Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ROTATABLE DRIVE ELEMENT FOR MOVING A WINDOW COVERING
Document Type and Number:
WIPO Patent Application WO/2014/043713
Kind Code:
A1
Abstract:
A curtain assembly comprises a rotatable drive element wherein at least one helical guide structure is formed on, or into, the outer surface of the drive element. A drive attachment element having a structure that communicates with the helical guide structure to move the drive attachment element axially along the drive element when the drive element is rotated. Specific embodiments incorporate either a manual or motor-driven rotation assembly for rotating the drive element. Further specific embodiments involve a helical guide structure that comprises a helical groove and a structure that comprises a tooth that engages with the helical groove.

Inventors:
MULLET WILLIS JAY (US)
MATTHEWS DANIEL T (US)
FOX MICHAEL D (US)
LEE GERALD ASHLEY (US)
Application Number:
PCT/US2013/060205
Publication Date:
March 20, 2014
Filing Date:
September 17, 2013
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
QMOTION INC (US)
International Classes:
E06B9/24; A47H5/02
Foreign References:
KR20100006476A2010-01-19
US7104305B12006-09-12
US4832104A1989-05-23
US20110146922A12011-06-23
JP2011062497A2011-03-31
US4125057A1978-11-14
Other References:
See also references of EP 2895036A4
Attorney, Agent or Firm:
PARKER, James S. et al. (Lloyd & EisenschenkPO. Box 14295, Gainesville FL, US)
Download PDF:
Claims:
CLAIMS

What is claimed is:

1. A window covering assembly, comprising:

a drive element;

the drive element extending a length between a first end and a second end;

the drive element having an exterior surface;

the exterior surface having a guide structure;

a first drive attachment element operatively connected to the drive element and in communication with the guide structure; and

a first curtain operatively connected to the first drive attachment element,

wherein when the drive element is rotated the first curtain is opened or closed.

2. The window covering assembly of any preceding claim, wherein the drive element is generally cylindrical in shape.

3. The window covering assembly of any preceding claim, wherein the guide structure includes a pair of clockwise helical grooves.

4. The window covering assembly of any preceding claim, wherein the guide structure includes a pair of clockwise helical grooves spaced approximately 180 degrees apart from one another.

5. The window covering assembly of any preceding claim, wherein the guide structure includes a pair of counterclockwise helical grooves.

6. The window covering assembly of any preceding claim, wherein the guide structure includes a pair of counterclockwise helical grooves spaced approximately 180 degrees apart from one another.

7. The window covering assembly of any preceding claim, wherein the guide structure includes a pair of clockwise helical grooves and a pair of counterclockwise helical grooves.

8. The window covering assembly of any preceding claim, wherein a rotation assembly is positioned within the drive element.

9. The window covering assembly of any preceding claim, wherein a motor assembly is positioned within the drive element.

10. The window covering assembly of any preceding claim, wherein a power supply is positioned within the drive element.

11. The window covering assembly of any preceding claim, wherein a plurality of batteries are positioned within the drive element.

12. The window covering assembly of any preceding claim, wherein the drive element is activated by cell phone.

13. The window covering assembly of any preceding claim, wherein the drive element is activated by a remote.

14. The window covering assembly of any preceding claim, wherein the drive element is activated by a tug.

15. The window covering assembly of any preceding claim, wherein the drive element is activated by voice command into a transmitter.

16. The window covering assembly of any preceding claim, wherein the drive attachment element is positioned around the drive element.

17. The window covering assembly of any preceding claim, wherein the drive attachment element has a tooth that engages a groove of the guide structure.

18. The window covering assembly of any preceding claim, wherein the first curtain is operatively connected to a plurality of idler attachment elements positioned around the drive element.

19. The window covering assembly of any preceding claim, wherein the guide structure includes a helical groove that is spaced between 1 and 6 inches from itself along the length of the drive element.

20. The window covering assembly of any preceding claim, wherein a second curtain is operatively connected to a second drive attachment element connected to the drive element.

21. The window covering assembly of any preceding claim, further comprising a second curtain operatively connected to the drive element such that when the drive element is rotated the first curtain and second curtain simultaneously open or close.

22. The window covering assembly of any preceding claim, wherein the window covering assembly is center closing.

23. The window covering assembly of any preceding claim, wherein the guide structure includes at least one helical groove, one or more of the at least one helical groove extending at an angle to a cross-sectional plane of the drive element, wherein the angle is between 10 and 80 degrees.

24. The window covering assembly of any preceding claim, wherein the guide structure includes at least one helical groove, one or more of the at least one helical groove extending at an angle to a cross-sectional plane of the drive element, wherein the angle is approximately 45 degrees.

25. The window covering assembly of any preceding claim, wherein the drive element is connected to a bracket by an axel such that when the drive element is rotated the axel remains stationary.

26. The window covering assembly of any preceding claim, wherein a draw rod is connected to the first drive attachment element.

27. The window covering assembly of any preceding claim, wherein the window covering assembly includes a sensor or detector that stops rotation of the drive element when actuated.

28. The window covering assembly of any preceding claim, wherein communication of the first drive attachment with the guide translates rotation of the drive element into the first curtain opening or closing.

29. A window covering assembly, comprising:

a drive element;

the drive element extending a length between a first end and a second end;

the drive element having an exterior surface;

the exterior surface having a guide structure;

a first drive attachment element and a second drive attachment element operatively connected to the drive element and in communication with the guide structure;

a first curtain connected to the first drive attachment element; and

a second curtain connected to the second drive attachment element,

wherein the guide structure is formed of a pair of clockwise helical grooves and a pair of counterclockwise helical grooves,

wherein when the drive element is rotated the first curtain and second curtain are opened or closed.

30. The window covering assembly of claim 29, wherein the pair of clockwise helical grooves are positioned on opposite sides of the drive element from one another.

31. The window covering assembly of any of claims 29-30, wherein the pair of counterclockwise helical grooves are positioned on opposite sides of the drive element from one another.

32. The window covering assembly of claim 29, wherein the first drive attachment element is in communication with the pair of clockwise helical grooves or the pair of counterclockwise helical grooves and the second driver attachment element is in communication the other of the pair of clockwise helical grooves or the pair of counterclockwise helical grooves.

33. The window covering assembly of claim 29, wherein the first drive attachment element has a pair of teeth which engage either the pair of clockwise helical grooves or the pair of counterclockwise helical grooves.

34. A window covering assembly comprising:

a drive element having at least one guide structure formed on or into an outer surface of the drive element;

a drive attachment element having a corresponding structure that communicates with one or more of the at least one structure to move the drive attachment element axially along the drive element when the drive element is rotated about a longitudinal axis of the drive element.

35. The window covering assembly according to claim 34, further comprising: a rotation assembly for rotating the drive element.

36. The window covering assembly according to any of claims 34-35, wherein the drive element is a tube.

37. The window covering assembly according to any of claims 34-35, wherein at least a portion of the drive element is hollow, wherein the outer surface of the drive element has a circular cross-sectional shape.

38. The window covering assembly according to any of claims 34-37, wherein the at least one guide structure comprises a helical guide structure.

39. The window covering assembly according to any of claims 34-38, wherein the helical guide structure comprises a helical groove formed into the outer surface of the drive element.

40. The window covering assembly according to any of claims 34-39, wherein the at least one corresponding structure comprises a tooth.

41. The window covering assembly according to any of claims 39-40, wherein the helical groove is axially spaced between 2 inches and 6 inches from itself along the drive element.

42. The window covering assembly according to any of claims 39-41, wherein the at least one guide structure comprises a second helical groove formed into the outer surface of the drive element, wherein the second helical groove rotates in the same direction as the helical groove, wherein the second helical groove is axially spaced 180 degrees away from the helical groove, wherein the drive attachment element further comprises a corresponding second structure that communicates with the second helical groove to move the drive attachment element axially along the drive element when the drive element is rotated about the longitudinal axis of the drive element.

43. The window covering assembly according to any of claims 35-42, wherein the rotation assembly comprises a motor.

44. The window covering assembly according to claim 43, wherein the motor is mounted inside the drive element.

45. The window covering assembly according to any of claims 43-44, further comprising a power supply for the motor, wherein the power supply is mounted inside the drive element.

46. The window covering assembly according to any of claims 43-45, wherein the motor is battery powered.

47. The window covering assembly of any of claims 43-46, wherein the rotation assembly further comprises a control board and a wireless receiver that can receive a signal from a transmitter to operate the motor.

48. The window covering assembly according to any of claims 35-47, wherein the rotation assembly comprises a pull cord connected to the drive element to manually rotate the drive element.

49. The window covering assembly according to any of claims 35-48, wherein the motor is operated by a voice command into a transmitter or by key strokes using a device selected from the group consisting of: a remote control, a cell phone, a personal data assistant, or a personal computer.

50. The window covering assembly according to any of claims 34-49, further comprising a curtain wherein a first end of the curtain is fixed and a second end of the curtain is connected to the drive attachment element.

51. The window covering assembly according to any of claims 34-50, further comprising a pull rod connected to the drive attachment element, wherein the structure is disengaged from the at least one guide structure of the drive element by applying force on the pull rod such that the drive attachment element does not move axially along the drive element when the drive element is rotated.

52. The window covering assembly according to any of claims 50-51, further comprising a plurality of simple attachment elements connected to the drive element for sliding movement along the drive element, wherein the curtain is suspended from the drive element via the plurality of simple attachment elements.

53. The window covering assembly according to any of claims 34-52, wherein rotating the drive element clockwise moves the drive attachment element in a first axial direction along the drive element, wherein rotating the drive element counter-clockwise moves the drive attachment element in a second axial direction along the drive element, wherein the second axial direction is opposite to the first axial direction.

54. The window covering assembly according to any of claims 39-53, wherein the at least one guide structure comprises a second helical groove formed into the outer surface of the drive element, wherein the second helical groove rotates in an opposite direction from the helical groove, wherein the window covering assembly further comprises a second drive attachment element having a corresponding second structure that communicates with the second helical groove to move the second drive attachment element axially along the drive element when the drive element is rotated about the longitudinal axis of the drive element, wherein when the drive element is rotated about the longitudinal axis of the drive element the second drive attachment element moves in an axial direction that is opposite to the axial direction the drive attachment element moves.

55. The window covering assembly of claim 54, further comprising a center closing curtain composed of a left panel and a right panel wherein one end of the left panel is fixed and the adjacent opposing end of the left panel is connected to the drive attachment element, wherein one end of the right panel is fixed and the adjacent opposing end of the right panel is connected to the second drive attachment element.

56. The window covering assembly of claim 54, wherein the helical groove and the second helical groove have the same angle with respect to a cross-sectional plane of the drive element.

57. The window covering system of any of claims 34-53, further comprising: a second drive attachment element having a corresponding second structure that communicates with the one or more of the at least one structure to move the second drive attachment element axially along the drive element when the drive element is rotated about a longitudinal axis of the drive element;

wherein when the drive attachment element is engaged with the at least one guide structure, wherein rotating the drive element in a first rotational direction moves the drive attachment element in a first axial direction along the drive element, wherein rotating the drive element in a second rotational direction opposite to the first rotational direction moves the drive attachment element in a second axial direction along the drive element, wherein the second axial direction is opposite to the first axial direction,

wherein when the second drive attachment element is engaged with the at least one guide structure, rotating the drive element the first rotational direction moves the second drive attachment element in the first axial direction along the drive element, wherein rotating the drive element the second rotational direction moves the second drive attachment element in the second axial direction along the drive element, wherein the second axial direction is opposite to the first axial direction.

58. The window covering system according to claim 57, further comprising:

an outer driver stall area positioned at an outer position on the drive element, wherein when the drive attachment element is engaged with the at least one guide structure and the drive element is rotated in the first rotation direction, the drive attachment element moves axially along the drive element in the first axial direction until the drive attachment element reaches the outer driver stall area and the drive attachment element disengages from the at least one guide structure such that the drive attachment element does not move axially upon further rotation of the drive element until the drive attachment element is reengaged with the at least one guide structure; and

at least one inner driver stall area positioned at an inner position on the drive element, wherein when the second drive attachment element is engaged with the at least one guide structure and the drive element is rotated in the second rotational direction, the second drive attachment moves axially along the drive element in the second axial direction until the second drive attachment element reaches the inner driver stall area and the second drive attachment element disengages from the at least one guide structure such that the second drive attachment element does not move axially upon further rotation of the drive element until the second drive attachment element reengages with the at least one guide structure, wherein when the drive attachment element disengages from the at least one guide structure, the second drive attachment element is reengaged to the at least one guide structure, wherein when the second drive attachment element disengages from the at least one guide structure, the drive attachment element is reengaged to the at least one guide structure.

59. The window covering system according to any of claims 57-58, further comprising a curtain wherein an end of the curtain is connected to the drive attachment element; and

a second curtain wherein an end of the second curtain is connected to the second drive attachment element.

60. The window covering system according to any of claims 57-59, wherein rotation of the drive element allows opening and closing of the curtain and the second curtain.

61. A method of cutting one or more grooves into an outer surface of a cylindrical element, comprising:

rotating a cylindrical element about a longitudinal axis of the cylindrical element; wherein while rotating the cylindrical element about the longitudinal axis, further comprising:

moving a rough cutter and the rotating cylindrical element with respect to each other in a direction parallel to the longitudinal axis, wherein the rough cutter moves from a rough start position to a rough end position, wherein the rough start position has a rough axial start position along a length of the cylindrical element and a rough rotational start position about the longitudinal axis, wherein the rough end position has a rough axial end position along a length of the cylindrical element and a rough rotational end position about the longitudinal axis; and

moving a finish cutter and the rotating cylindrical element with respect to each other in a direction parallel to the longitudinal axis, wherein the finish cutter moves from a finish start position to a finish end position, wherein the finish start position has a finish axial start position along the length of the cylindrical element and a finish rotational start position about the longitudinal axis, wherein the finish end position has a finish axial end position along a length of the cylindrical element and a finish rotational end position about the longitudinal axis;

wherein while moving the rough cutter from the rough start position to the third position, positioning the rough cutter with respect to an outer surface of the cylindrical element such that the rough cutter cuts away a rough portion of the outer surface,

wherein while moving the finish cutter from the finish start position to the finish end position, positioning the finish cutter with respect to the outer surface of the cylindrical element such that the finish cutter cuts away a finish portion of the outer surface,

wherein cutting away the rough portion and cutting away the finish portion creates a groove in the outer surface of the cylindrical element.

62. The method according to claim 61, wherein the rough rotational end position is the same as the rough rotational start position.

63. The method according to claim 62, wherein the finish rotational end position is the same as the finish rotational start position.

64. The method according to claim 63, wherein the finish rotational start position is the same as the rough rotational start position.

65. The method according to claim 62, wherein while moving the rough cutter from the rough start position to the rough end position, the rough cutter is maintained at the rough rotational start position.

66. The method according to claim 63, wherein while moving the finish cutter from the finish start position to the finish end position, the finish cutter is maintained at the finish rotational start position.

67. The method according to claim 64, wherein while moving the rough cutter from the rough start position to the rough end position, the rough cutter is maintained at the rough rotational start position, wherein while moving the finish cutter from the finish start position to the finish end position, the finish cutter is maintained at the finish rotational start position.

68. The method according to claim 61, wherein rotating the cylindrical element comprises rotating the cylindrical element at a constant speed of rotation.

69. The method according to claim 67, wherein rotating the cylindrical element comprises rotating the cylindrical element at a constant speed of rotation.

70. The method according to claim 69, wherein moving the rough cutter from the rough start position to the rough end position comprises moving the rough cutter from the rough start position to the rough end position at a first axial speed, wherein the first axial speed is a constant axial speed, wherein moving the finish cutter from the finish start position to the finish end position comprises moving the finish cutter from the finish start position to the finish end position at the first axial speed.

71. The method according to claim 70, wherein the finish axial start position is axially separated from the rough axial start position by n leads, where a lead is an axial distance covered by one 360° rotation of the groove in the outer surface of the cylindrical element and n is an integer having a value of 1 or greater.

72. The method according to claim 71 , wherein n = 1.

73. The method according to claim 72, wherein while rotating the cylindrical element about the longitudinal axis, further comprising:

moving a second rough cutter and the rotating cylindrical element with respect to each other in the direction parallel to the longitudinal axis, wherein the second rough cutter moves from a second rough start position to a second rough end position, wherein the second rough start position has a second rough axial start position along the length of the cylindrical element and a second rough rotational start position about the longitudinal axis, wherein the second rough end position has a second rough axial end position along the length of the cylindrical element and a second rough rotational end position about the longitudinal axis; and

moving a second finish cutter and the rotating cylindrical element with respect to each other in a direction parallel to the longitudinal axis, wherein the second finish cutter moves from a second finish start position to a second finish end position, wherein the second finish start position has a second finish axial start position along the length of the cylindrical element and a second finish rotational start position about the longitudinal axis, wherein the second finish end position has a second finish axial end position along the length of the cylindrical element and a second finish rotational end position about the longitudinal axis; wherein while moving the second rough cutter from the second rough start position to the second rough end position, positioning the second rough cutter with respect to the outer surface of the cylindrical element such that the second rough cutter cuts away a second rough portion of the outer surface,

wherein while moving the second finish cutter from the second finish start position to the second finish end position, positioning the second finish cutter with respect to the outer surface of the cylindrical element such that the second finish cutter cuts away a second finish portion of the outer surface, wherein cutting away the second rough portion and cutting away the second finish portion creates a second groove in the outer surface of the cylindrical element.

74. The method according to claim 73, wherein the second rough rotational start position, the second finish rotational start position, the second rough rotational end position, and the second finish rotational end position are the same as the rough rotational start position.

75. The method according to claim 74, wherein while moving the second rough cutter from the second rough start position to the second rough end position, the second rough cutter is maintained at the second rough rotational start position wherein while moving the second finish cutter from the second finish start position to the second finish end position, the second finish cutter is maintained at the second finish rotational start position.

76. The method according to claim 75, wherein moving the second rough cutter from the second rough start position to the second rough end position comprises moving the second rough cutter from the second rough start position to the second rough end position at the first axial speed, wherein moving the second finish cutter from the second finish start position to the second finish end position comprises moving the second finish cutter from the second finish start position to the second finish end position at the first axial speed.

77. The method according to claim 76, wherein the second finish axial start position is axially separated from the second rough axial start position by m leads, where m is an integer having a value of 1 or greater.

78. The method according to claim 77, wherein m = 1.

79. The method according to claim 78, wherein the second rough axial start position is axially separated from the finish axial start position by (p + ½) leads, wherein p is an integer having a value of zero or greater.

80. The method according to claim 79, wherein p = 0.

81. The method according to claim 61, wherein while rotating the cylindrical element about the longitudinal axis, further comprising:

moving a second rough cutter and the rotating cylindrical element with respect to each other in the direction parallel to the longitudinal axis, wherein the second rough cutter moves from a second rough start position to a second rough end position, wherein second rough start position has a second rough axial start position along the length of the cylindrical element and a second rough rotational start position about the longitudinal axis, wherein second rough end position has a second rough axial end position and a second rough rotational end position; and

moving the second finish cutter and the rotating cylindrical element with respect to each other in the direction parallel to the longitudinal axis, wherein the second finish cutter moves from a second finish start position to an second finish end position, wherein the second finish start position has a second finish axial start position along the length of the cylindrical element and a second finish rotational start position about the longitudinal axis, wherein the second finish end position has a second finish axial end position and a second finish rotational end position;

wherein while moving the second rough cutter from the second rough start position to the second rough end position, positioning the second rough cutter with respect to the outer surface of the cylindrical element such that the second rough cutter cuts away a second rough portion of the outer surface,

wherein while moving the second finish cutter from the second finish start position to the second finish end position, positioning the second finish cutter with respect to the outer surface of the cylindrical element such that the second finish cutter cuts away a second finish portion of the outer surface,

wherein cutting away the second rough portion and cutting away the second finish portion creates a second groove in the outer surface of the cylindrical element.

82. A method of cutting two grooves into an outer surface of a cylindrical element, comprising:

rotating the cylindrical element about the longitudinal axis of a cylindrical element; moving a first cutter and the rotating cylindrical element with respect to each other in the direction parallel to the longitudinal axis, wherein the first cutter moves from a first start position to a first end position, wherein the first start position has a first axial start position along a length of the cylindrical element and a first rotational start position about the longitudinal axis, wherein the first end position has a first axial end position along a length of the cylindrical element and a first rotational end position about the longitudinal axis; and moving a second cutter and the rotating cylindrical element with respect to each other in the direction parallel to the longitudinal axis, wherein the second cutter moves from a second start position to a second end position, wherein the second start position has a second axial start position along the length of the cylindrical element and a second rotational start position about the longitudinal axis, wherein the second end position has a second axial end position along a length of the cylindrical element and a second rotational end position about the longitudinal axis;

wherein while moving the first cutter from the first start position to the first end position, positioning the first cutter with respect to an outer surface of the cylindrical element such that the first cutter cuts away a first portion of the outer surface,

wherein while moving the second cutter from the second start position to the second end position, positioning the second cutter with respect to the outer surface of the cylindrical element such that the second cutter cuts away a second portion of the outer surface,

wherein cutting away the first portion creates a first groove in the outer surface of the cylindrical element, and

wherein cutting away the second portion creates a second groove in the outer surface of the cylindrical element.

83. The method according to claim 82, wherein the first rotational end position is the same as the first rotational start position.

84. The method according to claim 83, wherein the second rotational end position is the same as the second rotational start position.

85. The method according to claim 84, wherein the second rotational start position is the same as the first rotational start position.

86. The method according to claim 82, wherein while moving the first cutter from the first start position to the first end position, the first cutter is maintained at the first rotational start position.

87. The method according to claim 84, wherein while moving the second cutter from the second start position to the second end position, the second cutter is maintained at the second rotational start position.

88. The method according to claim 85, wherein while moving the first cutter from the first start position to the first end position, the first cutter is maintained at the first rotational start position, wherein while moving the second cutter from the second start position to the second end position, the second cutter is maintained at the second rotational start position.

89. The method according to claim 88, wherein the second rotational start position is the same as the first rotational start position.

90. The method according to claim 82, wherein rotating the cylindrical element comprises rotating the cylindrical element at a constant speed of rotation.

91. The method according to claim 89, wherein rotating the cylindrical element comprises rotating the cylindrical element at a constant speed of rotation.

92. The method according to claim 91, wherein moving the first cutter from the first start position to the first end position comprises moving the first cutter from the first start position to the first end position at a first axial speed, wherein the first axial speed is a constant axial speed, wherein moving the second cutter from the second start position to the second end position comprises moving the second cutter from the second start position to the second end position at the first axial speed.

93. The method according to claim 92, wherein the second axial start position is axially separated from the first axial start position by a separation axial distance, wherein the second groove is separated from the first groove by the separation axial distance.

94. The method according to claim 93, wherein the separation axial distance is (k + ½) leads, where a lead is an axial distance covered by one 360° rotation of the first groove in the outer surface of the cylindrical element and k is an integer having a value of zero or greater.

95. The method according to claim 94, wherein k = 0.

96. A cylindrical element having one or more grooves into an outer surface of the cylindrical element, wherein the one or more grooves are cut into the outer surface of the cylindrical element via a method comprising:

rotating a cylindrical element about a longitudinal axis of the cylindrical element; wherein while rotating the cylindrical element about the longitudinal axis, further comprising:

moving a rough cutter and the rotating cylindrical element with respect to each other in a direction parallel to the longitudinal axis, wherein the rough cutter moves from a rough start position to a rough end position, wherein the rough start position has a rough axial start position along a length of the cylindrical element and a rough rotational start position about the longitudinal axis, wherein the rough end position has a rough axial end position along a length of the cylindrical element and a rough rotational end position about the longitudinal axis; and

moving a finish cutter and the rotating cylindrical element with respect to each other in a direction parallel to the longitudinal axis, wherein the finish cutter moves from a finish start position to a finish end position, wherein the finish start position has a finish axial start position along the length of the cylindrical element and a finish rotational start position about the longitudinal axis, wherein the finish end position has a finish axial end position along a length of the cylindrical element and a finish rotational end position about the longitudinal axis;

wherein while moving the rough cutter from the rough start position to the third position, positioning the rough cutter with respect to an outer surface of the cylindrical element such that the rough cutter cuts away a rough portion of the outer surface,

wherein while moving the finish cutter from the finish start position to the finish end position, positioning the finish cutter with respect to the outer surface of the cylindrical element such that the finish cutter cuts away a finish portion of the outer surface,

wherein cutting away the rough portion and cutting away the finish portion creates a groove in the outer surface of the cylindrical element.

97. A cylindrical element having one or more grooves into an outer surface of the cylindrical element, wherein the one or more grooves are cut into the outer surface of the cylindrical element via a method comprising:

rotating the cylindrical element about the longitudinal axis of a cylindrical element; moving a first cutter and the rotating cylindrical element with respect to each other in the direction parallel to the longitudinal axis, wherein the first cutter moves from a first start position to a first end position, wherein the first start position has a first axial start position along a length of the cylindrical element and a first rotational start position about the longitudinal axis, wherein the first end position has a first axial end position along a length of the cylindrical element and a first rotational end position about the longitudinal axis; and moving a second cutter and the rotating cylindrical element with respect to each other in the direction parallel to the longitudinal axis, wherein the second cutter moves from a second start position to a second end position, wherein the second start position has a second axial start position along the length of the cylindrical element and a second rotational start position about the longitudinal axis, wherein the second end position has a second axial end position along a length of the cylindrical element and a second rotational end position about the longitudinal axis;

wherein while moving the first cutter from the first start position to the first end position, positioning the first cutter with respect to an outer surface of the cylindrical element such that the first cutter cuts away a first portion of the outer surface,

wherein while moving the second cutter from the second start position to the second end position, positioning the second cutter with respect to the outer surface of the cylindrical element such that the second cutter cuts away a second portion of the outer surface,

wherein cutting away the first portion creates a first groove in the outer surface of the cylindrical element, and

wherein cutting away the second portion creates a second groove in the outer surface of the cylindrical element.

Description:
DESCRIPTION

ROTATABLE DRIVE ELEMENT FOR MOVING A WINDOW COVERING

CROSS-REFERENCE TO RELATED APPLICATIONS The present application claims the benefit of U.S. Provisional Patent Application Serial. No. 61/702,093, filed September 17, 2012 and claims the benefit of U.S. Patent Application Serial No. 13/841,732, filed March 15, 2013, which claims the benefit of U.S. Provisional Patent Application Serial. No. 61/702,093, filed September 17, 2012, all of which are hereby incorporated by reference herein in their entirety, including any figures, tables, or drawings.

FIELD OF THE INVENTION

Embodiments of the present invention relate generally to a window covering assembly used to cover windows. Specific embodiments of the invention relate to a window covering assembly with a rotatable drive element that has a structure formed into or on the outer surface of the rotatable drive element such that a window covering moves axially along the rotatable drive element when the rotatable drive element rotates. Further specific embodiments relate to a window covering assembly in which two different curtains are operated by the same rotating drive element such that the user is able to independently move each curtain.

BACKGROUND OF THE INVENTION

Window coverings, such as curtains, are frequently used to provide privacy and to limit the amount of light that is permitted to pass through a window and into a room.

There are numerous types of window coverings known in the art. Curtains can be composed of panel(s) of fabric. For example, a curtain may be a single panel curtain that opens and closes from left to right. There is also a center closing curtain that is composed of two fabric panels that meet in the center of the window to close and cover the window.

Many different types of fabrics may be used depending on the user's needs and preferences. For example, sometimes it is necessary not only to cover but to also fully blackout the window such that no light passes through. In this instance, a blackout curtain composed of opaque fabric that completely darkens the window may be useful. There may also be other situations, however, where some light is desired and some visibility is desired. A sheer curtain composed of a translucent fabric may be useful in this instance.

The curtain panels are attached to and suspended from a transverse curtain rod that is hung above the window. The panels are usually joined to the curtain rod by hooks or rings. The curtains are able to be moved manually across the curtain rod(s) as desired by a pull rod or the like to either cover or uncover the window.

There are various mechanisms, both electrical and manual, to mechanically move a curtain back and forth across an opening. Typical designs use a curtain guide track where the curtains are suspended. Some curtain assemblies use a series of pulleys, cables, and belts to move the curtain. In some cases these mechanisms are motorized. In these cases, the number of components used adds complexity to the assembly and also increases the cost of the assembly.

Many different types of fabrics may be used depending on the user's needs and preferences. For example, sometimes it is preferred to not only cover but to also fully blackout the window such that no light passes through. In this instance, a blackout curtain composed of opaque fabric that completely darkens the window may be useful. There may also be other situations, however, where some light is desired and some visibility is desired. A sheer curtain composed of a translucent fabric may be useful in this instance.

A sheer curtain is often hung with a blackout curtain on the same window to accommodate different preferences for light and visibility at different times. For example, a blackout curtain may be used to block out unwanted early morning sun. The blackout curtain may then be opened to allow the sun to filter through the sheer curtain later in the day. When a blackout curtain is hung with a sheer curtain, utility bills may also be lowered by using the different curtains to keep a home cool or warm, depending on the weather.

Hanging two different curtains, however, requires the installation of two different curtain guide tracks, one guide track for each curtain. If two curtains are hung from the same curtain guide track, there is not the ability to move one curtain without moving the other curtain and it prevents both curtains from being in the deployed position simultaneously.

Therefore, it would be advantageous to have a simple curtain assembly that will move a curtain from the deployed position to the stored position with the minimum number of components that can be motorized as well as manually operated. It would further be advantageous to have a dual curtain assembly that will move two separate curtains. SUMMARY OF THE INVENTION

Embodiments of the present invention relate to a window covering assembly. For convenience, various embodiments will be described with respect to curtains with the understanding that the description applies to other window coverings as well. Embodiments of the curtain assembly include a drive element wherein at least one guide structure is formed on or into the outer surface of the drive element; a drive attachment element having a corresponding structure that communicates with the at least one guide structure to move the drive attachment element axially along the drive element when the drive element is rotated; and a rotation assembly for rotating the drive element. In some embodiments of the invention, the guide structure forms a helical pattern on the rotatable drive element and the corresponding structure is a tooth that is moved by the groove when the drive element is rotated. The guide structure can also be a ridge or other structure that can cause the corresponding structure to move axially along the drive element when the drive rotates.

In specific embodiments the drive element can be a tube.

In specific embodiments according to the present invention, the curtain assembly includes a rotatable drive element having a clockwise helical guide structure and a counter clockwise helical guide structure formed on, or into, the outer surface of the drive element; a first drive attachment element having a structure that communicates with the clockwise helical guide structure to move the drive attachment element axially along the drive element when the drive element is rotated; and a second drive attachment element having a structure that communicates with the counterclockwise helical guide structure to move the drive attachment element axially along the drive element when the drive element is rotated; and a rotation assembly for rotating the drive element.

In accordance with some embodiments of the present invention, a dual curtain assembly is provided. A specific embodiment of dual curtain assembly includes a rotatable drive element having at least one guide structure formed on, or into, the outer surface of the drive element; at least two drive attachment elements having a corresponding at least two structures that communicate with the at least one guide structure to move the at least two drive attachment elements axially along the drive element when the drive tube is rotated Further specific embodiments can also incorporate a rotation assembly for rotating the drive element. The rotation assembly can be manual or motorized.

In accordance with some embodiments of the invention, a dual curtain assembly includes a drive element having at least one guide structure formed on, or into, the outer surface of the drive element; at least one outer drive attachment element having a corresponding at least one outer structure that communicates with the at least one guide structure to move the at least one drive attachment element axially along the drive element when the drive element is rotated; at least one inner drive attachment element having a corresponding at least one feature that communicates with the at least one guide structure to move the at least one inner drive attachment element axially along the drive element when the drive element is rotated; and a rotation assembly for rotating the drive element.

In accordance with yet other embodiments of the invention, applicable, for example, to a center closing curtain system, the curtain assembly may include a drive element having at least one guide structure formed on, or into, the outer surface of the drive element; a left outer drive attachment element having a corresponding left outer structure that communicates with the at least one guide structure to move the left outer drive attachment element axially along the drive element when the drive element rotates; a right outer drive attachment element having a right outer structure that communicates with the at least one guide structure to move the right outer drive attachment element axially along the drive element when the drive element rotates; a left inner drive attachment element having a corresponding left inner structure that communicates with the at least one guide structure to move the left inner drive attachment element axially along the drive element when the drive element is rotated; a right inner drive attachment element having a corresponding right inner structure that communicates with the at least one guide structure to move the right inner drive attachment element axially along the drive element when the drive element is rotated; and a rotation assembly for rotating the drive element, wherein the rotation of the drive element moves the left and right outer drive attachment elements axially along the drive element when the drive element is rotated and independently moves the left and right inner drive attachment elements along the drive element when the drive element is rotated.

Embodiments of the invention relate to cutting one or more grooves in a cylindrical element.

U.S. Patent No. 4,125,057 (Cox) teaches a motor driven milling and boring machine used primarily for forming screw threads of any selected pitch, external to cylindrical or conic projection or within similar-shaped bore of workpiece, particularly workpieces such as are too large or irregular-shaped to be themselves rotated. A tubular housing, upstanding or tiltably disposable, journals a longitudinally displaceable and rotatable hanger which in turn axially journals a power-driven spindle having a selectively offset-positionable stub portion, terminally carrying a thus radially extensible drive segment which distally positions a rotary milling cutter. A second or planetary tracking motor jointly operates a pair of selectively coupled ring gears of the housing, which in conjunction with a master nut fixed along the housing axis, move the hanger respectively annularly and axially so that the distal cutter may follow a helical path, the pitch of which path is determined by the chosen velocity ratio give the two ring gears. A particular velocity ratio results from the choice of gearing assembled in a detachable twin-segment gear train cassette insertable between the pair of ring gears. While remaining in place, the gear train may be disengaged from one drive component of the hanger to enable arcuate resetting for production of multi-start threads, or alternately to provide annular or linear movement of the cutter. A collar-shaped electromagnetic support base has associated tactile means for centering it, and hence centering the milling machine subsequently mounted thereupon, relative to the preformed bore of a workpiece which is to be threaded. Radial thrust-retraction means are provided for quick-withdrawal of a cutter head from a workface so that it can then be lifted out of a bore without retracing the helical entrance path.

U.S. Patent No. 4,212,568 (Minicozzi) teaches a rotary cutting tool blank comprising a cutting portion having a longitudinal axis and a plurality of teeth extending the length of said cutting portion, with each of the teeth having a cutting face and a trailing face and a land surface bridging the cutting and trailing faces. The land surfaces are interrupted by a plurality of spaced transverse depressions of relatively large radius arcuate cross section to form a plurality of cutting edge portions at the junction of the cutting face and the uninterrupted portions of the land surface. The cutting edge portions have a positive rake angle, and the trailing and cutting faces of each tooth have surfaces which undulate generally sinusoidally from one end of the cutting portion to the other so that the rake angle of each cutting edge portion varies continuously along its length. The cutting tool blank can be transformed to a cutting tool ready for use simply by suitably relieving the land surfaces to form cutting edges at the aforementioned cutting edge portions.

U.S. Patent No. 4,996,861 (Kellum) teaches an apparatus including an externally threaded spindle to which one end of a thin walled metal tube is detachably secured. The spindle is rotated to wind the tube into the external thread, thereby producing a helix. As the tube is wound onto the spindle, it is pressed into the thread grooves by an auxiliary roller.

U.S. Patent No. 5,263,381 (Shirai) teaches a ball screw comprising a threaded rod and a ball nut making a rectilinear motion around the rod as the rod is rotated. A first load ball groove and a second load groove which have an offset relation to each other are formed in the inner surface of the ball nut. A pre-load is imparted to ball bearings rolling in these two load grooves. The ball nut has a resilient portion between the first and second load ball grooves. The resilient portion can be displaced axially. Any excessive pre-load created by the error introduced either in the lead of the ball-rolling groove or in the lead of the first or second load ball groove is absorbed by the resilient portion. Consequently, the novel ball screw is superior in accuracy to the prior art ball screw, and is easier to fabricate.

U.S. Patent No. 5,775,187 (Nikolai et ai) teaches a method of machining and a tool is used for obtaining patterns in the form of alternating ridges, pads, cells, and ridges of a triangular cross section on the surface of a blank. The method facilitates selection of the geometrical parameters of the tool and the machining mode for the tool to obtain alternating ridges and depressions with parallel sides of the profile at predetermined intervals and predetermined heights and angles of slope. The width of the space between projections can be varied in the range of millimeters and micrometers.

U.S. Patent No. 5,971,045 (Watanabe) teaches a veneer lathe comprising a knife (2) for peeling a log (1), which is secured rotatably to a knife stock, and a roller bar (3) disposed to press a circumferential surface of the log (1) at an upstream side, in relative to said knife

(2) , of a rotational direction of the log (1). The roller bar (3) has a diameter of not more than 30 mm, and is provided on the circumferential surface thereof with a large number of projections (5) whose height is not higher than the circumferential surface of the roller bar

(3) . The roller bar (3) is sustained in a sliding bearing (9) and adapted to receive a rotational force from a driving source. The roller bar (3) functions not only as a pressure bar but also as a power transmitting media to rotate the log (1), thereby preventing the generation of lathe check of veneer to be produced.

U.S. Patent No. 6,186,756 (Kojima) teaches a rotor 1 forming screw teeth projectingly provided at its outer end 2 on the axis thereof with a center shaft 3. The center shaft 3 is provided at its outer end 4 with a smaller-diameter shaft 5 or a concaved fitting hole. A separate rotor shaft 6 which is to be fitted over the smaller-diameter shaft 5 or fitted into the concaved fitting hole is provided with another concaved fitting hole 7 or smaller-diameter shaft. A metal shaft around which synthetic resin is molded is formed at its peripheral surface with a spiral groove or corrugated groove in the opposite revolutional direction with respect to the revolutional direction of the screw rotor. The spiral groove is formed with smooth arc curved line connecting profiles of adjacent grooves. The shaft is provided with a step, and synthetic resin is molded around the shaft surface to form a screw rotor.

U.S. Patent No. 6,289,595 (Galestien) teaches the determination of the complete two- dimensional axial cross section of internal and external screw threads and similar workpieces, wherein in a plane through the centerline of the workpiece, two screw thread profiles which are located diametrically opposite each other are measured through two two-dimensional scan measurements in this plane or through arithmetic construction based on two profile depth measurements with a measuring ball or measuring wire, further on the basis of the assumption that the screw thread profiles in question further have a known dimension and geometry, whereafter these two opposite profiles are linked to each other by performing one or more linked measurements such as, for instance, the outside diameter in the case of external screw thread and the core diameter in the case of internal screw thread. If a proper concentricity of the core diameter, the outside diameter and flank diameter is involved, it may suffice to measure or scan only one profile and one or more linked measurements.

U.S. Patent No. 7,849,769 (Akiyama) teaches a precision roll turning lathe which can form a pattern including three-dimensionally shaped portions, such as three-sided pyramids, on the surface of a roll, with high accuracy. Specifically, a tool post is provided with a tool turning axis (A axis) which is used to turn a tool such that, when forming a spiral groove cut through the roll, a cutting face of a tip of the tool is oriented perpendicular to a direction along which the spiral groove extends.

U.S. Patent No. 8,308,463 (Kataoka) teaches providing a screw rotor including a resin rotor formed around a metallic shaft without generation of cracks. Spiral chamfers are formed on surfaces of metallic shafts around which resin rotors are formed. Preferably the surfaces of the shafts may be sandblasted, and after the surfaces of the shafts are preliminarily coated with resin and then the rotors may be molded.

The prior art teaches several methods to form helical or spiraling grooves in or on the outer surface of a shaft or tube. Some of these methods are complicated and time consuming ways of forming or machining the grooves. Accordingly, there is a need for a method and apparatus for more efficiently and/or more accurately machining grooves in an outer surface of a cylindrical shaft or tube. These features and aspects of the invention as well as its advantages are understood by referring to the following description, appended claims, and accompanying drawings, in which:

FIG. 1 is a perspective view of one embodiment of the curtain assembly showing a curtain in the deployed position and the window is covered.

FIG. 2 is a perspective view of one embodiment of the curtain assembly showing the curtain in the stored position and the window is not covered.

FIG. 3 is a perspective view of one embodiment of the curtain assembly showing a left hand curtain in the stored position.

FIG. 4 is an enlarged perspective view of one embodiment of the curtain assembly showing a center closing curtain in the deployed position covering the window.

FIG. 5 is an enlarged perspective view of the components of the rotatable drive element according to one embodiment of the curtain assembly in which the rotation of the drive element is powered by a battery operated motor.

FIG. 6 is an enlarged perspective view of the components of the rotatable drive element according to one embodiment of the curtain assembly in which the power supply to the motor is external to the drive element.

FIG. 7 is an enlarged perspective view of one embodiment of the curtain assembly showing the rotatable drive element with a clockwise helical groove.

FIG. 8 is an enlarged perspective view of one embodiment of the curtain assembly showing the rotatable drive element with a counter clockwise helical groove.

FIG. 9 is an enlarged perspective view of one embodiment of the curtain assembly showing the rotatable drive element with a clockwise helical groove and a counter clockwise helical groove.

FIG. 10 is an enlarged perspective view of the drive attachment element according to one embodiment.

FIG. 11 is an enlarged side view of the drive attachment element 36 showing the structure 62 as a tooth according to one embodiment.

FIG. 12 is an enlarged cross-sectional view of the drive attachment element 36 showing the angle of the drive tooth 62 according to one embodiment.

FIG. 13 is an enlarged perspective view of the drive attachment element having a first drive tooth and a second drive tooth according to one embodiment. FIG. 14 is an enlarged side view of the drive attachment element 36 having a first drive tooth and a second drive tooth according to one embodiment.

FIG. 15 is an enlarged cross-sectional view of the drive attachment element 36 showing the angle of the second drive tooth 90 according to one embodiment.

FIG. 16 is an enlarged cross-sectional view of the drive attachment element 36 showing the angle of the first drive tooth 88 according to one embodiment.

FIG. 17 is a section view of the tube 26 and the drive attachment element 36 showing the engagement of the first drive tooth 88 in the first helical groove 38.

FIG. 18 is an enlarged end view of a motor drive adapter according to one embodiment of the curtain assembly.

FIG. 19 is an enlarged perspective view of a motor drive adapter according to one embodiment of the curtain assembly.

FIG. 20 is an enlarged perspective view of the rotatable drive element according to one embodiment.

FIG. 21 is an enlarged end view of the rotatable drive element according to one embodiment.

FIG. 22 is an enlarged perspective view of the preferred tube embodiment with the position a section was taken to reflect the two clockwise helical grooves 38 and two counter clockwise grooves 40 in the tube 26.

FIG. 23 is an end view of the drive element assembly of the preferred embodiment showing the starting points of the clockwise helical grooves 38 and the counter clockwise grooves 40.

FIG. 24 is the cross section view taken from FIG. 22.

FIG. 25 is the preferred embodiment curtain assembly.

FIG. 26 is a drawing of the functional relationship of the helical grooves 38 and 40 to the midpoint of the drive element to assure the drive attachment elements meet in the midpoint of the drive element on center close draperies.

FIG. 27 is a perspective view of one embodiment of the curtain assembly when the outer curtain is a blackout curtain in the deployed position and the inner curtain is a sheer curtain in the deployed position.

FIG. 28 is a perspective view of one embodiment of the curtain assembly when the outer curtain is a blackout curtain in the stored position and the inner curtain is a sheer curtain in the deployed position. FIG. 29 is a perspective view of the embodiment of the curtain assembly when both the outer and inner curtains are in the stored position.

FIG. 30 is a perspective view of the preferred embodiment with the outer curtain is a blackout curtain with a portion cut away to show the position of the external battery pack from FIG. 6.

FIG. 31 is an enlarged perspective view of the components of the rotatable drive element according to one embodiment of the curtain assembly showing an internal battery power supply.

FIG. 32 is an enlarged perspective view of the components of the rotatable drive element according to one embodiment of the curtain assembly show an external power supply.

FIG. 33 is a cross-sectional view of the drive section of the rotatable drive element showing the helical groove and a non-driving groove according to one embodiment of the curtain assembly.

FIG. 34 is an enlarged perspective view of one embodiment of the curtain assembly non-driving groove.

FIG. 35 is an enlarged perspective view of one distal end of the rotatable drive element showing the inner drive attachment element and the inner driver stall area according to the same embodiment of the curtain assembly shown in FIG. 34.

FIG. 36 is an enlarged side view of the inner drive attachment element according to one embodiment of the curtain assembly.

FIG. 37 is an enlarged perspective view of the inner drive attachment element according to one embodiment of the curtain assembly.

FIG. 38 is an enlarged sectioned view of the inner drive attachment element according to one embodiment of the curtain assembly.

FIG. 39 is an enlarged side view of the inner drive attachment element according to one embodiment of the curtain assembly.

FIG. 40 is an enlarged perspective view of the inner drive attachment element according to one embodiment of the curtain assembly.

FIG. 41 is an enlarged sectioned view of the inner drive attachment element according to one embodiment of the curtain assembly.

FIG. 42 is an enlarged perspective view of an outer idler attachment element according to one embodiment of the curtain assembly. FIG. 43 is an enlarged sectioned view of an outer idler attachment element according to one embodiment of the curtain assembly.

FIG. 44 is an enlarged side view of an outer idler attachment element according to one embodiment of the curtain assembly.

FIG. 45 is an enlarged side view of an outer drive attachment element according to one embodiment of the curtain assembly.

FIG. 46 is an enlarged sectioned view of an outer drive attachment element according to one embodiment of the curtain assembly.

FIG. 47 is an enlarged perspective view of an outer drive attachment element according to one embodiment of the curtain assembly.

FIG. 48 is an end view of the curtain assembly showing the guide track, guides, attachment elements, and the position of the inter-curtain engager.

FIG. 49 is a is a perspective view of a curtain assembly according to one embodiment when the outer curtains are center closing blackout curtains in the stored position and the inner curtains are center closing sheer curtains in the deployed position.

FIG. 50 is a perspective view of a curtain assembly according to one embodiment when the outer curtains are center closing blackout curtains in the deployed position and the inner curtains are center closing sheer curtains in the stored position.

FIG. 51 is a perspective view of the tube end with the inner driver stall area.

FIG. 52 is a top view of the curtain assembly with the guide track removed to see the position of the guides and attachment elements with the inner and outer curtains deployed and the outer drive attachment element can stop the tube from rotation when it stalls against the inner attachment element in the stall area.

FIG. 53 is a top view of the curtain assembly with the guide track removed to see the position of the guides and attachment elements with the inner curtains deployed and the inter- curtain engager is in the engage-outer-drive-attachment-element position and the inner drive attachment element is in the stall area.

FIG. 54 is a top view of the curtain assembly with the guide track removed to see the position of the guides and attachment elements with the inner and outer curtains in the stored position and the outer simple attachment elements and the outer drive attachment element are in the non-driving or stall area. The inner curtain drive attachment element can stop the tube from rotation when it contacts the outer curtain drive attachment element. FIG. 55 is a perspective view of the area where the outer attachments are stored with the tube, inner and outer curtains removed to show the position of the inter-curtain engager and the carrier tracks.

FIG. 56 is a perspective view of the inner curtain carrier and S-hook.

FIG. 57 is a perspective view of the inner curtain carrier with the inner curtain engager.

FIG. 58 is three views of the preferred tube embodiment with an outer driver stall area and two helical grooves spaced 180 degrees apart.

FIG. 59 is another tube embodiment with four helical grooves, two are counter clockwise spaced 180 degrees apart and two are clockwise spaced 180 degrees apart.

FIG. 60 is another embodiment of a tri-lobed tube, drive element, and internal tube driver.

FIG. 61 shows four views of the inner curtain carrier and S-hook.

FIG. 62 shows four views of the inter-curtain engager.

FIGS. 63A-63L show flowcharts for the control system for specific embodiments of the invention.

FIG. 64 is a perspective view of an apparatus for cutting one or more grooves in a cylindrical element, where the apparatus is cutting a unidirectional set of grooves.

FIG. 65 is an enlarged perspective view of the embodiment shown in Figure 64.

FIG. 66 is an enlarged top view of the embodiment shown in Figure 64, showing the tool holder, with a portion of a cylindrical tube shown with a cutaway in order to show the placement of the tools.

FIG. 67 is a perspective view of the apparatus of Figure 64, where the apparatus is cutting bidirectional sets of grooves.

FIG. 68 is an enlarged perspective view of the embodiment shown in Figure 67.

FIG. 69 is an enlarged top view of the tool holder, with a portion of a cylindrical tube shown with a cutaway in order to show the placement of the tools.

FIG. 70 shows a unidirectional pair of grooves cut in a cylindrical tube in accordance with an embodiment of the subject invention.

FIG. 71 is an enlarged end view of the cylindrical tube of Figure 70.

FIG. 72 shows two bidirectional pairs of grooves cut in a cylindrical tube in accordance with an embodiment of the subject invention.

FIG. 73 is an enlarged end view of the cylindrical tube of Figure 72. FIG. 74A shows an embodiment of a prior art bit or tool.

FIG. 74B shows an embodiment of a bit or tool in accordance with a specific embodiment of the subject invention.

FIG. 74C shows an embodiment of a bit or tool in accordance with a specific embodiment of the subject invention.

FIGS. 75A, 75B, and 75C show an embodiment of a tool holder that incorporates two rows of tools.

DETAILED DESCRIPTION

Referring to FIG. 1, a curtain assembly 20 according to one embodiment of the invention is shown. The curtain assembly 20 comprises a rotatable drive element 22 wherein a helical guide structure 24 is formed into the outer surface 26 of the drive element 22, a drive attachment element 36 having a corresponding structure 62 that communicates with the helical guide structure 24 to move the drive attachment element 36 axially along the drive element 22 when the drive element 22 is rotated and a rotation assembly 32 (not shown) for rotating the drive element 22. In some embodiments of the invention, the helical guide structure 24 is a helical groove 24 and the corresponding structure 62 is a tooth. While the helical guide structure 24 is shown in FIGS. 1-3 as a helical groove, the helical guide structure 24 is not limited to a groove. Similarly, the corresponding structure 36 discussed in the embodiments below is a tooth 62 but is not limited to being a tooth. In some embodiments, one or more curtain supports 67 supported by the rotatable drive element 22 can also be utilized to support the curtain. The drive attachment element 36, as shown in FIGS. 1-3 will be explained further below.

DESCRIPTION OF CURTAINS

As shown in FIG. 1, the curtain 44 used is composed of a single continuous panel of fabric that moves back and forth across the drive element 22 to the deployed position (covering the window) and to the stored position (not covering the window 34). The curtain 44 may extend to the right to the deployed position (covering the window 34) and then gather to the left to the stored position, uncovering the window 34. This is shown in FIGS. 1 and 2. For example, FIG. 1 shows that a curtain 44 extended to the right (deployed position) to cover the window 34 and FIG. 2 shows the curtain 44 gathered to the left (stored position) to uncover the window 34. In other embodiments, the curtain 44 may extend to the left to the deployed position (covering the window 34) and then gather to the right to the stored position (uncovering the window 34). For example, FIG. 3 shows a curtain assembly 20 wherein the curtain 44 is gathered to the right (stored position) to uncover the window 34. Although not shown, the curtain 44 in FIG. 3 would extend to the left to the deployed position to cover the window 34.

Again, although curtain is used to describe a preferred embodiment of the invention, other embodiments utilize other window coverings, such as verticals and draperies.

In some embodiments, the curtain 44 may be a center closing curtain 46. A center closing curtain 46 is composed of two fabric panels, a right panel 50 and a left panel 48 that meet in the center 42 of the window 34 to close and cover the window 34. FIG. 4 shows a curtain assembly 20 where a center closing curtain 46 is used and is in the deployed position. The window 34 is covered in this instance. For example, the right panel 50 extends to the left to the center of the window 42. The left panel 48 extends to the right to the center of the window 42.

DRIVE ELEMENT

The curtain assembly 20 includes a drive element 22. FIGS. 5 and 6 show one embodiment of the drive element 22 in detail. A curtain 44 can be connected to the drive element 22 by one or more curtain supports 36 and 67 as explained below. Alternatively, at least a portion of the curtain can be supported by another structure adjacent to the rotatable drive element 22, such as a support guide (not shown).

The rotatable drive element 22 is designed to be installed above a window 34, or near the top of the window 34, similar to a traditional curtain rod. For example, as shown in FIG. 1 , drive element 22 is mounted on axles 52 that are located and secured in the end brackets 54. The end brackets 54 are adapted for connection with, for example, a window frame, sash, or wall. The end brackets 54 may also include a rubber mounting disk 13, not shown, that is compressed, and, optionally, inserted into a fmial 95 or other structure to create friction, when the drive element 22 is installed, to hold the drive element 22 firmly in place and minimize noise.

The drive element 22 may vary in size. For example, the drive element 22 may be the width of the window 34, narrower than the window 34, or wider than the window 34. The outer diameter 56 of the drive element 22 may similarly vary. In specific embodiments, the drive element has an outer diameter of the drive element that is 1 inch, 1 ¼ inches, 1 ½ inches, 2 inches, 1-2 inches, 1-1 ½ inches, 1 ½ - 2 inches, less than 1 inch, and/or greater than 2 inches. In some embodiments, the drive element 22 has a hollow portion that is sized to mount a motor 82 inside the hollow portion of the drive element 22 rather than mounting the motor 82 outside the drive element 22. Using the inside of the drive element 22 to conceal the motor 82 may give a more aesthetically pleasing design for a curtain assembly 20. Any number of materials, such as aluminum, other metals or alloys, plastics, wood, and ceramics, may be used to fabricate the drive element 22 provided the drive element 22 can support the weight of the curtain 44.

Although the FIGS. 5 and 6 show the outer surface of the drive element 22 as cylindrical in shape, the cross-sectional shape of the drive element 22 is not limited and may be non-circular. In an alternative embodiment, as shown in FIGS. 20 and 21, the rotatable drive element 22 may be tri-lobed.

GUIDE STRUCTURE

The drive element 22 has at least one guide structure 24 formed, for example, on, or into, the outer surface 26 of the drive element 22. For convenience, as a preferred embodiment employs a one or more helical guide structure, it is understood that descriptions of embodiments of the invention having helical guide structures also applies to embodiments having guide structures with other patterns. A preferred guide structure 24 is a helical guide structure 24. Such a guide structure may be a groove in some embodiments, as shown in FIGS. 7-9. The helical guide structure 24, however, is not limited to being a helical groove. For example, the guide structure 24 may be a ridge, protrusion, or other structure that can communicate with the corresponding structure of the drive attachment element to axially move the drive attachment element along the drive element when the drive element is rotated.

The helical groove 24 can extend along a portion of, or the entirety of, the drive element 22. In a preferred embodiment, the helical groove extends from one distal end portion, referred to as the motor end 58, to the opposing distal end portion, referred to as the bearings end 59, of the drive element 22. Alternatively, the helical guide structure 24 can begin and end at any desired point along the longitudinal axis of the drive element 22, and/or stop and start over various portions of the drive element, depending on the application. The length of the helical groove 24 is a factor in determining how far a curtain 44 will travel across the drive element, i.e., the entire length of the drive element 22 as opposed to some shorter section of the drive element 22. The angle of the helical groove determines how far the drive attachment element will move along the drive element for a given amount of rotation of the drive element.

In an embodiment, the helical groove 24 is formed in either a clockwise direction or a counterclockwise direction. FIG. 7 illustrates a drive element 22 having a counterclockwise helical groove 38. FIG. 8 illustrates a drive element 22 having a clockwise helical groove 40.

In one embodiment, the drive element 22 has two helical grooves 24, one formed in the clockwise direction and one formed in the counterclockwise direction. FIG. 9 illustrates a drive element 22 in which there are a counter clockwise helical groove 38 and a clockwise helical groove 40. In yet other embodiments, the drive element 22 may have four helical grooves, two clockwise helical grooves 38 and two counter clockwise helical grooves 40 as shown in FIGS. 22-24.

When two clockwise helical grooves 38 or two counter-clockwise helical grooves 40 are utilized, the two clockwise helical grooves 38, or the two counter-clockwise helical grooves 40 are preferably spaced approximately 180 degrees apart. Other spacings can also be utilized. The clockwise helical grooves 38 and the counterclockwise helical grooves 40 preferably form the same angle with the longitudinal axis. The profile of the helical grooves 38, 40 can be self-centering to allow the drive tooth 62 to traverse the intersection of the clockwise helical groove 38 and the counter clockwise helical groove 40 without binding. A beveled groove, which allows such self-centering, is shown in FIG 17.

The helical grooves 24 may be formed by forming grooves into the outer surface 26 of the drive element 22 such that the grooves 24 are recessed from the outer surface 26 of the drive element 22. Alternatively, the helical guide structures 24 may be formed as one or more protrusions that project or bulge from the outer surface 26 of the drive element 22. The protrusions may be formed in a variety of manners, for example, by winding material around the outer surface 26 of the drive element 22, forming, e.g., extruding the drive element in a manner that creates indentations in and/or projections from the outer surface of the drive element, or forming the drive element so as to have an outer surface able to apply a force in the longitudinal direction to a structure 62 of the corresponding drive attachment element 36 when the corresponding structure is engaged with the structure 24 upon rotation of the drive element about the longitudinal axis.

In an alternative embodiment, a sleeve, or outer tube 63, having helical guide structure 24 and sized to fit around a portion of the drive element 22 may be used. In this case, the drive sleeve has at least one helical groove 24 in a clockwise or counter clockwise direction formed on the outer surface of the sleeve. The sleeve/outer tube can be interconnected to an inner tube 61, or other inner drive element 9 (e.g., rod), that is rotated so as to cause the rotation of the sleeve/outer tube. The inner drive element 9 can provide sufficient stiffness to keep the sleeve from bending too much along the longitudinal axis of the sleeve from the weight of the curtains, so that the sleeve need not be sufficiently stiff to keep from bending too much along the longitudinal axis of the sleeve from the weight of the curtains. The drive element 22, which then comprises the inner drive element 9 and the outer tube or sleeve, again translates the torque from the rotation assembly to axially movement of the curtain support 67 or drive attachment element 36 across the drive element 22. In an embodiment, the drive sleeve is secured to the inner drive element to form the drive element 22 such that the sleeve does not slide up or down the inner drive element or rotate around the inner drive element 9. It may also be desired to remove the sleeve from the inner drive element 9 and replace it with another sleeve. Using a drive sleeve has the advantage that the geometry of the helical groove 24 including its length may be easily changed by removing the sleeve and replacing it without fabricating a new drive element 22.

The helical grooves 24 may also vary in angle and therefore, may differ in the amount of time (rotations of the drive element) that it takes to travel across the drive element 22. For example, a helical groove 24 with a larger angle, with respect to a plane through a cross- section of the drive element, may create a shorter path for the structure to travel and lead to a faster moving curtain 44 for a certain rotation speed of the drive element. In some embodiments, the angle of the helical grooves 24, with respect to a cross-sectional plane of the drive element, may vary along the drive element in the direction of the longitudinal axis 60 of the drive element 22 such that the curtain 44 may move at different speeds along the drive element 22, for a given rotational speed of the drive element, if desired. The angle of the helical groove 24, with respect to a cross-sectional plane of the drive element, varies from greater than 0 degrees and less than 90 degrees, preferably varies from 10 degrees to 80 degrees, more preferably varies from 20 degrees to 70 degrees, even more preferably varies from 30 degrees to 60 degrees, and is most preferably 45 degrees.

Embodiments of the subject invention relate to a method and apparatus for cutting one or more grooves in a cylindrical element. In specific embodiments, the one or more grooves are cut into an outer surface of the cylindrical element. The cylindrical element can be solid, or can have one or more hollow portions. In a specific embodiment, the cylindrical element is a hollow tube. Embodiments also pertain to a cylindrical element having one or more grooves cut in an outer surface of the cylindrical element. Further specific embodiments are directed to cylindrical elements having one or more grooves that can be utilized as a drapery or curtain tube, where the one or more grooves, in combination with rotation of the cylindrical element, can be used for moving the drapery to one or more positions along the tube, such as from an open position for the drapery or curtain to a closed position for the drapery or curtain, by engaging an interconnecting element between the drapery or curtain and the one or more grooves while rotating the tube.

A specific embodiment involves machining two grooves, 180 degrees apart, around the outer surface of a cylindrical shaft or tube with a right hand, or clockwise, twist, and/or two grooves, 180 degrees apart, around the outer surface of the cylindrical shaft or tube with a left hand, or counter clockwise, twist.

Specific embodiments of the subject method and apparatus can incorporate one or more of the following features: machining multiple single direction (right hand or left hand) grooves in the shaft or rod at the same time; machining two grooves using two single point tools spaced a distance ½ the length of the lead; machining a groove using multiple single point tools where each single point tool machines a portion of the groove, such as a single point tool machining a rough cut depth and a further single point tool machining a finish cut depth; machining multiple right hand, or clockwise, grooves in one pass along the shaft or tube and, optionally, machining multiple left hand, or counter clockwise, grooves using an opposite directional single pass along the shaft or tube, where if more than one single point tool is used for each groove, the positions of the rough cut depth tools and the finish cut depth tools are reversed between the pass and the opposite directional pass; machining two grooves in each direction within two minutes for a ten foot shaft or tube; minimum set up time; machining either multiple grooves in a single direction or multiple groove in two directions; machining a groove using two or more tools in a single pass, which reduces tool changes compared with making a separate pass for each tool; and machining two or more grooves in a single pass using different tools for each groove, such that the alignments of the grooves are more accurate compared with machining each of the two or more grooves in separate passes. ROTATION ASSEMBLY

The drive element 22 can be connected to a rotation assembly 33 for rotating the drive element 22, where the rotation of the drive element 22 moves the drive attachment element 36 along the drive element via the helical groove 24 of the drive element 22.

The rotation assembly 33 may be a pull cord 72 connected to the drive element 22 or a motor assembly 32. The drive element 22 may be rotated manually. For example, a pull cord 72 as shown in FIGS. 1-3 may be connected to the drive element 22 such that the drive element 22 can be manipulated manually to rotate when it is desired to deploy or store the curtain 44. The use of pull cords 72 is well known in the art.

A motor assembly 32 may be used to rotate the drive element 22. The motor 82 may be mounted either inside or outside the drive element 22. In one embodiment, the motor 82 is mounted inside the drive element 22 and generally concealed from plain view. Components including axles 52 and bearings 94 may also be located inside the rotatable drive element 22.

A slip ring 28 may be used to transfer current from the power supply external to the drive element 22 to the motor 82 in the drive element 22 as shown in FIG. 6. Alternatively, batteries 84 in a battery tube 86 may be used as shown in FIG. 5 to power the motor 82. The batteries 84 in the battery tube 86 may be in a spring loaded sleeve to assist with loading and unloading the batteries 84 from the battery tube. In some embodiments, a motor drive adapter 92 as shown in FIG. 6 may also be used to securely attach or connect the motor 82 to the drive element 22. In other embodiments, the motor housing fits tightly against the drive element 22 and turns the drive element 22 when the motor output shaft is held in end bracket 54 to prevent it from turning. FIG. 5 shows the interconnection of end caps 51, axles 52, bearings 94, bearing housings 57 (note the bearing housing 57 is shown on the motor end in FIG. 5, but the bearing housing 57 on the battery end is not shown), motor 82, and battery tube 86. FIG. 6 shows a slip ring 28, which is optional, and allows the circuit to be completed while rotating.

In a motorized operation, the user may push a button 98 on a remote control 96 to turn on the motor 82 to rotate the drive element 22 such that the curtain 44 moves across the drive element 22 between a stored position and a deployed position depending on the user's preference. The remote control 96 and button 98 are shown in FIGS. 1-3. In other embodiments, the motor 82 may respond to a signal from the remote control 96 that is initiated by a voice command to the remote control, which then causes the motor 82 to rotate the drive element 22. The curtain assembly 20 may also include a remote control 96 having a control board that generates a signal when the user makes a selection on the remote control 96. The control board has a transmitter that can wirelessly communicate with a receiver that is remotely located from the transmitter. For example, the receiver may be located in the motor 82 in the drive element 22. The receiver receives the transmitted signal from the transmitter and transmits it to the motor 82, which will cause the motor 16 to turn on, rotate the drive element 22, and moves the curtain 44.

As the drive element rotates, either manually or by a motor 82, the curtain 44 is engaged on the drive element 22 and moves axially along the drive element 22 to either a deployed or stored position.

CURTAIN SUPPORT, DRIVE ATTACHMENT ELEMENT AND STRUCTURE

The curtain assembly 20 can include a drive attachment element 36 having a structure 62 that communicates with the guide structure 24 to move the drive attachment element 36 axially along the drive element 22 when the drive element 22 is rotated. The curtain assembly can also include one or more idler attachment elements 67 that interconnect with the drive element to support the window covering, e.g. curtain. In specific embodiments, the drive attachment element 36 has a corresponding feature 62 that is a tooth 62 as described below.

The curtain assembly 20 of the present invention may include in some embodiments at least one drive attachment element 36 having a feature 62 that communicates with a helical guide structure 24 to move the drive attachment element 36 axially along the drive element 22 when the drive element 22 is rotated. The helical guide structure may be a helical groove 24 and the feature 62 may be a tooth. Referring to Figure 1 , one end, such as the motor end, of the curtain can be fixed 64 and the adjacent opposing end, such as the bearings end, of the curtain 66 can be attached to the drive attachment element 36. The feature 62 as a tooth is shown in FIGS. 10-12. FIG. 10 shows an enlarged perspective view of the drive attachment element 36. FIG. 11 is an enlarged side view of the drive attachment element 36 showing the drive tooth 62 according to one embodiment. FIG. 12 is an enlarged cross- sectional view of the drive attachment element 36 showing the angle a (approximately 30 degrees) of the drive tooth 67. This angle a is the same angle as the helical groove makes with respect to a cross-sectional plane of the drive element. As shown in FIGS. 10- 12, the drive attachment element 36 can be ring-shaped and slides over the drive element 22. A different construction, however, may be used for the drive attachment element 36. As an example, the drive attachment element may have one or more additional structures 62, which may follow a corresponding one or more additional grooves, and/or one or more of the structures 62 can be located at a different rotational position with respect to the longitudinal axis of the drive element when the structure is mounted onto the drive element. The drive attachment element 36 is preferably provided with a slot 99 into which a traditional curtain hook 37 can be used to connect the end of the curtain to the drive attachment element 36. Curtain pins and curtain rings that are well known in the art to hang curtains may be used.

The structure 62 is designed to communicate with or engage the helical groove 24 of the drive element to move the drive attachment element 36 axially along the drive element, thereby moving the curtain. In one embodiment, the feature is a tooth formed on an angle on the inner surface of the body of the drive attachment element. The angle a of the drive tooth 62 is specifically designed to engage the helical groove on the drive element 22. In an embodiment, a design consideration is to maximize the amount of contact between the rotating drive element 22 and the drive attachment element 36 to move the weight of the curtain. The location of the tooth 62 with respect to the drive attachment element 36, in some embodiments of the present invention, are adjustable such that the angle the location of the tooth makes with respect to the drive element when the drive attachment element is interconnected to the drive element is adjustable. This adjustability allows the user of the curtain assembly to set the correct location of the drive attachment element(s) 36 in relationship to the axial position along the drive element for a particular rotational position of the drive element, as where the tooth is positioned and where the helical groove is located for a particular angular position of the drive element determines the axial position of the drive attachment element and, therefore, the axial position of the point of the curtain attached to the drive attachment element. In this way, if it is desired for a distal end of the curtain to reach the distal end of the drive element at a particular degree of rotation of the drive element (e.g., 720°, or 3600°), then the relative rotational position of the tooth to the drive attachment element can be adjusted.

In some embodiments, the drive attachment element 36 has a first drive tooth 88 and a second drive tooth 90 as shown in FIGS.13-16. Both the first drive tooth 88 and the second drive tooth 90 are configured to communicate with different helical grooves 24 of the drive element 22. The first drive tooth 88 and the second drive tooth 90 are positioned inside the drive attachment element 36 at the top and the bottom of the drive attachment element 36, respectively. FIGS. 15 and 16 show cross-sectional views of the top and the bottom of the drive attachment element 36 which show the angle i of the first drive tooth and the angle of the second drive tooth a 2 . The angles i, a 2 are both 45 degrees. The angles i, a 2 of the first drive tooth 88 and the second drive tooth 90 are not limited to 45 degrees and are configured to communicate with the corresponding helical groove 24 of the drive element 22. In a preferred embodiment, also shown in FIGS 22-26, there are four helical grooves 26. Two are clockwise spirals 38 and two are counter-clockwise 40.

One issue with this type of helical pattern on center closing curtains is keeping the timing of the drive attachment elements and the helical groove such that the two curtains always meet in the center of the opening when the drive element is drive (rotated to the close position. This issue is further complicated by being able to cut down the length of the tube to fit smaller windows. If a quad-helix drive element (two clockwise and two counterclockwise helixes) is cut down to a length that is not a multiple of ½ the pitch of the helixes, the drive attachment elements of the right curtain and the left curtain (for a dual curtain assembly) may not meet in the middle of the drive element. See FIG 26. The adjustable drive attachment element can allow the teeth to be repositioned inside the drive attachment element such that the drive attachment element can start from a different axial position along the drive element and end at the desired axial position in the center, or other desired axial position. This adjustment of the position of the tooth with respect to the drive attachment element can correct the offset caused by the odd length of the drive element, e.g., from cutting an end off, and allows the right curtain drive attachment element and the left attachment element to meet in the middle.

The gear teeth between the "Clicker" and "Gear Ring" parts of the adjustable drive attachment element, in a specific embodiment, do not allow the "Clicker" to rotate when it is on the tube. In this case, removing the adjustable drive attachment element from the drive element allows the user to adjust the "Clicker" manually by disengaging it from the Gear Ring. The outward force of the drive element on the Clicker's gear teeth essentially locks it into the Gear Ring. Specific embodiments allow the tooth to be repositioned about one inch in either direction. For a drive element where ½ the pitch length is two inches, rotating the tube 180 degrees before installing the adjustable drive attachment element changes the starting position by ½ pitch length, which will correct the adjustable drive attachment element's starting position to an acceptable degree.

Although the structure 62 described in the embodiments above is a tooth, other embodiments for the structure 62 may be used as well.

SIMPLE ATTACHMENT ELEMENTS

The curtain assembly 20 may further comprise a plurality of idle attachment elements 67 connected to the drive element 22 for sliding movement along the drive element 22. The remaining attachment points 68 of the curtain 34 that are not connected to the drive attachment element 36 can then be suspended from the drive element 22 using one or more idler attachment elements 67.

Referring to Figure 1, the curtain has one fixed end 64 and an adjacent opposing end 66 that is connected to the drive attachment element 36. The remaining ends (or attachment points) of the curtain 68 are positioned between the fixed end 64 and the adjacent opposing end 66 that is connected to the drive attachment element 36. These remaining attachment points 68 may be suspended from the drive element 22 using a plurality of idler attachment elements 67. The idler attachment elements 67 are interconnected to the rotatable drive element 22 as shown in FIGS. 1-4. Such interconnection of idler attachment elements 67 can be such that the idler attachment element surrounds a portion of, or all of, the circumference of the cross-section of the drive element and hangs freely on the drive element. In other embodiments, the idler attachment elements can be also interconnected with a structure external to the drive element.

The idler attachment elements 67 may be shaped similar to the drive attachment element 36. In some embodiments, the idler attachment elements 67 may have a smooth bore to allow free movement along the drive element 22 as the curtain moves. In other embodiments, the idler attachment elements 67 may have a tooth to assist in the movement of the curtain across the drive element. In embodiments having a tooth, the drive element can have a region that frees the tooth when the simple attachment element reaches a certain axial region of the drive element, such as an end of the drive element, going one axial direction, and re-engages the tooth as the idler attachment element is pulled in the other axial direction out of the same axial direction.

As shown in FIGS. 1-4, the idler attachment elements 67 may be rings that slide over the drive element 22. The idler attachment elements 67 may be provided with a slot or a hole (not shown) into which a traditional curtain hook (or loop) 37 is used to attach the remaining attachment points 68 of the curtain 44 to the idler attachment element 67 as shown in FIGS. 4-6. Curtain pins and curtain rings that are well known in the art to hang curtains may be used.

PULL RODS AND PROGRAMMING

In some embodiments, the drive attachment element 36 has a single tooth 62 and is a loose fit on the drive element 22. In these cases, the curtain assembly 20 can include a draw rod 70 connected to the drive attachment element 36 wherein the drive tooth 62 is disengaged from the guide structure 24 of the drive element 22 by applying force on the draw rod 70. The draw rod 70 may be an elongated rod or any other mechanism that is configured to allow the user to manually disengage the drive attachment element 36 from the guide structure 24. The draw rod can then be used to axially move the drive attachment element along the drive element.

The motor 82 for the curtain assembly 20 may be programmed from the factory with a preset number (integer or fractional) of drive element 22 revolutions to move the curtain axially across the drive element 22. There are a variety of reasons, however, why this preset number of revolutions may change. For example, the drive element 22 may be shortened (e.g., cut) to accommodate a narrower window 34 or the curtain has been manually moved with the draw rod 70 and not moved by the pull cord 72.

Therefore, in an embodiment, the initial setup of the motor 82 is able to count the number of revolutions the drive element 22 makes to fully open and fully close the curtain 44. This setup may be accomplished by a setup routine in which a program button is pressed once on a remote control 96 to start the motor 82 moving the curtain 44 and then pressing the button a second time, either to stop the movement or after the movement has stopped, which stores the number of revolutions the curtain 44 has moved.

In a specific embodiment, the number of revolutions can be confirmed by pressing the program button a third time, which reverses the motor 82 and moves the curtain 44 in the opposite direction. Pressing the program button a fourth time, either to stop the curtain 44 or after the movement has stopped, can cause the number of counts to be compared, and set a new count in the memory to complete the set up routine. If the program button on the remote control 96 is not pressed the second time, the motor 82 can run until the preset count is reached, then shut off. Alternatively, the assembly can implement some sort of maximum axial distance detector or force detector, or clutch, such that the motor stops, or stops rotating the drive element, respectively, when a threshold force is encountered trying to move the drive attachment element.

If it is desired to automatically move the curtain after the curtain was manually moved, the user can press the program button twice on the remote control 96, which will cycle the curtain twice. This resynchronizes the curtain movement count by first moving the curtain to one distal end of the drive element followed by moving the curtain 44 to the opposite distal end of the drive section, i.e., two cycles.

When the curtain 44 is moved towards its fully deployed position, as shown in FIG. 1, the drive attachment element 36 is driven by the rotation of the helical groove 24 on the drive element 22 acting on the feature in the drive attachment element until the drive element 22 rotates a set number of revolutions and stops in the fully deployed position.

CENTER CLOSING EMBODIMENTS

Referring to FIG. 4, a specific embodiment of the curtain assembly 20 is shown in which the curtain 44 used is a center closing curtain 46. As described above, a center closing curtain 46 is composed of two fabric panels, a right panel 50 and a left panel 48, which meet in the center of the window 42 to close and cover the window 34.

The center closing curtain 46 is in the deployed position and the window 34 is covered in FIG. 4. The drive element 22 has a clockwise helical groove 38 and a counter clockwise helical groove 40 formed on the outer surface 26 of the drive element 22. The clockwise helical groove 38 and counter clockwise helical groove 40 have the same angle and oppose each other to create the correct movement of the center closing curtain 46 when the drive element 22 rotates.

To accommodate a center closing curtain 46, the curtain assembly 20 has a left drive attachment element 74 and a right drive attachment element 76 as shown in FIG. 4. The left drive attachment element 74 is connected to the adjacent opposing end 66 of the left panel 48 and the right drive attachment element 76 is connected to adjacent opposing end 66 of the right panel 50. In other words, the left panel 48 has a fixed end 64 and an adjacent opposing end 66 that is connected to the left drive attachment element 74. The right panel 50 has a fixed end 64 and an adjacent opposing end 66 that is connected to the right drive attachment element 76. There may also be a left draw rod 78 and a right draw rod 80 attached to the left drive attachment element 74 and the right drive attachment element 76, respectively. The tooth 62 of the right drive attachment element 76 can follow the counterclockwise helical groove 40 and the tooth 62 of the left drive attachment element 74 can follow the clockwise helical groove 38, such that when the drive element is rotated in a first rotational direction the left panel 48 and right panel 50 both close and when the drive element is rotated in the opposite direction the left panel 48 and right panel 50 both open. In a specific embodiment, the drive element has only one or more clockwise helical grooves 24 on the left end of the drive element, on which the closed left panel 48 hangs, and the drive element has only one or more counter-clockwise helical grooves on the right end of the drive element, on which the closed right panel 50 hangs.

DUAL CURTAIN

Referring to FIGS. 27-30, a dual curtain assembly 1 is provided. The dual curtain assembly 1 comprises a rotatable drive element 22 wherein at least one helical structure 24 is formed on the outer surface 26 of the drive element 22; curtain drive elements 36A and 36B having a corresponding structure that communicates with the helical structure 24 to move the curtain supports axially along the drive element 22 when the drive element 22 is rotated and; a rotation assembly 33 for rotating the drive element 22.

In some embodiments of the invention, the helical structure 24 is a helical groove and the corresponding structure is a tooth. While the helical structure 24 is shown in FIGS. 27-30 as a helical groove, the helical structure is not limited to a groove. Similarly, the corresponding structure discussed below in some embodiments is a tooth but is not limited to being a tooth. In some embodiments, the curtain support includes an outer curtain outer curtain drive attachment element 36 A and an inner curtain drive element 36B as shown in FIGS. 27-30 and explained further below.

The curtain assembly 1 may further comprise an outer curtain 44A and an inner curtain 44B; the outer curtain 44A is suspended from the rotatable drive element 22 while the inner curtain 44B is suspended from hooks 17 in carrier tracks 12 and 81 that move along the support guide 11. The rotatable drive element 22 comprises at least one drive element 22 having opposing distal end portions 35, 36, where the distal end having the motor can be referred to as the motor end 58 and the other distal end can be referred to as the bearing end 59, wherein at least one helical groove 24 is formed in either a clockwise direction or a counterclockwise direction on the outer surface 26 of the drive element 22 extending from one distal end portion 35, 36 of the drive element 22 to the opposing distal end portion 35, 36 of the drive element 22.

When the drive element 22 is rotated, either the outer curtain 44 A or the inner curtain 44B will move along the drive element 22, while the other curtain is held in place in a non- driving or stall area. Once the moving driver attachment element 36A or 36B has reached a stall area at the end of the drive element 22, the non-moving driver attachment element will be tugged to engage the helical groove 24. This movement of the outer curtain 44 A and the inner curtain 44B, along the helical groove 24 of the drive element 22 is explained in greater detail below. Whether the outer curtain 44A moves or the inner curtain 44B moves is determined by the sequence of the movement of the curtains. A system for selecting either the outer curtain 44A or the inner curtain 44B is explained below.

As shown in FIG. 27, the outer curtain 44A and inner curtain 44B may be composed of a single continuous panel of fabric that moves back and forth across the drive element 22 to the deployed position (covering the window 34) and to the stored position (not covering the window 34). Although, there is no limitation on the type of fabric used for the curtains 44A and 44B, in one embodiment, the outer curtain 44A is a blackout curtain and the inner curtain 44B is a sheer curtain. Using a blackout curtain with a sheer curtain to cover the same window 34 allows the user to use the sheer curtain when some light is desired and then also to use the blackout curtain when no light is desired. For example, the blackout curtain may be stored and the sheer curtain may be deployed, if some light is desired and privacy is needed. The blackout curtain may be deployed and the sheer curtain may be deployed when no light is desired. The blackout curtain may be stored and the sheer curtain may also be stored, when light is desired and privacy is not needed. The dual curtain assembly 1 disclosed herein allows for these combinations of positions for the outer curtain 44A (blackout curtain) and the inner curtain 44B (sheer curtain) as shown in FIGS. 27-30.

FIG. 27 illustrates a curtain assembly 1 when the outer curtain 44A is a blackout curtain in the deployed position and the inner curtain 44B is a sheer curtain in the deployed position. Therefore, in FIG. 27, the window 34 is covered by the outer curtain 44A or the blackout curtain and the inner curtain 44B. FIG. 28 illustrates a curtain assembly 1 when the outer curtain 44A is a blackout curtain in the stored position and the inner curtain 44B is a sheer curtain in the deployed position. The window 34 is covered by the sheer curtain and the blackout curtain is stored in this instance. FIG. 29 illustrates a curtain assembly 1 when the outer curtain 44 A is a blackout curtain in the stored position and the inner curtain 44B is a sheer curtain in the stored position. The window 34 is left uncovered in this instance.

FIG. 30 illustrates the preferred embodiment curtain assembly 1 when the outer curtain 44A is a blackout curtain in the deployed position and the inner curtain 44B is a sheer curtain in the deployed position. Therefore, in FIG. 27, the window 34 is covered by the outer curtain 44A or the blackout curtain and the inner curtain 44B. Further, the outer curtain has the stationary end attached to the end bracket 54 and the movable end wrapped around the other end bracket 54 on the distal end. There is also a cut away area to show the position of an external power supply 43.

DRIVE ELEMENT AND DRIVE SECTION

The rotatable drive element 22 and drive element 22 will now be explained in detail below. The curtain assembly 1 includes a rotatable drive element 22. FIGS. 31 and 32 show the rotatable drive element 22 and its components in greater detail. Both the outer curtain 44A and the inner curtain 44B are connected to the rotatable drive element 22 by the outer curtain outer curtain drive attachment element 36A or the inner curtain attachment drive element 5 or various attachment and suspension elements as explained below. The rotation assembly 33 which rotates the drive element 22 moves these attachment drive elements which are connected to the curtains 44 A and 44B separately across the drive element 22.

The rotatable drive element 22 is designed to be installed above a window 34 similar to a traditional curtain rod. For example, as shown in FIG. 27, drive element 22 is mounted on axles 52 that are located and secured in the end brackets 54. The end brackets 54are adapted for connection with a window frame, sash or wall. The end brackets 54may also include a rubber mounting disk 13 that is compressed when the drive element 22 is installed to hold the drive element 22 firmly in place and minimize noise.

The drive element 22 is connected to a rotation assembly 33 for rotating the drive element 22 wherein the rotation of the drive element 22 moves the outer curtain drive attachment element 36A and the inner curtain drive element 36B separately across the helical groove 24 of the drive element 22. The rotation assembly 33 may be a draw cord 72 connected to the drive element 22 or a motor 82. The drive element 22 may be rotated manually. For example, a draw cord 72as shown in FIGS 27-29 may be connected to the drive element 22 such that the drive element 22 can be manipulated manually to rotate when it is desired to deploy or store the curtains 44 A or 44B. The use of pull cords 72is well known in the art.

The drive element 22 may also be connected to a motor 82, which can be used to rotate the drive element 22. The motor 82 may be mounted either inside or outside the drive element 22. In one embodiment, the motor 82 is mounted inside the drive element 22 and generally concealed from plain view. Components including axles 52 and bearings 94 may also be located inside the rotatable drive element 22. A slip ring 28 may be used to transfer current from the power supply 43 external to the drive element 22 to the motor 82 in the drive element 22 as shown in FIG. 32. Alternatively, batteries 84 in a battery tube 86 may be used as shown in FIG. 31 to power the motor 82. The batteries 84in the battery tube 86may be in a spring loaded sleeve to assist with loading and unloading batteries 84 from the battery tube 86. In some embodiments, the motor drive adapter 27 as shown in FIG. 59 may also be used to securely attach or connect the motor 82 to the drive element 22. In other embodiments, the motor housing 53 fits tightly against the drive element 22 and turns the drive element 22 when the motor output shaft 87 is held in end bracket 54 to prevent it from turning.

In a motorized operation, the user may push a button 98 on a remote control 96 to turn on the motor 16 to rotate the drive element 22 such that the sequence selected curtain 44 A or 44B moves across the drive element 22 between a stored position and a deployed position depending on the user's preference. The remote control 96 and button 98 are shown in FIGS. 27-29. In other embodiments, the remote control may respond to a voice command and send a signal to the motor controls, which then causes the motor 82 to rotate the drive element 22.

The curtain assembly 1 may also include a remote control 96 having a control board which generates a signal when the user makes a selection on the remote control 96. The control board has a transmitter which can wireless communicate with a receiver which is remotely located from the transmitter. For example, the receiver may be located in the drive element 22. The receiver receives the transmitted signal from the transmitter and transmits it to the motor 82, which will cause the motor 82 to turn on, rotate the drive element 22, and moves one of the curtains 44A or 44B.

As the drive element 22 rotates, either manually or by a motor 82, the outer curtain drive attachment element 36A or the inner curtain drive attachment element 36B is engaged on the drive element 22 and moves across the drive element 22 to either a deployed or stored position while the other curtain 44A or 44B remains in place. When the moving curtain 44A or 44B reaches the end of the drive element 22, the stationary curtain 44A or 44B will be pulled into engagement with the helical groove 24 and move across the drive element 22 to a new position.

The rotatable drive element 22 is preferably cylindrical in shape as shown in FIGS. 31, 32, 34, and 59, which shows the drive element 22 having an inner tube, referred to as an inner drive element 9, and an outer tube or sleeve 63. However, the shape of inner drive element 9 and an outer tube or sleeve 63 of the drive element 22 are not limited and can be non-circular. In an alternative embodiment, as shown in FIG. 60, the rotatable drive element 22 may be tri-lobed. In this case the drive element is a spiraled tube having creases that a ball bearing can ride in.

The drive element 22 may vary in size. For example, the drive element 22 may be the width of the window 34 or it may be wider than the window 34. There is no limitation on the diameter of the drive element 22 other than space needed inside a room. Preferably, the drive element 22 is configured to mount a motor 82 inside the drive element 22 rather than mounting the motor 82 outside the drive element 22. Using the inside of the drive element 22 to conceal the motor 82 may give a more aesthetically pleasing design for a curtain assembly 1 or 20. Any number of materials may be used to fabricate the drive element 22 provided the drive element 22 can support the weight of the outer and inner curtains 44A, 44B.

The drive element 22 comprises a guide structure 24, such as a helical groove, over at least one or more portions of the length of the drive element 22. The drive element 22 has opposing distal end portions 35, 59 and may be any length along the longitudinal axis 60 of the drive element 22. The longitudinal axis 60 of the drive element 22 is shown in FIGS. 27- 30. The length of the guide structure along the drive element 22 is a factor in determining how far the curtain 44A or 44B will travel across the drive element 22, i.e., the entire length of the drive element 22 as opposed to some shorter section of the drive element 22.

In an embodiment, the drive element 22 has at least one helical groove 24 that is formed in either a clockwise direction or a counterclockwise direction on the outer surface 26 of the drive element 22 extending from one distal end portion 35, 59 of the drive element 22 to the opposing distal end portion 35, 59 of the drive element 22. FIG. 49 illustrates a left hand drive element 22 in which the helical groove 24 is in a clockwise direction and also illustrates a right hand drive element 22 in which the helical groove 24 is in a counterclockwise direction.

In some embodiments, the drive element 22 may have two helical grooves 24, one formed in the clockwise direction and one formed in the counterclockwise direction as shown in FIG. 59. A drive element 22 having a drive element 22 with helical grooves 24 in both directions is particularly useful for center closing curtains 46as explained below.

In the preferred embodiment, the drive element 22 may have two helical grooves 24 in the same direction, where the inner drive attachment element 36B has two teeth 5a and 5b spaced 180 degrees apart and the outer drive attachment element 36A has two teeth 4a and 4b spaced 180 degrees apart, such that tooth 4a, and tooth 5a, engages one of the helical grooves and tooth 4b, and tooth 5b, engages the other helical groove at the same time, respectively, so as to add stability with respect to driving Drive attachment element 36 A, and 36B, respectively.

In other embodiments, the drive element preferably has four helical grooves 24, two clockwise helical grooves 24 and two counterclockwise helical grooves 24 as shown in FIG. 59. A cross-sectional view of the rotatable drive element having four helical grooves 24, two clockwise helical grooves and two counterclockwise helical grooves is shown in FIG. 59. Helical grooves are preferably spaced approximately 180 degrees apart. The clockwise helical grooves 24 and the counterclockwise helical grooves 24 preferably opposed each other and are spaced 180 degrees apart. The profile of the helical grooves 24 is self-centering to allow the first outer drive tooth 4a and the first inner drive tooth 5a to traverse the intersection of the clockwise helical groove and the counter clockwise helical groove without binding.

The helical groove 24 forms a path through the drive element 22 of the drive element 22 as shown in FIGS. 27-30. As the drive element 22 rotates, one of the curtains 44 A or 44B is pulled along the helical groove 24 across the drive element 22 into a deployed or stored position. Both the clockwise and the counterclockwise helical grooves 24 will cause the curtain 44A or 44B to move axially across the drive element 22 when the drive element 22 rotates and the curtain drive elements 36 A or 36B are engaged with the helical groove 24.

The helical grooves 24 may be formed by forming grooves into the outer surface 26 of the drive element 22 such that the grooves are recessed from the outer surface 26 of the drive element 22. Alternatively, the helical grooves 24 may be formed as protrusions that project or bulge from the outer surface 26 of the drive element 22. The protrusions may be formed any means, for example, by winding material around the outer surface 26 of the drive element 22.

The angle of the helical groove 24 may vary and therefore, may differ in the amount of time that it takes to travel across the drive element 22. For example, a helical groove 24 with a larger angle may create a shorter path for the curtain 44A, 44B to travel and result in a faster moving curtain 44A or 44B for a given rotational speed of the drive element. In some embodiments, the angle of the helical grooves 24 may vary along the drive element 22 such that the curtain 44A, 44B may move at different speeds along the drive element 22, for a given rotational speed of the drive element, if desired. The angle of the helical groove 24 preferably varies from 30 degrees to 60 degrees and is most preferably 45 degrees.

In an alternative embodiment, the drive element 22 may be formed from a drive sleeve or outer tube 63 that is sized to fit around a portion of an inner drive element 9, which can be, for example, an inner tube 61. In this case, the drive sleeve has at least one helical groove 24 in a clockwise or counter clockwise direction formed on the outer surface of the sleeve. The drive element 22 must be able to translate the torque from the rotation assembly to axially movement of the curtain support or attachment elements 36A, 36B across the drive element 22, and the drive sleeve may be made from a high lubricity material. Therefore, the drive sleeve can be secured to the inner drive element 9 such that the sleeve does not slide up or down the drive element 22 or rotate around the inner drive element 9. It may also be desired to remove the sleeve from the inner drive element 9 and replace it with another sleeve. Using a sleeve to form the drive element 22 has the advantage that the helical groove 24 or the length of the drive element 22 may be easily changed by removing the sleeve and replacing it without fabricating a new drive element 22.

ATTACHMENT ELEMENTS AND TEETH

In some embodiments, the curtain assembly 1 may include at least one outer curtain drive attachment element 36A connected to the drive element 22 and has a drive teeth 4a and 4b that communicates with the helical groove 24 to move the outer curtain drive attachment element 36A axially along the drive element 22 when the drive element 22 is rotated. The outer curtain drive attachment element 36A is connected one end of the outer curtain 44A. The curtain assembly 1 may include at least one inner drive attachment element 36B connected to the drive element 22 and has a drive teeth 5a and 5b that communicates with the helical groove 24 to move the inner drive attachment element 36B axially along the drive element 22 when the drive element 22 is rotated. The inner drive attachment element 36B is connected one end of the inner curtain 44B.

FIGS. 45-47 show the front and cross-sectional views of the outer curtain drive attachment element 36A as well as the drive teeth 5a and 5b. Both the first outer drive tooth 5a and the second outer drive tooth 5b are configured to communicate with the helical groove 24 of the drive element 22. The first outer drive tooth 5a and the second outer drive tooth 5b are positioned inside the outer drive attachment element 36A which shows the angle a of one drive tooth and both the angles are 45 degrees.

FIGS. 39-41 show the front and cross-sectional views of an embodiment of an inner drive attachment element as well as the drive teeth 4a and 4b. Both the inner drive tooth 4a and the inner drive tooth 4b are configured to communicate with the helical groove 24 of the drive element 22. The inner drive tooth 4a and the inner drive tooth 4b are positioned inside the drive attachment element which shows the angle a of one drive tooth and both the angles are 45 degrees. In this embodiment, the inner carrier attachment post 31 is located at a portion of the inner drive attachment element designed to interconnect with a carrier in the inner curtain carrier track 81.

FIGS. 36-38 show the front and cross-sectional views of an alternative inner drive attachment element 36B as well as the drive teeth 4a and 4b. Both the inner drive tooth 4a and the inner drive tooth 4b are configured to communicate with the helical groove 24 of the drive element 22. The inner drive tooth 4a and the inner drive tooth 4b are positioned inside the drive attachment element which shows the angle a of one drive tooth and both the angles are 45 degrees. In this embodiment, the inner carrier attachment post 31 can be the same as the outer carrier attachment post 6 of Figures 45-47 designed to interconnect with a carrier in the outer curtain carrier track 12, and the attachment points of the inner curtain can attach via hooks to the receiver for hooks 99.

As shown in various figures, the outer curtain outer curtain drive attachment element 36A and the inner curtain drive element 36B are ring-shaped and slide over the drive element 22. Although a different construction may be used for the outer curtain outer curtain drive attachment element 36A and the inner curtain drive element 36B, they are be able to connect to the appropriate ends of the outer curtain 44A and the inner curtain 44B and engage the helical groove 24 and move across the drive element 22.

The outer curtain outer curtain drive attachment element 36A is preferably provided with a slot or a hole 99 into which a traditional curtain hooks or pins can be used to connect the ends and upper edge of the outer curtain 44 A to the appropriate attachment element. FIG. 34 illustrates an example of the hole 99 and a pin hook 14 on an outer curtain idler attachment element 67A. In another embodiment, as shown in FIG. 60, a traditional curtain ring is used. The inner curtain 44B is suspended by S-hooks 17 in inner curtain carrier track 81 in support guide 11. Curtain pins, hooks and rings are well known in the art to hang curtains 44 A, 44B.

The drive tooth 5a on the outer drive attachment element 36A and the drive tooth 4a on the inner drive attachment element 36B may have the same construction. The outer drive tooth 5a and the inner drive tooth 4a are both designed to engage with the helical groove 24 of the drive element 22 to drive the curtain 44 A or 44B across the drive element 22. In one embodiment, the drive tooth 5a is formed on an angle inside the body of the outer curtain drive attachment element 36A. The angle is specifically designed to engage the helical groove 24 on the drive element 22. A design consideration is to maximize the contact between the rotating drive element 22 and the outer drive attachment element 36A and/or inner drive attachment element 36B to carry the weight of the curtain 44A or 44B. The outer curtain outer curtain drive attachment element 36A and the drive teeth 5a and the inner curtain drive attachment element 36B teeth and the inner curtain teeth 4a, in some embodiments of the present invention, are adjustable. The adjustability of these components allow the user of the curtain assembly to set the correct timing on the location of the outer curtain drive attachment element(s) 36A and inner curtain drive attachment element(s) 36B in relationship to the helical grooves 24.

Although the curtain support described in the embodiments above is an outer curtain outer curtain drive attachment element 36 A and an inner curtain drive attachment element 36B, other embodiments for the curtain support may be used as well.

OUTER CURTAIN IDLER ATTACHMENTS

The curtain assembly 1 may further comprise a plurality of outer curtain idler attachment 67A connected to the rotatable drive element 22 for sliding movement along the drive element 22 wherein the adjacent ends of the outer curtain 44 A that are not connected to the outer curtain drive attachment element 36A are suspended from the drive element 22 using one or more outer idler attachment elements 67A.

The outer curtain 44A has the movable end connected to the outer drive attachment element 36A. The non-movable end of the outer curtain 44A can be attached to the end bracket 54. Outer idler attachment elements 67A may be used to suspend the remaining attachment points of outer curtain 44 A to the drive element 22. The outer idler attachment elements 67A are connected to the rotatable drive element 22 as shown in FIGS. 31-32 and 34-35. An enlarged view of the outer idler attachment 67A is shown in FIGS. 42-44. The outer idler attachment 67A may be shaped similar to the outer drive attachment element 36A and inner drive attachment element 36B. The outer idler attachment 67A can have a smooth bore to allow free movement along the drive element 22 of the tube as the curtain 44A is moved or may have a tooth on each outer idler attachment 67A to assist in the movement of the curtain 44A.

The outer idler attachments are also linked to the outer curtain carriers 69by the insertion of the outer carrier attachment post 6 on the outer idler attachment elements 67A into the aperture 55 on outer curtain guide carrier 69. The outer current carriers are then positioned in the outer curtain carrier track 12 in the support guide 11. This prevents the outer curtain idler attachment 67A from rotating or binding the rotation of the element 22.

The outer curtain idler attachment 67A are preferably provided with a slot or a hole 99 into which a traditional curtain hook or pin can be used to attach the ends of the outer curtain 44 A to the outer curtain idler attachment. FIG. 42 illustrates an example of this hole 99 and a pin hook 14 on an outer curtain idler attachment 67A.

The inner curtain 44B can have the stationary end connected to the end bracket 54and other end attached to the inner drive attachment element 36B. The inner curtain carrier track 81 and hooks 17 may be used to suspend the remaining attachment points of the inner curtain 44B to the inner curtain carrier track 81 of the support guide 11 along the axis of the drive element 22.

The outer curtain 44A is connected to the outer drive attachment element 36A and the inner curtain 44B is attached to the inner drive attachment element 36B. This arrangement ensures that the outer curtain 44A and inner curtains 44B drive attachment elements 36A and 36B are linked together on the same drive element 22 and they are able to move in sequence across the drive element 22.

OUTER DRIVER STALL AREA AND INNER DRIVER STALL AREA

The curtain assembly 1 preferably includes at least one outer driver stall area 100 positioned to one end of the drive element 22 to engage and disengage the outer drive attachment element 36 A from the helical groove 24 of the drive element 22.

The curtain assembly 1 also preferably includes at least one inner driver stall area 15 positioned on the distal end of the drive element 22 that is configured to hold the inner curtain drive element 36B in place while the outer drive attachment element 36A moves through the drive element 22. FIGS. 33-34 show an outer driver stall area 100 at one distal portion 35, 59 of the drive element 22. FIG. 51 shows the inner driver stall area 15 at the opposing distal end 35, 59 of the drive element 22. FIG. 49 shows a rotatable drive element 22 having an outer driver stall area 100 at each distal end portion of the drive element 22 and an inner driver stall area 15 positioned in between the two stall areas s 100. The rotatable drive element 22 shown in FIG. 49 will accommodate the outer curtains 44 A and inner curtains 44B, as center closing curtains.

Enlarged views showing details of the outer driver stall area 100 are shown in FIG. 34. The outer driver stall area 100 is a section of the drive element 22 along the drive element 22 without a helical groove 24 formed on the outer surface 26 of the drive element 22. The outer driver stall area 100 interrupts the movement of the outer curtain 44 A or the inner curtain 44B along the helical groove 24 therefore allowing the curtain assembly 1 to change which attachment element (either the outer curtain drive attachment element 36 A or the inner curtain drive element 36B) is engaged with the helical groove 24.

The outer driver stall area 100 also serves to collect or provide a space for the outer curtain idler attachment elements 67A as well as the outer curtain drive attachment element 36A. For example, when the outer curtain drive attachment element 36A is engaged and moves through the drive element 22, it will reach the outer driver stall area 100 at the end of the drive section. The outer driver stall area 100 stops the movement of the outer curtain drive attachment element 36 A in the helical groove 24 and temporarily stores the outer curtain drive attachment element 36A. The outer curtain idler attachment elements 67A that are holding the remaining adjacent end of the curtain 44 A are pushed by the outer curtain drive attachment element 36A and ultimately stack up in the outer driver stall area 100 until the outer curtain drive attachment element 36A becomes disengaged with the helical groove 24 and will remain stalled until the drive element 22 rotates in the opposite direction. As this disengagement occurs, the outer curtain drive attachment element 36A pushes against the outer curtain idler attachment 67A in the outer driver stall area 100 which moves the inter- curtain engager 49 toward the end bracket 54. The inner curtain 44B, being the correct length, pulls the inner curtain drive element out of the inner driver stall area 15 and into engagement with the helical grooves 24.

In some embodiments, the inner driver stall area 15 is positioned at the distal end 59 of the drive element 22 opposite the outer driver stall area 100 and functions to hold the inner curtain drive element 36B stalled in place. In other embodiments, at least one inner driver stall area 15 is positioned between two outer driver stall areas 100, as shown in FIG. 49. The position of the inner driver stall area 15 on the drive element 22 defines the end of the portion of the drive element 22 where the inner curtain drive element 36B travels on the drive element 22.

As described above, FIG. 27 shows a curtain assembly 1 when the outer curtain 44A (blackout) is in the deployed position and the inner curtain 44B is also in the deployed position. At this moment, the outer curtain 44A is fully extended and the curtain drive attachment element 36A is in the helical groove 24 at one distal end of the drive element 22 and the inner curtain drive element 36B is in the inner driver stall area 15 at the same end of the drive element 22. To change the positions of the curtains such that the outer curtain 44 A is in the stored position and the inner curtain 44B stays in the deployed position as shown in FIG. 28, the drive element 22 starts to rotate in the opposite direction. The rotation of the drive element 22 will move the outer curtain drive attachment element 36 A, attached to outer curtain 44A, collapsing curtain 44A into the stored position until outer curtain drive attachment element 36A moves into the outer driver stall area 100 where it will push against the outer idler attachment elements 67A in the outer driver stall area and force the inter- curtain engager 49 toward the end bracket 54 creating a tug pressure on the inner curtain 44B and the inner curtain drive element 36B because the inner curtain 44B is the correct length and extended. This tug pressure pulls the inner curtain drive element 36B out of the inner driver stall area 15 and into engagement with the helical groove 24 positioning the curtains as shown in FIG. 28. When the inner curtain 44B is fully extended, the inner curtain drive element 36B will move into the inner driver stall area 15. Because the inner curtain is now extended, the outer curtain drive attachment element 36A will be pulled into the helical groove 24 prepared to deploy the outer curtain 44A. Because the inner driver stall area 15 does not have a helical groove 24, the inner curtain attachment 36B element is prevented from moving or stalled along the drive element 22.

As the outer drive attachment element 36A moves through the drive element 22, the outer curtain 44A will move from the stored position to the fully deployed position and the outer drive attachment element 36A moves up to and against the inner curtain drive element 36B in the inner driver stall area 15 and stops the drive element 22 from rotating The curtain assembly 1 will then be as shown in FIG. 27, with the outer curtain 44A in the deployed position and the inner curtain 44B in the deployed position. To move the inner curtain 44B to the stored position as shown in FIG. 29, the drive element 22 will rotate and the outer drive attachment element 36A moving into the outer driver stall area 100 will pull the inner curtain drive element 36B from the inner driver stall area 15 thereby engaging the inner curtain drive element 36B with the helical groove 24. The inner curtain drive element 36B will move the curtain 3 through the drive element 22 from the deployed position to the stored position at the other distal end of the drive element 22 until the inner curtain drive element 36B pushes against the outer drive attachment element 36A and stops the drive element 22 from rotating. At this point, the inner drive attachment element 36B is engaged with the helical groove 24.

GUIDE MECHANISM

The curtain assembly 1 preferably includes a support guide 11 wherein the guide means facilitates the movement of the outer and inner curtains 44A, 44B along the drive element 22 without misalignment. The support guide 11 may also assist with the spacing of the curtain panels when the outer curtain 44A or the inner curtain 44B is fully extended in the deployed position.

In one embodiment, the support guide 11 is an elongated pair of channels positioned parallel to the rotatable drive element 22. The support guide 11 is shown in several of the figures, including an end view in in FIG. 48. The inner curtain carrier track 81 and the outer curtain carrier track 12 are the same part but are numbered differently and discussed differently because their functions are different. The inner curtain carriers 93 have apertures 55 where an inner carrier attachment post 31 on the inner curtain drive element 36B is inserted at one end of the inner curtain and an inner carrier attachment post 31 on the inter- curtain engager 49 is inserted on the other end. The remaining inner curtain carriers 93have S-hooks 17 inserted into the aperture 55 as known in the art.

The outer drive attachment element 36A and the outer curtain idler attachment 67A preferably have a hanger pin hole 99 wherein the pin hooks 14 are connected to the attachment elements and support the outer curtain 44A. Further, these attachment elements 36A and 67A to the outer curtain 44A are guided and held from rotation by the insertion of the outer carrier attachment posts 6 into the apertures 55 in curtain carriers 69riding in the outer curtain carrier track 12 in support guide 11.

This arrangement provides the user with the option of manually operating the movement of the curtains 44 A or 44B across the drive element 22. For example, the user may decide to manually operate the curtain assembly 1. The user could turn off the motor 82 and rotate the drive element 22 manually by using the pull cord 72.

The motor 82 for the curtain assembly 1 may be programmed from the factory with a preset number of drive element 22 revolutions to move the curtain the width of the window 34 opening. However, there are a variety of reasons why this preset number of revolutions may change. For example, the drive element 22 may be shortened to accommodate a narrower window 34.

Therefore, the initial setup of the motor 82 may be able to count the number of revolutions the drive element 22 makes to fully open and fully close the curtains 44A or 44B. This may be accomplished by a setup routine where pressing a program button 98 on a remote control 96 once to start the motor 82 moving the curtain 44A, 44B and then pressing the button 98 another time to stop the movement which will store the number of revolutions the curtain 44A, 44B has moved.

The number of revolutions can be confirmed by pressing the program button 98 a third time, which will reverse the motor 16 and move the curtain 44 A, 44B in the opposite direction. Pressing the program button 98 a fourth time will stop the curtain 44A, 44B, compare the counts, and set a new count in the memory to complete the set up routine. If the program button 98 on the remote control 96 is not pressed the inner time, the motor 82 will run until the preset count is reached, then the motor 82 will shut off. If the number of revolutions is ever lost, the controls can reset a zero position when the outer curtain drive attachment element 36 A stops the drive element 22 from rotating when the outer curtain 44 A is fully deployed, as shown in FIG. 52 or when the outer curtain 44A and the inner curtain 44B are fully stored and the inner curtain drive element 36B stops the drive element 22 from rotating, as shown in FIG. 54.

In specific embodiments, the drive element 22 stops rotating when the inner driver attachment element 36B and the outer driver attachment element 36A are brought into contact at either end of the drive element. When the inner driver attachment element 36B and the outer driver attachment element 36 A are brought into contact, the inner driver attachment element 36B and the outer driver attachment element 36A bind together and their teeth bind in the drive element's grooves. The interconnection of the inner driver attachment element 36B and the outer driver attachment element 36A to the support guide 11 in opposite orientations helps to cause this binding. Once the inner driver attachment element 36B and the outer driver attachment element 36A bind together, the drive element is bound, and the controller board senses that the driver element is no longer rotating and stops running the motor.

In specific embodiments, the stall area 100 and/or 15 prevents one of the inner driver attachment element 36B and the outer driver attachment element 36 A from moving down the drive element 22. When the inner driver attachment element 36B and the outer driver attachment element 36 meet each other, the axial force (down the rotational axis of the rotating drive element) binds the stalled driver to the still-driving driver. This, coupled with the weight of the curtain hanging from the outer driver and the interconnection of the inner driver attachment element 36B and the outer driver attachment element 36A to the support guide, causes the driver whose teeth are still engaged to the tube to bind up with the rotational drive element. At that point, this driver is being torqued so as to try and rotate around the axis of rotation and prevented from such rotation by the support guide, which stalls the motor and signals the controller board to stop running the motor.

The dual curtain assembly mounted in rubber mounting disk 13 increases the sensitivity of motion such that a person can pull on the stored or deployed curtain and activate the motor to move the curtain in the opposite direction from the last movement. The motor controls will count the number of revolutions and when the predetermined count is matched it will shut the motor down.

CENTER CLOSING EMBODIMENTS

An alternative embodiment of the dual curtain assembly 1 is shown in FIGS. 49 and 50 in which the outer curtain 44A and the inner curtain 44B are center closing curtains. A center closing curtain is composed of two fabric panels, a right panel and a left panel, that meet in the center of the window 34 to close and cover the window 34. In FIG. 50, the outer curtain 44A is a center closing blackout curtain that is in the deployed position and the inner curtain 44B is a center closing sheer curtain that is also in the deployed position. In FIG. 49, the outer curtain 44A is a center closing blackout curtain that is in the stored position and the inner curtain 44B is a center closing sheer curtain that is in the deployed position. In this embodiment, the drive element 22 of the drive element 22 preferably has four helical grooves 24, two formed in the clockwise direction and two formed in the counterclockwise direction. For example, the opposing helical grooves 24 shown in FIG. 59 create the correct movement of the center closing curtains with one motor 82 turning the drive element 22 in one direction. FIG. 59 shows an enlarged cross-sectional view of the rotatable drive element according to one embodiment of the curtain assembly showing the four helical grooves formed on the outer surface of the drive element. FIG. 59 also shows an enlarged perspective view of the rotatable drive element according to one embodiment of the curtain assembly showing the four helical grooves formed on the outer surface of the drive element.

To accommodate center closing curtains, the curtain assembly 1 has a left outer drive attachment element 36A, a right outer drive attachment element 36A, a left inner drive element 36B and a right inner drive attachment element 36B as shown in FIGS. 49 and 50. The left outer drive attachment element 36A is connected to one end of the left panel of the outer curtain 44A. The right outer drive attachment element 36A is connected to one end of the right panel of the outer curtain 44A. The left inner drive element 36B is connected to an adjacent end of the left panel of the inner curtain 44B and the opposite end of the inner curtain is attached to the end bracket 54. The right inner drive attachment element 36B is connected to adjacent end of the right panel of the inner curtain 44B and the opposite end of the inner curtain is attached to the end bracket 54.

FIG. 49 shows an embodiment of a rotatable drive element 22 in which the outer curtain 44A and the inner curtain 44B are both center closing curtains. There is an outer driver stall area 100 positioned at each distal end of the rotating drive element 22 and an inner driver stall area 15 positioned between the outer driver stall area s 100. For example, there is a left outer driver stall area 100 positioned along the drive element 22 to engage and disengage the left outer drive attachment element 36A from the helical groove 24 of the drive element 22 and a right outer driver stall area 100 positioned along the drive element 22 to engage and disengage the right outer drive attachment element 36A from the helical groove 24 of the drive element 22. The inner driver stall area 15 is configured to hold the left inner n drive element 36B in place while the left drive attachment element 36B moves through the drive element 22. The same inner driver stall area 15 is also configured to hold the right inner drive attachment element 36B in place while the right inner drive attachment element 36B moves through the drive element 22. Alternative embodiments can have two separate inner driver stall area 15. FIG. 49 illustrates that the left and right inner drive attachment elements 36B will meet in the center 42 of the window 34 when the outer curtain 44A is deployed and the inner curtain 44B is stored to minimize light leakage. Therefore, the single inner driver stall area 15 in some embodiments is wide enough to fit both the left inner curtain drive element 36B and the right inner curtain drive attachment element 36B. FIGS. 63A-63L show flowcharts implemented by the control system for specific embodiments of the invention.

Method and Apparatus for Machining one or more grooves on outer surface of Cylindrical Element

Embodiments of the subject invention relate to a method and apparatus for machining one or more grooves on an outer surface of a cylindrical element. The terms rod or shaft can refer to a solid cylindrical object that may be made of a single material or multiple materials, and may be homogeneous or may be inhomogeneous, such as having layers or changes in materials, densities, and/or other material properties, along the length of the cylinder and/or as a function of radius and/or rotational position with respect to the longitudinal axis of the cylindrical element. The term tube can refer to a hollow cylindrical element that can have one or more features cut into or on an inner surface of the hollow passageway through the hollow cylindrical element. Other types of cylindrical elements can also be machined in accordance with embodiments of the subject invention, including, but not limited to, cylindrical elements having one or more partial or full bores through the cylindrical elements, and/or one or more features cut into or on an outer surface of the cylindrical element. Specific embodiments relate to machining a single spiraling groove or multiple spiraling grooves. For embodiments with multiple grooves, the grooves may all have the same handedness, or may differ in handedness. Embodiments having two grooves are provided as an example to teach certain features of various embodiments, where embodiments having a single groove to machine more than two grooves, or alternatively, a single groove.

Specific embodiments include, but are not limited to, the following:

(i) machining one or more grooves around the outer surface of a shaft or tube with a right hand, or clockwise, twist or with a left hand, or counter clockwise, twist, which, in a further specific embodiment, allows the shaft or tube to be used to drive a carrier along the shaft or tube when the shaft or tube is rotated.

(ii) machining two or more grooves around the outer surface of a shaft or tube, where at least one groove has a right hand, or clockwise, twist and at least one other groove has a left hand, or counter clockwise, twist, which, in a further specific embodiment, allows the shaft or tube to be used to drive a right hand and/or a left hand carrier along the shaft or tube when the shaft or tube is rotated. (iii) machining one or more grooves, in accordance with (i), including machining at least two grooves.

(iv) machining two or more grooves, in accordance with (ii), including machining at least two right hand grooves and at least two left hand grooves.

(v) machining one or more grooves, in accordance with (i), where the one or more grooves are 180 degrees apart.

(vi) machining one or more grooves, in accordance with (i) and/or (ii), where the one or more grooves are cut by a 0.250 inch diameter cutter at a depth of 0.040 inches.

(vii) machining grooves, in accordance with (i) and/or (ii), wherein the grooves are 180 degrees apart.

(viii) machining grooves, in accordance with (i) and/or (ii), using a rough cut tool to cut a rough portion of each groove and a finish cut tool to cut a finish portion of each groove, where the spacing of the rough cut tool and the finish cut tool is one half the lead of the groove.

A specific embodiment of the subject invention will be described to illustrate several features that can be incorporated with various embodiments of the invention. Referring to FIGS. 1-3, an embodiment of an apparatus set up for cutting a pair of spiraling grooves 12 on a rod or tube 1 is shown, with the rod or tube 1 placed and secured on a lathe 10. The handedness of the grooves 12 can be right handed (clockwise) or left handed (counterclockwise). The handedness of the grooves, for a certain rotational direction of the rod or tube, can be selected by the directional engagement of the directional lever 7, where the directional lever controls the direction the cutting tool moves with respect to the rotating cylindrical element. The traversing speed of the tool post 5 is set by one of the speed adjusters, which, for a given rotation speed and cylinder radius, will also set the traversing lead of the groove 12, where the traversing lead is the angle the groove 12 makes with respect to an axis parallel to the longitudinal axis of the cylindrical element. Lever 6 is used to engage the lead screw, which is geared to the chuck or spindle to generate the desired lead.

The groove cutting tools 11 are secured in the tool holder 9 on the tool post 5. The rod or tube 1 is placed in the chuck 8 of the lathe 10. A vertical backup roller 4 is placed against the top surface of the rod or tube 1 and a horizontal back up roller 3 is placed against the back side of the rod or tube 1 to support the rod while the grooves 12 are cut, as known in the art. The tool 11 cutting depth can be set differently for each set of tools 11, as shown in FIG. 3. While several settings can be used, in the shown embodiment the first, or rough, cutter cuts into the cylindrical element to an initial depth, which is more than half of the total groove depth, and the last, or finish, cutter cuts further into the cylindrical element to deepen the groove 12. Although the rough cutter cuts into the cylindrical element more than the finish cutter in this embodiment, in other embodiments the finish cutter can cut more than half of the groove's depth. In an embodiment, the top of the cutter, which can be flat is perpendicular to a plane tangent to the drive element at the point of contact between the cutter and the drive element.

In the embodiment shown in Figure 3, the cylindrical element is rotating such that the top surface of the cylindrical element is coming out of the page, and the tool post 5 is moving from right to left with respect to the element 1. There are four cutters, with the first two cutters, shown on the left, making the rough depth cuts, set at a certain depth, for two separate grooves 12, and the two finish cutters, shown on the right, cutting farther into the respective groove. In the embodiment shown in FIG. 3, the rough cuts (on left in Figure 3) are 0.030 inches deep, while the finish cut (on right in Figure 3) adds an additional 0.010 inches of depth to the groove for a final groove depth of 0.040 inches.

In an embodiment, the two rough cutters are spaced one-half of a lead from each other and the two finish cutters are spaced one-half of a lead from each other, such that the two grooves are spaced 180°, or one-half of a lead, apart, where a lead is defined as the linear distance along the axis of the shaft or tube that is covered by one 360° rotation of the groove. Any number of cutters can be used to cut each groove, but to avoid two passes of the tool post 5 down the rotating element when two cutters (e.g., rough and finish) are used for each groove, two cutters are needed for each groove. The embodiment shown in Figure 3 produces a pair of spiraling grooves as shown in FIGS. 7-8. In this embodiment, the two grooves are spaced 180°, or one-half of a lead, apart, but other embodiments have spacing greater than or less than 180°.

Referring to FIGS. 4-6, the apparatus from FIGS. 1-3 is shown being used for cutting two opposing pairs of spiraling grooves 12 on a rod or tube, with the rod or tube 1 still in place and secured on a lathe 10 and the tool post 5 traveling in the other direction after the first pair of grooves were finished. Figure 1 shows the point where a little less than half the length of the first pair of grooves have been cut and the tool post 5 is moving from right to left. The vertical backup roller 4 is again placed against the top surface of the rod or tube 1 and a horizontal roller 3 is placed against the back side of the rod or tube 1 to support the rod while the grooves 12 having the opposite handedness of the pair of grooves shown being cut in FIG. 3 are cut, as known in the art.

The grooves 12 of opposite handedness can be cut over (intersecting) the original grooves 12 by switching the rough cutter tool holder 9 (e.g., 9R in FIGS. 2 and 3) and the finish cutter tool holder 9 (e.g., 9F in FIGS. 2 and 3) and reversing the directional lever 6 such that the tool post 5 is moved in the opposite direction with respect to the rotating cylindrical element as when the original grooves were cut. The traversing speed of the tool post 5 can remain the same as during the first pass and the rotation speed of the cylindrical element can remain the same as during the first pass, such that the traversing lead stays the same. If the same cutters are used for rough and finish cutting, rather than switching the rough cutters tool holder 9 (e.g., 9R in FIGS. 2 and 3) and the finish cutters tool holder 9 (e.g., 9F in FIGS. 2 and 3), the cutting depth of the groove cutting tools 11 can be changed, such that cutters set to the rough depth on the first pass (11 A and 11B in 9R in FIG. 3) are set to the finish depth on the second pass (11 A and 11B in 9F in FIG. 6) and the cutters set to the finish depth on the first pass (11 A and 11B in 9F in FIG. 3) are set to the rough depth on the second pass (11 A and 11B in 9R in FIG. 6), and secured in the tool holder 9 on the tool post 5. In the embodiment shown in FIGS. 7-8, there are four cutters with the first two cutters making a rough depth cut set at a rough depth and the finish cutters cutting farther into the groove to the final depth. In the embodiment shown in FIGS. 7-8, the rough cut is 0.030 inches deep while the finish cut cuts an additional 0.010 inches resulting in a depth of 0.04 inches for the groove.

Again, the two rough cutters are spaced one -half a lead from each other and the two finish cutters are spaced one-half of a lead from each other. As before, any number of cutters can be used, but to avoid needing two passes of the tool post 5 down the rotating element when two tools are used for each groove, two rough cutters and two finish cutters are needed. For embodiments having two right hand grooves and two left hand grooves, and using a rough cutter and a finish cutter for each groove, four cutters are needed to accomplish the four grooves in two passes. This produces two opposing pairs of spiraling grooves as shown in FIGS. 9-10. In this embodiment, the grooves are spaced 180° apart, as measured around the perimeter of the rod, but other embodiments having spacing greater than or less than 180° are contemplated. In regard to the tolerance of the groove "pitch" spacing, embodiments of the subject tool holder ensure such spacing is consistent. In an embodiment, a 4.0" lead works well in relation to speeds and feed capability of the curtain, but other leads are also utilized. An embodiment has a tolerance of +/-0.12" on the pitch, which is based on the feed speed of the machine (lathe) cutting the grooves and should be very consistent.

The groove radius can be based on a .125 Radius tool, by using a machining center to cut the groove and a 1/4" ball end mill. In embodiments using a lathe, different cutters are used. The actual finished shape of the groove is approximately a true radius at .118". Different tools can be used for each cut on the tube such that the finished groove is .118 Radius.

In an embodiment using a lathe, the tolerances for the groove depth are +/-.010".

FIG. 11A shows a perspective view of a stock bit, or tool, 11 used to cut a portion of an outer surface or a tube or shaft to create a groove in the outer surface of the tube or shaft, where the angle Θ that the bit's front portion ball 13, which faces the outer surface of the tube or shaft, make with respect to a line 14 perpendicular to the top surface 15 at the bit 11. The angle Θ for a specific stock bit 11 is approximately 11°. FIG. 11B shows an embodiment of bit 11 that can be utilized to cut a portion of a groove 12 in accordance with an embodiment of the subject invention, which has an Θ > 30°. The increase angle allows the bit to cut a portion of a groove that has a lead angle that might cause the standard bit to rub the side of the groove during cutting, particularly for the bit 11 cutting a finish portion, or deepest portion, of the groove. FIG. 11C shows an embodiment of a bit 11 in accordance with the subject invention having an angle Θ of 45°. Specific embodiments of the invention can utilize bits 11 having an angle Θ > 15°, Θ > 20°, Θ > 25°, Θ > 30°, Θ > 35°, Θ > 40°, Θ > 45°, 15° > Θ > 20°, 20° > Θ > 25°, 25° > Θ > 30°, 30° > Θ > 35°, 35° > Θ > 40°, and/or 40° > Θ > 45°. The bit can be produced by, for example, grinding away a portion of a standard bit having an angle Θ = 11°. Various embodiments can utilize rough cutter bits and finish cutter bits that are the same or different, two cutter bits for two grooves that are the same or different, in shape, size, material, or other properties.

FIGS. 12A, 12B, and 12C show an embodiment of a tool holder 9 that incorporates two rows of tools 11, a top row that has tools 11 for cutting grooves in a tube or shaft where the tool holder 9 is moved right to left with respect to the rotating tube or shaft, and a bottom row that has tools 11 for cutting grooves in a tube or shaft where the tool holder 9 is moved left to right with respect to the rotating tube or shaft, where for both the top row and bottom row, rough cutters start cutting the grooves and finish cutters finish the grooves. The embodiment shown in FIGS. 12A-12C incorporates 5 pairs of cutters where each pair, having a left cutter and a right cutter, cuts further than the adjacent pair, and the five left cutters of the five pairs cuts a first groove and the five right cutters of the five pairs cuts a second groove, and the top row cuts a pair of grooves of a first handedness and the bottom row cuts a pair of grooves of the opposite handedness.

Embodiments of the invention are directed to a method and apparatus for cutting one or more grooves into an outer surface of a cylindrical element. A specific embodiment, which can be referred to as Embodiment one, involves:

rotating a cylindrical element about a longitudinal axis of the cylindrical element; where, while rotating the cylindrical element about the longitudinal axis, further incorporating:

moving a rough cutter and the rotating cylindrical element with respect to each other in a direction parallel to the longitudinal axis, where the rough cutter moves from a rough start position to a rough end position, wherein the rough start position has a rough axial start position along a length of the cylindrical element and a rough rotational start position about the longitudinal axis, where the rough end position has a rough axial end position along a length of the cylindrical element and a rough rotational end position about the longitudinal axis; and

moving a finish cutter and the rotating cylindrical element with respect to each other in a direction parallel to the longitudinal axis, wherein the finish cutter moves from a finish start position to a finish end position, where the finish start position has a finish axial start position along the length of the cylindrical element and a finish rotational start position about the longitudinal axis, where the finish end position has a finish axial end position along a length of the cylindrical element and a finish rotational end position about the longitudinal axis;

where, while moving the rough cutter from the rough start position to the third position, positioning the rough cutter with respect to an outer surface of the cylindrical element such that the rough cutter cuts away a rough portion of the outer surface,

where, while moving the finish cutter from the finish start position to the finish end position, positioning the finish cutter with respect to the outer surface of the cylindrical element such that the finish cutter cuts away a finish portion of the outer surface, where, cutting away the rough portion and cutting away the finish portion creates a groove in the outer surface of the cylindrical element.

Moving the cutters and the rotating element can be accomplished by rotating the element in place and moving the cutters along the outer surface of the rotating element, holding the cutters in place and moving the rotating element, or moving both the cutters and the rotating element. The rough cutter and finish cutter can be started at the same rotational positions or at different rotational positions, these rotational positions can remain the same as the cutters and rotating element are moved relative to each other, or can vary, and the speed of such relative movement can vary or be constant. The rotating element can be rotated at a constant rotational speed or the rotational speed can vary while the rotating element and cutters move with respect to each other. The cutters can remain in constant contact with the outer surface of the rotating element or can be disengaged from contact with the outer surface, the cutters can cut to a constant depth when engaged with the outer surface or the depth can vary while engaged with the outer surface, the rough cutter and the finish cutter can move at the same speed or different speed and such speeds can be constant or vary. Likewise, embodiments using two rough cutters and/or two finish cutters can have the rough cutters and/or the finish cutters move at the same speed or different speeds, during the relative motion of the rotating element and the cutters. Two passes can be made in the same direction or in opposite directions, as desired. The cylinder can be rotated in either direction, with an appropriate position of the cutters.

In specific embodiments, incorporating the limitations of Embodiment one, when the finish rotational start position is the same as the rough rotational start position, the finish axial start position is axially separated from the rough axial start position by n leads, where a lead is an axial distance covered by one 360° rotation of the groove in the outer surface of the cylindrical element and n is an integer having a value of 1 or greater. This allows the finish cutter to cut further into the groove started by the rough cutter. In a specific embodiment, n = 1 , and the axial start positions are separated by one lead.

In a specific embodiment, which can be referred to as Embodiment two, wherein the rough rotational end position is the same as the rough rotational start position, wherein the finish rotational end position is the same as the finish rotational start position, wherein the finish rotational start position is the same as the rough rotational start position, where while moving the rough cutter from the rough start position to the rough end position, the rough cutter is maintained at the rough rotational start position, where while moving the finish cutter from the finish start position to the finish end position, the finish cutter is maintained at the finish rotational start position, where rotating the cylindrical element comprises rotating the cylindrical element at a constant speed of rotation, where moving the rough cutter from the rough start position to the rough end position comprises moving the rough cutter from the rough start position to the rough end position at a first axial speed, wherein the first axial speed is a constant axial speed, where moving the finish cutter from the finish start position to the finish end position comprises moving the finish cutter from the finish start position to the finish end position at the first axial speed, where the finish axial start position is axially separated from the rough axial start position by n leads, where a lead is an axial distance covered by one 360° rotation of the groove in the outer surface of the cylindrical element and n is an integer having a value of 1 or greater, where n = 1.

In a further embodiment, which can be referred to as Embodiment three, incorporating the limitations of Embodiment one, while rotating the cylindrical element about the longitudinal axis, further including:

moving a second rough cutter and the rotating cylindrical element with respect to each other in the direction parallel to the longitudinal axis, wherein the second rough cutter moves from a second rough start position to a second rough end position, where the second rough start position has a second rough axial start position along the length of the cylindrical element and a second rough rotational start position about the longitudinal axis, where the second rough end position has a second rough axial end position along the length of the cylindrical element and a second rough rotational end position about the longitudinal axis; and

moving a second finish cutter and the rotating cylindrical element with respect to each other in a direction parallel to the longitudinal axis, wherein the second finish cutter moves from a second finish start position to a second finish end position, where the second finish start position has a second finish axial start position along the length of the cylindrical element and a second finish rotational start position about the longitudinal axis, where the second finish end position has a second finish axial end position along the length of the cylindrical element and a second finish rotational end position about the longitudinal axis; where while moving the second rough cutter from the second rough start position to the second rough end position, positioning the second rough cutter with respect to the outer surface of the cylindrical element such that the second rough cutter cuts away a second rough portion of the outer surface, where while moving the second finish cutter from the second finish start position to the second finish end position, positioning the second finish cutter with respect to the outer surface of the cylindrical element such that the second finish cutter cuts away a second finish portion of the outer surface,

where cutting away the second rough portion and cutting away the second finish portion creates a second groove in the outer surface of the cylindrical element.

In a further specific embodiment, which can be referred to as Embodiment four, incorporating the limitations of Embodiment three, the second finish axial start position is axially separated from the second rough axial start position by m leads, where m is an integer having a value of 1 or greater. In this way the second finish cutter follows in the groove started by the second rough cutter. In a specific embodiment, m = 1.

In a further specific embodiment, which can be referred to as Embodiment five, incorporating the limitations of Embodiment four, where the second rough axial start position is axially separated from the finish axial start position by (p + ½) leads, where p is an integer having a value of zero or greater, where p = 0.

In a further specific embodiment, which can be referred to as Embodiment six, incorporating the limitations of Embodiment one, while rotating the cylindrical element about the longitudinal axis, further incorporating:

moving a second rough cutter and the rotating cylindrical element with respect to each other in the direction parallel to the longitudinal axis, where the second rough cutter moves from a second rough start position to a second rough end position, where second rough start position has a second rough axial start position along the length of the cylindrical element and a second rough rotational start position about the longitudinal axis, where second rough end position has a second rough axial end position and a second rough rotational end position; and

moving the second finish cutter and the rotating cylindrical element with respect to each other in the direction parallel to the longitudinal axis, where the second finish cutter moves from a second finish start position to an second finish end position, where the second finish start position has a second finish axial start position along the length of the cylindrical element and a second finish rotational start position about the longitudinal axis, where the second finish end position has a second finish axial end position and a second finish rotational end position; where while moving the second rough cutter from the second rough start position to the second rough end position, positioning the second rough cutter with respect to the outer surface of the cylindrical element such that the second rough cutter cuts away a second rough portion of the outer surface,

where while moving the second finish cutter from the second finish start position to the second finish end position, positioning the second finish cutter with respect to the outer surface of the cylindrical element such that the second finish cutter cuts away a second finish portion of the outer surface,

where cutting away the second rough portion and cutting away the second finish portion creates a second groove in the outer surface of the cylindrical element.

A specific embodiment, which can be referred to as Embodiment seven, relates to a method and apparatus for cutting two grooves into an outer surface of a cylindrical element, involving:

rotating the cylindrical element about the longitudinal axis of a cylindrical element; moving a first cutter and the rotating cylindrical element with respect to each other in the direction parallel to the longitudinal axis, where the first cutter moves from a first start position to a first end position, where the first start position has a first axial start position along a length of the cylindrical element and a first rotational start position about the longitudinal axis, where the first end position has a first axial end position along a length of the cylindrical element and a first rotational end position about the longitudinal axis; and moving a second cutter and the rotating cylindrical element with respect to each other in the direction parallel to the longitudinal axis, where the second cutter moves from a second start position to a second end position, where the second start position has a second axial start position along the length of the cylindrical element and a second rotational start position about the longitudinal axis, where the second end position has a second axial end position along a length of the cylindrical element and a second rotational end position about the longitudinal axis;

where while moving the first cutter from the first start position to the first end position, positioning the first cutter with respect to an outer surface of the cylindrical element such that the first cutter cuts away a first portion of the outer surface,

where while moving the second cutter from the second start position to the second end position, positioning the second cutter with respect to the outer surface of the cylindrical element such that the second cutter cuts away a second portion of the outer surface, where cutting away the first portion creates a first groove in the outer surface of the cylindrical element, and

where cutting away the second portion creates a second groove in the outer surface of the cylindrical element.

In a further specific embodiment, which can be referred to as Embodiment eight, incorporating the limitations of Embodiment seven, the first rotational end position is the same as the first rotational start position, the second rotational end position is the same as the second rotational start position, the second rotational start position is the same as the first rotational start position, where while moving the first cutter from the first start position to the first end position, the first cutter is maintained at the first rotational start position, where while moving the second cutter from the second start position to the second end position, the second cutter is maintained at the second rotational start position, where the second rotational start position is the same as the first rotational start position, where rotating the cylindrical element comprises rotating the cylindrical element at a constant speed of rotation, where moving the first cutter from the first start position to the first end position comprises moving the first cutter from the first start position to the first end position at a first axial speed, where the first axial speed is a constant axial speed, wherein moving the second cutter from the second start position to the second end position comprises moving the second cutter from the second start position to the second end position at the first axial speed, where the second axial start position is axially separated from the first axial start position by a separation axial distance, where the second groove is separated from the first groove by the separation axial distance, where the separation axial distance is (k + ½) leads, where a lead is an axial distance covered by one 360° rotation of the first groove in the outer surface of the cylindrical element and k is an integer having a value of zero or greater, where k = 0.

Additional Methods and Apparatus for Machining one or more grooves on outer surface of Cylindrical Element

The following embodiments 1-35 may or may not share features of the above- referenced Embodiments one to eight, but are referred to as Embodiments 1 to 35, which numbering of embodiments is not necessarily related to the description of Embodiment one to eight. Embodiment 1. A method of cutting one or more grooves into an outer surface of a cylindrical element, comprising:

rotating a cylindrical element about a longitudinal axis of the cylindrical element; wherein while rotating the cylindrical element about the longitudinal axis, further comprising:

moving a rough cutter and the rotating cylindrical element with respect to each other in a direction parallel to the longitudinal axis, wherein the rough cutter moves from a rough start position to a rough end position, wherein the rough start position has a rough axial start position along a length of the cylindrical element and a rough rotational start position about the longitudinal axis, wherein the rough end position has a rough axial end position along a length of the cylindrical element and a rough rotational end position about the longitudinal axis; and

moving a finish cutter and the rotating cylindrical element with respect to each other in a direction parallel to the longitudinal axis, wherein the finish cutter moves from a finish start position to a finish end position, wherein the finish start position has a finish axial start position along the length of the cylindrical element and a finish rotational start position about the longitudinal axis, wherein the finish end position has a finish axial end position along a length of the cylindrical element and a finish rotational end position about the longitudinal axis;

wherein while moving the rough cutter from the rough start position to the third position, positioning the rough cutter with respect to an outer surface of the cylindrical element such that the rough cutter cuts away a rough portion of the outer surface,

wherein while moving the finish cutter from the finish start position to the finish end position, positioning the finish cutter with respect to the outer surface of the cylindrical element such that the finish cutter cuts away a finish portion of the outer surface,

wherein cutting away the rough portion and cutting away the finish portion creates a groove in the outer surface of the cylindrical element.

Embodiment 2. The method according to embodiment 1, wherein the rough rotational end position is the same as the rough rotational start position.

Embodiment 3. The method according to embodiment 2, wherein the finish rotational end position is the same as the finish rotational start position. Embodiment 4. The method according to embodiment 3, wherein the finish rotational start position is the same as the rough rotational start position.

Embodiment 5. The method according to embodiment 2, wherein while moving the rough cutter from the rough start position to the rough end position, the rough cutter is maintained at the rough rotational start position.

Embodiment 6. The method according to embodiment 3, wherein while moving the finish cutter from the finish start position to the finish end position, the finish cutter is maintained at the finish rotational start position.

Embodiment 7. The method according to embodiment 4, wherein while moving the rough cutter from the rough start position to the rough end position, the rough cutter is maintained at the rough rotational start position, wherein while moving the finish cutter from the finish start position to the finish end position, the finish cutter is maintained at the finish rotational start position.

Embodiment 8. The method according to embodiment 1, wherein rotating the cylindrical element comprises rotating the cylindrical element at a constant speed of rotation.

Embodiment 9. The method according to embodiment 7, wherein rotating the cylindrical element comprises rotating the cylindrical element at a constant speed of rotation.

Embodiment 10. The method according to embodiment 9, wherein moving the rough cutter from the rough start position to the rough end position comprises moving the rough cutter from the rough start position to the rough end position at a first axial speed, wherein the first axial speed is a constant axial speed, wherein moving the finish cutter from the finish start position to the finish end position comprises moving the finish cutter from the finish start position to the finish end position at the first axial speed.

Embodiment 11. The method according to embodiment 10, wherein the finish axial start position is axially separated from the rough axial start position by n leads, where a lead is an axial distance covered by one 360° rotation of the groove in the outer surface of the cylindrical element and n is an integer having a value of 1 or greater.

Embodiment 12. The method according to embodiment 11 , wherein n = 1.

Embodiment 13. The method according to embodiment 12, wherein while rotating the cylindrical element about the longitudinal axis, further comprising:

moving a second rough cutter and the rotating cylindrical element with respect to each other in the direction parallel to the longitudinal axis, wherein the second rough cutter moves from a second rough start position to a second rough end position, wherein the second rough start position has a second rough axial start position along the length of the cylindrical element and a second rough rotational start position about the longitudinal axis, wherein the second rough end position has a second rough axial end position along the length of the cylindrical element and a second rough rotational end position about the longitudinal axis; and

moving a second finish cutter and the rotating cylindrical element with respect to each other in a direction parallel to the longitudinal axis, wherein the second finish cutter moves from a second finish start position to a second finish end position, wherein the second finish start position has a second finish axial start position along the length of the cylindrical element and a second finish rotational start position about the longitudinal axis, wherein the second finish end position has a second finish axial end position along the length of the cylindrical element and a second finish rotational end position about the longitudinal axis; wherein while moving the second rough cutter from the second rough start position to the second rough end position, positioning the second rough cutter with respect to the outer surface of the cylindrical element such that the second rough cutter cuts away a second rough portion of the outer surface,

wherein while moving the second finish cutter from the second finish start position to the second finish end position, positioning the second finish cutter with respect to the outer surface of the cylindrical element such that the second finish cutter cuts away a second finish portion of the outer surface,

wherein cutting away the second rough portion and cutting away the second finish portion creates a second groove in the outer surface of the cylindrical element. Embodiment 14. The method according to embodiment 13, wherein the second rough rotational start position, the second finish rotational start position, the second rough rotational end position, and the second finish rotational end position are the same as the rough rotational start position.

Embodiment 15. The method according to embodiment 14, wherein while moving the second rough cutter from the second rough start position to the second rough end position, the second rough cutter is maintained at the second rough rotational start position wherein while moving the second finish cutter from the second finish start position to the second finish end position, the second finish cutter is maintained at the second finish rotational start position.

Embodiment 16. The method according to embodiment 15, wherein moving the second rough cutter from the second rough start position to the second rough end position comprises moving the second rough cutter from the second rough start position to the second rough end position at the first axial speed, wherein moving the second finish cutter from the second finish start position to the second finish end position comprises moving the second finish cutter from the second finish start position to the second finish end position at the first axial speed.

Embodiment 17. The method according to embodiment 16, wherein the second finish axial start position is axially separated from the second rough axial start position by m leads, where m is an integer having a value of 1 or greater.

Embodiment 18. The method according to embodiment 17, wherein m = 1.

Embodiment 19. The method according to embodiment 18, wherein the second rough axial start position is axially separated from the finish axial start position by (p + ½) leads, wherein p is an integer having a value of zero or greater.

Embodiment 20. The method according to embodiment 19, wherein p = 0. Embodiment 21. The method according to embodiment 1, wherein while rotating the cylindrical element about the longitudinal axis, further comprising:

moving a second rough cutter and the rotating cylindrical element with respect to each other in the direction parallel to the longitudinal axis, wherein the second rough cutter moves from a second rough start position to a second rough end position, wherein second rough start position has a second rough axial start position along the length of the cylindrical element and a second rough rotational start position about the longitudinal axis, wherein second rough end position has a second rough axial end position and a second rough rotational end position; and

moving the second finish cutter and the rotating cylindrical element with respect to each other in the direction parallel to the longitudinal axis, wherein the second finish cutter moves from a second finish start position to an second finish end position, wherein the second finish start position has a second finish axial start position along the length of the cylindrical element and a second finish rotational start position about the longitudinal axis, wherein the second finish end position has a second finish axial end position and a second finish rotational end position;

wherein while moving the second rough cutter from the second rough start position to the second rough end position, positioning the second rough cutter with respect to the outer surface of the cylindrical element such that the second rough cutter cuts away a second rough portion of the outer surface,

wherein while moving the second finish cutter from the second finish start position to the second finish end position, positioning the second finish cutter with respect to the outer surface of the cylindrical element such that the second finish cutter cuts away a second finish portion of the outer surface,

wherein cutting away the second rough portion and cutting away the second finish portion creates a second groove in the outer surface of the cylindrical element.

Embodiment 22. A method of cutting two grooves into an outer surface of a cylindrical element, comprising:

rotating the cylindrical element about the longitudinal axis of a cylindrical element; moving a first cutter and the rotating cylindrical element with respect to each other in the direction parallel to the longitudinal axis, wherein the first cutter moves from a first start position to a first end position, wherein the first start position has a first axial start position along a length of the cylindrical element and a first rotational start position about the longitudinal axis, wherein the first end position has a first axial end position along a length of the cylindrical element and a first rotational end position about the longitudinal axis; and moving a second cutter and the rotating cylindrical element with respect to each other in the direction parallel to the longitudinal axis, wherein the second cutter moves from a second start position to a second end position, wherein the second start position has a second axial start position along the length of the cylindrical element and a second rotational start position about the longitudinal axis, wherein the second end position has a second axial end position along a length of the cylindrical element and a second rotational end position about the longitudinal axis;

wherein while moving the first cutter from the first start position to the first end position, positioning the first cutter with respect to an outer surface of the cylindrical element such that the first cutter cuts away a first portion of the outer surface,

wherein while moving the second cutter from the second start position to the second end position, positioning the second cutter with respect to the outer surface of the cylindrical element such that the second cutter cuts away a second portion of the outer surface,

wherein cutting away the first portion creates a first groove in the outer surface of the cylindrical element, and

wherein cutting away the second portion creates a second groove in the outer surface of the cylindrical element.

Embodiment 23. The method according to embodiment 22, wherein the first rotational end position is the same as the first rotational start position.

Embodiment 24. The method according to embodiment 23, wherein the second rotational end position is the same as the second rotational start position.

Embodiment 25. The method according to embodiment 24, wherein the second rotational start position is the same as the first rotational start position.

Embodiment 26. The method according to embodiment 22, wherein while moving the first cutter from the first start position to the first end position, the first cutter is maintained at the first rotational start position. Embodiment 27. The method according to embodiment 24, wherein while moving the second cutter from the second start position to the second end position, the second cutter is maintained at the second rotational start position.

Embodiment 28. The method according to embodiment 25, wherein while moving the first cutter from the first start position to the first end position, the first cutter is maintained at the first rotational start position, wherein while moving the second cutter from the second start position to the second end position, the second cutter is maintained at the second rotational start position.

Embodiment 29. The method according to embodiment 28, wherein the second rotational start position is the same as the first rotational start position.

Embodiment 30. The method according to embodiment 22, wherein rotating the cylindrical element comprises rotating the cylindrical element at a constant speed of rotation.

Embodiment 31. The method according to embodiment 29, wherein rotating the cylindrical element comprises rotating the cylindrical element at a constant speed of rotation.

Embodiment 32. The method according to embodiment 31, wherein moving the first cutter from the first start position to the first end position comprises moving the first cutter from the first start position to the first end position at a first axial speed, wherein the first axial speed is a constant axial speed, wherein moving the second cutter from the second start position to the second end position comprises moving the second cutter from the second start position to the second end position at the first axial speed.

Embodiment 33. The method according to embodiment 32, wherein the second axial start position is axially separated from the first axial start position by a separation axial distance, wherein the second groove is separated from the first groove by the separation axial distance. Embodiment 34. The method according to embodiment 33, wherein the separation axial distance is (k + ½) leads, where a lead is an axial distance covered by one 360° rotation of the first groove in the outer surface of the cylindrical element and k is an integer having a value of zero or greater.

Embodiment 35. The method according to embodiment 34, wherein k = 0.

Aspects of the invention, such as controlling the transverse, and proximity to the rotating cylindrical element, of the tool box 5, and the rotation of the cylindrical element, may be described in the general context of computer-executable instructions, such as program modules, being executed by a computer. Generally, program modules include routines, programs, objects, components, data structures, etc., that perform particular tasks or implement particular abstract data types. Moreover, those skilled in the art will appreciate that the invention may be practiced with a variety of computer-system configurations, including multiprocessor systems, microprocessor-based or programmable-consumer electronics, minicomputers, mainframe computers, and the like. Any number of computer- systems and computer networks are acceptable for use with the present invention.

Specific hardware devices, programming languages, components, processes, protocols, and numerous details including operating environments and the like are set forth to provide a thorough understanding of the present invention. In other instances, structures, devices, and processes are shown in block-diagram form, rather than in detail, to avoid obscuring the present invention. But an ordinary-skilled artisan would understand that the present invention may be practiced without these specific details. Computer systems, servers, work stations, and other machines may be connected to one another across a communication medium including, for example, a network or networks.

As one skilled in the art will appreciate, embodiments of the present invention may be embodied as, among other things: a method, system, or computer-program product. Accordingly, the embodiments may take the form of a hardware embodiment, a software embodiment, or an embodiment combining software and hardware. In an embodiment, the present invention takes the form of a computer-program product that includes computer- useable instructions embodied on one or more computer-readable media.

Computer-readable media include both volatile and nonvolatile media, transitory and non-transitory, removable and nonremovable media, and contemplate media readable by a database, a switch, and various other network devices. By way of example, and not limitation, computer-readable media comprise media implemented in any method or technology for storing information. Examples of stored information include computer-useable instructions, data structures, program modules, and other data representations. Media examples include, but are not limited to, information-delivery media, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile discs (DVD), holographic media or other optical disc storage, magnetic cassettes, magnetic tape, magnetic disk storage, and other magnetic storage devices. These technologies can store data momentarily, temporarily, or permanently.

The invention may be practiced in distributed-computing environments where tasks are performed by remote-processing devices that are linked through a communications network. In a distributed-computing environment, program modules may be located in both local and remote computer-storage media including memory storage devices. The computer- useable instructions form an interface to allow a computer to react according to a source of input. The instructions cooperate with other code segments to initiate a variety of tasks in response to data received in conjunction with the source of the received data.

The present invention may be practiced in a network environment such as a communications network. Such networks are widely used to connect various types of network elements, such as routers, servers, gateways, and so forth. Further, the invention may be practiced in a multi-network environment having various, connected public and/or private networks.

Communication between network elements may be wireless or wireline (wired). As will be appreciated by those skilled in the art, communication networks may take several different forms and may use several different communication protocols. And the present invention is not limited by the forms and communication protocols described herein.

All patents, patent applications, provisional applications, and publications referred to or cited herein are incorporated by reference in their entirety, including all figures and tables, to the extent they are not inconsistent with the explicit teachings of this specification.

It should be understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application. Reference Nos.

1 dual curtain assembly

3 outer driver carrier attachment post

4b first inner drive tooth

4a second inner drive tooth

5a first outer drive tooth

5b second outer drive tooth

6 outer carrier attachment post

7 motor control circuit board

9 inner drive element

10 drive element

11 support guide

12 outer curtain carrier track

13 rubber mounting disk

14 pin hook

15 inner driver stall area

17 S hooks

18 axles

20 curtain assembly

21 batteries

22 drive element

23 right outer curtain drive attachment element

24 helical guide structure

25 right inner curtain drive element

26 outer surface

27 motor drive adapter

28 slip ring

29 inter-curtain engager catch

30 pull cord

31 inner carrier attachment post

32 motor assembly

33 rotation assembly

34 window

35 motor end

36 driver attachment element

36A outer driver attachment element

36B inner driver attachment element

37 loop

38 clockwise helical groove

39 Loop

40 counter clockwise helical groove

42 Center

43 external power supply

44A outer curtain

44B inner curtain

45 wall bracket

46 center closing curtain

47 battery sleeve left panel

intercurtain engager

right panel

end cap

Axles

motor housing

end brackets

aperture

outer diameter

bearing housing

motor end

bearings end

longitudinal axis

inner tube

driver tooth

sleeve/outer tube

non-driven end

fractal antenna

driven end

idler attachment element

outer curtain idler attachment element attachment point

outer curtain carrier

draw rod

outer tooth drive

pull cord

inner tooth drive

left driver attachment element o-ring

right driver attachment element outer drive tube

left draw rod

right draw rod

inner curtain carrier track

motor

batteries

battery tube

motor output shaft

first lead tooth

second lead tooth

ball bearing

motor drive adapter

inner curtain carrier

bearings

finial

remote control

receiver for draw rod

button

receiver for hook outer driver stall area

Cylindrical element (rod or tube)

Backup rollers holder

Horizontal backup roller

Vertical backup roller

Tool post

Lever to engage lead screw

Directional level

Chuck, part holder

Tool holder

Lathe

Tool

Groove

Bit front portion

Line

Bit top surface