCAGCTTCAGTTGGGGGAGCTTCCCCCGTCCGATGTGGGGGT CGCACCGCCGGAGCAGCTCT

ATCTGAAACACATAGGTCTGCACCTGCCCGAGCAGGGCTAACAACTTTTGACGGGCC ACGGTGGGCTCGGACACCGG

GGCGGCCATCTCGCGGCGCCGATCTGTACCGCGGCCGGAGTATGCGGTGGACCGAGG CGGTCCGTACGCTACCCGGT

GTCTGGCTGAGCCCCGGGGTCCCCCTCTTCGGGGCGGCCTCCCGCGGGCCCGCCGAC CGGCAAGCCGGGAGTCGGCG

GCGCGTGCGTTTCTGTTCTATTCCCAGACACCGCGGAGAGGAATCACGGCCCGCCCA GAGATATAGACACGGAACAC

AAACAAGCACGGATGTCGTAGCAATAATTTATTTTACACACATTCCCCGCCCCGCCC TAGGTTCCCCCACCCCCCAA

CCCCTCACAGCATATCCAACGTCAGGTTTCCCTTTTTGTCGGGGGGCCCCTCCCCAA ACGGGTCATCCCCGTGGAAC

GCCCGTTTGCGGCCGGCAAATGCCGGTCCCGGGGCCCCCGGGCCGCCGAACGGCGTC GCGTTGTCGTCCTCGCAGCC

AAAATCCCCAAAGTTAAACCCCTCCCCGGCGTTGCCGAGTTGGCTGACTAGGGCCTC GGCCTCGTGCGCCACCTCCA

GGGCCGCGTCCGTCGACCACTCGCCGTTGCCGCGCTCCAGGGCACGCGCGGTCAGCT CCATCATCTCCTCGCTTAGG

TACTCGTCCTCCAGGAGCGCCAGCCAGTCCTCGATCTGCAGCTGCTGGGTGCGGGGC CCCAGGCTTTTCACGGTCGC

CACGAACACGCTACTGGCGACGGCCGCCCCGCCCTCGGAGATAATGCCCCGGAGCTG CTCGCACAGCGAGCTTTCGT

GCGCTCCGCCGCCGAGGTTCGAGGCCGCGCACACAAACCCGGCCCGGGGACAGGCCA GGACGAACTTGCGGGTGCGG

TCAAAAATAAGGAGAGGGAGGTTTTTGCCGCCCATCAGGCTGGCCCAGTTCCCGGCC TGAAACACACGGTCGTTGCC

GGCCATGCCGTAGTATTTGCTGTTGCACAACCCCAACACGACACTGGGGCGCGCCGC CATGACGGGCCGCAGCAGGT

TGCAGCTGGCGAACATGGACGTCCACGCGCCCGGATGCGCGTCCACGGCGTCCATCA GCGCGCGGGCCCCGGCCTCC

AGGCCCGCCCCGCCCTGCGCGGACCACGCGGCCGCCGCCTGCACGCTGGGGGGACGG CGGGACCCCGCGATGATGGC

CGTGAGGGTGTTGATGAAGTATGTCGAGTGATCGCAGTACCGCAGAATCTGGTTTGC CATGTAGTACATCGCCAGCT

CGCTCACGTTGTTGGGGGCCAGGTAATAAAGTTTATCGCGCCGTAGTCCAGGGAAAA CTTTTTAATGAACGCGATGG

TCTCGATGTCCTCGCGCGACAGGAGCCGGGCGGGAAGCTGGTTGCGTTGGAGGGCCG TCCAGAACCACTGCGGGTTC GGCTGGTTGGACCCCGGGGGCTTGCCGTTGGGGAAGATGGCCGCGTGGAACTGCTTCAGC AGAAAGCCCAGCGGTCC

GAGGAGGATGTCCACGCGCTTGTCGGGCTGCTGGGGGGGGGTGGGGAGGCTGGCGAC CCGCGCCTTGGCGGCCTCGG

ACGCGTTGGCGCTCGCGCCCGCGAACAACACGCGGCTCTTGACGCGCAGCTCCTTGG GAAACCCCAGGGTCACGCGG

GCAACGTCGCCCTCGAAGCTGCTCTCGGCGGGGGCCGTCTGGCCGGCCGTTAGGCTG GGGGCGCAGATAGCCGCCCC

CTCCGAGAGCGCGACCGTCAGCGTTTTGGCCGACAGAAACCCGTTGTTAAACATGTC CATCACGCGCCGCCGCAGCA

CCGGTTGGAATTGATTGCGAAAGTTGCGCCCCTCGACCGACTGCCCGGCGAACACCC CGTGGCACTGGCTCAGGGCC

AGGTCCTGATACACGGCGAGGTTGGATCGCCGCCCGAGAAGCTGAAGCAGGGGGCAT GGCCCGCACGCGTACGGGTC

CAGCGTCAGGGACATGGCGTGGTTGGCCTCGCCCAGACCGTCGCGAAACTTGAAGTT CCTCCCCTCCCCAGGTTGCG

CATCAGCTGCTCCACCTCGCGGTCCACGACCTGCCTGACGTTGTTCACCACCGTATG CAGGGCCTCGCGGTTGGTGA

TGATGGTCTCCAGCCGCCCCATGGCCGTGGGGACCGCCTGGTCCACGTACTGCAGGG TCTCGAGTTCGGCCATGACG

CGCTCGGTCGCCGCGCGGTACGTCTCCTGCATGATGGTCCGGGCGGTCTCGGATCCG TCCGCGCGCTTCAGGGCCGA

GAAGGCGGCGTAGTTTCCCAGCACGTCGCAGTCGCTGTACATGCTGTTCATGGTCCC GAAGACGCCGATGGCTCCGC

GGGCGGCGCTGGCGAACTTGGGATGGCGCGCCCGGAGGCGCATGAGCGTCGTGTGTA CGCAGGCGTGGCGCGTGTCG

AAGGTGCACAGGTTGCAGGGCACGTCGGTCTGGTTGGAGTCCGCGACGTATCGAAAC ACGTCCATCTCCTGGCGCCC

GACGATCACGCCGCCGTCGCAGCGCTCCAGGTAAAACAGCATCTTGGCCAGCAGCGC CGGGGAAAACCCACACAGCA

TGGCCAGGTGCTCGCCGGCAAATTCCTGGGTTCCGCCGACGAGGGGCGCGGTGGGCC GACCCTCGAACCCGGGCACC

ACGTGTCCCTCGCGGTCCACCTGTGGGTTGGCCGCCACGTGGGTCCCGGGCACGAGG AAGAAGCGGTAAAAGGAGGG

TTTGCTGTGGTCCTTTGGGTCCGCCGGACCGGCGTCGTCCACCTCGGTGAGATGGAG GGCCGAGTTGGTGCTAAATA

CCATGGCCCCCACGAGTCCCGCGGCGCGCGCCAGGTACGCCCCGACGGCGTTGGCGC GGGCCGCGGCCGTGTCCTGG

CCCTCGCACAGCGGCCACGCGGAGATGTCGGTGGGCGGCTCGTCGAAGACGGCCATC GACACGATAGACTCGAGGGC

CAGGGCGGCGTCTCCGGCCATGACGGAGGCCAGGCGCTGTTCGAACCCGCCCGCCGG GCCCTTGCCGCCGCCGTCGC

GCCCACCCCGCGGGGTCTTACCCTGGCTGGCTTCGAAGGCCGTGAACGTAATGTCGG CGGGGAGGGCGGCGCCCTCG

TGGTTTTCGTCAAACGCCAGGTGGGCGGCCGCGCGGGCCACGGCGTCCACGTTTCGG CATCGCAGTGCCACGGCGGC

GGGTCCCACGACCGCCTCGAACAGGAGGCGGTTGAGGGGGCGGTTAAAAAACGGAAG CGGGTAGGTAAAATTCTCCC

CGATCGATCGGTGGTTGGCGTTGAACGGCTCGGCGATGACCCGGCTAAAATCCGGCA TGAACAGCTGCAACGGATAC

ACGGGTATGCGGTGCACCTCCGCCCCGCCTATGGTTACCTTGTCCGAGCCTCCCAGG TGCAGAAAGGTGTTGTTGAT

GCACACGGCCTCCTTGAAGCCCTCGGTAACGACCAGATACAGGAGGGCGCGGTCCGG GTCCAGGCCGAGGCGCTCAC

ACAGCGCCTCCCCCGTCGTCTCGTGTTTGAGGTCGCCGGGCCGGGGGGTGTAGTCCG AAAAGCCAAAATGGCGGCGT

GCCCGCTCGCAGAGTCGCGTCAGGTTTGGGGCCTGGGTGCTGGGGTCCAGGTGCCGG CCGCCGTGAAAGACGTACAC

GGACGAGCTGTAGTGCGATGGCGTCAGTTTCAGGGACACCGCGGTACCCCCGAGCCC CGTCGTGCGAGAACCCACGA

CCACGGCTACGTTGGCCTCAAAGCCGCTCTCCACGGTCAGGCCCACGACCAGGGGCG CCACGGCGACGTCGGCATCG

CCGCTGCGCGCCGACAGTAACGCCAGAAGCTCGATGCCTTCGGACGGACACGCGCGA GCGTACACGTATCCCAGGGG

CCCGGGGGGGACCTTGATGGTGGTTGCCGTCTTGGGCTTTGTCTCCATGTCCTCCTG GCAATCGGTCCGCAAACGGA

GGTAATCCCGGCACGACGACGGACGCCCGACGAGGTATGTCTCCCGAGCGTCAAAAT CCGGGGGGGGGGCGGCGACG

GTCAAGGGGAGGGTGGGAGACCGGGGTTGGGGAATGAATCCCTACCCTTCACAGACA ACCCCCGGGTAACCACGGGG

TGCCGATGAACCCCGGCGGCTGGCAACGCGGGGTCCCTGCGAGAGGCACAGATGCTT ACGGTCAGGTGCTCCGGGCC

GGGTGCGTCTGATATGCGGTTGGTATATGTACACTTTACCTGGGGGCGTGCCGGACC GCCCCAGCCCCTCCCACACC

CCGCGCGTCATCAGCCGGTGGGCGTGGCCGCTATTATAAAAAAAGTGAGAACGCGAA GCGTTCGCACTTTGTCCTAA

TAATATATATATTATTAGGACAAAGTGCGAACGCTTCGCGTTCTCACTTTTTTTATA ATAGCGGCCACGCCCACCGG

CTACGTCACGCTCCTGTCGGCCGCCGGCGGTCCATAAGCCCGGCCGGCCGGGCCGAC GCGAATAAACCGGGCCGCCG

GCCGGGGCGCCGCGCAGCAGCTCGCCGCCCGGATCCGCCAGACAAACAAGGCCCTTG CACATGCCGGCCCGGGCGAG

CCTGGGGGTCCGGTAATTTTGCCACCCCCCCAGCGGCTTTTGGGGTTTTTCCTCTTC CCCCCTCCCCACATCCCCCC

CCTTTAGGGGTTCGGGTGGGACAACCGCGATGTTTTCCGGTGGCGGCGGCCCGCTGT CCCCCGGAGGAAAGTCGGCG

GCCAGGGCGGCGTCCGGGTTTTTTGCGCCCGCCGGCCCTCGCGGAGCCGGCCGGGGA CCCCCGCCTTGTTTGAGGCA

AAACTTTTACAACCCCTACCTCGCCCCAGTCGGGACGCAACAGAAGCCGACCGGGCC AACCCAGCGCCATACGTACT

ATAGCGAATGCGATGAATTTCGATTCATCGCCCCGCGGGTGCTGGACGAGGATGCCC CCCCGGAGAAGCGCGCCGGG

GTGCACGACGGTCACCTCAAGCGCGCCCCCAAGGTGTACTGCGGGGGGGACGAGCGC GACGTCCTCCGCGTCGGGTC

GGGCGGCTTCTGGCCGCGGCGCTCGCGCCTGTGGGGCGGCGTGGACCACGCCCCGGC GGGGTTCAACCCCACCGTCA

CCGTCTTTCACGTGTACGACATCCTGGAGAACGTGGAGCACGCGTACGGCATGCGCG CGGCCCAGTTCCACGCGCGG

TTTATGGACGCCATCACACCGACGGGGACCGTCATCACGCCCCTGGGCCTGACTCCG GAAGGCCACCGGGTGGCCGT

TCACGTTTACGGCACGCGGCAGTACTTTTACATGAACAAGGAGGAGGTTGACAGGCA CCTACAATGCCGCGCCCCAC

GAGATCTCTGCGAGCGCATGGCCGCGGCCCTGCGCGAGTCCCCGGGCGCGTCGTTCC GCGGCATCTCCGCGGACCAC TTCGAGGCGGAGGTGGTGGAGCGCACCGACGTGTACTACTACGAGACGCGCCCCGCTCTG TTTTACCGCGTCTACGT CCGAAGCGGGCGCGTGCTGTCGTACCTGTGCGACAACTTCTGCCCGGCCATCAAGAAGTA CGAGGGTGGGGTCGACG CCACCACCCGGTTCATCCTGGACAACCCCGGGTTCGTCACCTTCGGCTGGTACCGTCTCA AACCGGGCCGGAACAAC ACGCTAGCCCAGCCGCGGGCCCCGATGGCCTTCGGGACATCCAGCGACGTCGAGTTTAAC TGTACGGCGGACAACCT GGCCATCGAGGGGGGCATGAGCGACCTACCGGCATACAAGCTCATGTGCTTCGATATCGA ATGCAAGGCGGGGGGGG AGGACGAGCTGGCCTTTCCGGTGGCCGGGCACCCGGATGACCTGGTTATTCAGATATCCT GTCTGCTCTACGACCTG TCCACCACCGCCCTGGAGCACGTCCTCCTGTTTTCGCTCGGTTCCTGCGACCTCCCCGAA TCCCACCTGAACGAGCT GGCGGCCAGGGGCCTGCCCACGCCCGTGGTTCTGGAATTCGACAGCGAATTCGAGATGCT GTTGGCCTTCATGACCC TTGTGAAACAGTACGGCCCCGAGTTCGTGACCGGGTACAACATCATCAACTTCGACTGGC CCTTCTTGCTGGCCAAG CTGACGGACATTTACAAGGTCCCCCTGGACGGGTACGGCCGCATGAACGGCCGGGGCGTG TTTCGCGTGTGGGACAT AG G C C AGAG C C AC T T C C AGAAG C G C AG C AAGAT AAAG GT GAAC G G CAT G GT GAAC AT C GAC AT GT AC G G GAT C AT AA CCGACAAGATCAAGCTCTCGAGCTACAAGCTCAACGCCGTGGCCGAAGCCGTCCTGAAGG ACAAGAAGAAGGACCTG AGCTATCGCGACATCCCCGCCTACTACGCCACCGGGCCCGCGCAACGCGGGGTGATCGGC GAGTACTGCATACAGGA TTCCCTGCTGGTGGGCCAGCTGTTTTTTAAGTTTTTGCCCCATCTGGAGCTCTCGGCCGT CGCGCGCTTGGCGGGTA TTAACATCACCCGCACCATCTACGACGGCCAGCAGATCCGCGTCTTTACGTGCCTGCTGC GCCTGGCCGACCAGAAG GGCTTTATTCTGCCGGACACCAGGGGCGATTTAGGGGCGCCGGGGGGGAGGCGCCCAAGC GTCCGGCCGCAGCCCGG GAGGACGAGGAGCGGCCAGAGGAGGAGGGGGAGGACGAGGACGAACGCGAGGAGGGCGGG GGCGAGCGGGAGCCGGA GGGCGCGCGGGAGACCGCCGGCCGGCACGTGGGGTACCAGGGGGCCAGGGTCCTTGACCC CACTTCCGGGTTTCACG TGAACCCCGTGGTGGTGTTCGACTTTGCCAGCCTGTACCCCAGCATCATCCAGGCCCACA ACCTGTGCTTCAGCACG CTCTCCCTGAGGGCCGACGCAGTGGCGCACCTGGAGGCGGGCAAGGACTACCTGGAGATC GAGGTGGGGGGGCGACG GCTGTTCTTCGTCAAGGCTCACGTGCGAGAGAGCCTCCTCAGCATCCTCCTGCGGGACTG GCTCGCCATGCGAAAGC AGATCCGCTCGCGGATTCCCCAGAGCAGCCCCGAGGAGGCCGTGCTCCTGGACAAGCAGC AGGCCGCCATCAAGGTC GTGTGTAACTCGGTGTACGGGTTCACGGGAGTGCAGCACGGACTCCTGCCGTGCCTGCAC GTTGCCGCGACGGGACG ACCATCGGCCTGGAGATCGAGGTGGGGGGGCGACGGCTGTTCTTCGTCAAGGCTCACGTG CGAGAGAGCCTCCTCAG CATCCTCCTGCGGGACTGGCTCGCCATGCGAAAGCAGATCCGCTCGCGGATTCCCCAGAG CAGCCCCGAGGAGGCCG TGCTCCTGGACAAGCAGCAGGCCGCCATCAAGGTCGTGTGTAACTCGGTGTACGGGTTCA CGGGAGTGCAGCACGGA CTCCTGCCGTGCCTGCACGTTGCCGCGACGGTGACGACCATCGGCCGCGAGATGCTGCTC GCGACCCGCGAGTACGT CCACGCGCGCTGGGCGGCCTTCGAACAGCTCCTGGCCGATTTCCCGGAGGCGGCCGACAT GCGCGCCCCCGGGCCCT ATTCCATGCGCATCATCTACGGGGACACGGACTCCATATTTGTGCTGTGCCGCGGCCTCA CGGCCGCCGGGCTGACG GCCATGGGCGACAAGATGGCGAGCCACATCTCGCGCGCGCTGTTTCTGCCCCCCATCAAA CTCGAGTGCGAAAAGAC GTTCACCAAGCTGCTGCTGATCGCCAAGAAAAAGTACATCGGCGTCATCTACGGGGGTAA GATGCTCATCAAGGGCG TGGATCTGGTGCGCAAAAACAACTGCGCGTTTATCAACCGCACCTCCAGGGCCCTGGTCG ACCTGCTGTTTTACGAC GATACCGTTCCGGAGCGGCCGCCGCGTTAGCCGAGCGCCCCGCAGAGGAGTGGCTGGCGC GCCCCTGCCCGAGGGAC TGCAGGCGTTCGGGGCCGTCCTCGTAGACGCCCATCGGCGCATCACCGACCCGGAGAGGG ACATCCAGGACTTTGTC CTCACCGCCGAACTGAGCAGACACCCGCGCGCGTACACCAACAAGCGCCTGGCCCACCTG ACGGTGTATCAGCTCAT GGCCCGCCGCGCGCAGGTCCCGTCCATCAAGGACCGGATCCCGTCGTGTCGGGCCCGCCC GCGAGGAGGGAGACGGT CGCGCGGCTGGCCGCCCTCCGCGAGCTAGACGCCGCCGCCCCAGGGGACGAGCCCGCCCC CCCCGCGGCCCTGCCCT CCCCGGCCAAGCGCCCCCGGGAGACGCCGTCGCATGCCGACCCCCCGGGAGGCGCGTCCA AGCCCCGCAAGCTGCTG GTGTCCGAGCTGGCCGAGGCATCCCGCATACGCCATTGCCCACGGCGTCGCCCTGAACAC GGACTATTACTTCTCCC ACCTGTTGGGGGCGGCGTGCGTGACATTCAAGGCCCTGTTTGGGAATAACGCCAAGATCA CCGAGAGTCTGTTAAAA AGGTTTATTCCCGAAGTGTGGCACCCCCCGGACGACGTGGCCGCGCGGCTCCGGGCCGCA GGGTTCGGGGCGGTGGG TGCCGGCGCTACGGCGGAGGAAACTCGTCGAATGTTGCATAGAGCCTTTGATACTCTAGC ATGAGCCCCCCGTCGAA GCTGATGTCCCTCATTTTACAATAAATGTCTGCGGCCGACACGGTCGGAATCTCCGCGTC CGTGGGTTTCTCTGCGT TGCGCCGGACCACGAGCACAAACGTGCTCTGCCACACGTGGGCGACGAACCGGTACCCCG GGCACGCGGTGAGCATC CGGTCTATGAGCCGGTAGTGCAGGTGGGCGGACGTGCCGGGAAAGATGACGTACAGCATG TGGCCCCCGTAAGTGGG GTCCGGGAAAACAACAGCCGCGGGTCGCACGCCCCGCCTCCGCGCAGGATCGTGTGGACG AAAAAAAGTCGGGTGGC AAGAATCCCGGCCAAGAGGTCCTGGAGGGGGGCGTTGTGGCGGTCGGCCAACACGACCAA GGAGGCCAGGAAGGCGC GATGCTCGAATATCGTGTTGATCTGCTGCACGAAGGCCAGGATTAGGGCCTCGCGGCTGG TGGCGGCGAACCGCCCG TCTCCCGCGTTGCACGCGGGACAGCAACCCCCGATGCCTAGGTAGTAGCCCATCCCGGAG AGGGTCAGGCAGTTGTC GGCCACGGTCTGGTCCAGACAGAAGGGCAGCGACACGGGAGTGGTCTTCACCAGGGGCAC CGAGAACGAGCGCACGA TGGCGATCTCCTCGGAGGGCGTCTGGGCGAGGGCGGCGAAAAGGCCCCGATAGCGCTGGC GCTCGTGTAAACACAGC TCCTGTTTGCGGGCGTGAGGCGGCAGGCTCTTCCGGGAGGCCCGACGCCCACGCCCAGAG TCCCGCCGGCCGCAGAG GAGCACGACCGCCGGCGCTCCTTGCCGTGATAGGGCCCGGGCCGGGAGCCGCGGCGATGG GGGTCGGTATCATACAT AGGTACACAGGGTGTGCTCCAGGGACAGGAGCGAGATCGAGTGGCGTCTAAGCAGCGCGC CCGCCTCACGGACAAAT GTGGCGAGCGCGGTGGGCTTTGGTACAAATACCTGATACGTCTTGAAGGTGTAGATGAGG GCACGCAACCGCTATGC AGACACGCCCCTCGAACTCGTTCCCGCAGGCCAGCTTGGCCTTGTGGAGCAGCAGCTCGT CGGGATGGGTGGCGGGG GGATGGCCGAACAGAACCCAGGGGTCAACCTCCATCTCCGTGATGGCGCACATGGGGTCA CAGAACATGTGCTTAAA GATGGCCTCGGGCCCCGCGGCCCGCAGCAGGCTCACAAACCGCCCGTCCCCGGGCTGCGT CTCGGGGTCCGCCTCGA GCTGGTCGACGACGGGTACGATACAGTCGAAGAGGCTCGTGTTGTTTTCCGAGTAGCGGA CCACGGAGGCCCGGAGT CTGCGCAGGGCCAGCCAGTAAGCCCGCACCAGTAACAGGTTACACAGCAGGCATTCTCCG CCGGTGCGCCCGCGCCC CCGGCCGTGTTTCAGCACGGTGGCCATCAGAGGGCCCAGGTCGAGGTCGGGCTGGGCATC GTGTTCGGTAAACTGCG CAAAGCGCGGAGCCACGTCGCGCGTGCGTGCCCCGCGATGCGCTTCCCAGGACTGGCGGA CCGTGGCGCGACGGGCC TCCGCGGCAGCGCGCAGCTGGGGCCCCGACTCCCAGACGGCGGGGGTGCCGGCGAGGGCA GCAGGCCAGATCCGCGT ACGCCCACGTATCCGGCGACTCCTCCGGCTCGCGGTCCCCGGCGACCGTCTCGAATTCCC CGTTGCGAGCGGCGGCG CGCGTACAGCAGCTGTCCCCGCCCCCGCGCCGACCCTCCGTGCAGTCCAGGAGACGGGCG CAATCCTTCCAGTTCAT CAGCGCGGTGGTGAGCGACGGCTGCGTGCCGGATCCCGCCGCCGACCCCGCCCCCTCCTC GCCCCCGGAGGCCAAGG TTCCGATGAGGGCCCGGGTGGCAGACTGCGCCAGGAACGAGTAGTTGGAGTACTGCACCT TGGCGGCTCCCGGGGAG GGCGAGGGCTTGGGTTGCTTCTGGGCATGCCGCCCGGGCACCCCGCCGTCGGTACGGAAG CAGCAGTGGAGAAAAAA GTGCCGGTGGATGTCGTTTATGGTGAGGGCAAAGCGTGCGAAGGAGCCGACCAGGGTCGC CTTCTTGGTGCGCAGAA AGTGGCGGTCCATGACGTACACAAACTCGAACGCGGCCACGAAGATGCTAGCGGCGCAGT GGGGCGCCCCCAGGCAT TTGGCACAGAGAAACGCGTAATCGGCCACCCACTGGGGCGAGAGGCGGTAGGTTTGCTTG TACAGCTCGATGGTGCG GCAGACCAGACAGGGCCGGTCCAGCGCGAAGGTGTCGATGGCCGCCGCGGAAAAGGGCCC GGGGTCCAAAAGCCCCT CCCCACAGGGATCCGGGGGCGGGTTGCGGGGTCCTCCGCGCCCGCCCGAACCCCCTCCGT CGCCCGCCCCCCCGCGG GCCCTTGAGGGGGCGGTGACCACGTCGGCGGCGACGTCCTCGTCGAGCGTACCGACGGGC GGCACACCTATCACGTG ACTGGCCGCCAGGAGCTCGGCGCAGAGAGCCTCGTTAAGAGCCAGGAGGCTGGGATCGAA GGCCACATACGCGCGCT CGAACGCCCCCGCCTTCCAGCTGCTGCCGGGGGACTCTTCGCACACCGCGACGCTCGCCA GGACCCCGGGGGGCGAA GTTGCCATGGCTGGGCGGGAGGGGCGCACGCGCCAGCGAACTTTACGGGACACAATCCCC GACTGCGCGCTGCGGTC CCAGACCCTGGAGAGTCTAGACGCGCGCTACGTCCGCGAGACGGCGCGCATGACGCGGCC GTCTGGTTCGAGGATAT GACCCCCGCCGAGCTGGAGGTTGTCTTCCCGACTACGGACGCCAAGCTGAACTACCTGTC GCGGACGCAGCGGCTGG CCTCCCTCCTGACGTACGCCGGGCCTATAAAAGCGCCCGACGACGCCGCCGCCCCGCAGA CCCCGGACACCGCGTGT GTGCACGGCGAGCTGCTCGCCCGCAAGCGGGAAAGATTCGCGGCGGTCATTAACCGGTTC CTGGACCTGCACCAGAT TCTGCGGGGCTGACGCGCGCGCTGTTGGGTGGGACGGTTCGCGAACCCTTTGGTGGGTTT ACGCGGGCACGCACGCT CCCATCGCGGGCGCCATGGCGGGACTGGGCAAGCCCTACCCCGGCCACCCAGGTGACGCC TTCGAGGGTCTCGTTCA GCGAATTCGGCTTATCGTCCCATCTACGTTGCGGGGCGGGGACGGGGAGGCGGGCCCCTA CTCTCCCTCCAGCCTCC CCTCCAGGTGCGCCTTTCAGTTTCATGGCCATGACGGGTCCGACGAGTCGTTTCCCATCG AGTATGTACTGCGGCTT ATGAACGACTGGGCCGAGGTCCCGTGCAACCCTTACCTGCGCATACAGAACACCGGCGTG TCGGTGCTGTTTCAGGG GTTTTTT CAT CGCCCACACAACGCCCCCGGGGGCGCGATTACGCCAGAGCGGACCAAT GT GAT CCT GGGCT CCACCG AGACGACGGGGCTGTCCCTCGGCGACCTGGACACCATCAAGGGGCGGCTCGGCCTGGATG CCCGGCCGATGATGGCC AGCATGTGGATCAGCTGCTTTGTGCGCATGCCCCGCGTGCAGCTCGCGTTTCGGTTCATG GGCCCCGAAGATGCCGG ACGGACGAGACGGATCCTGTGCCGCGCCGCCGAGCAGGCTATTACCCGTCGCCGCCGAAC CCGGCGGTCCCGGGAGG CGTACGGGGCCGAGGCCGGGCTGGGGGTGGCTGGAACGGGTTTCCGGGCCAGGGGGGACG GTTTTGGCCCGCTCCCC TTGTTAACCCAAGGGCCCTCCCGCCCGTGGCCCAGGCCCTGCGGGGTCTTAAGCCCTACG GATTGGCCCCCCCGCGC TCGTTTTGGCGGCGGGACTCGTCCTGGGGGCCGCTATTTGGTGGGTGGTTGGTGCTGGCG CGCGCCTATAAAAAAGG ACGCACCGCCGCCCTAATCGCCAGTGCGTTCCGGACGCCTTCGCCCCACACAGCCCTCCC GTCCGACACCCCCATAT CGCTTCCCGACCTCCGGTCCCGATGGCCGTCCCGCAATTTCACCGCCCCAGCACCGTTAC CACCGATAGCGTCCGGG CGCTTGGCATGCGCGGGCTCGTCTTGGCCACCAATAACTCTCAGTTTATCATGGATAACA ACCACCCGCACCCCCAG GGCACCCAAGGGGCCGTGCGGGAGTTTCTCCGCGGTCAGGCGGCGGCGCTGACGGACCTT GGTCTGGCCCACGCAAA CAACACGTTTACCCCGCAGCCTATGTTCGCGGGCGACGCCCCGGCCGCCTGGTTGCGGCC CGCGTTTGGCCTGCGGC GCACCTATTCACCGTTTGTCGTTCGAGAACCTTCGACGCCCGGGACCCCGTGAGGCCCGG GGAGTTCCTTCTGGGGA AAAC AC C C C AC AG C AAAAAAAT C AAT AAAAGAC C AC AC C AAC G C AC GAG CCTTGCGTT T AAT GT C GAG G G GT T TAT T CAAGGGAGTGGGATAGGGTTCGACGGTTCGAAACTTAACACACAAAATAATCGAGCGCGT CTAGCCCAGTAACATGT GCACGTGATGTAGGCTGGTCAGCACGGCGTCGCTGTGATGAAGCAGCGCCCGGCGGGTCC GCTGTAACTGCTGTTGT AGGCGGTAACAGGCGCGGATCAGCACCGCCAGGGCGCTACGACCGGTGCGTTGCACGGAG CGTCGCGACAGAACTGC GTTTGCCGATACGGGCGGGGGGCCGAATTGTAAGCGCGTCACCTCTTGGGAGTCATCGGC GGATAACGCACTGAATG GTTCGTTGGTTATGGGGGAGTGTGGTTCCCGAGGGAGTGGGTCGAGCGCCTCGGCCTCGG AATCCGAGAGGAACAAC

GAGGTGGTGTCGGAGTCTTCGTCGTCAGAGACATACAGGGTCTGAAGCAGCGACACG GGCGGGGGGGTAGCGTCAAT

GTGTAGCGCGAGGGAGGATGCCCACGAAGACACCCCAGACAAGGAGCTGCCCGTGCG TGGATTTGTGGACGACGCGG

AAGCCGGGACGGATGGGCGGTTTTGCGGTGCCCGGAACCGAACCGCCGGATACTCCC CGGGTGCTACATGCCCGTTT

TGGGGCTGGGGTTGGGGCTGGGGTGGGGCTGGGGTTGACGGGTTGGGGCTGGGGCTG GGGCTGGGGTTGGGGCTGGG

GTTGGGGTTGGGGCTGGGGTTGGGGTTGGGGCTGGGGTTGGGGCTGGGGGGCTGGGG CGCGGACAGGCGGTTGACGG

GCAAATGCCCCCGGGGGCGCGCAGATGTGGGGGCGTGGCCACCGGCTGCCGGGTAGT GGGGCGGCGGGAAACCGGGC

CTCCGGGCGTAACACCGCCCTCCAGCGTCAAGTATGTGGGGGGCGGGCCTGACGTCG GGGGCGGGGTGACGGGTTGG

ACCGCGGGAGGCGGGGGAGAGGGACCTGCGGGAGAGGATGAGGTCGGCTCGGCCGGG TTGCGGCCTAAAACAGGGGC

CGTGGGGTCGGCGGGGTCCCAGGGTGAAGGGAGGGATTCCCGCGATTCGGACAGCGA CGCGACAGCGGGGCGCGTAA

GGCGCCGCTGCGGCCCGCCTACGGGAACCCTGGGGGGGGTTGGCGCGGGACCCGAGG TTAGCGGGGGGCGGCGGTTT

TCGCCCCCGGGCAAAACCGTGCCGGTTGCGACCGGGGGCGGAACGGGATCGATAGGG AGAGCGGGAGAAGCCTGGCC

GGCGAACTGGGGACCGAGCGGGAGGGGCACACCAGACACCAAAGCGTGGAGCGCTGG CTCTGGGGGTTTGGGAGGGG

CCGGGGGGCGCGCGAAATCGGTAACCGGGGCGACCGTGTCGGGGAGGGCAGGCGGCC GCCAACCCTGGGTGGTCGCG

GAAGCCTGGGTGGCGCGCGCCAGGGAGCGTGCCCGGCGGTGTCGGCGCGCGCGCGAC CCGGACGAAGAAGCGGCAGA

AGCGCGGGAGGAGGCGGGGGGGCGGGGGGCGGGGCGGGGGGACGGCAAGCGCCGGAA GTCGTCGCGGGGGCCCACGG

GCGCCGGCCGCGGCTTTCGGCCGGGACGCCCGGTCGTGCTTCGCGAGCCGGGACTGC CGGCCCAGGGGGCCGCGGTG

CACACTGGGACGTGGGGAAGGGGGCCGGGGCAAGGAGGGGCGCGGGGCCGCCGGAGT CGTCAGACGCGAGCTCCTCC

AGGCCGTGAATCCATGCCCACATGCGAGGGGGGACGGGCTCGCCGGGGGTGGCGTCG GTGAATAGCGTGGGGGCCAG

GCTTCCGGGCCCCAACGAGCCCTCCGTCCCAACAAGGTCCGCCGGGCCGGGGGTCGG GTTCGGGACCGAGGGGCTCT

GGTCGTCGGGGGCGCGCTGGTACACCGGATGCCCCGGGATAGCTCCCCCGACAGGAG GGAGGCGTCGAACGGCCGCC

CGAGGATAGCTCGCGCGAGGAAGGGGTCCTCGCGGTGGCGCTGGCGGCGAGGACGTC CTCGCCGCCCGCCACAAACG

GGAGCTCCTCGGTGGCCTCGCTGCCAACAAACCGCACGTCGGGGGGGCCGGGGGGGT CCGGGTTTTCCCACAACACC

GCGACCGGGGTCATGGAGATGTCCACGAGCACCAGACACGGCGGGCCCCGGGCGGGG GGGGTCCGGGTTTTCCCACA

ACACCGCGACCGGGGTCATGGAGATGTCCACGAGCACCAGACACGGCGGGCCCCGGG CGAGGGGCCGCTCGGCGATG

AGCGCGGACAGGCGCGGGAGCTGTGCCGCCAGACACGCGTTTTCAATCGGGTTCAGG TCGGCGTGCAGGAGGCGGAC

GGCCCACGTCTCGATGTCGGACGACACGGCATCGCGCAAGGCGGCGTCCGGCCCGCG AGCGCGTGAGTCAAACAGCG

TGAGACACAGCTCCAGCTCCGACTCGCGGGAAAAGGCCGTGGTGTTGCGGAGCGCCA CGACGACGGGCGCGCCCAGG

AGCACTGCCGCCAGCACCAGGTCCATGGCCGTAACGCGCGCCGCGGGGGTGCGGTGG GTGGCGGCGGCCGGCACGGC

GACGTGCTGGCCCGTGGGCCGGTAGAGGGCGTTGGGGGGAGCGGGGGGTGACGCCTC GCGCCCCCCCGAGGGGCTCA

GCGTCTGCCCAGATTCCAGACGCGCGGTCAGAAGGGCGTCGAAACTGTCATACGGTA GTCGGCGCGCCCCCCGAGGG

GCTCAGCGTCTGCCCAGATTCCAGACGCCTCCGGCGTCGAAACTGTCATACTCTGTG TAGTCGTCCGGAAACATGCA

GGTCCAAAGAGCGGCCAGGGCGGTGCTTGGGAGACACATGCGCCCGAGGACGCTCAC CGCCGCCAGCGCCTGGGCGG

GACTCAGCTTTCCCAGCGCGGCGCCGCGCTCGGTTCCCAGCTCGGGGACCGAGCGCC AGGGCGCCAGGGGGTCGGTT

TCGGACAACTTGCCGCGGCGCCAGTCTGCCAGCCGCGTGCCGAACATGAGGCCCCGG GTCGGAGGGCCTCCGGTCTA

TAATCTGGCAGCCGCGGATGCGGGCGTCTGGATGCGGGGTCAGGCGCTGCACGAATA GCATGGAATCTGCTGCGTTC

TGAAACGCACGGGGGAGGGTGAGATGCATGTACTCGTGTTGGCGGACCAGATCCAGG CGCCAAAAGGTGTAAATGTG

TTCCGGGGAGCTGGCCACCAGCGCCACCAGCACGTCGTTCTCGTTAAAGGAAACGCG GTGCCTAGTGGAGCTGTGGG

GCCCGAGCGGCGGTCCCGGGGCCGCCGCGTCACCCCCCCATTCCAGCTGGGCCCAGC GACACCCAAACTCGCGCGTG

AGAGTGGTCGCGACGAGGGCGACGTAGAGCTCGGCCGCCGCATCCATCGAGGCCCCC CATCTCGCCTGGCGGTGGCG

CACAAAGCGTCCGAAGAGCTGAAAGTTGGCGGCCTGGGCGTCGCTGAGGGCCAGCTG AAGCCGGTTGATGACGGTGA

TGACGTACATGGCCGTGACGGTCGAGGCCGACTCCAGGGTGTCCGTCGGAAGCGGGG GGCGAATGCATGCCGCCTCG

GGACACATCAGCAGCGCGCCGAGCTTGTCGGTCACGGCCGGGAAGCAGAGCGCGTAC TGCAGTGGCGTTCCATCCGG

GACCAAAAAGCTGGGGGCGAACGGCCGATCCAGCGTACTGGTGGCCTCGCGCAGCAC CAGGGGCCCCGGGCCTCCGC

TCACTCGCAGGTACGCCTCGCCCCGGCGGCGCAGCATCTGCGGGTCGGCCTCTTGGC CGGGTGGGGCGGACGCCCGG

GCGCGTGCGTCTCGGGCGCGAAGATCCACGAGCAGGGGCGCGGGCGCGGCGGCCGCG CCCGCGCCCGTCTGGCCTGT

GGCCTTGGCGTACGCGCTATATAAGCCCATGCGGCGTTGGATGAGCTCCCGCGCGCC CCGGAACTCCTCCACCGCCC

ATGGGGCCAGGTCCCCGGCCACCGCGTCGAATTCCGCCAACAGGCCCCCCAGGGTGT CAAAGTTCATCTCCCAGGCC

ACCCTTGGCACCACCTCGTCCCGCAGCCGGGCGCTCAGGTCGGCGTGTTGGGCCACG CGCCCCCCGAGCTCCTCCAC

GGCCCCGGCCCGCTCGGCGCTCTTGGCGCCCAGGGCGCCCTGGTACTTGGCGGGAAG GCGCTCGTAGTCCCGCTGGG

CTCGCAGCCCCGACACAGTGTTGGTGGTGTCCTGCAGGGCGCGAAGCTGCTCGCATG CCGCGCGAAATCCCTCGGGC

GATTTCCAGGCCCCCCCGCGAACGCGGCCGAAGCGACCCCATACCTCGTCCCACTCC GCCTCGGCCTCCTCGAGAGA CCTCCGCAGGGCCTCGACGCGGCGACGGGTGTCGAAGAGCGCCTGCAGGCGCGCGCCCTG TCGCGTCAGGAGGCCCG GGCCGTCGCCGCTGGCCGCGTTTAGCGGGTGCGTCTCAAAGGTACGCTGGGCATGTTCCA ACCAGGCGACCGCCTGC ACGTCGAGCTCGCGCGCCTTCTCCGTCTGGTCCAACAGAATTTCGACCTGATCCGCGATC TCCTCCGCCGAGCGCGC CTGGTCCAGCGTCTTGGCCACGGTCGCCGGGACGGCGACCACCTTCAGCAGGGTCTTCAG ATTGGCCAGACCCTCGG CCTCGAGCTGGGCCCGGCGCTCGCGCGCGGCCAGCACCTCCCGCAGCCCCGCCGTGACCC GCTCGGTGGCTTCGGCG CGCGCTGTTTGGCGCGCACCACGCGTCCTTGGTATCGGCCAGGCCCTGTCGGGTCACGAA TGCGACGTAGTCGGCGT ACGCCGTGTCCTTCACGGGGCTCTGGTCCACGCGCTCCAGCGCCGCCACGCACGCCACCA GCGCGTCCTCGCTCGGG CAGGGCAGGGTGACCCCTGCCCGGACAAGCTCGGCGGCCGCCGCCGGGTCGTTGCGCACC GCGGATATCTCCTCCGC GGCGGCGGCCAGGTCCAGCGCCACGCTTCCGATCGCGCGCCGCGCGTCGGCCCGGAGGGC GTCCAGGCGATCGCGGA TATCCACGTACTCGGCGTAGCCCTTTTGAAAAAACGGCACGTACTGGCGCAGGGCCGGCA CGCCCCCCAAGTCTTCC GACAGGTGTAGGACGGCCTCGTGGTAGTCGATAAACCCGTCGTTCGCCTGGGCCCGCTCC AGCAGCCCCCCCGCCAG CCGCAGAAGCCGCGCCAGGGGCTCGGTGTCCACCCGAAACATGTCGGCGTACGTGTCGGC CGCGGCCCCGAAGGCCG CGCTCCAGTCGATGCGGTGAATGGCTGCGAGCGGGGGGAGCATGGGGTGGCGCTGGTTCT CGGGGGGGTATGGGTTA AACGCAAGGGCCGTCTCCAGGGCAAGGGTCACCGCCTTGGCGTTGGTTCCCAGCGCCTGT TCGGCCCGCTTTCGGAA GTCCCGGGGGTTGTAGCCGTGCGTGCCCGCCAGCGCCTGCAGGCGACGGAGCTCGACCAC GTCAAACTCGGCACCGC TTTCCACGCGGTCCAGCACGGCCTCCACGTCGGCGGCCCAGCGCTCGTGGCTACTGCGGG CGCGCTGGGCCGCCATC TTCTCTCTCAGGTCGGCGATGGCGGCCTCAAGTTCGTCGGCGCGGCGTCGCGTGGCGCCG ATGACCTTTCCCAGCTC CTGCAGGGCGCGCCCGCTGGGGGAGTGGTCCCCGGCCGTCCCTTCGGCGTGCAACGGCCC CCGAACCTGCCCTCGTG GCCCGCGAGGCTTTCCCGCGCGCCGGTGGTCGCGCGCGTCGCGGCCTGGATCAGGGAGGC ATGCTCTCCCTCCGGTT GGTTGGCGGCCCGGCGCACCTGGACGACAAGGTCGGCTGCCGCCGACCCTAAGGTCGTGA GCTGGGCGATGGCCCCC CGCGCGTCCAGGGCCAACCGAGTCGCCTTGACGTATCCCGCGGCGCTGCGGCCATGGCCG CTAGGAAGGCCAGGGGG GAGGCCGGGTCGCTGGCGGCCGCGCCCAGGGCCGTCACCGCGTCGACCAGGACGCGGTGC GCCCGCACGGCCGCATC CACCGTCGACGCGGGGTCTGCCGTCGCGACGGCGGCGCTGCCGGCGTTGATGGCGTTCGA GACGGCGTGGGCTATGA TCGGGGCGTGATCGGCGAAGAACGCAAGGAAACGGAGTCTCTGGGGCGTCGGCGACAGGT TCTTCAGCACCACCACG AAGCTGGGATGCAAGCCAGACAGAGCCGCGCCGTGCCCGGGACGGGTGCTCCAGGGCATC TCGGTACTGCCCCAGCA GCCCCCACATGTCCGCCCGCAGCGCCGCCGTAACCTCAGGGGGCGCCCCCCGAACGGCCT CGGGGAGGTCCGACCAG CCCGCCGGCAGGGAGGCCCGCAGGGTCGCCAGGACGGCCGGACAGGCCTTTAGCCCCACA AAGTCAGGGAGGGGGCG CAGGACCCCCTGGAGTTTGTGCAAGAACTTCTCCCGGGCGTCGCGGGCCACCTTCGCCCG CTCCCGCGCTCCCTCGA GCATTGCCTCCAGGGAGCGCGCGCGCTCCCGCAAACGGGCACGCGCATCGGGGGCGAGCT CTGCCGTCAGCTTGGCG GCATCCATGGCCCGCGCCTGCCGCAGCGCTTCCCGGCCATGCGCGTGGCCTCTGGCGACA GCCCGCCGTCGTCGGGG TAGGGCGACGCGCCGGGCGCAGGAACAAAGGCCGCGTCGCTGTCCAGCTGCTGGCCCAGG GCCGCATCTAGGGCGTC GAAGCGCCGCAGCTCGGCCAGACCCGAGCTGCGGCGCGCCTGCTGGTCGTTAATGTCGCG GATGCTGTGCGCCAGCT CGTCCAGCGGCTTGCGTTCTATCAGCCCTTGGTTGGCGGCGTCCGTCAGGACGGAGAGCC AGGCCGCCAGGTCCTCG GGGGCGTCCAGCGTCTGGCCCCGCTGGATCAGATCCCGCAACAGGATGGCCGTGGGGCTG GTCGCGATCGGGGGCGG GGCGGGCGCGCCGGGCGCAGGAACAAAGGCCGCGTCGCTGGCCAGCTGCTGGCCCAGGGC CGCATCTAGGGCGCGAA GCGCCGCGGCGCGGCCGGCCCCGGGCGGGGGCGCGCCTGCTGGTCGTTAATGTCGCGGAT GCTGTGCGCCAGCTCGT CCAGCGGCTTGCGTTCTATCAGCCCTTGGTTGGCGGCGTCCGTCAGGACGGAGAGCCGGC CGCCGGTCCTCGGGGGC GTCCAGCGTCTGGCCCCGCTGGATCAGATCCCGCAACAGGATGGCCGTGGGGCTGGTCGC GATCGGGGGCGGGGCGG GAATGGCGGCGCGCTGCGCGATGTCCCGCGGTGCTGGTCGAAGACAGGCAGGGACTCGAG CAGCTGGACCACGGGCA CGACGGCGGCCGAAGCCACGTGAAACCGGCGGTCGTTGTTGTCGCTGGCCTGTAGAGCCT TGGCGCTGTATACGGCC CCCCGGTAAAAGTACTCCTTAACCGCGCCCTCGATCGCCCGACGGGCCTGGGTCCGCACC TCCTCCAGCCGAACCTG AACGGCCTCGGGGCCCAGGGGGGGTGGGCGCGGAGCCCCCTGCGGGGCCGCCCCGCCGGG GGAAGTAAGAAGAGGGG CCCGGCGTGCTGTGAGACCGCGTCGACCCCGCGAGCGAGGGCGTCGAGGGCCTCGCGCAT CTGGCGATCCTCCGCCT CCACCCTAATCTCTTCGCCACGGGCAAATTTGGCCAGAGCCTGGACTCTATACAGAAGCG GTTCTGGGTGCTTCGGG GTGGCGGGGGCAAAAAGGGTGTCCGGGTGGGCCTGCGAGCGCTCCAGAAGCCACTCGCCG AGGCGTGTATACAGATT GGCCGGCGGGGCCGCGCGAAGCTGCAGCTCCAGGGCCGCGAGTTCCCCGTAAAAGGCGTC CGTCTCCCGAATGACAT CCCTAGCCACAAGGATCAGCTTCGCCAGCGCCAGGCGACCGATCAGAGAGTTTTCGTCCA GCACGTGCTGGACGAGG GGCAGATGGGCGGCCACGTCGGCCAGGCTCAGGCGCGTGGAGGCCAGAAAGTCCCCCACG GCCGTTTTCCGGGGCAG CATGCTCAGGGTAAACTCCAGCAGGGCGGCGGCCGGGCCGGCCACCCCGGCCTGGGGGTG CGTCCGGGCCCCGTTCT C GAT GAGAAAG G C GAG GAC G C GT T C AAAGAAAAAAAT AAC AC AGAG C T C C AG C AG C C C C G GAGAAG C C G GAT AC G G C GACCGTAAGGCGCTGATGGTGAGCCGCGAACACGCGGCGCCCTCGCGGGCCAGGGTGGCG GAGCACGCGGTGAACTT AACCGCCGTGGCGGCCACGTTTGGGTGGGCCTCGAACAGCTGGGCGAGGTCTGCGCCCGG GGGCTCGGGTGAGCGGC GAGTCTTCAGCGCCTCGAGGGCCTGTGAGGACGCCGGAACCATGGGCCCGTCGTCCTCGC CCGCCTCGGCGACCGGC

GGCCCGGCCGGGTCGGGGGGTGCCGAGGCGAGGACAGGCTCCGGAACGGAGGCGGGG ACCGCGGCCCCGACGGGGGT

TTTGCCTTTGGGGGTGGATTTCTTCTTGGTTTTGGCAGGGGGGGCCGAGCGTTTCGT TTTCTCCCCCGAAGTCAGGT

CTTCGACGCTGGAAGGCGGAGTCCAGGTGGGTCGGCGGCGCTTGGGAAGGCCGGCCG AGTAGCGTGCCCGGTGCCGA

CCAACCGGGACGACGCCCATCTCCAGGACCCGCATGTCGTCGTCATCTTCTTCGGCC GCCTCTGCGGCGGGGGTCTT

GGGGGCGGAGGGAGGCGGTGGTGGGATCGCGGAGGGTGGGTCGGCGGAGGGGGGATC CGTGGGTGGGGTACCCTTTA

GGGCCACCGCCCATACATCGTCGGGCGCCCGATTCGGGCGCTTGGCCTCTGGTTTTG CCGACGGACCGGCCGTCCCC

CGGGATGTCTCGGAGGCCCTGTCGTCGCGACGGGCCCGGGTCGGTGGCGGCGACTGG GCGGCTGTGGGCGGGTGTGG

CCCCGGCCCCCCTCCCCCCTCCCGGGGGCCCACGCCGACGCAGGGCTCCCCCAGGCC CGCGATCTCGCCCCGCAGGG

GGGGCGTGATGGCCACGCGCCGTTCGCTGAACGCTTCGTCCTGCATGTAAGTCTCGC TGGCCCCGTAAAGATGCAGA

GCCGCGGCCGTCAAGTCCGCAGGAGCCGCGGGTTCCGGGCCCGACGGCACGAAAAAC ACCATGGCTCCCGCCCACCG

TACGTCCGGGCGATCGCGGGTGTAATACGTCAGGTATGGATACATGTCCCCCGCCCG CACTTTGGCGATGAACGCGG

GGGTGCCCTCCGGAAGGCCATGCGGGTCAAAAGGTAGGCGGTGTCGCCGTCCCTGAA CAGCCCCATCCCTAGGGGGC

CAATGGTTAGGAGCGTGTACGACAGGGGGCGCAGGGCCCACGGGCCGGCGAAGAACG TGTGTGCGGGGCATTGTGTC

TCCAGCAGGCCTGCCGCGGGCTCCCCGAAGAAGCCCACCTCGCCGTATACGCGCGAG AAGACACAGCGCAGTCCGCC

GCGCGCCCCTGGGTACTCGAGGAAGTTGGGGAGCTCGACGATCGAACACATGCGCGG CGGCCCAGGGCCCGCAGTCG

CGCGCGTCCACTCGCCCCCCTCGACCAAACATCCCTCGATGGCCTCCGCGGACAGAA CGTCGCGAGGGCCCACATCA

AATATGAGGCTGAGAAAGGCAGCGACGAGCGCATGCACGATACCGACCCCCCCGGCT CCAGGTCGGGCGCGAACTGG

TTCCGAGCACCGGTGACCACGATGTCGCGATCCCCCCCGCGTTCCATCGTGGAGTGC GGTGGGGTGCCCGCGATCAT

ATTGCCCTGCGGGCCAGAGACCCGGCCTGTTTATGGACCGGACCCCCGGGGTTAGTG TTGTTTCCGCCACCCACGCC

CCCGTACCATGGCCCCGGTTCCCCTGATTAGGCTACGAGTCGCGGTGATCGCTTCCC AAAAACCGAGCTGCGTTTGT

CTGTCTTGGTCTTCCCCCCCCCCAGCCCGCACACCATAACACCGAGAACAACACACG GGGGTGGGCGGAACATAATA

AAGCTTTATTGGTAACTAGTTAACGGCAAGTCCGTGGGTGGCGCGACGGTGTCCTCC GGGATCATCTCGTCGTCCTC

GACGGGGGTGTTGGAATGAGGCGCCTCCTCGCGGTCCACCTGGCGTGGGCCGTGCCC ATAGGCCTCCGGCTTCTGTG

CGTCCATGGGCGTAGGCGCGGGGAGACTGTTTCCGGCGTCGCGGACCTCCAGGTCCC TGGGAGCCTCCGGTCCGGCT

AACGGACGAAACGCGGAAGCGCGAAACACGCCGTCGGTGACCCGCAGGAGCTCGTTC ATCAGTAACCAATCCATACT

CAGCGTAACGGCCAGCCCCTGGCGAGACAGATCCACGGAGTCCGGAACCGCGGTCGT CTGGCCCAGGGGGCCGAGGC

TGTAGTCCCCCCAGGCCCCTAGGTCGCGACGGCTCGTAAGCACGACGCGGTCGGCCG CGGGGCTTTGCGGGGGGGCG

TCCTCGGGCGCATGCGCCATTACCTCTCGGATGGCCGCGGCGCGCTGGTCGGCCGAG CTGACCAAGGGCGCCACGAC

CACGGCGCGCTCCGTCTGCAGGCCCTTCCACGTGTCGTGGAGTTCCTGGACAAACTC GGCCACGGGCTCGGGTCCCG

CGGCCGCGCGCGCGGCTTGATAGCAGGCCGACAGACGCCGCCAGCGCGCTAGAAACT GACCCATGAAACAACCCCCG

TGTACCTGGTCTCCCGACAGCAGCTTCGACGCCCGGGCGTGAATGCCGGCCACGACG GACAGAAACCCGTGAATTTC

GCGCCGGACCACGGCCAGCACGTTGTCCTCGTGCGACACCTGGGCCGCCAGCTCGTC GCACACCCCCAGGTGCGCCG

TGGTTTCGGTGATGACGGAACGCAGGCTCGCGAGGGACGCGACCAGCGCGCGCTTGG CGTCGTGATACATGCTGCAG

TACTGACTCACCGCGTCCCCCATGGCCTCGGGGGGCCAGGGCCCCAGGCGGTCGGGC GTGTCCCCGACCACCGCATA

CAGGCGGCGCCCGTCGCTCTCGAACCGACACTCGAAAAAGGCGGAGAGCGTGCGCAT GTGCAGCCGCAGCAGCACGA

TGGCGTCCTCCAGTTGGCGAATCAGGGGGTCGGCGCGCTCGGCGAGGTCCTGCAGCA CCCCCCGGGCAGCCAGGGCG

TACATGCTAATCAACAGGAGGCTGGTGCCCACCTCGGGGGGCGGGGGGGGCTGCAGT TGGACCAGGGGCCGCAGCTG

CTCGACGGCACCCCTGGAGATCACGTACAGCTCCCGGAGCAGCTGCTCTATGTTGTC GGCCATCTGCATAGTGGGGC

CGAGGCCGCCCCGGGCGGCCGGTTCGAGGAGAGTGATCAGCGCGCCCAGTTTGGTGC GATGGCCCTCGACCGTGGGG

AGATAGCCCAGCCCAAAGTCCCGGGCCCAGGCCAACACACGCAGGGCGAACTCGACC GGGCGGGGAAGGTAGGCCGC

GCTACACGTGGCCCTCAGCGCGTCCCCAACCACCAGGGCCAGAACGTAGGGGACGAA GCCCGGGTCGGCGAGGACGT

TGGGGTGAATGCCCTCGAGGGCGGGGAAGCGGATCTGGGTCGCCGCGGCCAGGTGGA CAGAGGGGGCATGGCTGGGC

TGCCCGACGGGGAGAAGCGCGGACAGCGGCGTGGCCGGGGTGGTGGGGGTGATGTCC CAGTGGGTCTGACCATACAC

GTCGATCCAGATGAGCGCCGTCTCGCGGAGAAGGCTGGGTTGACCGGAACTAAAGCG GCGCTCGGCCGTCTCAAACT

CCCCCACGAGCGCCCGCCGCAGGCTCGCCAGATGTTCCGTCGGCACGGCCGGCCCCA TGATACGCGCCGCGTCTGGC

TCAGAACGCCCCCCGACAGGCCGCCGCCTCACAGCGCCGCCCGTGCGTGTGCTCGCT GGCGCCCTGGCCCGCCTGAA

AGTTTTTACGTAGTTGGCATAGTACCCGTATCCCGCGCCAGACCAAACACGTTCGCC CCCGCGAGGGCAATGCCCCA

AAGAGCTGCTGGACTTCGCCGAGTCCGTGGCCGGCGGGCGTCCGCGCGGGGACGCCC GCCGCCAGAAACCCCTCCAG

GGCCGAAAGGGAGTGCGTGCAGTGCGAGGGCGTGAACCCAGCGTCGATCAGGGTGTT GATCACCACGGAGGGCGAAT

TGGATTCTGGATCAACGTCCACGTCTGCTGCAGCAGAGCCAGCAGCCGCTGCTGGGC GCCGGCGGAGGGCTGCTCCC

CGAGCTGCAGCAGGCTGGAGACGGCAGGCTGGAAGACTGCCAGTGCCGACGAACTCA GGAACGGCACGTCGGGATCA AACACGGCCACGTCCGTCCGCACGCGCGCCATTAGCGTCCCCGGGGGCGCACAGGCCGAG CGCGGGCTGACGCGGCT

GAGGGCCGTCGACACGCGCACCTCCTCGCGGCTGCGAACCATCTTGTTGGCCTCCAG TGGCGGAATCATTATGGCCG

GGTCGATCTCCCGCACGGTGTGCTGAAACTGCGCCAACAGGGGCGGCGGGACCACAG CCCCCCGCTCGGGGGTCGTC

AGGTACTCGTCCACCAGGGCCAACGTAAAGAGGGCCCGTGTGAGGGGAGTGAGGGTC GCGTCGTCTATGCGCTGGAG

GTGCGCCGAGAACAGCGTCACCCGATTACTCCCCCCAAGAACCGGAGGCCCTCTTGC ACGAACGGGGCGGGGAAGAG

CAGGCTGTACGCCGGGGTGGTAAGGTTCGCGCTGGGCTGCCCCAACGGGACCGGCGC CAGCTTGAGCGACGTCTCCC

CAAGGGCCTCGATGGAGGTCCGCGGGCTCATGGCCAAGCAGCTCTTGGTGACGGTTT GCCAGCGGTCTATCCACTCC

ACGGCGCACTGCGGCGCGGACCGGCCCCAGGGCCGCCGCGGTGCGCAGGCCGGCGGA CTCCAGCGCATGGGACGTGT

CGGAGCCGGTGACCGCGAGGATGGTGTCCTTGATGACCTCCATCTCCCGGAAGGCCT GGTCGGGGGCCTCGGGGAGA

GCCACCACCAAGCGGTGTACGAGCAACCCGGGGAGGTTCTCGGCCAAGAGCGCCGTC TCCGGAAGCCCGTGGGCCCG

GTGGAGCGCGCACAGGTGTTCCAGCAGCGGCCGCCAGCATGCCCGCGCGTCTGCCGG GGCGATGGCCGTTCCCGACA

ACAGAAACGCCGCCATGGCGGCGCGCAGCTTGGCCGTGGCCAGAAACGCCGGGTCGT CCGCCCCGTTTGCCGTCTCG

GCCGTGGGGGTTGGCGGTTGGCGAAGGCCGGCTAGGCTCGCCAATAGGCGCTGCATA GGTCCGTCCGAGGGCGGACC

GGCGGGTGAGGTCGTGACGACGGGGGCCTCGGACGGGAGACCGCGGTCTGCCATGAC GCCCGGCTCGCGTGGGGGGG

GGACAGCGTAGACCAACGACGAGACCGGGCGGGAATGACTGTCGTGCGCTGTAGGGA GCGGCGAATTATCGATCCCC

CGCGGCCCTCCAGGAACCCCGCAGGCGTTGCGAGTACCCCGCGTCTTCGCGGGGTGT TATACGGCCACTTAAGTCCC

GGCATCCCGTTCGCGGACCCAGGCCCGGGGGATTGTCCGGATGTGCGGGCAGCCCGG ACGGCGTGGGTTGCGGACTT

TCGGCGGGGCGGCCCAAATGGCCCTTTAAACGTGTGTATACGGACGCGCCGGGCCAG TCGGCCAACACAACCCACCG

GAGGCGGTAGCCGCGTTTGGCTGTGGGGTGGGTGGTTCCGCCTTGCGTGAGTGTCCT TTCGACCCCCCCCCTCCCCC

GGGTCTTGCTAGGTCGCGATCTGTGGTCGCAATGAAGACCAATCCGCTACCCGCAAC CCCTTCCGTGTGGGGCGGGA

GTACCGTGGAACTCCCCCCCACCACACGCGATACCGCGGGGCAGGGCCTGCTTCGGC GCGTCCTGCGCCCCCCGATC

TCTCGCCGCGACGGCCCAGTGCTCCCCAGGGGGTCGGGACCCCGGAGGGCGGCCAGC ACGCTGTGGTTGCTTGGCCT

GGACGGCACAGACGCGCCCCCTGGGGCGCTGACCCCCAACGCGATACCGAACAGGCC CTGGACAAGATCCTGCGGGG

CACCATGCGCGGGGGGGCGGCCCTGATCGGCTCCCCGCGCCATCATCTAACCCGCCA AGTGATCCTGACGGATCTGT

GCCAACCCAACGCGGATCGTGCCGGGACGCTGCTTCTGGCGCTGCGGCACCCCGCCG ACCTGCCTCACCTGGCCCAC

CAGCGCGCCCCGCCAGGCCGGCAGACCGAGCGGCTGGGCGAGGCCTGGGGCCAGCTG ATGGAGGCGACCGCCCTGGG

GTCGGGGCGAGCCGAGAGCGGGTGCACGCGCGCGGGCCTCGTGTCGTTTAACTTCCT GGTGGCGGCGTGTGCCGCCT

CGTACGACGCGCGCGACGCCGCCGATGCGGTACGGGCCCACGTCACGGCCAACTACC GCGGGACGCGGGTGGGGGCG

CGCCTGGATCGTTTTTCCGAGTGTCTGCGCGCCATGGTTCACACGCACGTCTTCCCC CACGAGGTCATGCGGTTTTT

CGGGGGGCTGGTGTCGTGGGTCACCCAGGACGAGCTAGCGAGCGTCACCGCCGTGTG CGCCGGGCCCCAGGAGGCGG

CGCACACCGGCCACCCGGGCCGGCCCCGCTCGGCCGTGATCCTCCCGGCGTGTGCGT TCGTGGACCTGGACGCCGAG

CTGGGGCTGGGGGGCCCGGGCGCGGCGTTTCTGTACCTGGTTCACTTACCGCCAGCG GGACCAGGAGCTGTGTTGTG

TGTACGTGATCAAGAGCCAGCTCCCCCCGCGCGGGTTGGAGCCGGCCCTGGAGCGGC TGTTTGGGCGCCTCCGGATC

CCAACACGATTCACGGCACCGAGGACATGACGCCCCCGGCCCCAAACCGAAACCCCG ACTTCCCCCTCGCGGGCCTG

GCCGCCAATCCCCAAACCCCGCGTTGCTCTGCTGGCCAGGTCACGAACCCCCAGTTC GCCGACAGGCTGTACCGCTG

GCAGCCGGACCTGCGGGGGCGCCCCACCGCACGCACCTGTACGTACGCCGCCTTCGC AGAGCTCGGCATGATGCCCG

AGGATAGTCCCCGCTGCCTGCACCGCACCGAGCGCTTTGGGGCGGTCAGCGTCCCCG TTGTCATCCTGGAAGGCGTG

GTGTGGCGCCCCGGCGAGTGGCGGGCCTGCGCGTGAGCGTAGCAAACGCCCCGCCCA CACAACGCTCCGCCCCCAAC

CCCTTCCCCGCTGTCACTCGTTGTTCGTTGACCCGGACGTCCGCCAAATAAAGCCAC TGAAACCCGAAACGCGAGTG

TTGTAACGTCCTTTGGGCGGGAGGAAGCCACAAAATGCAAATGGGATACATGGAAGG AACACACCCCCGTGACTCAG

GACATCGGCGTGTCCTTTTGGGTTTCACTGAAACTGGCCCGCGCCCCACCCCTGCGC GATGTGGATAAAAAGCCAGC

GCGGGTGGTTTAGGGTACCACAGGTGGGTGCTTTGGAAACTTGTCGGTCGCCGTGCT CCTGTGAGCTTGCGTCCCTC

CCCGGTTTCCTTTGCGCTCCCGCCTTCCGGACCTGCTCTCGCCTATCTTCTTTGGCT CTCGGTGCGATTCGTCAGGC

AGTGGCCTTGTCGAATCTCGACCCCACCACTCGCCGGACCCGCCGACGTCCCCTCTC GAGCCCGCCGAAACCCGCCG

CGTCTGTTGAAATGGCCAGCCGCCCCGCCGCATCCTCTCCCGTCGAAGCGCGGGCCC CGGTTGGGGGACAGGAGGCC

GGCGGCCCCAGCGCAGCCACCCAGGGGGAGGCCGCCGGGGCCCCTCTCGCCCGCGGC CACCACGTGTACTGCCAGCG

AGTCAATGGCGTGATGGTGCTTTCCGACAAGACGCCCGGGTCCGCGTCCTACCGCAT CAGCGATAGCAACTTTGTCC

AATGTGGTTCCAACTGCACCATGATCATAGACGGAGACGTGGTGCGCGGGCGCCCCC AGGACCCGGGGGCCGCGGCA

TCCCCCGCTCCCTTCGTTGCGGTGACAAACATCGGAGCCGGCAGCGACGGCGGGACC GCCGTCGTGGCATTCGGGGG

AACCCCACGTCGCTCGGCGGGGACGTCTACCGGTACCCAGACGACCGACGTCCCCAC CGAGGCCCTTGGGGGCCCCC

CTCCTCCTCCCCGCTTCACCCTGGGGGGCGGCTGTTGTTCCTGTCGCGACACACGGC GCCGCTCTGCGGGATTCGGG

GGGGAGGGGGATCCCGTCGGCCCCGCGTTGTCGTCTCGGACGACCGTTGCTCCGATT CCGACTCGGATGACTCGGAG GACACCGACTCGGAGACGCTGTCACACGCCTCCTCGGACGTGTCCGGCGGGGCCACGTAC GACGACGCCCTTGACTC

CGATTCGTCATCGGATGACTCCCTGCAGATAGATGGCCCCGTGTGTCGCCCGTGGAG CAATGACACCGCGCCCCTGG

ATGTTTGCCCCGGGACCCCCGGCCCGGGCGCCGACGCCGGTGGTCCCTCAGCGGTAG ACCCACACGCACCGACGCCA

GGGGCCGGCGCTGGTCTTGCGGCCGATCCCGCCGTGGCCCGGGACGACGCGGAGGGG CTTTCGGACCCCCGGCCACG

TCTGGGAACGGGCACGGCCTACCCCGTCCCCCTGGAACTCACGCCCGAGAACGCGGA GGCCGTGGCGCGCTTTCTGG

GAGATGCCGTGAACCGCGAACCCGCGCTCATGCTGGAGTACTTTTGCCGGTGCGCCC GCGAGGAAACCAAGCGTGTC

CCCCCCAGGACATTCCGCCCGGGTCCGCGTCCTACCGCATCAGCGATAGCAACTTTG TCCAATGTGGTTCCAACTGC

ACCATGATCATAGACGGAGACGTGGTGCGCGGGCGCCCCCAGGACCCGGGGGCCGCG GCATCCCCCGCTCCCTTCGT

TGCGGTGACAAACATCGGAGCCGGCAGCGACGGCGGGACCGCCGTCGTGGCATTCGG GGGAACCCCACGTCGCTCGG

CGGGGACGTCTACCGGTACCCAGACGACCGACGTCCCCACCGAGGCCCTTGGGGGCC CCCCTCCTCCTCCCCGCTTC

ACCCTGGGTGGCGGCTGTTGTTCCTGTCGCGACACACGGCGCCGCTCTGCGGTATTC GGGGGGGAGGGGGATCCCGT

CGGCCCCGCGGAGTTCGTCTCGGACGACCGGTCGTCCGATTCCGACTCGGATGACTC GGAGGACACCGACTCGGAGA

CGCTGTCACACGCCTCCTCGGACGTGTCCGGCGGGGCCACGTACGACGACGCCCTTG ACTCCGATTCGTCATCGGAT

GACTCCCTGCAGATAGATGGCCCCGTGTGTCGCCCGTGGAGCAATGACACCGCGCCC CTGGATGTTTGCCCCGGGAC

CCCCGGCCCGGGCGCCGACGCCGGTGGTCCCTCAGCGGTAGACCCACACGCCCGACG CCAGGGGCCGGCGCTGGTCT

TGCGGCCGATCCCGCCGTGGCCCGGGACGACGCGGAGGGGCTTTCGGACCCCCGGCC ACGTCTGGGAACGGGCACGG

CCTACCCCGTCCCCCTGGAACTCACGCCCGAGAACGCGGAGGCCGTGGCGCGCTTTC TGGGAGATGCCGTGAACCGC

GAACCCGCGCTCATGCTGGAGTACTTTTGCCGGTGCGCCCGCGAGGAAACCAAGCGT GTCCCCCCCAGGACATTCTG

CAGCCCCCCTCGCCTCACGGAGGACGACTTTGGGCTTCTCAACTACGCGCTCGTGGA GATGCAGCGCCTGTGTCTGG

ACGTTCCTCCGGTCCCGCCGAACGCATACATGCCCTATTATCTCAGGGAGTATGTGA CGCGGCTGGTCAACGGGTTC

AAGCCGCTGGTGAGCCGGTCCGCTCGCCTTTACCGCATCCTGGGGGTTCTGGTGCAC CTGCGGATCCGGACCCGGGA

GGCCTCCTTTGAGGAGTGGCTGCGATCCAAGGAAGTGGCCCTGGACTTTGGCCTGAC GGAAAGGCTTCGCGAGCACG

AAGCCCAGCTGGTGATCCTGGCCCAGGCTCTGGACCATTACGACTGTCTGATCCACA GCACACCGCACACGCTGGTC

GAGCGGGGGCTGCAATCGGCCCTGAAGTATGAGGAGTTTTACCTAAAGCGCTTTGGC GGGCACTACATGGAGTCCGT

CTTCCAGATGTACACCCGCATCGCCGGCTTTTTGGCCTGCCGGGCCACGCGCGGCAT GCGCCACATCGCCCTGGGGC

GAGAGGGGTCGTGGTGGGAAATGTTCAAGTTCTTTTTCCACCGCCTCTACGACCACC AGATCGTACCGTCGACCCCC

GCCATGCTGAACCTGGGGACCCGCAACTACTACACCTCCAGCTGCTACCTGGTAAAC CCCCAGGCCACCACAAACAA

GGCGACCCTGCGGGCCATCACCAGCAACATCAGCGCCATCCTCGCCCGCAACGGGGG CATCGGGCTATGCGTGCAGG

CGTTTAACGACTCCGGCCCCGGGACCGCTAGCGTCATACCCGCCCTCAAGGTCCTCG ACTCGCTGGTGGCGGCGCAC

AACAAAGGAGCGCGCGTCCAACCGGCGCGTGCGTGTACCTGGAGCCGTGGCACACCG ACGTGCGGGCCGTGCTCCGG

ATGAAGGGGGTCCTCGCCGGCGAAGAGGCCCAGCGCTGCGACAATATCTTCAGCGCC CTCTGGATGCCAGACCTGTT

TTTCAAGCGCCTGATTCGCCACCTGGACGGCGAGAAGAACGTCACATGGACCCTGTT CGACCGGGACACCAGCATGT

CGCTCGCCGACTTTCACGGGGAGGAGTTCGAGAAGCTCTACCAGCACCTCGAGGTCA TGGGGTTCGGCGAGCAGATA

CCCATCCAGGAGCTGGCCTATGGCATTGTGCGCAGTGCGGCCACGACCGGGAGCCCC TTCGTCATGTTCAAAGACGC

GGTGAACCGCCACTACATCTACGACACCCAGGGGGCGGCCATCGCCGGCTCCAACCT CTGCACCGAGATCGTCCATC

CGGCCTCCAAGCGATCCAGTGGGGTCTGCAATCTGGGAAGCGTGAATCTGGCCCGAT GCGTCTCCAGGCAGACGTTT

GACTTTGGGCGGCTCCGCGACGCCGTGCAGGCGTGCGTGCTGATGGTGAACATCATG ATCGACAGCACGCTACAACC

CACGCCCCAGTGCACCCGCGGCAACGACAACCTGCGGTCCATGGGAATCGGCATGCA GGGCCTGCACACGGCCTGCC

TGAAGCTGGGGCTGGATCTGGAGTCTGTCGAATTTCAGGACCTGAACAAACACATCG CCGAGGGATGCTGCTGTCGG

CGATGAAGACCAGCAACGCGCTGTGCGTTCGCGGGGCCCGTCCCTTCAACCACTTTA AGCGCAGCATGTATCGCGCC

GGCCGCTTTCACTGGGAGCGCTTTCCGGACGCCCGGCCGCGGTACGAGGGCGAGTGG GAGATGCTACGCCAGAGCTG

GATGAAACACGGCCTGCGCAACAGCCAGTTTGTCGCGCTGATGCCCACCGCCGCCTC GGCGCAGATCTCGGACGTCA

GCGAGGGCTTTGCCCCCCTGTTCACCAACCTGTTCAGCAAGGTGACCCGGGACGGCG AGACGCTGCGCCCCAACACG

CTCCTGCTAAAGGAACTGGAACGCACGTTTAGCGGGAAGCGCCTCCTGGAGGTGATG GACAGTCTCGACGCCAAGCA

GTGGTCCGTGGCGCAGGCGCTCCCGTGCCTGGAGCCCACCCACCCCCTCCGGCGATT CAAGACCGCGTTTGACTACG

ACCAGAAGTTGCTGATCGACCTGGTGCGGACCGCGCCCCCTACGTCGACCATAGCCA ATCCATGACCCTGTATGTCA

CGGAGAAGGCGGACGGGACCCTCCCAGCCTCCACCCTGGTCCGCCTTCTGGTCCACG CATATAAGCGCGGACTAAAA

ACAGGGATGTACTACTGCAAGGTTCGCAAGGCGACCAACAGCGGGGTCTTTGGCGGC GACGACAACATTGTCTGCAC

GAGCTGCGCGCTGTGACCGACAAACCCCCTCCGCGCCAGGCCCGCCGCCACTGTCGT CGCCGTCCCACGCGCTCCCC

CGCTGCCATGGATTCCGCGGCCCCAGCCCTCTCCCCCGCTCTGACGGCCCATACGGG CCAGAGCGCGCCGGCGGACC

TGGCGATCCAGATTCCAAAGTGCCCCGACCCCGAGAGGTACTTCTACACCTCCCAGT GTCCCGACATTAACCACCTG

CGCTCCCTCAACATCCTTAACCGCTGGCTGGAAACCGAGCTTGTTTTCGTGGGGGAC GAGGAGGACGTCTCCAAGCT TTCCGAGGGCGAGCTCAGCTTTTACCGCTTCCTCTTCGCTTTCCTGTCGGCCGCCGACGA CCTGGTTACGGAAAACC TGGGCGGCCTCTCCGGCCTGTTTGAGCAGAAGGACATTCTCCACTACTACGTGGAGCAGG AATGCATCGAAGTCGTA CACTCGCGCGTGTACAACATCATCCAGCTGGTGCTTTTTCACAACAACGACCAGGCGCGC CGCGAGTACGTGGCCGG CACCATCAACCACCCGGCCATCCGCGCCAAGGTGGACTGGCTGGAAGCGCGGGTGCGGGA ATGCGCCTCCGTTCCGG AAAAGTTCATCCTCATGATCCTCATCGAGGGCATCTTTTTTGCCGCCTCGTTTGCCGCCA TCGCCTACCTTCGCACC AACAACCTTCTGCGGGTCACCTGCCAGTCAAACGACCTCATCAGCCGGGACGAGGCCGTG CACACGACGGCCTCGTG TTACATCTACAACAACTACCTCGGCGGGCACGCCAAGCCCCCGCCCGACCGCGTGTACGG GCTGTTCCGCCAGGCGG TCGAGATCGAGATCGGATTTATCCGATCCCAGGCGCCGACGGACAGCCATATCCTGAGCC CGGCGGCGCTGGCGGCC ATCGAAAACTACGTGCGATTCAGCGCGGATCGCCTGTTGGGCCTTATCCACATGAAGCCA CTGTTTTCCGCCCCACC CCCCGACGCCGTATGTCCCGGAGAAGGCGGACGGGACCCTCCCAGCCTCCCCCTGGTCCG CCTTCTGGTCCACGCAT ATAAGCGCGGACTAAAAACAGGGATGTACTACTGCAAGGTTCGCAAGGCGACCAACAGCG GGGTCTTTGGCGGCGAC GACAACATTGTCTGCACGAGCTGCGCGCTGTGACCGACAAACCCCCCCGCGCCAGGCCCG CCGCCACTGTCGTCGCC GTCCCACGCGCTCCCCCGCTGCCATGGATTCCGCGGCCCCAGCCCCCCCCCGCTCGACGG CCCATACGGGCCAGAGC GCGCCGGCGGACCTGGCGATCCAGATTCCAAAGTGCCCCGACCCCGAGAGGTACTTCTAC ACCTCCCAGTGTCCCGA CATTAACCACCTGCGCTCCCTCAACATCCTTAACCGCTGGCTGGAAACCGAGCTTGTTTT CGTGGGGGACGAGGAGG ACGTCTCCAAGCTTTCCGAGGGCGAGCTCAGCTTTTACCGCTTCCTCTTCGCTTTCCTGT CGGCCGCCGACGACCTG GTTACGGAAAACCTGGGCGGCCTCTCCGGCCTGTTTGAGCAGAAGGACATTCTCCACTAC TACGTGGAGCAGGAATG CATCGAAGTCGTACACTCGCGCGTGTACAACATCATCCAGCTGGTGCTTTTTCACAACAA CGCCAGGCGCGCCGCGA GTACGTGGCCGGCACCATCAACCACCCGGCCATCCGCGCCAAGGTGGACTGGCTGGAAGC GCGGGTGCGGGAATGCG CCTCCGTTCCGGAAAAGTTCATCCTCATGATCCTCATCGAGGGCATCTTTTTTGCCGCCT CGTTTGCCGCCATCGCC TACCTTCGCACCAACAACCTTCTGCGGGTCACCTGCCAGTCAAACGACCTCATCAGCCGG GACGAGGCCGTGCACAC GACGGCCTCGTGTTACATCTACAACAACTACCTCGGCGGGCACAACCTTCTGCGGGTCAC CTGCCAGTCAAACGACC TCATCAGCCGGGACGAGGCCGTGCACACGCGGCCTCGTGTTACATCTACAACAACTACCT CGGCGGGCACGCCAAGC CCCCGCCCGACCGCGTGTACGGGCTGTTCCGCCAGGCGGTCGAGATCGAGATCGGATTTA TCCGATCCCAGGCGCCG ACGGACAGCCATATCCTGAGCCCGGCGGCGCTGGCGGCCATCGAAAACTACGTGCGATTC AGCGCGGATCGCCTGTT GGGCCTTATCCACATGAAGCCACTGTTTTCCGCCCCACCCCCCGACGCCAGCTTTCCGCT GAGCCTCATGTCCACCG ACAAACACACCAATTTTTTCGAGTGTCGCAGCACCTCCTACGCCGGGGCGGTCGTCAACG ATCTGTGAGGGTCGCGG CGCGCTTCTACCCGTGTTTGCCCATAATAAACCTCTGAACCAAACTTTGGGTCTCATTGT GATTCTTGTCAGGGACG CGGGGGTGGGAGAGGATAAAAGGCGGCGCAAAAAGCAGTAACCAGGTCCGTCCAGATTCT GAGGGCATAGGATACCA TAATTTTATTGGTGGGTCGTTTGTTCGGGGACAAGCGCGCTCGTCTGACGTTTGGGCTAC TCGTCCCAGAATTTGGC CAGGACGTCCTTGTAGAACGCGGGTGGGGGGGCCTGGGTCCGCAGCTGCTCCAGAAACCT GTCGGCGATATCAGGGG CCGTGATATGCCGGGTCACAATAGATCGCGCCAGGTTTTCGTCGCGGATGTCCTGGTAGA TAGGCAGGCGTTTCAGA AGAGTCCACGGCCCCCGCTCCTTGGGGCCGATAAGCGATATGACGTACTTAATGTAGCGG TGTTCCACCAGCTCGGT GATGGTCATGGGATCGGGGAGCCAGTCCAGGGACTCTGGGGCGTCGTGGATGACGTGGCG TCGCCGGCTGGCCACAT AACTGCGGTGCTCTTCCAGCAGCTGCGCGTTCGGGACCTGGACGAGCTCGGGCGGGGTGA GTATCTCCGAGGAGGAC GACCTGGGGCCGGGGTGGCCCCCGGTAACGTCCCGGGGATCCAGGGGGAGGTCCTCGTCG TCTTCGTATCCGCCGGC GATCTGTTGGGTTAGAATTTCGGTCCACGAGACGCGCATCTCGGTGCCGCCGGCGGCCGG CGGCAAAGGGGGCCTGG TTTCCGTGGAGCGCGAGCTGGTGTGTTCCCGGCGGATGGCCCGCCGGGTCTGAGAGCGAC TCGGGGGGGTCCAGTGA CATTCGCGCAGCACATCCTCCACGGAGGCGTAGGTGTTATTGGGATGGAGGTCGGTGTGG CAGCGGACAAAGAGGGC CAGGAACTGGGGGTAGCTCATCTTAAAGTACTTTAGTATATCGCGACTTGATCGTGGGAA TGTAGCAGGCGCTAATA TCCAACACAATATCACAGCCCATCAACAGGAGGTCAGTGTCTGTGGTGTACACGTACGCG ACCGTGTTGGTGTGATA GAGGTTGGCGCAGGCATCGTCCGCCTCCAGCTGACCCGAGCTAATGTAGGGACCCCAGGG CCCGGAGAACGCGAATA CAGAACAGATGCGCCAGACGCAGGGCCGGCTTCGAGGGCGCGGCGGACGGCAGCGCGGCT CCGGCCCGGCCGTCCCC CGGGTCCCCGAGGCCAGAGAGGTGCCGCGCCGGCGCATGTTGGAAAAGGCAGAGCTGGGT CTGGAGTCGGTGATGGG GGAAGGCGGTGGAGAGGCGTCCACGTCACTGGCCTCCTCGTCCGTCCGGCATTGGGCCGT CGTGCGGGCCAGGATGG CCTTGGCTCCAAACACAACCGGCTCCATACAATTGACCCCGCGATCGGTAACGAAGATGG GGAAAAGGGACTTTTGG GTAAACACCTTTAATAAGCGACAGAGGCAGTGTAGCGTAATGGCCTCGCGGTCGTAACTG GGGTAGCGGCGCTGATA TTTGACCACCAACGTGTACATGACGTTCCACAGGTCCACGGCGATGGGGGTGAAGTACCC GGCCGGGGCCCCAAGGC CCTGGCGCTTGACCAGATGGTGTGTGTGGGCAAACTTCATCATCCCGAACAAACCCATGT CAGGTCGATTGTAACTG CGGATCGGCCTAACTAAGGCGTGGTTGGTGCGACGGTCCGGGACACCCGAGCCTGTCTCT CTGTGTATGGTGACCCA GAC AAC AAC AC C GAC AC AAGAG GAC AAT AAT CCGTTAGGG GAC G C T C T T T AT AAT T T C GAT G G C C C AAC T C C AC G C G GATTGGTGCAGCACCCTGCATGCGCCGGTGTGGGCCAAACTTCCCCCCGCTCATTGCCTC TTCCAAAAGGGTGTGGC CTAACGAGCTGGGGGCGTATTTAATCAGGCTAGCGCGGCGGGCCTGCCGTAGTTTCTGGC TCGGTGAGCGACGGTCC

GGTTGCTTGGGTCCCCTGGCTGCCAGCAAAACCCCACCCTCGCAGCGGCATACGCCC CCTCCGCGTCCCGCACCCGA

GACCCCGGCCCGGCTGCCCTCACCACCGAAGCCCACCTCGTCACTGTGGGGTGTTCC CAGCCCGCATTGGGATGACG

GATTCCCCTGGCGGTGTGGCCCCCGCCTCCCCCGTGGAGGACGCGTCGGACGCGTCC CTCGGGCAGCCGGAGGAGGG

GGCGCCCTGCCAGGTGGTCCTGCAGGGCGCCGAACTTAATGGAATCCTACAGGCGTT TGCCCCGCTGCGCACGAGCC

TTCTGGACTCGCTTCTGGTTATGGGCGACCGGGGCATCCTTATCCATAACACGATCT TTGGGGAGCAGGTGTTCCTG

CCCCTGGAACACTCGCAATTCAGTCGGTATCGCTGGCGCGGACCCACGGCGGCGTTC CTGTCTCTCGTGGACCAGAA

GCGCTCCCTCCTGAGCGTGTTTCGCGCCAACCAGTACCCGGACCTACGTCGGGTGGA GTTGGCGATCACGGGCCAGG

CCCCGTTTCGCACGCTGGTTCAGCGCATATGGACGACGACGTCCGACGGCGAGGCCG TTGAGCTAGCCAGCGAGACG

CTGATGAAGCGCGAACTGACGAGCTTTGTGGTGCTGGTTCCCCAGGGAACCCCCGAC GTTCAGTTGCGCCTGACGAG

GCCGCAGCTCACCAAGGTCCTTAACGCGACCGGGGCCGATAGTGCCACGCCCACCAC GTTCGAGCTCGGGGTTAACG

GCAAATTTTCCGTGTTCACCACGAGTACCTGCGTCACATTTGCTGCCCGCGAGGAGG GCGTGTCGTCCAGCACCAGC

ACCCAGGTCCAGATCCTGTCCAACGCGCTCACCAAGGCGGGCCAGGCGGCCGCCAAC GCCAAGACGGTGTACGGGGA

AAATACCCATCGCACCTTCTCTGTGGCGTCGACGATTGCAGCAGCGGGCGGTGCTCC GGCGACTGCAGGTCGCCGGG

GGCACCCTCAAGTTCTTCCTCACGACCCCCGTCCCCAGTCTGTGCGTCACCGCCACC GGTCCCAACGCGGTATCGGC

GGTATTTCTCCTGAAACCCCAGAAGATTTGCCTGGACTGGCTGGGTCATAGCCAGGG GTCTCCTTCAGCCGGGAGCT

CGGCCTCCCGGGCCTCTGGGAGCGAGCCAACAGACAGCCAGGACTCCGCGTCGGACG CGGTCAGCCACGGCGATCCG

GAAGACCTCGATGGCGCTGCCCGGGCGGGAGAGGCGGGGGCCTCGCACGCCTGTCCG ATGCCGTCGTCGACCACGCG

GGTCACTCCCACGACCAAGCGGGGGCGCTCGGGGGGCGAGGATGCGCGCGCGGACAC GGCCCTAAAGAAACCTAAGA

CGGGGTCGCCCACCGCACCCCCGCCCACAGATCCAGTCCCCCTGGACACGGAGGACG ACTCCGATGCGGCGGACGGG

ACGGCGGCCCGTCCCGCCGCTCCAGACGCCCGGAGCGGAAGCCGTTACGCGTGTTAC TTTCGCGACCTCCCGACCGG

AGAAGCAAGCCCCGGCGCCTTCTCCGCCTTCCGGGGGGGCCCCCAAACCCCGTATGG TTTTGGATTCCCCTGACGGG

GCGGGGCCTTGGCGGCCGCCCAACTCTCGCACCATCCCGGGGTAATGTAAATAAACT TGGTATTGCCCAACACTCTC

CCGCGTGTCGCGTGTGGTTCATGTGTGTGCCTGGCGTCCCCCACCCTCGGGGTCGTG TATTTCCTTTCCCTGTCCTT

ATAAAAGCCGTATGTGGGGCGCTGACGGAACCACCCCGCGTGCCATCACGGCCAAGG CGCGGGATGCTCCGCAACGA

CAGCCACCGGGCCGCGTCCCCGGAGGACGGCCAGGGACGGGTCGACGACGGACGGCC ACACCTCGCGTGCGTGGGGG

CCCTGGCGCGGGGGTTCATGCATATCTGGCTTCAGGCCGCCACGCTGGGTTTTGCGG GATCGGTCGTTATGTCGCGC

GGGCCGTACGCGATGCCGCGTCTGGGGCGTTCGCCGTCGGGGCGCCGTGCTGGGCTT TATGCGCGCACCCCCCCCCT

CGCGCGGCCCACCGCGCGGATATACGCCTGGCTCAAACTGGCGGCCGGTGGAGCGGC CCTTGTTCTGTGGAGTCTCG

GGGAGCCCGGAACGCAGCCGGGGGCCCCGGGCCCGGCCACCCAGTGCCTGGCGCTGG GCGCCGCCTATGCGGCGCTC

CTGGTGCTCGCCGATGACGTCTATCCGCTCTTTCTCCTCGCCCCGGGGCCCCTGTTC GTCGGCACCCTGGGGATGGT

CGTCGGCGGGCTGACGATCGGAGGCAGCGCGCGCTACTGGTGGATCGGTGGGCCCGC CGCGGCCGCCTTGGCCGCGG

CGGTGTTGGCGGGCCCGGGGGCGACCACCGCCAGGGCTGCTTCTCCAGGGCGTGCCC CGACCACCGCCGCGTCTGCG

TCATCGTCGCAGGCGAGTCTGTTTCCCGCCGCCCCCCGGAGGACCCAGAGCGACCCG GGGACCCCGGGCCACCGTCC

CCCCCGACACCCCAACGATCCCAGGGGCCGCCGGCCGATGAGGTCGCACCGGCCGGG GTAGCGCGGCCCGAAAACGT

CTGGGTGCCCGTGGTCACCTTTCTGGGGGCGGGCGCGCTCGCCGTCAAGACGGTGCG AGAACATGCCCGGGAAACGC

CGGGCCCGGGCCTGCCGCTGTGGCCCCAGGTGTTTCTCGGAGGCCATGTGGCGGTGG CCCTGACGGAGCTGTGTCAG

GCGCTTATGCCCTGGGACCTTACGGACCCGCTGCTGTTTGTTCACGCCGGACTGCAG GTCATCAACCTCGGGTTGGT

GTTTCGGTTTTCCGAGGTTGTCGTGTATGCGGCGCTAGGGGGTGCCGTGTGGATTTC GTTGGCGCAGGTGCTGGGGC

TCCGGCGTCGCCTGCACAGGAAGGACCCCGGGGACGGGGCCCGGTTGGCGGCGACGC TTCGGGGCCTCTTCTTCTCC

GTGTACGCGCTGGGGTTTGGGGTGGGGGCGCTGCTGTGCCCTCCGGGGTCAACGGGC GGGTGGTCGGGCGATTGATA

TATTTTTCAATAAAAGGCATTAGTCCGAAACCGCCGGTGTGTGATGATTTCGCCATA ACACCCAAACCCCGGATGGG

GCCCGGGAAAATTCCGGAAGGGGACACGGGCTACCCTCACTACCGAGGGCGCTTGGT CGGGAGGCCGCATCGAACGC

ACACCCCCATCCGGTGGTCCGTGTGGAGGTCGTTTTTCAGTGCCCGGTCTCGCTTTG CCGGGAACGCTAGCCGATCC

CTCGCGAGGGGGAGGCGTCGGGCATGGCCCCGGGGCGGGTGGGCCTTGCCGTGGTCC TGTGGAGCCTGTTGTGGCTC

GGGGCGGGGGTGGCCGGGGGCTCGGAAACTGCCTCCACCGGGCCCACGATCACCGCG GGAGCGGTGACAAACGCGAG

CGAGGCCCCCACATCGGGGTCCCCCGGGTCAGCCGCCAGCCCGGAAGTCACCCCCAC ATCGACCCCAAACCCCAACA

ATGTCACACAAAACAAAACCACCCCCACCGAGCCGGCCAGCCCCCCAACAACCCCCA AGCCCACCTCCACGCCCAAA

AGCCCCCCCACGCCCCCCCCCGACCCCAAACCCAAGAACAACACCCCCCCCGCCAAG TCGGGCCGCCCCACTAAACC

CCCCGGGCCCGTGTGGTGCGACCGCCGCGACCCATTGGCCCGGTACGGCTCGCGGGT GCAGATCCGATGCCGGTTTC

GGAATTCCACCCGCATGGAGTTCCGCCTCCAGATATGGCGTTACTCCATGGGTCCGT CCCCCCCAATCGCTCCGGCT

CCCGACCAGAGGAGGTCCTGACGAACATCCCGCCCCACCCGGGGGACTCCTGGTGTA CGACAGCGCCCCCAACCTGA CGGACCCCCACGTGTCTGGGCGGAGGGGGCCGGCCCGGGCGCCGACCCTCCGTTGTATTC GTCCCGGGCCGCTGCCG ACCCAGCGGCTGATTATCGGCGAGGTGACGCCCGCGACCCAGGGAATGTATTACTTGGCC TGGGGCCGGATGGACAG CCCGCACGAGTACGGGACGTGGGTGCGCGTCCGCATGTTCCGCCCCCCGTCTCTGACCCT CCAGCCCCACGCGGTGA TGGAGGGTCAGCCGTTCAAGGCGACGTGCACGGCCGCCGCCTACTACCCGCGTAACCCCG TGGAGTTTGTCTGGTTC GAG GAC GAC C G C C AG GT GT T T AAC C C G G G C C AGAT C GAC AC G C AGAC G C AC GAG C AC C C C GAC G G GT T C AC C AC AGT CTCTACCGTGACCTCCGAGGCTGTCGGCGGCCAGGTCCCCCCGCGGACCTTCACCTGCCA GATGACGTGGCACCGCG ACTCCGTGATGTTCTCGCGACGCAATGCCACCGGGCTGGCCCTGGTGCTGCCGCGGCCAA CCATCACCATGGAATTT GGGGTCCGGCATGTGGTCTGCACGGCCGGCTGCGTCCCCGAGGGCAAAAGAGGGAGTGAC GTTGCCTGGTTCCTGGG GGACGACCCCTCACCGGCGGCTAAGTCGGCCGTTACGGCCCAGGAGTCGTGCGACCACCC CGGGCTGGCTACGGTCC GGTCCACCCTGCCCATTTCGTACGACTACAGCGAGTACATCTGTCGGTTGACCGGATATC CGGCCGGGATTCCCGTC TAGAGCACCACGGCAGTCACCAGCCCCCACCCAGGGACCCCACCGAGCGGCAGGTGATCG AGGCGATCGAGTGGGTG GGGATTGGAATCGGGGTTCTCGCGGCGGGGGTCCCGGTCGTAACGGCAATCGTGTACGTC GTCCGCACATCACAGTC GCGGCAGCGTCATCGGCGGTAACGCGAGACCCCCCCGTTACCTTTTTAATATCTATATAG TTTGGTCCCCCTCTATC CCGCCCACCGCTGGGCGCTATAAAGCCGCCACCCTCTCTTCCCTCAGGTCATCCTTGGTC GATCCCGAACGACACAC GGCGTGGAGCAAAACGCCTCCCCCTGAGCCGCTTTCCTACCAACACAACGGCATGCCTCT GCGGGCATCGGAACACG CCTACCGGCCCCTGGGCCCCGGGACACCCCCCATGCGGGCTCGGCTCCCCGCCGCGGCCT GGGTTGGCGTCGGGACC ATCATCGGGGGAGTTGTGATCATTGCCGCGTTGGTCCTCGTGCCCTCGCGGGCCTCGTGG GCACTTTCCCCATGCGA CAGCGGATGGCACGAGTTCAACCTCGGGTGCATATCCTGGGATCCGACCCCCATGGAGCA CGAGCAGGCGGTCGGCG GCTGTAGCGCCCCGGCGACCCTGATCCCCCGCGCGGCTGCCAAACAGCTGGCCGCCGTCG CACGCGTCCAGTCGGCA AGATCCTCGGGCTACTGGTGGGTGAGCGGAGACGGCATTCGGGCCTGCCTGCGGCTCGTC GACGGCGTCGGCGGTAT TGACCAGTTTTGCGAGGAGCCCGCCCTTCGCATATGCTACTATCCCCGCAGTCCCGGGGG CTTTGTTCAGTTTGTAA CTTCGACCCGCAACGCGCTGGGGCTGCCGTGAGGCGCGTGTACTGCGGTCTGTCTCGTCT CCTCTTCTCCCCTTCCC TCCCCCTCCGCATCCCAGGATCACACCGGCCAACGAGGGTTGGGGGGGGGTCCGGCACGG ACCCAAAATAATAAACA CACAATCACGTGCGATAAAAAGAACACGCGGTCCCCTGTGGTGTTTTTGGTTATTTTTAT TAAATCTCGTCGACAAA CAGGGGGAAAGGGGCGTGGTCTAGCGACGGCAGCACGGGCGGAGGCGTTCACCGGCTCCG GCGTCCTTCGCGTTTAA GCTTGGTCAGGAGGGCGCTCAGGGCGGCGACGTTGGTCGGGCCGTCGTTGGTCAGGGCGT TGGCTCGATGGCGGGCG AGGACGGGCGAGGGGCTCAACGGCGGGGGCGGGGGTCCGGTGCGGCCCGGGGGGGAAAAT AGGGCGGATCCCCCCCA GTCGTACAGGGGGTTTTCCGCCTCAATGTACGGGGAGGCCGGCGCTGCATTCGCCGTGTT CACGCAGACGTTTTCGT AGACCCGCATCCATGGTATTTCCTCGTAGACACGCCCCCCGTCCTCGCTCCCCGCCGTAT ATTGACTCGTCGTCCTC GTAGGGGGCGTGCCGTTCGCGGGCCGAGGCGGCGTGGGTGGCTTTGCGGCGGGCGTCGTC GTCGTCGTCGTCGGCCG TCAGATACGTGGCTTCCATCTGGTCGGGTTCTCCCTCCGGGGCGGGTCCCCACACCCGTG GCCGATCGAGGCTCCCC AGAGACGCGCGCCGGACAAGAAGGGGGCACGTCGCCGCCGGCGGTCGCCTGTCGGGTCCC GCGACGTTACGGGCCGG GAGGCGCGGGGGCACCCCCCCCATGTGCGTGTAATACGTGGCCGGCTGTGCGGCCGCAGC GGGGGGCTCGGCGACCG GGTCGTCCGCATCCGGAAGCGGGGGCCCCGCGCCGTCCGCACGGCGCCTCCGGAACCGCC GGGTGGACGGCGCGGGG GTCGAGTGTAGGCGAGGTCGGGGGAGGGGCGGGGGCTCGTTGTCGCGCCGCGCCCGCTGA ATCTTTTCCCGACAGGT CCCACCCCCCGCGCGATGCCCCCCCGGGCCGCGGGCCATGTCGTCCGGGGGAGGCCCCGC GGACCACGTCGTCCGGC GAGACGCCACGAGCCGCAGGATGGACTCGTAGTGGAGCGACGGCGCCCCGCTGCGGAGCA GATCCGCGGCCAGGGCG GCCCCGAACCAAGCCTTGATGCTCACTCCATCCGGGCCCAGCTGGGGGCGGTCATCGTGG GGAACAGGGGGGCGGTG GTCCGACAGAAACGCTCCTGGCTGTCCACCGCGGCCCGCAGATACTCGTTGTTCAGGCTG TCGGTGGCCCAGACGCC GTACCCGGTGAGGGTCGCGTTGATGATATACTGGGCGTGGTGATGGACGATCGACAGAAC CTCCACCGTGGATACCA CGGTATCCACGGTCCCGTACGTACCGCCGCTCCGCTTGCCGGTCTGCCACAGGTTGGCTA GGCACGTCAGGTGGCCC AGGACGTCGCTGACCGCCGCCCTGAGCGCCATGCACTGCATGGAGCCGGTCGTGCCGCTG GGACCCCGGTCCAGATG GCGCGCGAACGTTTCCGCGGGCGCCTCCGGGCTGCCGCCGAGCGGGAGGAACCGGCGATT GGAGGGACTCAGCCGGG ACATACGTGCTTGTCCGTCGTCCACAGCATCCAGGACGCCCACCGGTACAGCACGGGGAC GTAGGCCAGGAGCTCGT TGAGCCGCAGTGCGGTGTCGGTGCTGGGGCGGCTTGGGTCCGCCGGGCGCAAGAACATGT CGCTGATCCGATGGAGG GCGTCGCGCAGGCCGGCCACGGTGGCGGCGTACTTGGCCGCCGCGGCCCCGCTCTTGACG GGGTGCGCGCCAGCAGC TTTGGCGCCAGGGTGGGCCGCAGCAGCACGTGAAGGCTGGGGTCGCAGTCGCCCACGGGG TCCTCGGGGACGTCCAG GCCGCTGGGCACCACCGTCTGCAGGTACTTCCAGTACTGCGTGAGGATGGAGAGGAGAAA AGGGCCGCCGGGCAGCT CCACCTCGCCCAGCGCCTGGGTGGCGGCCGAAGCGTAGTGCCGGATGTACCGTAGTGCGG GTCGCTGGCGAGCCCGT CCACGATCAAACTCTCGGGAACCGTGTTGTGTTGCCGCGCGGCCAACCGGACGCTGCGAT CGGTGCAGGTCAGAAAC GCCGGCTGCGCGTCGTCGGAGCGCTGCCGCAAGGCGCCCACGGCCGCGCTAAGGAGCCCC TCCGGGGTGGGGAGCAG ACACCCGCCGAAGATGCGCCGCTCGGGAACGCCCGCGTTGTCGCCGCGGATCAGGTTGGC AGGCGTCAGGCACCGCG CCAGCCGCAGGGAGCTCGCGCCGCGCGTCCGGCGCTGCATGGTGACGCCCGTTCGGTCGG GACCCGCCGGTCGGAGT

TATGCCGCGTCCAGGGCCATCGGGGCGCTTTTTATCGGGAGGAGCTTATGGGCGTGG CGGGCCTCCCAGCCCGGTCG

CGCGCCTCCCCGACACGTGCGCCCGCAGGGCGGCGGCCCCCTCGTCTCCCATCAGCA GTTTCCTAAACTGGGACATG

ATGTCCACCACGCGGACCCGCGGGCCCAACACGGACCCGCCGCTTACGGGGGCGGGG GGGAAGGGCTCCAGGTCCTT

GAGCAGAAAGGCGGGGTCTGCCGTCCCGGACACGGGGGCCCGGGGCGCGGAGGAGGC GGGGCGCAGATCCACGTGCT

CCGCGGCCGCGCGGACGTCCGCCCAGAACTTGGCGGGGGTGGTGCGCGCGTACAGGG GCTGGGTCGCTCGGAGGACA

CACGCGTAGCGCAGGGGGGTGTACGTGCCCACCTCGGGGGCCGTGAATCCCCCGTCA AACGCGGCCAGTGTCACGCA

CGCCACCACGGTGTCGGCAAAGCCCAGCAGCCGCTGCAGGACGAGCCCGGCGGCCAG AATGGCGCGCGTGGTCGCAG

CGTCGTCCCGGCGCCGGTGCGCGTCCCCGCACGCCCGGGCGTACTTTAAGGTCACTG TCGCCAGGGCCGTGTGCAGC

GCGTACACCGCAGCGCCCAGCACGGCGTTGAGCCCGCTGTTGGCGAGCAGCCGGCGC GCTGCGGTGTCGCCCAGCGC

CTCGTGCTCGGCCCCCACGACCGCGGGGCTTCCCAGGGGCAGGGCGCGAAACAGCTC CTCCCGCGCCACGTCCGCAA

AGGCGGGGTGGTGCACGTGCGGGTGCAGGCGCGCCCCCACGACCACCGAGAGCCACT GGACCGTCTGCTCCGCCATC

ACCGCCAACACATCCAGCACGCGCCCCAGGAAGGCGGCCTCCCGCGTCAAAACGCAC CGGACGGCGTCGGGATTGAA

GCGGGCGAGCAGGGCCCCGGTGGCCAGGTACGTCATGCGGCCGGCATAGCGGGCGGC CACGCGACAGTCGCGGTCCA

GCAGCGCGCGCACCCCGGGCCAGTACAGCAGGGACCCCAGCGAGCTGCGAAACACCG CGGCGTCGGGGCCGGATTGG

GGGGACACTAACCCCCCCGCGCTCAGTAACGGCACGGCCGCGGCCCCGACGGGACGC CCGCCTCTCGCGAACTGCCG

CCTCAGCTCGGCAGCCCTGTCGTCCAGGTCCGACCCGCGCGCCTCTGCGTGAAGGCG CGTCCCGCACACCCACCCGT

TGATGGCCAGCCGCACGACGGCATCCGCCAAAAAGCTCATCGCCTGGGCGGGGCTGG TTTTTGTTCGACGATCCGTC

AGGTCAAGAATCCCATCGCCCGTGATATACCAGGCCAACGCCTCGCCCTGCTGCAGG GTTTGGCGGAAAAACACCGC

GGGGTTGTCGGGGGAGGCGAAGTGCATGACCCCCACGCGCGATAACCCGAACGCGCT ATCCGGACACGGGTAAAACC

CGGCCGGATGCCCCAGGGCTAGGGCGGAGCGCACGGACCGTCACACACGGCAACCTG AGGGGCCAGTCGATCCAACG

GGAATGCCGCCCGGAGCTCCGGGCCCGGCCCGCGTCCCTCCAGACCCTCCCCTTGGG CGGGGAACGGGCCCCGCCGC

CGTCCTCCGGCCCGACGTCTTCCGGGTAGTCGTCCTCCTCGTACTGCAGTTCCTCTA GGAACAGCGGCGACGGCGCC

CCCCGCGAACCGCCGACCCGCCCCAAAATAGCCCGCGCGTCGACGGGACCCAGGTAT CCCCCCTGCCGGGCCTGCGG

AGGACCGCGGGGAACCTCATCATCATCGTCCAGGCGACCGCGCACCGACTGGCTACG GGCCGCATCGGGCCCGGGGC

GCTGCCGGGACGCTCGGCGATGGGATGAGGGCGGGGCTTCCGACGCGCGCCGTCGTC GGGCTCGCGGGCCTTCCCGT

CGACGGCGCACGGGCGGCTCGTCGCCCGCCATCTCCTCCAGAGCCTCTAGCTCGCTG TCGTCATCCCCGCGGAACAC

CGCACGCAGGTACCCCATGAACCCCCCCCATCGCCCGCTGGCTCGTCCGCCACGGGC GAGGCGCGGGGGCGGGTGGA

TGCGCGCCTCCTGCGCCCCGCGGGTTCGCGAGCCGACATGGTGGCGATAGACGCGGG TATCGGATGTCCGCTACCCC

CCAAAAAAGAAAAAGACCCCACAGCGCGGATGGAGGTCGGGGTAGGTGCCGCCGGAC CCCCTCGCGATGGGAATGGA

CGGGAGCGACGGGGCCGGCGCAAAAAACGCAGTATCTCCCGCGAAGGCTACCCGCCG CCCCAGCCCCCGGCCAAATG

CGGAAACGGTCCCGCGCTCTCGCCTTTATACGCGGGCCGCCCTGCGACACAATCACC CGTCCGTGGTTTCGAATCTA

CACGACAGGCCCGCAGACGCGGCTAACACACACGCCGGCAACCCAGACCCCAGTGGG TTGGTTGCGCGGTCCCGTCT

CCTGGCTAGTTCTTTCCCCCACCACCAAATAATCAGACGACAACCGCAGGTTTTTGT AATGTATGTGCTCGTGTTTA

TTGTGGATACGAACCGGGGACGGGAGGGGAAAACCCAGACGGGGGATGCGGGTCCGG TCGCGCCCCCTACCCACCGT

ACTCGTCAATTCCAAGGGCATCGGTAAACATCTGCTCAAACTCGAAGTCGGCCATAT CCAGAGCGCCGTAGGGGGCG

GAGTCGTGGGGGGTAAATCCCGGACCCGGGGAATCCCCGTCCCCCAACATGTCCAGA TCGAAATCGTCTAGCGCGTC

GGCATGCGCCATCGCCACGTCCTCGCCGTCTAAGTGGAGCTCGTCCCCCAGGCTGAC ATCGGTCGGGGGGGCCGTCG

ACAGTCTGCGCGTGTGTCCCGCGGGGAGAAAGGACAGGCGCGGAGCCGCCAGCCCCG CCTCTTCGGGGGCGTCGTCG

TCCGGGAGATCGAGCAGGCCCTCGATGGAGACCCGTAATTGTTTTTCGTACGCGCGC GGCTGTACGCGTGTTCCCGC

ATGACCGCCTCGGAGGGCGAGGTCGTGAAGCTGGAATACGAGTCCAACTTCGCCCGA ATCAACACCATAAAGTACCC

AGAGGCGCGGGCCTGGTTGCCATGCAGGGTGGGAGGGGTCGTCAACGGCGCCCCTGG CTCCTCCGTAGCCGCGCTGC

GCACCAGCGGGAGGTTAAGGTGCTCGCGAATGTGGTTTAGCTCCCGCAGCCGGCGGG CCTCGATTGGCACTCCCCGG

ACGGTGAGCGCTCCGTTGACGAACATGAAGGGCTGGAACAGACCCGCCAACTGACGC CAGCTCTCCAGGTCGCAACA

GAGGCAGTCAAACAGGTCGGGCCGCATCATCTGCTCGGCGTACGCGGCCCATAGGAT CTCGCGGGTCAAAAATAGAT

ACAAATGCAAAAACAGAACACGCGCCAGACGAGCGGTCTCTCGGTAGTACCTGTCCG CGATCGTGGCGCGCAGCATT

TCTCCCAGGTCGCGATCGCGTCCGCGCATGTGCGCCTGGCGGTGCAGCTGCCGGACG CTGGCGCGCAGGTACCGGTA

CAGGGCCGAGCAGAAGTTGGCCAACACGGTTCGATAGCTCTCCTCCCGCGCCCGTAG CTCGGCGTGGAAGAAACGAG

AGAGCGCTTCGTAGTAGAGCCCGAGGCCGTCGCGGGTGGCCGGAAGCGTCGGGAAGG CCACGTCGCCGTGGGCGCGA

ATGTCGATTTGGGCGCGTTCGGGGACGTACGCGTCCCCCCATTCCACCACATCGCTG GGCAGCGTTGATAGGAATTT

ACACTCCCGGTACAGGTCGGCGTTGGTCGGTAACGCCGAAAACAAATCCTCGTTCCA GGTATCGAGCATGGTACATA

GCGCGGGGCCCGCGCTAAAGCCCAAGTCGTCGAGGAGACGGTTAAAGAGGGCGGCGG GGGGGACGGGCATGGGCGGG GAGGGCATGAGCTGGGCCTGGCTCAGGCGCCCCGTTGCGTACAGCGGAGGGGCCGCCGGG GTGTTTTTGGGACCCCC GGCCGGGCGGGGGGGTGGTGGCGAAGCGCCGTCCGCGTCCATGTCGGCAAACAGCTCGTC GACCAAGAGGTCCATTG GGTGGGGTTGATACGGGAAAGACGATATCGGGCTTTTGATGCGATCGTCCCCGCCCGCCC CGCGAGTGTGGGACGCC CGACGGCGCGGGAAGAGAAAAACCCCCAAACGCGTTAGAGGACCGGACGGACCTTATGGG GGGAAGTGGGCAGCGGG AACCCCGTCCGTTCCCGAGGAATGACAGCCCGTGGTCGCCACCCCGCATTTAAGCAACCC GCACGGGCCGCCCCGTA CCTCGTGACTTCCCCCCACATTGGCTCCTGTCACGTGAAGGCAAACCGAGGGCGGCTGTC CAACCCACCCCCCGCCA CCCAGTCACGGTCCCCGTCGGATTGGGAAACAAAGGCACGCAACGCCAACACCGAATGAA CCCCTGTTGGTGCTTTA TTGTCTGGGTACGGAAGTTTTTCACTCGACGGGCCGTCTGGGGCGAGAAGCGGAGCGGGC TGGGGCTCGAGGTCGCT CGGTGGGGCGCGACGCCGCAGAACGCCCTCGAGTCGCCGTGGCCGCGTCGACGTCCTGCA CCACGTCTGGATTCACC AACTCGTTGGCGCGCTGAATCAGGTTTTTGCCCTCGCAGACCGTCACGCGGATGGTGGTG ATGCCAAGGAGTTCGTT GAGGTCTTCGTCTGTGCGCGGACGCGACATGTCCCAGAGCTGGACCGCCGCCATCCGGGC ATGCATGGCCGCCAGGC GCCCAACCGCGGCGCAGAAGACGCGCTTGTTAAAGCCGGCCACCCGGGGGGTCCATGGCG CGTCGGGGTTTGGGGGG GCGGTGCTAAAGTGCAGCTTTCTGGCCAGCCCCTGCGCGGGTGTCTTGGATCGGGTTGGC GCCGTCGACGCGGGGGC GTCTGGGAGTGCGGCGGATTCTGGCTGGGCCGATTTCCTGCCGCGGGTGGTCTCCGCCGC CGGGGCCGCGGGGGCCT TAGTCGCCACCCGCTGGGTTCGGGGGGCCCGGGGGGCGGTGGTGGGTGGCGTCCGGCCCC TCCGGACCCAGCGGGCG GCGGGGGCGCCCGCGCAGGCCCCGGGGCGGACAAAACCGCCCCGGAAACGGGACGCCGCG TCCGGGGGACCTCCGGG TGTTCGTCGTCTTCGGATGACGAGCCCCCGTAGAGGGCATAATCCGACTCGTCGTACTGG ACGAAACGGACCTCGCC CCTTGGGCGCGCGCGTGTCTGTAGGGCGCCACGGCGGGAGGTGTCAGGCGGACTATCGGG ACTCGCCATACATGAAG ACGGGGGTAGTACAGATCCTCGTACTCATCGCGCGGAACCTCCCGCGGACCCGACTTCAC GGAGCGGCGAGAGGTCA TGGTTCCACGAACACGCTAGGGTCGGATGCGCGGACAATTAGGCCTGGGTTCGGACGGCG GGGGTGGTGCAGGTGTG GAGAGGTCGAGCGATAGGGGCGGCCCGGGAGAGAAGAGAGGGTCCGCAAAACCCACTGGG GATGCGTGAGTGGCCCT CTGTGGGCGGTGGGGGAGAGTCTTATAGGAAGTGCATATAACCACAACCCATGGGTCTAA CCAATCCCCAGGGGCCA AGAAACAGACACGCCCCAAACGGTCTCGGTTTCCGCGAGGAAGGGGAAGTCCTGGGACAC CCTCCACCCCCACCCCT CACCCCACACAGGGCGGGTTCAGGCGTGCCCGGCAGCCAGTAGCCTCTGGCAGATCTGAC AGACGTGTGCGATAATA CACACGCCCATCGAGGCCATGCCTACATAAAAGGGCACCAGGGCCCCCGGGGCAGACATT TGGCCAGCGTTTTGGGT CTCGCACCGCGCGCCCCCGATCCCATCGCGCCCGCCCTCCTCGCCGGGCGGCTCCCCGTG CGGGCCCGCGTCTCCCG CCGCTAAGGCGACGAGCAAGACAAACAACAGGCCCGCCCGACAGACCCTTCTGGGGGGGC CCATCGTCCCTAACAGG AAGATGAGTCAGTGGGGATCCGGGGCGATCCTTGTCCAGCCGGACAGCTTGGGTCGGGGG TACGATGGCGACTGGCA CACGGCCGTCGCTACTCGCGGGGGCGGAGTCGTGCAACTGAACCTGGTCAACAGGCGCGC GGTGGCTTTTATGCCGA AGGTCAGCGGGGACTCCGGATGGGCCGTCGGGCGCGTCTCTCTGGACCTGCGAATGGCTA TGCCGGCTGACTTTTGT GCGATTATTCACGCCCCCGCGCTATCCAGCCCAGGGCACCACGTAATACTGGGTCTTATC GACTCGGGGTACCGCGG AACCGTTATGGCCGTGGTCGTAGCGCCTAAAAGGACGCGGGAATTTGCCCCCGGGACCCT GCGGGTCGACGTGACGT TCCTGGACATCCTGGCGACCCCCCCGGCCCTCACCGAGCCGATTTCCCTGCGGCAGTTCC CGCAACTGGCGCCCCCC CTCAACGGGGCCGGGATACGCGCAGATCCTTGGTTGGAGGGGGCGCTCGGGGACCCAAGC GTGACTCCTGCCCTACC GGCGCGACGCGAGGGCGGTCCCGCGCCCATGCCGGCGAGCTGACGCCGGTTCAGACGGAA CACGGGGACGGCGTACG AGAAGCCATCGCCTTCCTTCCAAAACGCGAGGAGGATGCCGGTTTCGACATTGTCGTCCG TCGCCCGGTCACCGTCC CGGCAAACGGCACCACGGTCGTGCAGCCATCCCTCCGCATGCTCCACGCGGACGCCGGGC CCGCGGCCTGCTATGTG CTGGGGCGGTCGTCGCTCAACGCCCGCGGCCTCCTGGTCGTTCCTACGCGCTGGCTCCCC GGGCACGTATGTGCGTT TGTTGTTTACAACCTTACGGGGGTTCCTGTGACCCTCGAGGCCGGCGCCAAGGTCGCCCA GCTCCTGGTTGCGGGGG CGGACGCTCTTCCTTGGATCCCCCCGGACAACTTTCACGGGACCAAAGCGCTTCGAAACT ACCCCAGGGGTGTTCCG GACTCAACCGCCGAACCCAGGAACCCGCCGCTCCTGGTGTTTACGAACGAGTTTGACGCG GAGGCCCCCCCGAGCGA GCGCGGGACCGGGGGTTTTGGCTCTACCGGTATTTAGCCCATAGCTTGGGGTTCGTTCCG GGCAATAAAAAACGTTT GTATCTCATCTTTCCTGTGTGTAGTTGTTTCTGTTGGATGCCTGTGGGTCTATCACACCC GCCCCTCCATCCCACAA AC AC AGAAC AC AC G G GT T G GAT GAAAAC AC G CAT T TAT T GAC C C AAAAC AC AC G GAG C T G C T C GAGAT G G G C C AG G G CGAGGTGCGGTTGGGGAGGCTGTAGGTCTGGGAACGGACACGCGGGGACACGATTCCGGT TTGGGGTCCGGGAGGGC GTCGCCGTTTCGGGCGGCAGGCGCCAGCGTAACCCGGGGGCGGCGTGTGGGGGTGCCCCA AGGAGGGCGCCTCGGTC ACCCCAAGCCCCCCCGAGCGGGTCCCCCGGCAACCCCGAAGGCGGAGAGGCCAAGGGCCC GGGCGGCGATGGCCACA TCCTCCATGACCACGTCGCTCTCGGCCATGCTCCGAATAGCCTGGGAGACGAGCACATCC GCGGACTTGTCAGCCGC CCCCACGGACATGTACATCTGCAGGATGGTGGCCATACACGTGTCCGCCAGGCGCCGCAT CTTGTCCTGATGGGCCG CCACGGCCCCGTCGATCGTGGGGGCCTCGAGCCCGGGGGGTGGCGCGCCAGTCGTTCTAG GTTCACCATGCAGGCGT GGTACGTGCGGGCCAAGGCGCGGGCCTTCACGAGGCGTCGGGTGTCGTCCAGGGACCCCA GGGCGTCATCGAGCGTG ATGGGGGCGGGAGTAGCCCGCCCCTCCATCCCACAAACACAGAACACACGGGTTGGATGA AAACACGCATTTATTGA CCCAAAACACACGGAGCTGCTCGAGATGGGCCAGGGCGAGGTGCGGTTGGGGAGGCTGTA GGTCTGGGAACGGACAC

GCGGGGACACGATTCCGGTTTGGGGTCCGGGAGGGCGTCGCCGTTTCGGGCGGCAGG CGCCAGCGTAACCTCCGGGG

GCGGCGTGTGGGGGTGCCCCAAGGAGGGCGCCTCGGTCACCCCAAGCCCCCCCGAGC GGGTTCCCCCGGCAACCCCG

AAGGCGGAGAGGCCAAGGGCCCGTTCGGCGATGGCCACATCCTCCATGACCACGTCG CTCTCGGCCATGCTCCGAAT

AGCCTGGGAGACGAGCACATCCGCGGACTTGTCAGCCGCCCCCACGGACATGTACAT CTGCAGGATGGTGGCCATAC

ACGTGTCCGCCAGGCGCCGCATCTTGTCCTGATGGGCCGCCACGGCCCCGTCGATCG TGGGGGCCTCGAGCCCGGGG

TGGTGGCGCGCCAGTCGTTCTAGGTTCACCATGCAGGCGTGGTACGTGCGGGCCAAG GCGCGGGCCTTCACGAGGCG

TCGGGTGTCGTCCAGGGACCCCAGGGCGTCATCGAGCGTGATGGGGGCGGGAAGTAG CGCGTTAACGACCACCAGGG

CCTCCTGCAGCCGCGGCTCCGCCTCCGAGGGCGGACCGGCCGCGCGGATCATCTCAT ATTGTTCCTCGGGGCGCGCT

CCCCAGCCACATATAGCCCCGAGAAGAAGCATCGCGGGCGGGTACGGCTTGGGCGCG CGGACGCAATGGGGCAGGAA

GACGGGAACCGCGGGGAGAGGCGGGCGGCCGGGACTCCCGTGGAGGTGACCGCGCTT TATGCGACCGACGGGGGCGT

TATTACCTCTTCGATCGCCCTCCTCACAAACTCTCTACTGGGGGCCGAGCCGGTTTA TATATTCAGCTACGACGCAT

ACACGCACGATGGCCGTGCCGACGGGCCCACGGAGCAAGACAGGTTCGAAGAGAGTA GGGCGCTCTACCAAGCGTCG

GGCGGGCTAAATGGCGACTCCTTCCGAGTAACCTTTTGTTTATTGGGGACGGAAGTG GGTGGGACCCACCAGGCCCG

CGGGCGAACCCGACCCATGTTCGTCTGTCGCTTCGAGCGAGCGGACGACGTCGCCGC GCTACAGGACGCCCTGGCGC

ACGGGACCCCGCTACAACCGGACCACATCGCCGCCACCCTGGACGCGGAGGCCACGT TCGCGCTGCATGCGAACATG

ACCTGGCTCTCACCGTGGCCGTCAACAACGCCAGCCCCCGCACCGGACGCGACGCCG CCGCGGCGCAGTATGATCAG

GGCGCGTCCCTACGCTCGCTCGTGGGGCGCACGTCCCTGGGACAACGCGGCCTTACC ACGCTATACGTCCACCACGA

GGCGCGCGTGCTGGCCGCGTACCGCAGGGCGTATTATGGAAGCGCGCAGAGTCCCTT CTGGTTTCTTAGCAAATTCG

GGCCTGACGAAAAAAGCCTGGTGCTCACCACTCGGTACTACCTGCTTCAGGCCCAGC GTCTGGGGGGCGCGGGGGCC

ACGTACGACCTGCAGGCCATCAAGGACATCTGCGCCACCTACGCGATTCCCCACGCC CCCCGCCCCGACACCGTCAG

CGCCGCGTCCCTGACCTCGTTTGCCGCCATCCGCGGTTCTGTTGCACGAGCCAGTAC GCCCGCGGGGCCGCGGCGGC

CGGGTTTCCGCTTTACGTGGAGCGCCGTATTGCGGCCGACGTCCGCGAGACCAGTGC GCTGGAGAAGTTCATAACCC

ACGATCGCAGTTGCCTGCGCGTGTCCGACCGTGAATTCATTACGTACTTTCCCTGGC CCATTTTGAGTGTTTCAGCC

CCCCGCGCCTAGCCACGCATCTTCGGGCCGTGACGACCCAGGACCCCAACCCCGCGG CCAACACGGAGCAGCCCTCG

CCCCTGGGCAGGGAGGCCGTGGAACAATTTTTTTGCCACGTGCGCGCCCAACTGAAT ATCGGGGAGTACGTCAAACA

CAACGTGACCCCCCGGGAGACCGTCCTGGATGGCGATACGGCCAAGGCCTACCTGCG CGCTCGCACGTACGCGCCCG

GGGCCCTGACGCCCGCCCCCGCGTATTGCGGGGCCGTGGACTCCGCCACCAAAATGA GGGGCGTTTGGCGGACGCCG

AAAAGCTCCTGGTCCCCCGCGGGTGGCCCGCGTTTGCGCCCGCCAGTCCCGGGGAGG ATACGGCGGAGGATACGGCG

GGCGGCACGCCGCCCCCACAGCCTGCGGAATCGCAAGCGCCTCCTGAGACTGGCCGC CACGGAACAACAGGACACCA

CGCCCCCGGCGATCGCGGCGCTTATCCGTAATGCGGCGGTGCAGACTCCCCTGCCCG TCTACCGGATATCCATGGTC

CCCACGGGACAGGCATTTGCCGCGCTGGCCTGGGACGACTGGGCCCGCATAACGCGG GACGCTCGCCTGGCCGAAGC

GGTCGTGTCCGCCGAAGCGGCGGCGCACCCCGACCACGGCGCGCTGGGCAGGCGGCT CACGGATCGCATCCGCGCCC

AGGGCCCCGTGATGCCCCCTGGCGGCCTGGATGCCGGGGGGCAGATGTACGTGAATC GCAACGAGATATTTAACGGC

GCGCTGGCAATCACAAACATCATCCTGGATCTCGACATCGCCCTGAAGGAGCCCGTC CCCTTTCGCCGGCTCCACGA

GGCCCTGGGCCACTTTAGGCGCGGGGCTCTGGCGGCGGTTCAGCTCCTGTTTCCCGC GGCCCGCGTGGCCCCGACGC

ATATCCCTGTTATTTTTTCAAAAGCGCATGTCGGCCCGGCCCGGCGTCCGTGGGTTC CGGCAGCGGACTCGGCAACG

ACGACGACGGGGACTGGTTTCCCTGCTACGACGCCGCCGGTGATGAGGAGTGGGCGG AGGACCCGGGCGCCATGGAC

ACATCCCACGATCCCCCGGACGACGAGGTTGCCTACTTTGACCTGTGCCACGAAGTC GGCCCCACGGCGGAACCTCG

CGAAACGGATTCGCCCGTGTGTTCCTGCACCGACAAGATCGGACTGCGGGTGTGCAT GCCCGTCCCCGCCCCGTACG

TCGTCCACGGTTCTCTACGATGCGGGGGGTGGCACGGGTCATCCAGCAGGCGGTGCT GTTGGACCGAGATTTTGTGG

AGGCCATCGGGAGCTACGTAAAAACTTCCTGTTGATCGATACGGGGGTGTACGCCCA CGGCCACAGCCTGCGCTTGC

CGTATTTTGCCAAAATCGCCCCCGACGGGCCTGCGTGCGGAAGGCTGCTGCCAGTGT TTGTGATCCCCCCCGCCTGC

AAAGACGTTCCGGCGTTTGTCGCCGCGCACGCCGACCCGCGGCGCTTCCATTTTCAC GCCCCGCCCACCTATCTCGC

TTCCCCCCGGGAGATCCGTGTCCTGCACAGCCTGGGTGGGGCTATGTGAGCTTCTTT GAAAGGAAGGCGTCCCACAA

CGCGCTGGAACACTTTGGGCGACGCGAGACCCTGACGGAGGTCCTGGGTCGGTACAA CGTACAGCCGGATGCGGGGG

GGACCGTCGAGGGGTTCGCATCGGAACTGCTGGGGCGGATAGTCGCGTGCATCGAAA CCCACTTTCCCGAACACGCC

GGCGAATATCAGGCCGTATCCGTCCGGCGGGCCGTCAGTAAGGACGACTGGGTCCTC CTACAGCTAGTCCCCGTTCG

CGGTACCCTGCAGCAAAGCCTGTCGTGTCTGCGCTTTAAGCACGGCCGGGCGAGTCG CGCCACGGCGCGGACATTCG

TCGCGCTGAGCGTCGGGGCCAACAACCGCCTGTGCGTGTCCTTGTGTCAGCAGTGCT TTGCCGCCAAATGCGACAGC

AACCGCCTGCACACGCTGTTTACCATTGACGCCGGCACGCCATGCTCGCCGTCCGTT CCCTGCAGCACCTCTCAACC

GTCGTCTTGATAACGGCGTACGGCCTCGTGCTCGTGTGGTACACCGTCTTCGGTGCC AGTCCGCTGCACCGATGTAT TTCGTGGTACGCCCCACCGGCACCAACAACGACACCGCCCTCGTGTGGATGAAAATGAAC CAGACCCTATTGTTTCT GGGGGCCCCGACGCACCCCCCCAACGGGGGCTGGCGCAACCACGCCCATATCTGCTACGC CAATCTTATCGCGGGTA GGGTCGTGCCCTTCCAGGTCCCACCCGACGCCACGAATCGTCGGATCATGAACGTCCACG AGGCAGTTAACTGTCTG GAGACCCTATGGTACACACGGGTGCGTCTGGTGGTCGTAGGGTGGTTCCTGTATCTGGCG TTCGTCGCCCTCCACCA ACGCCGATGTATGTTTGGTGTCGTGAGTCCCGCCCACAAGATGGTGGCCCCGGCCACCTA CCTCTTGAACTACGCAG GCCGCATCGTATCGAGCGTGTTCCTGCAGTCCCCCTACACGAAAATTACCCGCCTGCTCT GCGAGCTGTCGGTCCAG CGGCAAAACCTGGTTCAGTTGTTTGAGACGGACCCGGTCACCTTCTTGTACCACCGCCCC GCCATCGGGGTCATCGT AGGCTGCGAGTTGATGCTACGCTTTGTGGCCGTGGGTCTCATCGTCGGCACCGCTTTCAT ATCCCGGGGGGCATGTG CGATCACATACCCCCTGTTTCTGACCATCACCACCTGGTGTTTTGTCTCCACCATCGGCC TGACAGAGCTGTATTGT ATTCTGCGGCGGGGCCCGGCCCCCAAGAACGCAGACAAGGCCGCCGCCCCGGGGCGATCC AAGGGGCTGTCGGGCGT CTGCGGGCGCTGTTGTTCCATCATCCTGTCGGGCATCGCAATGCGATTGTGTTATATCGC CGTGGTGGCCGGGGTGG TGCTCGTGGCGCTTCACTACGAGCAGGAGATCCAGAGGCGCCTGTTTGATGTATGACGTC ACATCCAGGCCGGCGGA AACCGGAACGGCATATGCAAACTGGAAACTGTCCTGTCTTGGGGCCCACCCACCCGACGC GTCATATGTAAATGAAA ATCGTTCCCCCGAGGCCATGTGTAGCCTGGATCCCAACGACCCCGCCCATGGGTCCCAAT TGGCCGTCCCGTTACCA AGACCAACCCAGCCAGCGTATCCACCCCCGCCCGGGTCCCCGCGGAAGCGGAACGGTGTA TGTGATATGCTAATTAA ATACATGCCACGTACTTATGGTGTCTGATTGGTCCTTGTCTGTGCCGGAGGTGGGGCGGG GGCCCCGCCCGGGGGGC GGAACTAGGAGGGGTTTGGGAGAGCCGGCCCCGGCACCACGGGTATAAGGACATCCACCA CCCGGCCGCCCCGCCCA TGGGTCCCAATTGGCCGTCCCGTTACCAAGACCAACCCAGCCAGCGTATCCACCCCCGCC CGGGTCCCCGCGGAAGC GGAACGGTGTATGTGATATGCTAATTAAATACATGCCACGTACTTATGGTGTCTGATTGG TCCTTGTCTGTGCCGGA GGTGGGGCGGGGGCCCCGCCCGGGGGGCGGAACTAGGAGGGGTTTGGGAGAGCCGGCCCC GGCACCACGGGTATAAG GAC AT C C AC C AC CCGGCCGCTCCC TAT C AGT GAT AGAGAT C T C C C TAT CAT GAT AGAGAT C G C T G C AC T GAG GT G C A GGTACATCCAGCTGACGAGTCCCAAATAGGACGAAACGCGCTTCGGTGTGTCCTGGATTC CACTGCTATCCACCGGT GCGCCACCACCAGAGGCCATATCCGACACCCCAGCCCCGACGGCAGCCGACAGCCCGGTC ATGGCGACTGACATTGA TATGCTAATTGACCTCGGCCTGGACCTCTCCGACAGCGATCTGGACGAGGACCCCCCCGA GCCGGCGGAGAGCCGCC GCGACGACCTGGAATCGGACAGCAACGGGGAGTGTTCCTCGTCGGACGAGGACATGGAAG ACCCCCACGGAGAGGAC GGACCGGAGCCGATACTCGACGCCGCTCGCCCGGCGGTCCGCCCGTCTCGTCCAGAAGAC CCCGGCGTACCCAGCAC CCAGACGCCTCGTCCGACGGAGCGGCAGGGCCCCAACGATCCTCAACCAGCGCCCCACAG TGTGTGGTCGCGCCTCG GGGCCCGGCGACCGTCTTGCTCCCCCGAGCGGCACGGGGGCAAGGTGGCCCGCCTCCAAC CCCCACCGACCAAAGCC CAGCCTGCCCGCGGCGGACGCCGTGGGCGTCGCAGGGGTCGGGGTCGCGGTGGTCCCGGG GCCGCCGATGGTTTGTC GGACCCCCGCCGGCGTGCCCCCAGAACCAATCGCAACCCGGGGGGACCCCGCCCCGGGGC GGGGTGGACGGACGGCC CCGGCGCCCCCCATGGCGAGGCGTGGCGCGGAAGTGAGCAGCCCGACCCACCCGGAGGCC CGCGGACACGGAGCGTG CGCCAAGCACCCCCCCCGCTAATGACGCTGGCGATTGCCCCCCCGCCCGCGGACCCCCGC GCCCCGGCCCCGGAGCG AAAGGCGCCCGCCGCCGACACCATCGACGCCACCACGCGGTTGGTCCTGCGCTCCATCTC CGAGCGCGCGGCGGTCG ACCGCATCAGCGAGAGCTTCGGCCGCAGCGCACAGGTCATGCACGACCCCTTTGGGGGGC AGCCGTTTCCCGCCGCG AATAGCCCCTGGGCCCCGGTGCTGGCGGGCCAAGGAGGGCCCTTTGACGCCGAGACCAGA CGGGTCTCCTGGGAAAC CTTGGTCGCCCACGGCCCGAGCCTCTATCGCACTTTTGCCGGCAATCCTCGGGCCGCATC GACCGCCAAGGCCATGC GCGACTGCGTGCTGCGCCAAGAAAATTTCATCGAGGCGCTGGCCTCCGCCGACGAGACGC TGGCGTGGTGCAAGATG TGCATCCACCACAACCTGCCGCTGCGCCCCCAGGACCCCATTATCGGGACGGCCGCGGCG GTGCTGGATAACCTCGC CACCCGCCTGCGGCCCTTTCTCCAGTGCTACCTGAAGGCGCGAGGCCTGTGCGGCCTGGA CGAACTGTGTTCGCGGC GGCGTCTGGCGGGCATTAAGGACATTGCATCCTTCGTGTTTGTCATTCTGGCCAGGCTCG CCAACCGCGTCGAGCGT GGCGTCGCGGAGATCGACTACGCGACCCTTGGTGTCGGGGTCGGAGAGAAGATGCATTTC TACCTCCCCGGGGCCTG CATGGCGGGCCTGATCGAAATCCTAGACACGCACCGCCAGGAGTGTTCGAGTCGTGTCTG CGAGTTGACGGCCAGTC ACATCGTCGCCCCCCCGTACGTGCACGGCAAATATTTTTATTGCAACTCCCTGTTTTAGG TACAATAAAAACAAAAC ATTTCAAACAAATCGCCCCACGTGTTGTCCTTCTTTGCTCATGGCCGGCGGGGCGTGGGT CACGGCAGATGGCGGGG GTGGGCCCGGCGTACGGCCTGGGTGGGCGGAGGGAACTAACCCAACGTATAAATCCGTCC CCGCTCCAAGGCCGGTG TCATAGTGCCCTTAGGAGCTTCCCGCCCGGGCGCATCCCCCCTTTTGCACTATGACAGCG ACCCCCCTCCCCAACCT GTTCTTACGGGCCCCGGACATAACCCACGTGGCCCCCCCTTACTGCCTCAACGCCACCTG GCAGGCCGAAACGGCCA TGCACACCAGCAAAACGGACTCCGCTTGCGTGGCCGTGCGGAGTTACCTGGTCCGCGCCT CCTGTGAGACCAGCGGC ACAATCCACTGCTTTTTCTTTGCGGTATACAAGGACCCCCACCATCCCCCTCCGCTGATT ACCGAGCTCCGCAACTT TGCGGACCTGGTTAACCACCCGCCGGTCCTACGCGAACTGGAGGATAAGCGCGGGGTGCG GCTGCGGTGTGCGCGGC TGCGGTGTGCGCGGCCGTTTAGCGTCGGGACGATTAAGGACGTCTCTGGGTCCGGCGCGT CCTCGGCGGGAGAGTAC ACGATAAACGGGATCGTGTACCACTGCCACTGTCGGTATCCGTTCTCAAAAACATGCTGG ATGGGGGCCTCCGCGGC CCTACAGCACCTGCGCTCCATCAGCTCCAGCGGCATGGCCGCCCGCGCGGCAGAGCATCG ACGCGTCAAGATTAAAA T T AAGGC GT GAT CT C CAAC C C C C CAT GAAT GT GT GT AAC C C C C C C C C C C CAAAAAAAT AAAGAGC C GT AAC C CAAC C AAACCAGGCGTGGTGTGAGTTTGTGGACCCAAAGCCCTCAGAGACAATGCGACAGGCCAG TATGGACCGTGATACTT T TAT T TAT T AAC T C AC AG GGGCGCTTACCGC C AC AG GAAT AC C AGAAT AAT GAC C AC C AC AAT C G C GAC C AG C C C T G TCGCCGGATGGGGCATGATCAGACGAGCCGCGCGCCGCGCGTTGGGCCCTGTACAGCTCG CGCGAATTGACCCTAGG AGGCCGCCACGCGCCCGAGTTTTGCGTTCGTCGCTGGTCGTCGGGCGCCAAAGCCCCGGA CGGCTGTTCGGTCGAAC GAACGGCCACGACAGTGGCATAGGTTGGGGGGTGGTCCGACATAGCCTCGGCGTACGTCG GGAGGCCCGACAAGAGG TCCCTTGTGATGTCGGGTGGGGCCACAAGCCTGGTTTCCGGAAGAAACAGGGGGGTTGCC AATAACCCGCCAGGGCC AAAACTCCGGCGCTGCGCACGTCGTTCGGCGCGGCGCCGGGCGCGCCGAGCGGCTCGCTG GGCGGCTTGGCGTGAGC GGCCCCGCTCCGACGCCTCGCCCTCTCCGGAGGAGGTTGGCGGAATTGGCACGGACGACA GGGGCCCAGCAGAGTAC GGTGGAGGTGGGTCCGTGGGGGTGTCCAGATCAATAACGACAAACGGCCCCTCGTTCCTA CCAGACAAGCTATCGTA GGGGGGCGGGGGATCAGCAAACGCGTTCCCCGCGCTCCATAGACCCGCGTCGGGTTGCGC CGCCTCCGAAGCCATGG ATGCGCCCCAAAGCCACGACTCCCGCGCGCTAGGTCCTTGGGGTAAGGGAAAAGGCCCTA CTCCCCATCCAAGCCAG CCAAGTTAACGGGCTACGCCTTCGGGGATGGGACTGGCACCCCGGCGGATTTTGTTGGGC TGGTACGCGTCGCCCAA CCGGGCACGGACGACAGGGGCCCAGCAGAGTACGGTGGAGGTGGGTCCGTGGGGGGGGCC AGGTCAATAACGACAAA CGGCCCCTCGTTCCTACCGACAAGCTATCGTAGGGGGGCGGGGGATCAGCAAACGCGTTC CCCGCGCTCCATAGACC CGCGTCGGGTTGCGCCGCCTCCGAAGCCATGGATGCGCCCCAAAGCCACGACTCCCGCGC GCTAGGTCCTTGGGGTA AGGGAAAAGGCCCTACTCCCCATCCAAGCCAGCCAAGTTAACGGGCTACGCCTTCGGGGA TGGGACTGGCACCCCGG CGGATTTTGTTGGGCTGGTACGCGTCGCCCAACCGAGGGCCGCGTCCACGGGACGCGCCT TTTATAACCCCGGGGTC ATTCCCAACGATCACATGCAATCTAACTGGCTCCCCTCTCCCCTCTCCCCCCCTCTCCCC GCTGGGGCTGGGGAGGG CTGGGGCTGGGGAGGGGCGGTGGTGTGTAGCAGGAGCGGTGTGTTGCGCCGGGGTACGTC TGGAGGAGCGGGAGGTG CGCGGTGACGTGTGGATGAGGAACAGGAGTTGTTGCGCGGTGAGTTGTCGCTGTGAGTTG TGTTGTTGGGCAGGTGT GGTGGATGACGTGACGTGTGACGTGCGGATTGCGCCGTGCTTTGTTGGTGTTGTTTTACC TGTGGCAGCCCGGGCCC CCCGCGGGCGCGCGCGCGCGCAAAAAAGGCGGGCGGCGGTCCGGGCGGCGTGCGCGCGCG CGGCGGGCGTTGGGGGC GGGGCCGCGGGAGCGGGGGAGGAGCGGGGGAGGAGCGGGGGAGGAGCGGGGGAGGAGCGG GGGGGGGAGCGGGGGGG GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG GGAGGGGGGGGGGGAGG AGCGGGGGAGGAGCGGGGCCGCGCGCGGCCCCCGGGGGGTGTGTTTTGGGGGGGCCCGTT TCCGGGGTCTGGCCGCT CCTCCCCCGCTCCTCCCCCCGCTCCTCCCCCCGCTCCTCCCCCCCCCCCCCCCCCCCCCC CCCCCCCCCCCCCCCCC CCCCCCCCCCCCCCCACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCGCCCCCCCCC CGCTCCCCCCCCGCTCC TCCCCCGCTCCCGCGGCCCCGCCCCCAACGCCCGCCGCGCGCGCGCACGCCGCCCGGACC GCCGCCCGCCTTTTTTG CGCGCGCGCGCGCCCGCGGGGGGCCCGGGCTGCCACAGGTAAAACAACACCAACAAAGCA CGGCGCAATCCGCACGT C AC AC GT C AC GT CAT C C AC C AC AC C T G C C CAAC AAC AC AAC T C AC AG C GAC AAC T C AC C G C G CAAC AAC TCCTGTTC CTCATCCACACGTCCCCGCGCCCCTCCCGCTCCTCCAGACGTACCCCGGCGCAACACACC GCTCCTGCTACACACCA CCGCCCCTCCCCAGCCCCAGCCCTCCCCACCCCACCCCCCCCCCCCCCCCCCCCCCCCCG CCCCCACCCCCCCCCCC CCCCCCACCCCCCCCCCCCCCCCCCCCCACCCCAGCCCCCCCCAGCCCCAGCCCTCCCCA GCCCCAGCCCTCCCCAG CCGCGTCCCGCGCTCCCTCGGGGGGGTTCGGGCATCTCTACCTCAGTGCCGCCAATCTCA GGTCAGAGATCCAAACC CTCCGGGGGCGCCCGCGCACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC CCCCCCCCCCCCCCCCC CCCCACCCCCCGGGGGGGGGGGGGGGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG GGGGGGGGGGGGGGGGG GGGGGGGGGGGGGGTGGGGGTGCGCGGGCGCCCCCGGAGGGTTTGGATCTCTGACCTGAG ATTGGCGGCACTGAGGT AGAGATGCCCGAACCCCCCCGAGGGAGCGCGGGACGCGGCTGGGGAGGGCTGGGGCTGGG GAGGGCTGGGGCTGGGG AGGGCTGGGGCTGGGGGGGGGGGGGGGGGGGGAGGGCGGGGGGGGGGGGGGGCCCCCCCC CCGCCCCCCTCCCCCCC CCCCCCCCCCCCCCCCCCCCCCCGCCCCTCCCCCCCTCCCGCCCCTCGAATAAACAACGC TACTGCAAAACTTAATC AGGTCGTTGCCGTTTATTGCGTCTTCGGGTTTCACAAGCGCCCCGCCCCGTCCCGGCCCG TTACAGCACCCCGTCCC CCTCGAACGCGCCGCCGTCGTCTTCGTCCCAGGCGCCTTCCCAGTCCACAACGTCCCGTC GCGGGGGCGTGGCCAAG CCCGCCTCCGCCCCCAGCACCTCCACGGCCCCCGCCGCCGCCAGCACGGTGCCGCTGCGG CCCGTGGCCGAGGCCCA GCGAATCCCGGGCGGCGCCGGCGGCAGGGCCCCCGGGCGGTCGTCGGCGCGCCGCGCAGC ACCAGCGGGGGGGCGTC GTCGTCGGGCTCCAGCAGGGCGCGGGCGCAAAAGTCCCTCCGCGGCCCGCGCCACCGGGC CGGGCCGGCGCGCACCG CCTCGCGCCCCAGCGCCACGTACACGGGCCGCAGCGGCGCGCCCAGGCCCCAGCGCGCGC AGGCGCGGTGCGAGTGG GCCTCCTCCTCGCAGAAGTCCGGCGCGCCGGGCGCCATGGCGTCGGTGGTCCCCGAGGCC GCCGCCCGGCCGTCCAG CGCCGGCAGCACGGCCCGGCGGTACTCGCGCGGGGACATGGGCACCGGCGTGTCCGGGCC GAAGCGCGTGCGCACGC GGTAGCGCACGTTGCCGCCGCGGCACAGGCGCAGCGGCGGCGCGTCGGGGTACAGGCGCG CGTGCGCGGCCTCCACG CGCGCGAAGACCCCCGGGCCGAACACGCGGCCCGAGGCCAGCACCGTGCGGCGCAGGTCC CGCGCCGCCGGCCAGCG CACGGCGCACTGCACGGCGGGCAGCAGGTCGCACGCCAGGTAGGCGTGCTGCCGCGACAC CGCGGGCCCGTCGGCGG

GCCAGTCGCAGGCGCGCACGGTGTTGACCACGATGAGCCGCCGGTCGCCGGCGCTGG CGAGCAGCCCCAGAAACTCC

ACGGCCCCGGCGAAGGCCAGGTCCCGCGTGGACAGCAGCAGCACGCCCTGCGCGCCC AGCGCCGACACGTCGGGGGC

GCCGGTCCAGTTGCCCGCCCAGGCGGCCGTGTCCGGCCCGCACAGCCGGTTGGCCAG GGCCGCCAGCAGGCAGGACA

GCCCGCCGCGCTCGGCGGACCACTCCGGCGGCCCCCCCGAGGCCCCGCCGCCGGCCA GGTCCTCGCCCGGCAGCGGC

GAGTACAGCACCACCACGCGCACGTCCTCGGGGTCGGGGATCTGGCGCATCCAGGCC GCCATGCGGCGCAGCGGGCC

CGAGGCGCGCAGGGGGCCAAAGAGGCGGCCCCCGGCGGCCCCGTGGGGGTGGGGGTT CTCGTCGTCGTCGCCGCCGC

ACGCGGCCTGGGCGGCGGGGGCGGGCCCGGCGCACCGCGCGGCGATCGAGGCCAGGG CCCGCGGGTCAAACATGAGG

GCCGGTCGCCAGGGGACGGGGAACAGCGGGTGGTCCGTGAGCTCGGCCACGGCGCGC GGGGAGCAGTAGGCCTCCAG

GGCGGCGGCCGCGGGCGCCGCCGTGGGCTGGGCCCCCGGGGCTGCCGCCGCCAGCCG CCCAGGGGGTCGGGGCCCTC

GGCGGGCGGGCGCGACAGCGCCACGGGGCGCGGGCGGGCCTGCGCCGCGGCGCCCCG GGCCGCCGCGGGCTGGGCGG

GTGTGTGCTCGGGCCCAGGCCGCGTGCGGCGGCGACGACGACGAGAACCCCCACCCC CACGGGGCCGCCGGGGCCGC

CTCTTTGGCCCCCTGCGCGCCTCGGGCCCGCTGCGCCGCATGGCGGCCTGGATGCGC CAGATCCCCGACCCCGAGGA

CGTGCGCGTGGTGGTGCTGTCTCGCCGCTGCCGGGCGAGGACCTGGCCGGCGGCGGG GCCTCGGGGGGGCCGCCGGG

GGTCCGCCGAGCGCGGCGGGCTGTCCTGCCTGCTGGCGGCCCTGGCCAACCGGCTGT GCGGGCCGGACACGGCCGCC

TGGGCGGGCAACTGGACCGGCGCCCCCGACGTGTCGGCGCTGGGCGCGCAGGGCGTG CTGCTGCTGTCCACGCGGGA

CCTGGCCTTCGCCGGGGCCGTGGAGTTTCTGGGGCTGCTCGCCAGCGCCGGCGACCG GCGGCTCATCGTGGTCAACA

CCGTGCGCGCCTGCGACTGGCCCGCCGACGGGCCCGCGGTGTCGCGGCAGCACGCCT ACCTGGCGTGCGACCTGCTG

CCCGCCGTGCAGTGCGCCGTGCGCTGGCCGGCGGCGCGGGACCTGCGCCGCACGGTG CTGGCCTCGGGCCGCGTGTT

CGGCCCGGGGGTCTTCGCGCGCGTGGAGGCCGCGCACGCGCGCCTGTACCCCGACGC GCCGCCGCTGCGCCTGTGCC

GCGGCGGCAACGTGCGCTACCGCGTGCGCACGCGCTTCGGCCCGGACACGCCGGTGC CCATGTCCCCGCGCGAGTAC

CGCCGGGCCGTGCTGCCGGCGCTGGACGGCCGGGCGGCGGCCTCGGGGACCACCGAC GCCATGGCGCCCGGCGCGCC

GGACTTCTGCGAGGAGGAGGCCCACTCGCACCGCGCCTGCGCGCGCTGGGGCCTGGG CGCGCCGCTGCGGCCCGTGT

ACGTGGCGCTGGGGCGCGAGGCGGTGCGCGCCGGCCCGGCCCGGTGGCGCGGGCCGC GGAGGGACTTTTGCGCCCGC

GCCCTGCTGGAGCCCGACGACGACGCCCCCCCGCTGGTGCTGCGCGGCGACGACGAC GACGGCCCGGGGGCCCGCCG

CCGGCGCCGCCCGGGATTCGCTGGGCCTCGGCCACGGGCCGCAGCGGCACCGTGCTG GCGGCGGCGGGGGCCGTGGG

GTGCTGGGGGCGGAGGCGGGCTTGGCCACGCCCCCGCGACGGGACGTTGTGGACTGG GAAGGCGCCTGGGACGAAGA

CGACGGCGGCGCGTTCGAGGGGGACGGGGTGCTGTAACGGGCCGGGACGGGGCGGGG CGCTTGTGAAACCCGAAGAC

GCAATAAACGGCAACGACCTGATTAAGGTTTGCAGGAGCGTTGTTTATTCGAGGGGC GGGAGGGGGCGGGGGGGGGG

GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGCGGCGGCGCC CGCGGCCGCCGCCCTGGAGG

CCTACTGCTCCCCGCGCGCCGTGGCCGAGCTCACGGACCCCCCGCTGTTCCCCGTCC CCTGGCGACCGGCCCTCATG

TTTGCCCCGCGGGCCCTGGCCTCGATCGCCGCGCGGTGCGCCGGGCCCGCCCCCGCC GCCCTGGGTGGGTGGGGAGT

GGGTGGGTGGGGAGTGGGTGGGTGGGGAGTGGCAAGGAAGAAACAAGCCCGACCACC AGACAGAAAATGTAACCATA

CCCAAACCGACTCTGGGGGCTGTTTGTGGGGTCGGAACCATAGGATGAACAAACCAC CCCGTACCTCCCGCACCCAA

GGGTGCGGGTGGCTCATCGGCATCTGTCCGGTATGGGTTGTTCCCCACCCACTCGCG TTCGGACGTCTTAGAATCAT

GGCGGTTTTCTATGCCGACATCGGTTTTCTCCCCCGCAATAAGACACGATGCGATAA AATCTGTTTGTAAAATTTAT

TAAGGGTACAAAATGCCCTAGCACAGGGGTGGGGGTAGGGCCGGGGCCCCACACCCA AACGCACCAAACAGATGCAG

GCAGTGGGTCGAGTACAGCCCCGCGTACGAACACGTCGATGCGTGTGTCAGACAGCA CCAGAAAGCACAGGCCATCA

ACAGGTCGTGCATGTGTCGGTGGGTTTGGACGCGGGGGGCCATGGTGGTGATAAAGT TAATGGCCGCCGTCCGCCAG

GGCCACAGGGGCGCCGTCTCTTGGTTGGCCCGGAGCCACTGGGTGTGGACCAGCCGC GCGTGGCGGCCCAACATGGC

CCCTGTAGCCGGGGGCGGGGGATCGCGCACGTTTGCAGCGCACATGCGAGACACCTC GACCACGGTTCGAAAGAAGG

CCCGGTGGTCCGCGGGCAACATCACCAGGTGCGCAAGCGCCCGGGCGTCCAGAGGGT AGAGCCCTGAGTCATCCGAG

GTTGGCTCATCGCCCGGGTCTTGCCGCAAGTGCGTGTGGGTTGGGCTTCCGGTGGGC GGGACGCGAACCGCGGTGTG

GATCCCGACGCGGGCCCGAGCGTATGCTCCATCTTGTGGGGAGAAGGGGTCTGGGCT CGCCAGGGGGGCATACTTGC

CCGGGCTATACAGACCCGCGAGCCGTACGTGGTTCGCGGGGGGTGCGTGGGGTCCGG GGTCCCTGGGAGACCGGGGT

TGTCGTGGATCCCTGGGGTCACGCGGTACCCTGGGGTCTCTGGGAGCTCGCGGTACT CTGGGTCCCTAGGTTCTCGG

GGTGGTCGCGGACCCGGGGCTCCCGGGGAACACGCGGTGTCCTGGGGATTGTTGGCG GTCGGACGGCTTCAGATGGC

TTCGAGATCGTAGTGTCCGCACCGACTCGTAGTAGACCCGAATCTCCACATTGCCCC GCCGCTTGATCATTATCACC

CCGTTGCGGGGGTCCGGAGATCATGCGCGGGTGTCCTCGAGGTGCGTGAACACCTCT GGGGTGCATGCCGGCGGACG

GCACGCCTTTTAAGTAAACATCTGGGTCGCCCGGCCCAACTGGGGCCGGGGGTTGGG TCTGGCTCATCTCGAGAGAC

ACGGGGGGGAACCACCCTCCGCCCAGAGACTCGGGTGATGGTCGTACCCGGGACTCA ACGGGTTACCGGATTACGGG

GACTGTCGGTCACGGTCCCGCCGGTTCTTCGATGTGCCACACCCAAGGATGCGTTGG GGGCGATTTCGGGCAGCAGC CCGGGAGAGCGCAGCAGGGGACGCTCCGGGTCGTGCACGGCGGTTCTGGCCGCCTCCCGG TCCTCACGCCCCCTTTT

ATTGATCTCATCGCGTACGTCGGCGTACGTCCTGGGCCCAACCCGCATGTTGTCCAG GAAGGTGTCCGCCATTTCCA

GGGCCCACGACATGCTTTTCCCGACGAGCAGGAAGCGGTCCACGCAACGGTCGCCGC CGGTCGCCTCGACGAGGGCG

TTCCTCCTGCGGGAAGGCACGAACGCGGGTGAGCCCCCTCCTCCGCCCCCGCGTCCC CCCTCCCCCGCCCCCGCGTC

CCCCCCCTCCGCCCCCGCGTCCCCCCCTCCTCCGCCCCCGCGTCCCCCCCCCTCCGC CCCCGCGTCCCCCCTCCTCC

CCCCCCAAGGTGCTTACCCGTGCAAAAAGGCGGACCGGTGGGTTTCTGTCGTCGGAG GCCCCCGGGGTGCGTCCCCT

GTGTTTCGTGGGTGGGGTGGGCGGGTCTTTCCCCCCCGCGTCCGCGTGTCCCTTTCC GATGCGATCCCGATCCCGAG

CCGGGGCGTCGCGATGCCGACGCCGTCCGCTCCGACGGCCCTCTGCGACTCCCGCTC CCGGTCCGCGTGCTCCGCAG

CCGCTCCCGTCGTTCGTGGCCGGCGCCGTCTGCGGGCGTCGGTCGCGCCGGGCCTTT ATGTGCGCCGGAGAGACCCG

CCCCCCGCCGCCCGGGTCCGCCCCCGGGGCCGGCGCGGAGTCGGGCACGGCGCCAGT GCTCGCACTTCGCCCTAATA

ATATATATATATTGGGACGAAGTGCGAACGCTTCGCGTTCTCACTTCTTTTCCCCGG CGGCCCCGCCCCCTTGGGGC

GGTCCCGCCCGCCGGCCAATGGGGGGGCGGCAAGGCGGGCGGCCCTTGGGCCGCCCG CCGTCCCGTTGGTCCCGGCG

TCCGGCGGGCGGGACCGGGGGCCCGGGGACGGCCAACGGGCGCGCGGGGCTCGATCT CATTACCGCCGAACCGGGAA

GTCGGGGCCCGGGCCCCGCCCCCTGCCCGTTCCTCGTTAGCATGCGGAACGGAAGCG GAAACCGCCGGATCGGGCGG

TAATGAGATGCCATGCGGGGCGGGGCGCGGACCCACCCGCCCTCGCGCCCCGTCCAT GGCAGATGGCGCGGATGGGC

GGGGCCGGGGGTTCGACCAACGGGCCGCGGCCACGGGCCCCCGGCGTGCCGGCGTCG GGGCGGGGTCGTGCATAATG

GAATTCCGTTCGGGGTGGGCCCGCCGGGGGGCGGGGGGGCGGCGGCCTCCGCTGCTC CTCCTTCCCGCCGGCCCCTG

GGACTATATGAGCCCGAGGACGCCCCGATCGTCCACACGGAGCGCGGCTGCCGACAC GGATCCACGACCCGACGCGG

GACCGCCAGAGACAGACCGTCAGACGCTCGCCGCGCCGGGACGCCGATACGCGGACG AAGCGCGGGAGGGGGATCGG

CCGTCCCTGTCCTTTTTCCCCACCCAAGCATCGACCGGTCCGCGCTAGTTCCGCGTC GACGGCGGGGGTCGTCGGGG

TCCGTGGGTCTCGCCCCCTCCCCCCTCGAGAGTCCGTAGGTGACCTACCGTGCTACG TCCGCCGTCGCAGCCGTATC

CCCGGAGGATCGCCCCGCATCGGCGATGGCGTCGGAGAACAAGCAGCGCCCCGGCTC CCCGGGCCCCACCGACGGGC

CGCCGCCCACCCCGAGCCCAGACCGCGACGAGCGGGGGGCCCTCGGGTGGGGCGCGG AGACGGAGGAGGGCGGGGAC

GACCCCGACCACGCCCCGACCACCCCCACGACCTCGACGACGCCCGGCGGGACGGGA GGGCCCCCGCGGCGGGCACC

GACGCCGGCGAGGACGCCGGGGACGCCGCTCGCCGCGACAGCTGGCTCTGCGGCCTC CCTGGTAGAGGAGGCCGGCC

GGACGATCCCGACGCCCGACCCCGCGGCCTCGCCGCCCCGGACCCCCGCCTTTCTAG CCGACGACGATGACGGGGAC

GAGTACGACGACGCAGCCGACGCCGCCGGCGACCGGGCCCCGGCCCGGGGCCGCGAA CGGGAGGCCCCGCTACGCGG

CGCGTATCCGGACCCCACGGACCGCCTGTCCCGCGCCCGCCGGCCCAGCCGCCGCGG AGACGTCGTCACGGCCGGCG

GCGGCCATCGGCGCATCGACCTCGGCGGACTCCGGGTCCTCGTCCTCGTCGTCCGCA TCCTCTTCGTCCTCGTCGTC

CGACGAGGACGAGGACGACGACGGCAACGACGCGGCCGACCACGCACGCGAGGCGCG GGCCGTCGGGCGGGGTCCGT

CGAGCGCGGCGCCGGAAGCCCCCGGGCGGACGCCGCCCCCGCCCGGGCCACCCCCCC TCTCCGAGGCCGCGCCCAAG

CCCCGGGCGGCGGCGAGGACCCCCGCGGCCTCCGCGGGCCGCATCGAGCGCCGCCGG GCCCGCGCGGCGGTGGCCGG

CCGCGACGCCACGGGCCGCTTCACGGCCGGGCAGCCCCGGCGGGTCGGGCTGGACGC CGACGCGGCCTCCGGCGCCT

TCTACGCGCGCTATCGCGACGGGTACGTCAGCGGGGAGCCGTGGCCCGGCGCCGGGC CCCCGCCCCCGGGGCGGGTG

CTGTACGGCGGCCTGGGCGACAGCCGCCCGGGCCTCTGGGGGGCGCCCGAGGCGGAG GAGGCGCGACGCCGGTTCGA

GGCCTCGGGCGCCCCGGGGCCGTGTGGGGCCCGAGCGGGGAGACGCCGCGCAGCAGA CGCCCTGATCACGCGGCTGC

TGTACACCCCGGACGCGGAGGCCAGTCTGGGGCTCCAGACCCGCGTGGTCCCCGGGG ACGTGGCGCTGGACCAGGCC

TGCTTCCGGATCTCGGGCGCCGCGCGCAACAGCAGCTCCTTCATCCCGGCAGCGTGG CGCGGGCCGTGCCCCACCTG

GGCTACGCCATGGCGGCCGGCCGCTTCGGCTGGGGCCTGGCGCACGCGGCGGCCGCC GTGGCCATGAGCCGCCGATA

CGACCGCGCGCAGAAGGGCTTCCTGCTGACCAGCCTGCGCCGCGCCTACGCGCCCCT GTTGGCGCGCGAGAACGCGG

CGCTGACGGGGGCCGCGGGGAGCCCCGGCGCCGGCGCAGATGACGAGGGGGTCGCCG CCGTCGCCGCCGCCGCACCG

GGCGGCGCGCGGGCCCGCCGGGTACGGCGCCGCGGGGATCCTCGCCGCCCTGGGGCG GCTGTCCGCCGCGCCCGCCT

CCCCCGTGGGGGGCGACGACCCCGACGCCGCCCGCCACGCCGACGCCGACCCGGGCG CCGCGCCCAGGCCGGCCGCG

TGGCCGTCGAGTGCCTGGCCGCCTGCCGCGGGTCCTGGCGGCGCTGGCCGAGGGCTT CGACGGCGACCTGGCGGCCG

TCCCGGGGCTGGCCGGGGCCCGGCCCGCCAGCCCCCCGCGCCGGAGGGACCCGCGGA CCCCGCTTCCCCGCCGCCGC

CGCACGCCGACGCGCCCCGCCTGCGCGCGGGCTGCGCGGCGCGGTCGTGCGCGCCGC GCTGGTGCTCATGCCCCTGC

GCGGGGACCTGCGCGTGGCCGGCGGCAGCGGGCCGCCGTGGCCGCCGTGCGCGCCGG AGCCTGGTCGCCGGGGCCCT

GGGCCCCGCGCTGCCGCGGGACCCGCGCCTGCCGAGCTCCGCGGCCGCCGCCGCCGC GGACCGCTGTTTGAGAACCA

GAGCCTCCGCCCCCTGCTGGCGGCGGCGGCCAGCGCACCGGACGCCGCCGACGCGCT GGCGGCCGCCGCCGCCTCCG

CCGCCCGCGGGAGGGGCGCAAGCGCAAGAGTCCCGGCCCGGCCCGGCCGCCCGGAGG CGGCGGCCCGCGACCCCCGA

AGACGAAGAAGAGCGGCGCGGACGCCCCCCCCGCGCGCCCCCCGCCCCCCCCCCCCC GCCCCCCCCCCCCCCCCCCC

GGGGCCCGAGCCCCCCCCCGCCCAGCCCGCGGCGGCCCGGGGCGCCGCGGCGCAGGC CCGCCCGCGCCCCGTGGCGC TGTCGCGCCGGCCCGCCGAGGGCCCCGACCCCCTGGGCGGCTGGCGGCGGCAGCCCCGGG GGCCCAACCCCACAGCG

GCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGCGGGCGGCCGGGCCGGGGGCGTC CGCGCCGCTCTTCTTCGTCT

TCGGGGGTCGCGGGCCGCCGCCTCCGGGCGGCCGGGCCGGGCCGGGACTCTTGCGCT TGCGCCCCTCCCGCGGCGCG

GCGGGGGCGGCGGCGGCCGCCAGCGCGTCGGCGGCGTCCGGTGCGCTGGCCGCCGCC GCCAGCAGGGGGCGGAGGCT

CTGGTCTCAAACAGCAGGTCCGCGGCGGCGGCGGCCGCGGAGCTCGGCAGGCCGGTC CCGCGGCAGCGCGGGACAAG

GGCCCCGGCGACCAGGCTCACGGCGCGCACGGCGGCCACGGCGGCCTCGCTGCCGCC GGCCACGCGCAGGTCCCCGC

GCAGGCGCATGAGCACCAGCGCGTCGCGCACGAACCGCAGCTCGCGCAGCCACGCGC GCAGGCGGGGCGCGTCGGCG

TGCGGCGGCGGCGGGGAAGCGGGGTCCGCGGGTCCCTCCGGCCGCGGGGGGCTGGCG GGCCGGGCCCCGGCCAGCCC

CGGGACGGCCGCCAGGTCGCCGTCGAAGCCCTCGGCCAGCGCCTCCAGGATCCCGCG GCAGGCGGCCAGGCACTCGA

CGGCCACGCGGCCGGCCTGGGCGCGGCGCCCGGCGTCGGCGTCGGCGTGGCGGGCGG CGTCGGGGTCGTCGCCCCCC

ACGGGGGAGGCGGGCGCGGCGGACAGCCGCCCCAGGGCGGCGAGGATCCCCGCGGCG CCGTACCCGGCGGGCACCGC

GCGCTCGCCCGGTGCGGCGGCGGCGACGGCGGCGACCCCCTCGTCATCTGCGCCGGC GCCGGGGCTCCCCGCGGCCC

CCGTCAGCGGGTGGGAACAGGGGCGCGTAGGCGCGGCGCAGGCTGGTCAGCAGGAAG CCCTTCTGCGCCTCGTATCG

GCGCTCATGGCCACGGCGGCCGCCGCGTGCGCCAGGCCCCAGCCGAAGCGGCCGGCC GCCATGGCGTAGCCCAGGTG

GGGCACGGCCCGCGCCACGCTGCCGGTGATGAAGGAGCTGCTGTTGCGCGCGGCGCC CGAGATCCGGAAGCAGGCCT

GGTCCAGCGCCACGTCCCCGGGGACCACGCGCGGGTTCTGGAGCCACCCCTGGCCTC CGCGTCCGGGGTGTACAGCA

GCCGCGTGATCAGGGCGTACTGCTGCGCGGCGTCGCCCAGCTCGGGCGCCCACACGG CCGCCGGGGCGCCCGAGGCC

TCGAACCGGCGTCGCGCCTCCTCCGCCTCGGGCGCCCCCCAGAGGCCCGGGCGGCTG TCGCCCAGGCCGCCGTACAG

CACCCGCCCCGGGGGCGGGGGCCCGGCGCCGGGCCACGGCTCCCCGCTGACGTACCC GTCGCGATAGCGCGCGTAGA

AGGCGCCGGAGGCCGCGTCGGCGTCCAGCTCGACCCGCCGGGGCTGCCCGGCCGTGA AGCGGCCCGTGGCGTCGCGG

CCGGCCACCGCCGCGCGGGCCCGGCGGCGCTCGATGCGGCCCGCGGAGGCCGCGGGG GTCCGCGCCGCCGCCCGGGG

CTTGGGCGCGGCCTCGGAGAGGGGGGGTGGCCCGGGCGGGGGCGGCGTCCGCCCGGG GGCTTCCGGCGCCGCGCTCG

ACGGACCCCGCCCGACGGCCCGCGCCCGCGGCGTGGTCGGCCGCGTCGTTGCCGTCG TCGTCCCGTCCTCGTCGGAC

GACGGGACGAAGCGGATGCGGACGGCGAGGACGAGGACCCGGAGTCCGGCGAGGCCG AGACGCCGATGGCCGCCGCC

GGCCGTGACGACGTCTCCGCGGCGGCTGGGCCGGCGGGCGCGGCGACAGGCGGTCCG TGGGGTCCGGATACGCGCCG

CGTAGCGGGGCCTCCCGTTCGCGGCCCCGGGCCGGGGCCCGGTCGCCGGCGGCGTCG GCTGCGTCGTCGTACTCGTC

CCCGTCATCGTCGTCGGCTAGAAAGGCGGGGGCCGGGGCGGCGAGGCCGCGGGGTCG GGCGTCGGGATCGTCCGGAC

GGCCTCCTCTACCATGGAGGCCAGCGAGCCAGCTGTCGCGGCGAGACGGCGTCCCCG GCGTCCTCGCCGGCGTCGGT

GCCCGCCGCGGGGGCCCTCCCGTCCCGCCGGGCGTCGTCGAGGTCGTGGGGGTGGTC GGGGTCGTGGTCGGGGTCGT

CCCCGCCCTCCTCCGTCTCCGCGCCCCACCCGAGGGCCCCCCGCTCGTCGCGGTCTG GGCTCGGGGGGGCGGCGGCC

CGTCGGTGGGGCCCGGGGGCCGGGGCGCTGCTTGTTCTCCGACGCCATCGCCGATGC GGGGCGATCCTCCGGGGATA

CGGCTGCGACGGCGGACGTAGCACGGTAGGTCACCTACGGACTCTCGATGGGGGGAG GGGGCGAGACCCACGGACCC

CGACGACCCCCGCCGTCGACGCGGAACTAGCGCGGACCGGTCGATGCTTGGGTGGGG AAAAAGGACAGGGACGGCCG

ATCCCCCTCCCGCGCTTCGTCCGCGTATCGGCGTCCCGGCGCGGCGAGCGTCTGACG GTCTGTCTCTGGCGGTCCCG

CGTCGGGTCGTGGATCCGTGTCGGCAGCCGCGCTCCGTGTGGACGATCGGGGCGTCC TCGGGCTCATATAGCCCAGG

GGCCGGCGGGAAGGAGGAGCAGCGGAGGCCGCCGGCCCCCCGCCCCCCGGCGGGCCC ACCCCGAACGGAATTCCATT

ATGCACGACCCCGCCCCGACGCCGGCACGCCGGGGGCCCGTGGCCGCGGCCCGTTGG TCGAACCCCCGGCCCCGCCC

ATCCGCGCCATCTGCCATGGACGGGGCGCGAGGGCGGGTGGGTCCGCGCCCCGCCCC GCATGGCATCTCATTACCGC

CCGATCCGGCGGTTTCCGCTTCCGTTCCGCATGCTAACGAGGAACGGGCAGGGGGCG GGGCCCGGGCCCCGACTTCC

CGGTTCGGCGGTAATGAGATACGAGCCCCGCGCGCCCGTTGGCCGTCCCCGGGCCCC CGGTCCCGCCCGCCGGACGC

CGGGACCAACGGGACGGCGGGCGGCCCAAGGGCCGCCCGCCTTGCCGCCCCCCCATT GGCCGGCGGGCGGGACCGCC

CCAAGGGGGCGGGGCCGCCGGGTAAAAGAAGTGAGAACGCGAAGCGTTCGCACTTCG TCCCAATATATATATATTAT

TAGGGCGAAGTGCGAGCACTGGCGCCGTGCCCGACTCCGCGCCGGCCCCGGGGGAGG GAGGAGGGGGGCGGGTCTCT

CCGGCGCACATAAAGGCCCGGCGCGACCGACGCCCGCAGACGGCGCCGGCCACGAAC GACGGGAGCGGCTGCGGAGC

ACGCGGACCGGGAGCGGGAGTCGCAGAGGGCCGTCGGAGCGGACGGCGTCGGCATCG CGACGCCCCGGCTCGGGATC

GGGATCGCATCGGAAAGGGACACGCGGACGCGGGGGGGAAAGACCCGCCCACCCCAC CCACGAAACACAGGGGACGC

ACCCCGGGGGCCTCCGACGACAGAAACCCACCGGTCCGCCTTTTTTGCACGGGTAAG CACCTTGGGGGGGGGAGGAG

GGGGGACGCGGGGGCGGAGGAGGGGGGACGCGGGGGCGGAGGAGGGGGGACGCGGGG GCGGGGGGGGGGGCGCGGGG

GCGGAGGAGGGGGGGACGCGGGGGGGGGGGGGGGGGGCGCGGGGGCGGAGGAGGGGG CTCACCCGCGTTCGTGCCTT

CCCGCAGGAGGAACGCCCTCGTCGAGGCGACCGGCGGCGACCGTTGCGTGGACCGCT TCCTGCTCGTCGGGGGGGGG

GGGAGCCACTGTGGTCCTCCGGGACGTTTTCTGGATGGCCGACATTTCCCCAGGCGC TTTTGTGCCTTGTGTAAAAG

CGCGGCGTCCCGCTCTCCGATCCCCGCCCCTGGGCACGCGCAAGCGCAAGCGCCCTG CCCGCCCCCTCTCATCGGAG TCTGAGGTCGAATCCGAGACAGCCTTGGAGTCTGAGGTCGATCCGAGACAGCATCGGATT CGACCGAGTCTGGGGAC

CAGGAGGAAGCCCCGCATCGGTGGCCGTAGGGCCCCCCGGAGGCTTGGGGGGCGGTT TTTTCTGGACATGTCGGCGG

AATCCACCACGGGGACGGAAACGGATGCGTCGGTGTCGGACGACCCCGACGACACGT CCGACTGGTCTTGTGACGAC

ATTCCCCCACGACCCAAGCGGGCCCGGGTAAACCTGCGGCTCACTAGCTCTCCCGAT CGGCGGGATGGGGTTATTTT

TCCTAAGATGGGGCGGGTCCGGTCTACCCGGGAAACGCAGCCCCGGGCCCCCACCCC GTCGGCCCCAAGCCCAAATG

CAATGCTCCGGCGCTCGGTGCGCCAGGCCCAGAGGCGGAGCAGCGCACGATGGACCC CCGACCTGGGCTACATGCGC

CAGTGTATCAATCAGCTGTTTCGGGTCCTGCGGGTCGCCCGGGACCCCCACGGCAGT GCCAACCGCCTGCGCCACCT

GATACGCGACTGTTACCTGATGGGATACTGCCGAGCCCGTCTGGCCCCGCGCACGTG GTGCCGCTTGCTGCAGGTGT

CCGGCGGAACCTGGGGCATGCACCTGCGCAACACCATACGGGAGGTGGAGGCTCGAT TCGACGCCACCGCAGAACCC

GTGTGCAAGCTTCCTTGTTTGGAGGCCAGACGGTACGGCCCGGAGTGTGATCTTAGT AATCTCGAGATTCATCTCAG

CGCGACAAGCGATGATGAAATCTCCGATGCCACCGATCTGGAGGCCGCCGGTTCGGA CCACACGCTCGCGTCCCAGT

CCGACACGGAGGATGCCCCCTCCCCCGTTACGCTGGAAACCCCAGAACCCCGCGGGT CCCTCGCTGTGCGTCTGGAG

GATGAGTTTGGGGAGTTTGACTGGACCCCCCAGGAGGGCTCCCAGCCCTGGCTGTCT GCGGTCGTGGCCGATACCAG

CTCCGTGGAACGCCCGGGCCCATCCGATTCTGGGGCGGGTCGCGCAGCAGAAGACCG CAAGTGTCTGGACGGCTGCC

GGAAAATGCGCTTCTCCACCGCCTGCCCCTATCCGTGCAGCGACACGTTTCTCCGGC CGTGAGTCCGGTCGCCCCGA

CCCCCTTGTATGTCCCCAAAATAAAAGACCAAAATCAAAGCGTTTGTCCCAGCGTCT TAATGGCGGGAAGGGCGGAG

AGAAACAGACCACGCGTACATGGGGGGTGTTTGGGGGTTTATTGACATCGGGGCTAC AGGGTGGTAACCGGATAGCA

GATGTGAGGAAGTCTGGGCCGTTCGCCGCGAACGGCGATCAGAGGGTCCGTTTCTTG CGGACCACGGCCCGGTGATG

TGGGTTGCTCGTCTAAAATCTCGGGCATACCCATACACGCACAACACGGACGCCGCA CCGAATGGGACGTCGTAAGG

GGGTGGGAGGTAGCTGGGTGGGGTTTGTGCAGAGCAATCAGGGACCGCAGCCAGCGC ATACAATCGCGCTCCCGTCC

GTTGGTCCCGGGCAGGACCACGCCGTACTGGTATTCGTACCGGCTGAGCAGGGTCTC CAGGGGGTGGTTGGGTGCCG

CGGGGAACGGGGTCCACGCCACGGTCCACTCGGGCAAAAACCGAGTCGGCACGGCCC ACGGTTCTCCCACCCACGCG

TCTGGGGTCTTGATGGCGATAAATCTTACCCCGAGCCGGATTTTTTGGGCGTATTCG AGAAACGGCCCACACAGGTC

CGCCGCGCCTACCACCCACAAGTGGTAGAGGCGAGGGGGGCTGGGTTGGTCTCGGTG CAACAGTCGGAAGCACGCCA

CGGCGTCCACGACCTCGGTGCTCTCCAAGGGGCTGTCCTCCGCAAACAGGCCCGTGG TGGTGTTTGGGGGGCAGCGA

CAGGACCTAGTGCGCACGATCGGGCGGGTGGGTTTGGGTAAGTCCATCAGCGGCTCG GCCAACCGTCGAAGGTTGGC

CGGGCGAACGACGACCGGGGTACCCAGGGGTTCTGATGCCAAAATGCGGCACTGCCT AAGCAGGAAGCTCCACAGGG

CCGGGCTTGCGTCGACGGAAGTCCGGGGCAGGGCGTTGTTCTGGTCAAGGGGGGGCA TTACGTTGACGACAACAACG

CCCCTGTTGGGATATTACAGGCCCGTGTCCGGTTTGGGGCACTTGCAGATTTGTAAG GCCACGCACGGCGGGGAGAC

AGGCCGACGCGGGGGCTGCTCTAAAAATTTAAGGGCCCTACGGTCCACAGACCCGCC TTCCCGGGGGGGCCCTTGGA

GCGACCGGCAGCGGAGGCGTCCGGGGGAGGGGAGGGTTATTTACGGGGGGGTAGGTC AGGGGGTGGGTCGTCAAACT

GCCGCTCCTTAAAACCCCGGGGCCCGTCGTTCGGGGTGCTCGTTGGTTGGCACTCAC GGGGCGGCGAATGGCCTGTC

GTAAGTTTTGTCGCGTTTACGGGGGACAGGGCAGGAGGAAGGAGGAGGCCGTCCCGC CGGAGACAAAGCCGTCCCGG

GTGTTTCCTCATGGCCCCTTTTATACCCCAGCCGAGGACGCGTGCCTGGACTCCCCG CCCCCGGAGACCCCCAAACC

TTCCCACACCACACCACCCGGCGATGCCGAGCGCCGGCATCTGCAGGAGAGGCAGAT GGACGGAAACCAGGACTACC

CCATAGAGGACGACCCCAGCGCGGATGCCGCGGACGATGTCGACGAGGACGCCCCGG ACGACGTGGCCTATCCGGAG

GAATACGCAGAGGAGCTTTTTCTGCCCGGGGACGCGACCGGTCCCCTTATCGGGGCC AACGACCACATCCCTCCCCC

GCGTGGCGCATCTCCCCCCGGTATACGACGACGCAGCCGGGATGAGATTGGGGCCAC GGGATTTACCGCAGAAGAGC

TGGACGCCATGGACAGGCAGGCGGCTCGAGCCATCAGCCGCGGCGGCAAGCCCCCCT CGACCAATGGCCAAGCTGGT

GACTGGCATGGGCTTTACGATCCACGGAGCGCTCACCCCAGGATCGGAGGGGTGTGT CTTTGACAGCAGCCACCCAG

ATTACCCCCAACGGGTAATCGTGAAGGCGGGGTGGTACACGAGCACGAGCCACGAGG CGCGACTGCTGAGGCGACTG

GACCACCCGGCGATCCTGCCCCTCCTGGACCTGCATGTCGTCTCCGGGGTCACGTGT CTGGTCCTCCCCAAGTACCA

GGCCGACCTGTATACCTATCTGAGTAGGCGCCTGAACCCACTGGGACGCCCGCAGAT CGCAGCGGTCTCCCGGCAGC

TCCTAAGCGCCGTTGACTACATTCACCGCCAGGGCATTATCCACCGCGACATTAAGA CCGAAAATTTTTTATTAACA

CCCCCGAGGACATTTGCCTGGGGGACTTTGGTGCCGCGTGCTTCGTGCAGGGTTCCC GATCAAGCCCCTTCCCCTAC

GGAATCGCCGGAACCATCGACACCAACGCCCCCGAGGTCCTGGCCGGGGATCCGTAT ACCACGACCGTCGACATTTG

GAGCGCCGGTCTGGTGATCTTCGAGACTGCCGTCCACAACGCGTCCTTGTTCTCGGC CCCCCGCGGCCCCAAAAGGG

GCCCGTGCGACAGTCAGATCACCCGCATCATCCGACAGGCCCAGGTCCACGTTGACG AGTTTTCCCCGCATCCAGAA

TCGCGCCTCCCTCGCGCTACCGCTCCCGCGCGGCCGGGAACAATCGCCCGCCTTACA CCCGACCGGCCTGGACCCGC

TACTACAAGATGGACATAGACGTCGAATATCTGGTTTGCAAAGCCCTCACCTTCGAC GGCGCGCTTCGCCCCAGCGC

CGCAGAGCTGCTTTGTTTGCCGCTGTTTCAACAGAAATGACCGCCCCCGGGGGGCGG TGCTGTTTGCGGGTTGGCAC

AATAAGACCCCGACCCGCGTCTGTGGTGTTTTTGGCATCATGTCGCCGGGCGCCATG CGTGCCGTTGTTCCCATTAT CCCATTCCTTTTGGTTCTTGTCGGTGTATCGGGGGTTCCCACCAACGTCTCCTCCACCAC CCAACCCCAACTCCAGA

CCACCGGTCGTCCCTCGCATGAAGCCCCCAACATGACCCAGACCGGCACCACCGACT CTCCCACCGCCATCAGCCTT

ACCACGCCCGACCACACACCCCCCATGCCAAGTATCGGACTGGAGGAGGAGGAGGAA GAGGAGGAGGGGGCCGGGGA

TGGCGAACATCTTAAGGGGGGAGATGGGACCCGTGACACCCTACCCCAGTCCCCGGG TCCAGCCGTCCCGTTGGCCG

GGGATGACGAGAAGGACAAACCCAACCGTCCCGTAGTCCCACCCCCCGGTCCCAACA ACTCCCCCGCGCGCCCCGAG

ACCAGTCGACCGAAGACACCCCCCACCAGTATCGGGCCGCTGGCAACTCGACCCACG ACCCAACTCCCCTCAAAGGG

GCGACCCTTGGTTCCGACGCCTCAACATACCCCGCTGTTCTCGTTCCTCACTGCCTC CCCCGCCCTGGACACCCTCT

TCGTCGTCAGCACCGTCATCCACACCTTATCGTTTGTGTGTATTGTTGCTATGGCGA CACACCTGTGTGGTGGTTGG

TCCAGACGCGGGCGACGCACACACCCTAGCGTGCGTTACGTGTGCCTGCCGCCCGAA CGCGGGTAGGGTATGGGGCG

GGGATGGGGAGAGCCCACACGCGGAAAGCAAGAACAATAAAGGCGGCGGGATCTAGT TGATATGCGTCTCTGGGTGT

TTTTGGGGTGTGGTGGGCGCGGGGCGGTCATTGGACGGGGGTGCAGTTAAATACATG CCCGGGACCCATGAAGCATG

CGCGACTTCCGGGCCTCGGAACCCACCCGAAACGGCCAACGGACGTCTGAGCCAGGC CTGGCTATCCGGAGAAACAG

CACACGACTTGGCGTTCTGTGTGTCGCGATGTCTCTGCGCGCAGTCTGGCATCTGGG GCTTTTGGGAAGCCTCGTGG

GGGCTGTTCTTGCCGCCACCCATCTGGGACCTGCGGCCAACACAACGGACCCCTTAA CGCACGCCCCAGTGTCCCCT

CACCCCAGCCCCCTGGGGGGCTTTGCCGTCCCCCTCGTAGTCGGTGGGCTGTGTGCC GTAGTCCTGGGGGCGGCGTG

TCTGCTTGAGCTCCTGCGTCGTACGTGCCGCGGGTGGGGGCGTTACCATCCCTACAT GGACCCAGTTGTCGTATAAT

TTTTTCCCCCCCCCCCTTCTCCGCATGGGTGATGTCGGGTCCAAACTCCCGACACCA CCAGCTGGCATGGTATAAAT

CACCGGTGCGCCCCCCAAACCATGTCCGGCAGGGGGATGGGGGGCGAATGCGGAGGG CACCCAACAACACCGGGCTA

ACCAGGAAATCCGTGGCCCCGGCCCCCAACAAAGATCGCGGTAGCCCGGCCGTGTGA CATTATCGTCCATACCGACC

ACACCGACGAATCCCCTAAGGGGGAGGGGCCATTTTACGAGGAGGAGGGGTATAACA AAGTCTGTCTTTAAAAAGCA

GGGGTTAGGGAGTTGTTCGGTCATAAGCTTCAGTGCGAACGACCAACTACCCCGATC ATCAGTTATCCTTAAGGTCT

CTTTTGTGTGGTGCGTTCCGGTATGGGGGGGGCTGCCGCCAGGTTGGGGGCCGTGAT TTTGTTTGTCGTCATAGTGG

GCCTCCATGGGGTCCGCGGCAAATATGCCTTGGCGGATGCCTCTCTCAAGATGGCCG ACCCCAATCGCTTTCGCGGC

AAAGACCTTCCGGTCCTGGACCAGCTGACCGACCCTCCGGGGGTCCGGCGCGTGTAC CACATCCAGGCGGGCCTACC

GGACCCGTTCCAGCCCCCCAGCCTCCCGATCACGGTTTACTACGCCGTGTTGGAGCG CGCCTGCCGCAGCGTGCTCC

TAAACGCACCGTCGGAGGCCCCCCAGATTGTCCGCGGGGCCTCCGAAGACGTCCGGA AACAACCCTACAACCTGACC

ATCGCTTGGTTTCGGATGGGAGGCAACTGTGCTATCCCCATCACGGTCATGGAGTAC ACCGAATGCTCCTACAACAA

GTCTCTGGGGGCCTGTCCCATCCGAACGCAGCCCCGCTGGAACTACTATGACAGCTT CAGCGCCGTCAGCGAGGATA

ACCTGGGGTTCCTGATGCACGCCCCCGCGTTTGAGACCGCCGGCACGTACCTGCGGC TCGTGAAGATAAACGACTGG

ACGGAGATTACACAGTTTATCCTGGAGCACCGAGCCAAGGGCTCCTGTAAGTACGCC CTCCCGCTGCGCATCCCCCC

GTCAGCCTGCCTCTCCCCCCAGGCCTACCAGCAGGGGGTGACGGTGGACAGCATCGG GATGCTGCCCCGCTCATCCC

CGAGACCAGCGCACCGTCGCCGTATACAGCTTGAAGATCGCCGGGTGGCACGGGCCC AAGGCCCCATACACGAGCAC

CCTGCTGCCCCCGGAGCTGTCCGAGACCCCCAACGCCACGCAGCCAGAACTCGCCCC GGAAGACCCCGAGGATTCGG

CCCTCTTGGAGGACCCCGTGGGGACGGTGGCGCCGCAAATCCCACCAAACTGGCACA TCCCGTCGATCCAGGACGCC

GCGACGCCTTCCATCCCCCGGCCACCCCGAACAACATGGGCCTGATCGCCGGCGCGG TGGGCGGCAGTCTCCTGGCA

GCCCTGGTCATTTGCGGAATTGTGTACTGGATGCACCGCCGCACTCGGAAAGCCCCA AAGCGCATACGCCTCCCCCA

CATCCGGGAAGACGACCAGCCGTCCTCGCACCAGCCCTTGTTTTACTAGATACCCCC CCCTTAATGGGTGCGGGGGG

GGTCAGGTCTGCGGGGTTGGGATGGGACCTTAACTCCATATAAAGCGAGTCTGGAAG GGGGGAAAGGCGGACAGTCG

ATAAGTCGGTAGCGGGGGACGCGCACCTGTTCCGCCTGTCGCACCCACAGCTTTTTC GCGAACCGTCCCGTTTCGGG

ATGCCGTGCCGCCCGTTGCAGGGCCTGGTGCTCGTGGGCCTCTGGGTCTGTGCCACC AGCCTGGTTGTCCGTGGCCC

CACGGTCAGTCTGGTATCAAACTCATTTGTGGACGCCGGGGCCTTGGGGCCCGACGG CGTAGTGGAGGAAGACCTGC

TTATTCTCGGGGAGCTTCGCTTTGTGGGGGACCAGGTCCCCCACACCACCTACTACG ATGGGGTCGTAGAGCTGTGG

CACTACCCCATGGGACACAAATGCCCACGGGTCGTGCATGTCGTCACGGTGACCGCG TGCCCACGTCGCCCCGCCGT

GGCATTTGCCCTGTGTCGCGCGACCGACAGCACTCACAGCCCCGCGGTGCGGGGGGG GTCAGGTCTGCGGGGTTGGG

ATGGGACCTTAACTCCATATAAGCGAGTCGGAGGGGGGAAAGGCGGACAGTCGATAA GTCGGTAGCGGGGGACGCGC

ACCTGTTCCGCCTGTCGCACCCACAGCTTTTTCGCGAACCGTCCCGTTTCGGGATGC CGTGCCGCCCGTTGCAGGGC

CTGGTGCTCGTGGGCCTCTGGGTCTGTGCCACCAGCCTGGTTGTCCGTGGCCCCACG GTCAGTCGGTATCAAACTCA

TTTGTGGACGCCGGGGCCTTGGGGCCCGACGGCGTAGTGGAGGAAGACCTGCTTATT CTCGGGGAGCTTCGCTTTGT

GGGGGACCAGGTCCCCCACACCACCTACTACGATGGGGTCGTAGAGCTGTGGCACTA CCCCATGGGACACAAATGCC

CACGGGTCGTGCATGTCGTCACGGTGACCGCGTGCCCACGTCGCCCCGCCGTGGCAT TTGCCCTGTGTCGCGCGACC

GACAGCACTCACAGCCCCGCATATCCCACCCTGGAGCTGAATCTGGCCCAACAGCCG CTTTTGCGGGTCCGGAGGGC

GACGCGTGACTATGCCGGGGTGTACGTGTTACGCGTATGGGTCGGGGACGCACCAAA CGCCAGCCTGTTTGTCCTGG GGATGGCCATAGCCGCCGAAGGTACTCTGGCGTACAACGGCTCGGCCCATGGCTCCTGCG ACCCGAAACTGCTTCCG

TCTTCGGCCCCGCGTCTGGCCCCGGCGAGCGTATACCAACCCGCCCCTAACCCGGCC TCCACCCCCTCCACCACCAC

CTCCCCCCCTCGACCACCACCTCCACCCCCTCGACCACCATCCCCGCTCCCCAAGCA TCGACCACACCCTTCCCCAC

GGGAGACCCAAAACCCCAACCTCACGGGGTCAACCACGAACCCCCATCGAATGCCAC GCGAGCGACCCGCGACTCGC

GATATGCGCTAACGGTGACCCAGATAATCCAGATAGCCATCCCCGCGTCCATTATAG CCCTGGTGTTTCTGGGGAGC

TGTATTTGCTTTATACACAGATGTCAACGCCGCTACCGACGCTCCCGCCGCCCGATT TACAGCCCCCAGATACCCAC

GGGCATCTCATGCGCGGTGAACGAAGCGGCCATGGCCCGCCTCGGAGCCGAGCTCAA ATCGCATCCGAGCACCCCCC

CCAAATCCCGGCGCCGGTCGTCACGCACGCCAATGCCCTCCCTGACGGCCATCGCCG AAGAGTCGGAGCCCGCGGGG

GCGGCTGGGCTTCCGACGCCCCCCGTGGACCCCACGACATCCCCCCAACGCCTCCCC TGTTGGTATAGGTCCACGGC

CACTGGCCGGGGGCACCACATAACCGACCGCAGTCACTGAGTTGGGAATAAACCGGT ATTATTTTCCTATATCCGTG

TATGTCCATTTCTTTCTTCCCCCCCCCCCCCGGAAACCAAAGAAGGAAGCAAAGAAT GGATGGGAGGAGTTCAGGAA

GCCGGGGAGAGGGCCCGCGGCGCATTTAAGGCGTTGTTGTGTTGACTTTGGCTCTTC TGGCGGGTTGGTGCGGTGCT

GTTTGTTGGGCTCCCATTTTACCCGAAGATCGGCTGCTATCCCCGGGCATGGATCGC GGGGCGGTGGGGGGGCTTCT

TCTCGGTGTTTGTGTTGTATCGTGCTTGGCGGGAACGCCCAAAACGTCCTGGAGACG GGTGAGTGTCGGCGAGGACG

TTTCGTTGCTTCCACTCGGGGCCTACGGGGCGCGGCCCGACCCAGAAACTACTATGG GCCGTGGAACCCCTGGATGG

GTGCGGCCCCTTACACCCGTCGTGGGTCTCGCTGATGCCCCCCAAGCAGGTGCCCGA GACGGTCGTGGATGCGGCGT

GCATGCGCGCTCCGGTCCCGCTGGCGATGGCGTACGCCCCCCCGGCCCCATCTGCGA CCGGGGGTCTACGAACGGAC

TTCGTGTGGCAGGAGCGCGCGGCCGTGGTTAACCGGAGTCTGGTTATTCACGGGGTC CGAGAGACGGACAGCGGCCT

GTATACCCTGTCCGTGGGCGACATAAAGGACCCGGCTCGCCAAGTGGCCTCGGTGGT CCTGGTGGTGCAACCGGCCC

CAGTTCCGACCCCACCCCCGACCCCAGCCGATTACGACGAGGATGACAATGACGAGG GCGAGGACGAAAGTCTCGCC

GGCACTCCCGCCAGCGGGACCCCCCGGCTCCCGCCTCCCCCCCCCCCCCGAGGTCTT GGCCCAGCGCCCCCGAAGTC

TCACATGTGCGTGGGGTGACCGTGCGTATGGAGACTCCGGAAGCTATCCTGTTTTCC CCCGGGGAGACGTTCAGCAC

GAACGTCTCCATCCATGCCATCGCCCACGACGACCAGACCTACTCCATGGACGTCGT CTGGTTGAGGTTCGACGTGC

CGACCTCGTGTGCCGAGATGCGAATATACGAATCGTGTCTGTATCACCCGCAGCTCC CAGAATGTCTGTCCCCGGCC

GACGCGCCGTGCGCCGCGAGTACGTGGACGTCTCGCCTGGCCGTCCGCAGCTACGCG GGGTGTTCCAGAACAAACCC

CCCACCGCGCTGTTCGGCCGAGGCTCACATGGAGCCCGTCCCGGGGCTGGCGTGGCA GGCGGCCTCCGTCAATCTGG

AGTTCCGGGACGCGTCCCCACAACACTCCGGCCTGTATCTGTGTGTGGTGTACGTCA ACGACCATATTCACGCCTGG

GGCCACATTACCATCAGCACCGCGGCGCAGTACCGGAACGCGGTGGTGGAACAGCCC CTCCCACAGCGCGGCGCGGA

TTTGGCCGAGCCCACCCACCCGCACGTCGGGGCCCCTCCCCACGCGCCCCCAACCCA CGGCGCCCTGCGGTTAGGGG

CGGTGATGGGGGCCGCCCTGCTGCTGTCTGCGCTGGGGTTGTCGGTGTGGGCGTGTA TGACCTGTTGGCGCAGGCGT

GCCTGGCGGGCGGTTAAAAGCAGGGCCTCGGGTAAGGGGCCCACGTACATTCGCGTG GCCGACAGCGAGCTGTACGC

GGACTGGAGCTCGGACAGCGAGGGAGAACGCGACCAGGTCCCGTGGCTGGCCCCCCC GGAGAGACCCGACTCTCCCT

CCACCAATGGATCCGGCTTTGAGATCTTATCACCAACGGCTCCGTCTGTATCCCCCG TAGCGACGGGCATCAATCTC

GCCGCCAGCTCACAACCTTTGGATCCGGAAGGCCCGATCGCCGTTACTCCCAGGCCT CCGATTCGTCCGTCTTCTGG

TAAGGCGCCCCATCCCGAGGCCCCACGTCGGTCGCCGAACTGGGCGACCGCCGGCGA GGTGGACGTCGGAGACGAGC

TAATCGCGATTTCCGACGAACGCGGACCCCCCCGACATGACCGCCCGCCCCTCGCCA CGTCGACCGCGCCCTCGCCA

CACCCGCGACCCCCGGGCTACACGGCCGTTGTCTCCCCGATGGCCCTCCGGCTGTCG ACGCCCCCTCCCTGTTTGTC

GCCTGGCTGGCCGCTCGGTGGCTCCGGGGGGCTTCCGGCCTGGGGGCCGTCCTGTGT GGGATTGCGTGGTATGTGAC

GTCAATTGCCCGAGGCGCACAAAGGGCCGGTGGTCCGCCTAGCCGCAGCAAATTAAA AATCGTGAGTCACAGCGACC

GCAACTTCCCACCCGGAGCTTTCTTCCGGCCTCGATGACGTCCCGGCTCTCCGATCC CAACTCCTCAGCGCGATCCG

ACATGTCCGTGCCGCTTTATCCCACGGCCTCGCCAGTTTCGGTCGAAGCCTACTACT CGGAAAGCGAAGACGAGGCG

GCCAACGACTTCCTCGTACGCATGGGCCGCCAACAGTCGGTATTAAGGCGTTGACGC AGACGCACCCGCTGCGTCGG

CATGGTGATCGCCTGTCTCCTCGTGGCCGTTCTGTCGGGCGGATTTGGGGCGCTCCT GATGTGGCTGCTCCGCTAAA

AGACCGCATCGACACGCGCGTCCTTCTTGTCGTCTCTCTTCCCCCCCATCACCCCGC AATTTGCACCCAGCCTTTAA

CTACATTAAATTGGGTTCGATTGGCAATGTTGTCTCCCGGTTGATTTTTGGGTGGGT GGGGAGTGGGTGGGTGGGGA

GTGGGTGGGGGAATGGGTGGG (SEQ ID NO: 1)

SEQ ID NO: 9 is a nucleotide sequence that encodes pSH-tetR.

tcgcgcgtttcggtgatgacggtgaaaacctctgacacatgcagctcccggagacgg tcacagcttgtctgtaagcggat gccgggagcagacaagcccgtcagggcgcgtcagcgggtgttggcgggtgtcggggctgg cttaactatgcggcatcaga gcagattgtactgagagtgcaccatatgcggtgtgaaataccgcacagatgcgtaaggag aaaataccgcatcaggcgcc attcgccattcaggctgcgcaactgttgggaagggcgatcggtgcgggcctcttcgctat tacgccagctggcgaaaggg ggatgtgctgcaaggcgattaagttgggtaacgccagggttttcccagtcacgacgttgt aaaacgacggccagtgccaa gcttggctgcaggtcaacaccagagcctgcccaacatggcacccccactcccacgcaccc ccactcccacgcacccccac tcccacgcacccccactcccacgcacccccactcccacgcacccccactcccacgcaccc ccactcccacgcacccccac tcccacgcacccccactcccacgcatccccgcgatacatccaacacagacagggaaaaga tacaaaagtaaacctttatt tcccaacagacagcaaaaatcccctgagtttttttttattagggccaacacaaaagaccc gctggtgtgtggtgcccgtg tctttcacttttcccctccccgacacggattggctggtgtagtgggcgcggccagagacc acccagcgcccgaccccccc ctccccacaaacacggggggcgtcccttattgttttccctcgtcccgggtcgaccagaca tgataagatacattgatgag tttggacaaaccacaactagaatgcagtgaaaaaaatgctttatttgtgaaatttgtgat gctattgctttatttgtaac cattataagctgcaataaacaagttctgctttaataagatctgaattcccgggatccgct gtacgcggacccactttcac atttaagttgtttttctaatccgcatatgatcaattcaaggccgaataagaaggctggct ctgcaccttggtgatcaaat aattcgatagcttgtcgtaataatggcggcatactatcagtagtaggtgtttccctttct tctttagcgacttgatgctc ttgatcttccaatacgcaacctaaagtaaaatgccccacagcgctgagtgcatataatgc attctctagtgaaaaacctt gttggcataaaaaggctaattgattttcgagagtttcatactgtttttctgtaggccgtg tacctaaatgtacttttgct ccatcgcgatgacttagtaaagcacatctaaaacttttagcgttattacgtaaaaaatct tgccagctttccccttctaa agggcaaaagtgagtatggtgcctatctaacatctcaatggctaaggcgtcgagcaaagc ccgcttattttttacatgcc aatacaatgtaggctgctctacacctagcttctgggcgagtttacgggttgttaaacctt cgattccgacctcattaagc agctctaatgcgctgttaatcactttacttttatctaatctagacatatcaattcgccct atagtgagtcgtattacaat tctttgccaaaatgatgagacagcacaataaccagcacgttgcccaggagctgtaggaaa aagaagaaggcatgaacatg gttagcagaggggcccggtttggactcagagtattttatcctcatctcaaacagtgtata tcattgtaaccataaagaga aaggcaggatgatgaccaggatgtagttgtttctaccaataagaatatttccacgccagc cagaatttatatgcagaaat attctaccttatcatttaattataacaattgttctctaaaactgtgctgaagtacaatat aatataccctgattgccttg aaaaaaaagtgattagagaaagtacttacaatctgacaaataaacaaaagtgaatttaaa aattcgttacaaatgcaagc taaagtttaacgaaaaagttacagaaaatgaaaagaaaataagaggagacaatggttgtc aacagagtagaaagtgaaag aaacaaaattatcatgagggtccatggtgatacaagggacatcttcccattctaaacaac accctgaaaactttgccccc tccatataacatgaattttacaatagcgaaaaagaaagaacaatcaagggtccccaaact caccctgaagttctcaggat cgatccggagctttttgcaaaagcctaggcctccaaaaaagcctcttcactacttctgga atagctcagaggccctagag gatccccggcggggtcgtatgcggctggagggtcgcggacggagggtccctgggggtcgc aacgtaggcggggcttctgt ggtgatgcggagagggggcggcccgagtctgcctggctgctgcgtctcgctccgagtgcc gaggtgcaaatgcgaccaga ctgtcgggccagggctaacttataccccacgcctttcccctccccaaaggggcggcagtg acgattcccccaatggccgc gcgtcccaggggaggcaggcccaccgcggggcggccccgtccccggggaccaacccggcg cccccaaagaatatcattag catgcacggcccggcccccgatttgggggcccaacccggtgtcccccaaagaaccccatt agcatgcccctcccgccgac gcaacaggggcttggcctgcgtcggtgccccggggcttcccgccttcccgaagaaactca ttaccatacccggaacccca ggggaccaatgcgggttcattgagcgacccgcgggccaatgcgcgaggggccgtgtgttc cgccaaaaaagcaattagca taacccggaaccccaggggagtggttacgcgcggcgcgggaggcggggaataccggggtt gcccattaagggccgcggga attgccggaagcgggaagggcggccggggccgcccattaatgagtttctaattaccatac cgggaagcggaacaaggcct cttgcaagtttttaattaccataccgggaagtgggcggcccggcccattgggcggtaact cccgcccaatgggccgggcc ccgaagactcggcggacgctggttggccgggccccgccgcgctggcggccgccgattggc cagtcccgcccccgaggcgg cccgccctgtgagggcgggctggctccaagcgtatatatgcgcggctcctgccatcgtct ctccggagagcggcttggtg cggagctcgaattcggtaatcatggtcatagctgtttcctgtgtgaaattgttatccgct cacaattccacacaacatac gagccggaagcataaagtgtaaagcctggggtgcctaatgagtgagctaactcacattaa ttgcgttgcgctcactgccc gctttccagtcgggaaacctgtcgtgccagctgcattaatgaatcggccaacgcgcgggg agaggcggtttgcgtattgg gcgctcttccgcttcctcgctcactgactcgctgcgctcggtcgttcggctgcggcgagc ggtatcagctcactcaaagg cggtaatacggttatccacagaatcaggggataacgcaggaaagaacatgtgagcaaaag gccagcaaaaggccaggaac cgtaaaaaggccgcgttgctggcgtttttccataggctccgcccccctgacgagcatcac aaaaatcgacgctcaagtca gaggtggcgaaacccgacaggactataaagataccaggcgtttccccctggaagctccct cgtgcgctctcctgttccga ccctgccgcttaccggatacctgtccgcctttctcccttcgggaagcgtggcgctttctc aatgctcacgctgtaggtat ctcagttcggtgtaggtcgttcgctccaagctgggctgtgtgcacgaaccccccgttcag cccgaccgctgcgccttatc cggtaactatcgtcttgagtccaacccggtaagacacgacttatcgccactggcagcagc cactggtaacaggattagca gagcgaggtatgtaggcggtgctacagagttcttgaagtggtggcctaactacggctaca ctagaaggacagtatttggt atctgcgctctgctgaagccagttaccttcggaaaaagagttggtagctcttgatccggc aaacaaaccaccgctggtag cggtggtttttttgtttgcaagcagcagattacgcgcagaaaaaaaggatctcaagaaga tcctttgatcttttctacgg ggtctgacgctcagtggaacgaaaactcacgttaagggattttggtcatgagattatcaa aaaggatcttcacctagatc cttttaaattaaaaatgaagttttaaatcaatctaaagtatatatgagtaaacttggtct gacagttaccaatgcttaat cagtgaggcacctatctcagcgatctgtctatttcgttcatccatagttgcctgactccc cgtcgtgtagataactacga tacgggagggcttaccatctggccccagtgctgcaatgataccgcgagacccacgctcac cggctccagatttatcagca ataaaccagccagccggaagggccgagcgcagaagtggtcctgcaactttatccgcctcc atccagtctattaattgttg ccgggaagctagagtaagtagttcgccagttaatagtttgcgcaacgttgttgccattgc tacaggcatcgtggtgtcac gctcgtcgtttggtatggcttcattcagctccggttcccaacgatcaaggcgagttacat gatcccccatgttgtgcaaa aaagcggttagctccttcggtcctccgatcgttgtcagaagtaagttggccgcagtgtta tcactcatggttatggcagc actgcataattctcttactgtcatgccatccgtaagatgcttttctgtgactggtgagta ctcaaccaagtcattctgag aatagtgtatgcggcgaccgagttgctcttgcccggcgtcaatacgggataataccgcgc cacatagcagaactttaaaa gtgctcatcattggaaaacgttcttcggggcgaaaactctcaaggatcttaccgctgttg agatccagttcgatgtaacc cactcgtgcacccaactgatcttcagcatcttttactttcaccagcgtttctgggtgagc aaaaacaggaaggcaaaatg ccgcaaaaaagggaataagggcgacacggaaatgttgaatactcatactcttcctttttc aatattattgaagcatttat cagggttattgtctcatgagcggatacatatttgaatgtatttagaaaaataaacaaata ggggttccgcgcacatttcc ccgaaaagtgccacctgacgtctaagaaaccattattatcatgacattaacctataaaaa taggcgtatcacgaggccct ttcgtc (SEQ ID NO: 9)

SEQ ID NO: 10 is a nucleotide sequence that encodes the open reading frame of UL24 (strain KOS).

atg gccgcgagaa cgcgcagcct ggtcgaacgc agacgcgtgt tgatggcagg ggtacgaagc catacgcgct tctacaaggc gcttgccaaa gaggtgcggg agtttcacgc caccaagatc tgcggcacgc tgttgacgct gttaagcggg tcgctgcagg gtcgctcggt gttcgaggcc acacgcgtca ccttaatatg cgaagtggac ctgggaccgc gccgccccga ctgcatctgc gtgttcgaat tcgccaatga caagacgctg ggcggggttt gtgtcatcat agaactaaag acatgcaaat atatttcttc c gggg acacc gccagcaaac gcgagcaacg ggccacgggg atgaagcagc tgcgccactc cctgaagctc ctgcagtccc tcgcgcctcc gggtgacaag atagtgtacc tgtgccccgt cctggtgttt gtcgcccaac ggacgctccg cgtcagccgc gtgacccggc tcgtcccgca gaaggtctcc ggtaatatca ccgcagtcgt gcggatgctc cagagcctgt ccacgtatac ggtccccatg gagcctagga cccagcgagc ccgtcgccgc cgcggcggcg ctgcccgggg gtctgcgagc agaccgaaaa ggtcacactc tggggcgcgc gacccgcccg agccagcggc ccgccaggta ccacccgccg accaaacccc cgcctccacg gagggcgggg gggtgcttaa gaggatcgcg gcgctcttct gcgtgcccgt ggccaccaag accaaacccc gagctgcctc cgaatga (SEQ ID NO: 10)

SEQ ID NO: 11 is a nucleotide sequence that encodes the open reading frame of gK (strain KOS). atgctcgccg tccgttccct gcagcacctc tcaaccgtcg tcttgataac ggcgtacggc ctcgtgctcg tgtggtacac cgtcttcggt gccagtccgc tgcaccgatg tatttacgcg gtacgcccca ccggcaccaa caacgacacc gccctcgtgt ggatgaaaat gaaccagacc ctattgtttc tgggggcccc gacgcacccc cccaacgggg gctggcgcaa ccacgcccat atctgctacg ccaatcttat cgcgggtagg gtcgtgccct tccaggtccc acccgacgcc acgaatcgtc ggatcatgaa cgtccacgag gcagttaact gtctggagac cctatggtac acacgggtgc gtctggtggt cgtagggtgg ttcctgtatc tggcgttcgt cgccctccac caacgccgat gtatgtttgg tgtcgtgagt cccgcccaca agatggtggc cccggccacc tacctcttga actacgcagg ccgcatcgta tcgagcgtgt tcctgcagta cccctacacg aaaattaccc gcctgctctg cgagctgtcg gtccagcggc aaaacctggt tcagttgttt gagacggacc cggtcacctt cttgtaccac cgccccgcca tcggggtcat cgtaggctgc gagttgatgc tacgctttgt ggccgtgggt ctcatcgtcg gcaccgcttt catatcccgg ggggcatgtg cgatcacata ccccctgttt ctgaccatca ccacctggtg ttttgtctcc accatcggcc tgacagagct gtattgtatt ctgcggcggg gcccggcccc caagaacgca gacaaggccg ccgccccggg gcgatccaag gggctgtcgg gcgtctgcgg gcgctgttgt tccatcatcc tgtcgggcat cgcaatgcga ttgtgttata tcgccgtggt ggccggggtg gtgctcgtgg cgcttcacta cgagcaggag atccagaggc gcctgtttga tgtatga (SEQ ID NO: 11)