Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SENSOR FOR LIFETIME PLUS SPECTRAL CHARACTERIZATION
Document Type and Number:
WIPO Patent Application WO/2021/146475
Kind Code:
A1
Abstract:
Some aspects relate to integrated devices for obtaining timing and/or spectral information from incident light. In some embodiments, a pixel may include one or more charge storage regions configured to receive charge carriers generated responsive to incident photons from a light source, with charge carriers stored in the charge storage region(s) indicative of spectral and timing information. In some embodiments, a pixel may include regions having different depths, each configured to generate charge carriers responsive to incident photons. In some embodiments, a pixel may include multiple charge storage regions having different depths, and one or more of the charge storage regions may be configured to receive the incident photons and generate charge carriers therein. In some embodiments, a pixel may include an optical sorting element configured to direct at least some incident photons to one charge storage region and other incident photons to another charge storage region.

Inventors:
SCHMID GERARD (US)
YANG DAJIANG (US)
WEBSTER ERIC (US)
WANG XIN (US)
REARICK TODD (US)
CHOI CHANGHOON (US)
KABIRI ALI (US)
PRESTON KYLE (US)
Application Number:
PCT/US2021/013505
Publication Date:
July 22, 2021
Filing Date:
January 14, 2021
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
QUANTUM SI INC (US)
International Classes:
G01N21/00; H01L27/146
Domestic Patent References:
WO2018096980A22018-05-31
Foreign References:
US20180231465A12018-08-16
US20190391010A12019-12-26
US20180180546A12018-06-28
US201514821656A2015-08-07
USPP62435693P
US201615161088A2016-05-20
US201715842720A2017-12-14
US201514821688A2015-08-07
US201414543865A2014-11-17
US201715844403A2017-12-15
US201715844469A2017-12-15
US201662435679P2016-12-16
US201715852571A2017-12-22
US201515510962A2015-09-15
Other References:
SWAMINATHAN ET AL., PLOS COMPUT BIOL, vol. ll, no. 2, 2015, pages el004080
YAO ET AL., PHYS. BIOL., vol. 12, no. 5, 2015, pages 055003
Attorney, Agent or Firm:
PRITZKER, Randy, J. et al. (US)
Download PDF:
Claims:
CLAIMS

1. An integrated circuit, comprising: at least one photodetection region configured to generate charge carriers in response to receiving incident photons; and at least one charge storage region configured to receive the charge carriers from the photodetection region, wherein charge carriers stored in the at least one charge storage region indicate timing information and spectral information of the incident photons.

2. The integrated circuit of claim 1, wherein the timing information comprises luminescence lifetime information.

3. The integrated circuit of claim 1, wherein the spectral information comprises wavelength information.

4. The integrated circuit of claim 3, wherein the at least one photodetection region is configured to receive a first plurality of incident photons having first spectral characteristics and a second plurality of incident photons having second spectral characteristics, and the spectral information indicates a difference between the first and second spectral characteristics.

5. The integrated circuit of claim 4, wherein the spectral information indicates a difference between a wavelength of the first plurality of incident photons and a wavelength of the second plurality of incident photons.

6. The integrated circuit of claim 5, wherein the wavelength of the first plurality of incident photons is less than 600 nanometers (nm) and the wavelength of the second plurality of incident photons is greater than 600nm.

7. The integrated circuit of claim 5, wherein the wavelength of the first plurality of incident photons is less than 600 nanometers (nm) and the wavelength of the second plurality of incident photons is greater than 700nm.

8. The integrated circuit of claim 5, wherein the wavelength of the first plurality of incident photons is less than 700 nanometers (nm) and the wavelength of the second plurality of incident photons is greater than 700nm.

9. The integrated circuit of claim 5, wherein the wavelength of the first plurality of incident photons is less than 550 nanometers (nm) and the wavelength of the second plurality of incident photons is greater than 600nm.

10. The integrated circuit of claim 5, wherein the wavelength of the first plurality of incident photons is less than 550 nanometers (nm) and the wavelength of the second plurality of incident photons is greater than 550nm.

11. The integrated circuit of claim 1, wherein the at least one charge storage region comprises first and second charge storage regions, charge carriers stored in the first charge storage region indicate the timing information, and charge carriers stored in the second charge storage region indicate the spectral information.

12. The integrated circuit of claim 11, wherein the first and second charge storage regions have different depths in a first direction in which the at least one photodetection region is configured to receive the incident photons.

13. The integrated circuit of claim 12, wherein the at least one photodetection region comprises a photodetection region configured to generate and transfer the charge carriers to the first and second charge storage regions.

14. The integrated circuit of claim 12, wherein the at least one photodetection region comprises first and second photodetection regions configured to generate first and second charge carriers, respectively, and the first charge storage region is configured to receive the first charge carriers and the second charge storage region is configured to receive the second charge carriers.

15. The integrated circuit of claim 12, further comprising: a first charge transfer region disposed between the at least one photodetection region and the first charge storage region; and a second charge transfer region disposed between the at least one photodetection region and the second charge storage region, wherein the first charge transfer region is positioned, at least in part, in the first direction, before or after the second charge transfer region.

16. The integrated circuit of claim 15, further comprising: a third charge transfer region configured to receive the charge carriers from the at least one photodetection region, wherein the third charge transfer region is positioned, at least in part, in the first direction, before or after the first and/or second charge transfer region(s).

17. The integrated circuit of claim 1, further comprising a pixel comprising the at least one photodetection region and the at least one charge storage region, wherein the pixel is 10 microns by 10 microns or smaller.

18. An integrated circuit, comprising: a first photodetection region configured to generate first charge carriers in response to receiving incident photons in a first direction, the first photodetection region having a first depth in the first direction; a second photodetection region having a second depth in the first direction that is different from the first depth, the second photodetection region configured to generate second charge carriers in response to receiving incident photons in the first direction; and a charge storage region configured to receive the first and/or second charge carriers from the first and/or second photodetection region.

19. The integrated circuit of claim 18, further comprising a transfer gate configured to control a transfer of the first and/or second charge carriers from the first photodetection region to the charge storage region.

20. The integrated circuit of claim 18, further comprising a second charge storage region configured to receive the second charge carriers from the second photodetection region, wherein the charge storage region is a first charge storage region

21. The integrated circuit of claim 20, further comprising a first transfer gate configured to control a transfer of the first charge carriers to the first charge storage region and a second transfer gate configured to control a transfer of the second charge carriers to the second charge storage region.

22. The integrated circuit of any one of claims 18 to 21, wherein the first charge carriers indicate lifetime information of the incident photons, and the second charge carriers indicate spectral information of the incident photons.

23. The integrated circuit of claim 22, wherein the spectral information comprises wavelength information.

24. A system comprising the integrated circuit of claim 23 and at least one processor, the at least one processor configured to: detect a first number of charge carriers stored in the first charge storage region; detect a second number of charge carriers stored in the second charge storage region; and combine the first number and second numbers to determine the lifetime information and/or the spectral information.

25. The system of claim 24, wherein the at least one processor is configured to add and/or subtract the first and/or second numbers to determine the lifetime information and/or the spectral information.

26. An integrated circuit, comprising: a photodetection region configured to generate first charge carriers in response to receiving incident photons in a first direction; a first charge storage region having a first depth in the first direction and configured to receive the first charge carriers; and a second charge storage region having a second depth in the first direction that is different from the first depth, the second charge storage region configured to generate second charge carriers in response to receiving incident photons in the first direction.

27. The integrated circuit of claim 26, further comprising a transfer gate configured to control a transfer of the first charge carriers from the photodetection region to the first charge storage region.

28. The integrated circuit of claim 27, wherein the first charge carriers indicate lifetime information of the incident photons, and the second charge carriers indicate spectral information of the incident photons.

29. The integrated circuit of claim 28, wherein the spectral information comprises wavelength information.

30. A system comprising the integrated circuit of claim 29 and at least one processor, the at least one processor configured to: detect a first number of charge carriers stored in the first charge storage region; detect a second number of charge carriers stored in the second charge storage region; and combine the first number and second numbers to determine the lifetime information and/or the spectral information.

31. The system of claim 30, wherein the at least one processor is configured to add and/or subtract the first and/or second numbers to determine the lifetime information and/or the spectral information.

32. An integrated circuit, comprising: at least one photodetection region configured to generate first charge carriers in response to receiving incident photons in a first direction; at least one charge storage region configured to receive the first charge carriers from the at least one photodetection region and positioned at a first depth in the first direction; and a region positioned at a second depth in the first direction and configured to generate second charge carriers responsive to the incident photons.

33. The integrated circuit of claim 32, wherein the at least one photodetection region comprises: a first photodetection region configured to transfer the first charge carriers to a first charge storage region of the at least one charge storage region; and a second photodetection region comprising the region positioned at the second depth in the first direction, wherein the second photodetection region is configured to transfer the second charge carriers to a second charge storage region of the at least one charge storage region.

34. The integrated circuit of claim 33, further comprising: a first transfer gate configured to bias a first transfer channel between the first photodetection region and the first charge storage region; and a second transfer gate configured to bias a second transfer channel between the second photodetection region and the second charge storage region.

35. The integrated circuit of claim 32, wherein the at least one charge storage region comprises: a first charge storage region configured to receive the first charge carriers from the at least one photodetection region and positioned at the first depth in the first direction; and a second charge storage region comprising the region positioned at the second depth in the first direction, wherein the second charge storage region is configured to generate and store the second charge carriers responsive to the incident photons.

36. The integrated circuit of claim 35, wherein: the second depth is positioned after the first depth in the first direction; and the second charge storage region is configured to receive the incident photons.

37. The integrated circuit of claim 32, wherein the integrated circuit further comprises a first transfer gate configured to bias a first transfer channel electrically coupling the at least one photodetection region to the first charge storage region.

38. The integrated circuit of claim 37, further comprising: a third charge storage region configured to receive the charge carriers and positioned at a third depth that is before the second depth in the first direction; and a second transfer gate configured to bias a second transfer channel electrically coupling the at least one photodetection region.

39. The integrated circuit of claim 38, wherein the second charge storage region is disposed, at least in part, between the at least one photodetection region and the third charge storage region.

40. The integrated circuit of claim 32, wherein the first charge carriers indicate lifetime information of the incident photons, and the second charge carriers indicate spectral information of the incident photons.

41. The integrated circuit of claim 40, wherein the spectral information comprises wavelength information.

42. A method of operating the integrated circuit of claim 40, comprising: detecting, using at least one processor, a first number of charge carriers stored in the first charge storage region; detecting, using the at least one processor, a second number of charge carriers stored in the second charge storage region; and combining, using the at least one processor, the first number and second numbers to determine the lifetime information and/or the spectral information.

43. The method of claim 42, wherein the act of combining includes adding and/or subtracting by the at least one processor.

44. An integrated circuit, comprising: first and second charge storage regions; and an optical sorting element configured to direct at least a first plurality of incident photons toward the first charge storage region and at least a second plurality of incident photons toward the second charge storage region, wherein charge carriers generated in the first and/or second charge storage regions indicate timing information and spectral information.

45. The integrated circuit of claim 44, wherein the optical sorting element comprises an at least partially refractive element.

46. The integrated circuit of claim 45, wherein the at least partially refractive element comprises at least one member of a group comprising: a micro-disk; a micro-lens; and a prism;

47. The integrated circuit of claim 44, wherein the optical sorting element comprises an at least partially diffractive element.

48. The integrated circuit of claim 47, wherein the at least partially diffractive element comprises at least one member from a group comprising: a linear grating element; a curved grating element; a zone plate; and a photonic crystal.

49. The integrated circuit of claim 44, wherein the optical sorting element comprises at least partially scattering element.

50. The integrated circuit of claim 49, wherein the at least partially scattering element comprises a plurality of elements having different refractive indices.

51. The integrated circuit of claim 44, wherein the first and second pluralities of incident photons are incident in a first direction, and wherein the optical sorting element comprises a plurality of openings at a surface that faces a second direction opposite the first direction.

52. The integrated circuit of claim 44, wherein the optical sorting element comprises a plasmonic element.

53. The integrated circuit of claim 52, wherein the plasmonic element comprises at least one member of a group comprising: a plurality of nano-holes; and an extraordinary optical transmission element.

54. The integrated circuit of claim 44, wherein the first charge carrier storage region is configured to generate and store first charge carriers responsive to the first plurality of the incident photons, and the second charge carrier storage region is configured to generate and store second charge carriers responsive to the second plurality of the incident photons.

55. The integrated circuit of claim 54, wherein the first charge carriers indicate lifetime information of the first plurality of the incident photons, and the second charge carriers indicate spectral information of the second plurality of the incident photons.

56. The integrated circuit of claim 55, wherein the spectral information comprises wavelength information.

57. The integrated circuit of claim 44, further comprising: at least one photodetection region; a first transfer gate configured to bias a first transfer channel between the at least one photodetection region and the first charge storage region; and a second transfer gate configured to bias a second transfer channel between the at least one photodetection region and the second charge storage region.

58. The integrated circuit of claim 57, wherein the at least one photodetection region comprises: a first photodetection region configured to transfer the charge carriers to the first charge storage region; and a second photodetection region configured to transfer the charge carriers to the second charge storage region, wherein the optical sorting element is configured to direct the first plurality of the incident photons towards the first photodetection region and direct the second plurality of the incident photons towards the second photodetection region.

Description:
SENSOR FOR LIFETIME PLUS SPECTRAL CHARACTERIZATION

RELATED APPLICATIONS

[0001] This application claims priority under 35 U.S.C. § 119(e) to U.S. Application Provisional Serial No. 62/961,143, filed January 14, 2020, under Attorney Docket No. R0708.70084US00, and titled, “SENSOR FOR LIFETIME PLUS SPECTRAL CHARACTERIZATION,” which is herein incorporated by reference in its entirety.

FIELD OF THE DISCLOSURE

[0002] The present disclosure relates to integrated devices and related instruments that can perform massively-parallel analyses of samples by providing short optical pulses to tens of thousands of sample wells or more simultaneously and receiving fluorescent signals from the sample wells for sample analyses. The instruments may be useful for point-of-care genetic sequencing and for personalized medicine.

BACKGROUND

[0003] Photodetectors are used to detect light in a variety of applications. Integrated photodetectors have been developed that produce an electrical signal indicative of the intensity of incident light. Integrated photodetectors for imaging applications include an array of pixels to detect the intensity of light received from across a scene. Examples of integrated photodetectors include charge coupled devices (CCDs) and Complementary Metal Oxide Semiconductor (CMOS) image sensors.

[0004] Instruments that are capable of massively-parallel analyses of biological or chemical samples are typically limited to laboratory settings because of several factors that can include their large size, lack of portability, requirement of a skilled technician to operate the instrument, power need, need for a controlled operating environment, and cost. When a sample is to be analyzed using such equipment, a common paradigm is to extract a sample at a point of care or in the field, send the sample to the lab and wait for results of the analysis. The wait time for results can range from hours to days.

SUMMARY OF THE DISCLOSURE

[0005] Some aspects of the present disclosure relate to an integrated circuit comprising at least one photodetection region configured to generate charge carriers in response to receiving incident photons and at least one charge storage region configured to receive the charge carriers from the photodetection region, wherein charge carriers stored in the at least one charge storage region indicate timing information and spectral information of the incident photons.

[0006] Some aspects of the present disclosure relate to an integrated circuit comprising a first photodetection region configured to generate first charge carriers in response to receiving incident photons in a first direction, the first photodetection region having a first depth in the first direction, a second photodetection region having a second depth in the first direction that is different from the first depth, the second photodetection region configured to generate second charge carriers in response to receiving incident photons in the first direction, and a charge storage region configured to receive the first and/or second charge carriers from the first and/or second photodetection region.

[0007] Some aspects of the present disclosure relate to an integrated circuit comprising a photodetection region configured to generate first charge carriers in response to receiving incident photons in a first direction, a first charge storage region having a first depth in the first direction and configured to receive the first charge carriers, and a second charge storage region having a second depth in the first direction that is different from the first depth, the second charge storage region configured to generate second charge carriers in response to receiving incident photons in the first direction.

[0008] Some aspects of the present disclosure relate to an integrated circuit comprising at least one photodetection region configured to generate first charge carriers in response to receiving incident photons in a first direction, at least one charge storage region configured to receive the first charge carriers from the at least one photodetection region and positioned at a first depth in the first direction, and a region positioned at a second depth in the first direction and configured to generate second charge carriers responsive to the incident photons..

[0009] Some aspects of the present disclosure relate to an integrated circuit comprising first and second charge storage regions and an optical sorting element configured to direct at least a first plurality of incident photons toward the first charge storage region and at least a second plurality of incident photons toward the second charge storage region, wherein charge carriers generated in the first and/or second charge storage regions indicate timing information and spectral information.

[0010] The foregoing summary is not intended to be limiting. In addition, various embodiments may include any aspects of the disclosure either alone or in combination.

BRIEF DESCRIPTION OF DRAWINGS

[0011] FIG. 1-1 is a schematic of an integrated device, according to some embodiments. [0012] FIG. 1-2 is a side view of a pixel of the integrated device of FIG. 1-1, according to some embodiments.

[0013] FIG. 1-3 is a circuit diagram of a pixel that may be included in the integrated device of FIG. 1-1, according to some embodiments.

[0014] FIG. 1-4 A is a circuit diagram of an alternative pixel that may be included in the integrated device of FIG. 1-1, according to some embodiments.

[0015] FIG. 1-4B is a top view of the pixel of FIG. 1-4A, according to some embodiments.

[0016] FIG. 2-1 is a side view of an exemplary pixel that may be included in the integrated device of FIG. 1-1, the pixel having a time-gated charge storage region and a direct- excitation charge storage region, according to some embodiments.

[0017] FIG. 2-2 is a side view of an alternative exemplary pixel that may be included in the integrated device of FIG. 1-1, the pixel having a time-gated charge storage region and a direct-excitation charge storage region, according to some embodiments.

[0018] FIG. 2-3 is a side view of a further exemplary pixel that may be included in the integrated device of FIG. 1-1, the pixel having a time-gated charge storage region and a direct- excitation charge storage region, according to some embodiments.

[0019] FIG. 2-4 is a side view of an exemplary pixel having two photodetection regions of different depths and two time-gated charge storage regions, according to some embodiments.

[0020] FIG. 2-5 is a side view of an exemplary pixel having three photodetection regions of different depths and three time-gated charge storage regions, according to some embodiments.

[0021] FIG. 2-6A is a top view of an exemplary pixel having a time-gated charge storage region and a direct-excitation charge storage region, according to some embodiments.

[0022] FIG. 2-6B is a cross-sectional view of a portion of the pixel of FIG. 2-6A, according to some embodiments.

[0023] FIG. 2-6C is an alternate cross-sectional view of a portion of the pixel of FIG. 2- 6 A, according to some embodiments.

[0024] FIG. 3-1A is a top view of an exemplary pixel having multiple photodetection regions of different depths respectively coupled to multiple time-gated charge storage regions, according to some embodiments.

[0025] FIG. 3-1B is a cross-sectional view of a portion of the pixel of FIG. 3-1A, according to some embodiments. [0026] FIG. 3-2A is a top view of an alternative exemplary pixel having multiple photodetection regions of different depths respectively coupled to multiple time-gated charge storage regions, according to some embodiments.

[0027] FIG. 3-2B is a cross-sectional view of a portion of the pixel of FIG. 3-2A, according to some embodiments.

[0028] FIG. 4-1 is a side view of an exemplary pixel having an optical sorting element, two photodetection regions, and two time-gated charge storage regions, according to some embodiments.

[0029] FIG. 4-2 is a side view of an alternative exemplary pixel having an optical sorting element, two photodetection regions, and two time-gated charge storage regions, according to some embodiments.

[0030] FIG. 5-1 A is a block diagram of an integrated device and an instrument, according to some embodiments.

[0031] FIG. 5-1B is a schematic of an apparatus including an integrated device, according to some embodiments.

[0032] FIG. 5- 1C is a block diagram depiction of an analytical instrument that includes a compact mode-locked laser module, according to some embodiments.

[0033] FIG. 5-ID depicts a compact mode-locked laser module incorporated into an analytical instrument, according to some embodiments.

[0034] FIG. 5-2 depicts a train of optical pulses, according to some embodiments.

[0035] FIG. 5-3 depicts an example of parallel reaction chambers that can be excited optically by a pulsed laser via one or more waveguides according to some embodiments.

[0036] FIG. 5-4 illustrates optical excitation of a reaction chamber from a waveguide, according to some embodiments.

[0037] FIG. 5-5 depicts further details of an integrated reaction chamber, optical waveguide, and time-binning photodetector, according to some embodiments.

[0038] FIG. 5-6 depicts an example of a biological reaction that can occur within a reaction chamber, according to some embodiments.

[0039] FIG. 5-7 depicts emission probability curves for two different fluorophores having different decay characteristics according to some embodiments.

[0040] FIG. 5-8 depicts time-binning detection of fluorescent emission, according to some embodiments.

[0041] FIG. 5-9 depicts a time-binning photodetector, according to some embodiments.

[0042] FIG. 5-10A depicts pulsed excitation and time-binned detection of fluorescent emission from a sample, according to some embodiments.

[0043] FIG. 5-10B depicts a histogram of accumulated fluorescent photon counts in various time bins after repeated pulsed excitation of a sample, according to some embodiments.

[0044] FIG. 5-11 A - 5-1 ID depict different histograms that may correspond to four nucleotides (T, A, C, G) or nucleotide analogs, according to some embodiments.

[0045] FIG. 5-12 is a flow diagram illustrating a method of sequencing a labeled polypeptide by Edman degradation according to some embodiments.

[0046] FIG. 5-13 includes a flow diagram illustrating a method of sequencing in which discrete binding events give rise to signal pulses of a signal output, and a graph illustrating the signal output according to some embodiments.

[0047] The features and advantages of the present invention will become more apparent from the detailed description set forth below when taken in conjunction with the drawings. When describing embodiments in reference to the drawings, directional references (“above,” “below,” “top,” “bottom,” “left,” “right,” “horizontal,” “vertical,” etc.) may be used. Such references are intended merely as an aid to the reader viewing the drawings in a normal orientation. These directional references are not intended to describe a preferred or only orientation of features of an embodied device. A device may be embodied using other orientations.

DETAILED DESCRIPTION

I. Introduction

[0048] Aspects of the present disclosure relate to integrated devices, instruments and related systems capable of analyzing samples in parallel, including identification of single molecules and nucleic acid sequencing. Such an instrument may be compact, easy to carry, and easy to operate, allowing a physician or other provider to readily use the instrument and transport the instrument to a desired location where care may be needed. Analysis of a sample may include labeling the sample with one or more fluorescent markers, which may be used to detect the sample and/or identify single molecules of the sample (e.g., individual nucleotide identification as part of nucleic acid sequencing). A fluorescent marker may become excited in response to illuminating the fluorescent marker with excitation light (e.g., light having a characteristic wavelength that may excite the fluorescent marker to an excited state) and, if the fluorescent marker becomes excited, emit emission light (e.g., light having a characteristic wavelength emitted by the fluorescent marker by returning to a ground state from an excited state). Detection of the emission light may allow for identification of the fluorescent marker, and thus, the sample or a molecule of the sample labeled by the fluorescent marker. According to some embodiments, the instrument may be capable of massively-parallel sample analyses and may be configured to handle tens of thousands of samples or more simultaneously.

[0049] The inventors have recognized and appreciated that an integrated device having sample wells configured to receive the sample and integrated optics formed on the integrated device and an instrument configured to interface with the integrated device may be used to achieve analysis of this number of samples. The instrument may include one or more excitation light sources, and the integrated device may interface with the instrument such that the excitation light is delivered to the sample wells using integrated optical components ( e.g ., waveguides, optical couplers, optical splitters) formed on the integrated device. The optical components may improve the uniformity of illumination across the sample wells of the integrated device and may reduce a large number of external optical components that might otherwise be needed. Furthermore, the inventors have recognized and appreciated that integrating photodetectors (e.g., photodiodes) on the integrated device may improve detection efficiency of fluorescent emissions from the sample wells and reduce the number of light-collection components that might otherwise be needed.

[0050] The inventors have also developed techniques for obtaining spectral information from incident fluorescent light alternatively or in addition to timing (e.g., lifetime) information. In some embodiments, an integrated device may include one or more charge storage regions configured to receive charge carriers generated in response to incident photons received from a light source, with the charge carriers being indicative of spectral and timing information. In one example, a pixel may include two charge storage regions configured to receive charge carriers generated in response to incident light at different respective wavelengths, such that a difference in power spectral density of the incident light is indicated in the number of accumulated charge carriers in each charge storage region. Alternatively or additionally, in some embodiments, an integrated device may include regions having different depths, each configured to generate charge carriers in response to incident photons received therein. In one example, a pixel may include two or more photodetection regions having different depths (e.g., in an optical direction in which light is incident on the pixel) such that charge carriers are generated in the different photodetection regions in response to incident photons of different respective wavelengths. Alternatively or additionally, in some embodiments, an integrated device may include multiple charge storage regions having different depths and one or more of the charge storage regions may be configured to receive incident photons and generate charge carriers therein. Another of the charge storage regions may be configured to receive charge carriers generated in the photodetection region(s) of the pixel. For example, the latter charge storage region(s) may be coupled to the photodetection region(s) and configured to receive the charge carriers during a controlled collection period (e.g., in response to a control signal from a control circuit). In some embodiments, an integrated device may alternatively or additionally include an optical sorting element configured to direct at least some incident photons to one charge storage region and other incident photons to another charge storage region based on timing and/or wavelength characteristics of the incident photons. For example, in one example, the optical sorting element may include an at least partially refractive, diffractive, scattering, and/or plasmonic element.

[0051] It should be appreciated that integrated devices described herein may incorporate any or all techniques described herein alone or in combination.

II. Integrated Device Overview

[0052] A cross-sectional schematic of integrated device 1-102 illustrating a row of pixels 1-112 is shown in FIG. 1-1. Integrated device 1-102 may include coupling region 1-201, routing region 1-202, and pixel region 1-203. Pixel region 1-203 may include a plurality of pixels 1-112 having sample wells 1-108 positioned on a surface at a location separate from coupling region 1- 201, which is where excitation light (shown as the dashed arrow) couples to integrated device 1- 102. Sample wells 1-108 may be formed through metal layer(s) 1-106. One pixel 1-112, illustrated by the dotted rectangle, is a region of integrated device 1-102 that includes a sample well 1-108 and one or more photodetectors 1-110 associated with the sample well 1-108. In some embodiments, each photodetector 1-110 may include a photodetection region and one or more charge storage regions configured to receive charge carriers generated in the photodetection region in response to incident light from sample well 1-108.

[0053] FIG. 1-1 illustrates the path of excitation light by coupling a beam of excitation light to coupling region 1-201 and to sample wells 1-108. The row of sample wells 1-108 shown in FIG. 1-1 may be positioned to optically couple with waveguide 1-220. Excitation light may illuminate a sample located within a sample well. The sample may reach an excited state in response to being illuminated by the excitation light. When a sample is in an excited state, the sample may emit emission light, which may be detected by one or more photodetectors associated with the sample well. FIG. 1-1 schematically illustrates an optical axis of emission light OPT from a sample well 1-108 to photodetector(s) 1-110 of pixel 1-112. The photodetector(s) 1-110 of pixel 1-112 may be configured and positioned to detect emission light from sample well 1-108. Examples of suitable photodetectors are described in U.S. Pat. Application 14/821,656 titled “INTEGRATED DEVICE FOR TEMPORAL BINNING OF RECEIVED PHOTONS,” which is incorporated by reference in its entirety. Alternative or additional examples of photodetectors are described further herein. For an individual pixel 1- 112, a sample well 1-108 and its respective photodetector(s) 1-110 may be aligned along the optical axis OPT. In this manner, the photodetector(s) may overlap with the sample well within a pixel 1-112.

[0054] The directionality of the emission light from a sample well 1-108 may depend on the positioning of the sample in the sample well 1-108 relative to metal layer(s) 1-106 because metal layer(s) 1-106 may act to reflect emission light. In this manner, a distance between metal layer(s) 1-106 and a fluorescent marker positioned in a sample well 1-108 may impact the efficiency of photodetector(s) 1-110, that are in the same pixel as the sample well, to detect the light emitted by the fluorescent marker. The distance between metal layer(s) 1-106 and the bottom surface of a sample well 1-106, which is proximate to where a sample may be positioned during operation, may be in the range of 100 nm to 500 nm, or any value or range of values in that range. In some embodiments the distance between metal layer(s) 1-106 and the bottom surface of a sample well 1-106 is approximately 300 nm, but other distances may be used, as embodiments described herein are not so limited.

[0055] The distance between the sample and the photodetector(s) may also impact efficiency in detecting emission light. By decreasing the distance light has to travel between the sample and the photodetector(s), detection efficiency of emission light may be improved. In addition, smaller distances between the sample and the photodetector(s) may allow for pixels that occupy a smaller area footprint of the integrated device, which can allow for a higher number of pixels to be included in the integrated device. The distance between the bottom surface of a sample well 1-106 and photodetector(s) may be in the range of 5 pm to 15 pm, or any value or range of values in that range. It should be appreciated that, in some embodiments, emission light may be provided through other means than an excitation light source and a sample well. Accordingly, some embodiments may not include sample well 1-108.

[0056] Photonic stmcture(s) 1-230 may be positioned between sample wells 1-108 and photodetectors 1-110 and configured to reduce or prevent excitation light from reaching photodetectors 1-110, which may otherwise contribute to signal noise in detecting emission light. As shown in FIG. 1-1, the one or more photonic structures 1-230 may be positioned between waveguide 1-220 and photodetectors 1-110. Photonic structure(s) 1-230 may include one or more optical rejection photonic structures including a spectral filter, a polarization filter, and a spatial filter. Photonic structure(s) 1-230 may be positioned to align with individual sample wells 1-108 and their respective photodetector(s) 1-110 along a common axis. Metal layers 1- 240, which may be configured to route control signals and/or readout signals to and/or from portions of integrated device 1-102, may also act as a spatial filter, or polarization filter, in accordance with some embodiments. In such embodiments, one or more metal layers 1-240 may be positioned to block some or all excitation light from reaching photodetector(s) 1-110.

[0057] Coupling region 1-201 may include one or more optical components configured to couple excitation light from an external excitation source. Coupling region 1-201 may include grating coupler 1-216 positioned to receive some or all of a beam of excitation light. Examples of suitable grating couplers are described in U.S. Pat. Application 62/435,693 titled “OPTICAL COUPLER AND WAVEGUIDE SYSTEM,” which is incorporated herein by reference in its entirety. Grating coupler 1-216 may couple excitation light to waveguide 1-220, which may be configured to propagate excitation light to the proximity of one or more sample wells 1-108. Alternatively, coupling region 1-201 may comprise other well-known structures for coupling light into a waveguide.

[0058] Components located off of the integrated device may be used to position and align the excitation source 1-106 to the integrated device. Such components may include optical components including lenses, mirrors, prisms, windows, apertures, attenuators, and/or optical fibers. Additional mechanical components may be included in the instrument to allow for control of one or more alignment components. Such mechanical components may include actuators, stepper motors, and/or knobs. Examples of suitable excitation sources and alignment mechanisms are described in U.S. Pat. Application 15/161,088 titled “PULSED LASER AND SYSTEM,” which is incorporated herein by reference in its entirety. Another example of a beam-steering module is described in U.S. Pat. Application 15/842,720 titled “COMPACT BEAM SHAPING AND STEERING ASSEMBLY,” which is incorporated herein by reference in its entirety.

[0059] A sample to be analyzed may be introduced into sample well 1-108 of pixel 1- 112. The sample may be a biological sample or any other suitable sample, such as a chemical sample. The sample may include multiple molecules and the sample well may be configured to isolate a single molecule. In some instances, the dimensions of the sample well may act to confine a single molecule within the sample well, allowing measurements to be performed on the single molecule. Excitation light may be delivered into the sample well 1-108, so as to excite the sample or at least one fluorescent marker attached to the sample or otherwise associated with the sample while it is within an illumination area within the sample well 1-108.

[0060] In operation, parallel analyses of samples within the sample wells are carried out by exciting some or all of the samples within the wells using excitation light and detecting signals from sample fluorescent emissions using the photodetectors. Emission light from a sample may reach one or more corresponding photodetectors and generate charge carriers therein, which can be collected in charge storage regions and read out from the photodetectors as at least one electrical signal. The electrical signals may be transmitted along metal lines ( e.g ., of metal layers 1-240) integrated device 1-102, which may be connected to an instrument interfaced with the integrated device 1-102. The electrical signals may be subsequently processed and/or analyzed. Processing or analyzing of electrical signals may occur on a suitable computing device either located on or off the instrument.

[0061] FIG. 1-2 illustrates a cross-sectional view of a pixel 1-112 of integrated device 1- 102. Pixel 1-112 includes a photodetection region, which may be a pinned photodiode (PPD), and a charge storage region, which may be a storage diode (SD0), a readout region, which may be a floating diffusion (FD) region, a drain region D, and transfer gates REJ, ST0, and TX0. In some embodiments, photodetection region PPD, charge storage region SD0, readout region FD, and/or drain region D may be formed in the integrated device 1-102 by doping portions of one or more substrate layers of the integrated device 1-102. For example, the integrated device 1-102 may have a lightly p-doped substrate, and photodetection region PPD, charge storage region SD0, readout region FD, and/or drain region D may be n-doped regions of the substrate. In this example, p-doped regions may be doped using boron and n-doped regions may be doped using phosphorus, although other dopants and configurations are possible. In some embodiments, pixel 1-112 may have an area smaller than or equal to 10 microns by 10 microns, such as smaller than or equal to 7.5 microns by 5 microns. It should be appreciated that, in some embodiments, the substrate may be lightly n-doped and photodetection region PPD, charge storage region SD0, readout region FD, and/or drain region D may be p-doped, as embodiments described herein are not so limited.

[0062] In some embodiments, photodetection region PPD may be configured to generate charge carriers in response to incident light. For instance, during operation of pixel 1-112, excitation light may illuminate sample well 1-108 causing incident photons, including fluorescent emissions from a sample, to flow along an optical axis OPT to photodetection region PPD, which may be configured to generate fluorescent emission charge carriers in response to the incident photons from sample well 1-108. In some embodiments, the integrated device 1-102 may be configured to transfer the charge carriers to drain region D or to charge storage region SD0. For example, during a drain period following a pulse of excitation light, the incident photons reaching photodetection region PPD may be predominantly excitation photons to be transferred to drain region D to be discarded. In this example, during a collection period following the drain period, fluorescent emission photons may reach photodetection region PPD to be transferred to charge storage region SDO for collection. In some embodiments, a drain period and a collection period may follow each excitation pulse.

[0063] In some embodiments, charge storage region SDO may be configured to receive charge carriers generated in photodetection region PPD in response to the incident light. For example, charge storage region SDO may be configured to receive and store charge carriers generated in photodetection region PPD in response to fluorescent emission photons from the sample well 1-108. In some embodiments, charge storage region SDO may be configured to accumulate charge carriers received from photodetection region PPD over the course of multiple collection periods, each preceded by an excitation pulse. In some embodiments, charge storage region SDO may be electrically coupled to photodetection region PPD by a charge transfer channel. In some embodiments, the charge transfer channel may be formed by doping a region of pixel 1-112 between photodetection region PPD and charge storage region SDO with a same conductivity type as photodetection region PPD and charge storage region SDO such that the charge transfer channel is configured to be conductive when at least a threshold voltage is applied to the charge transfer channel and nonconductive when a voltage less than (or greater than, for some embodiments) the threshold voltage is applied to the charge transfer channel. In some embodiments, the threshold voltage may be a voltage above (or below) which the charge transfer channel is depleted of charge carriers, such that charge carriers from photodetection region PPD may travel through the charge transfer channel to charge storage region SDO. For example, the threshold voltage may be determined based on the materials, dimensions, and/or doping configuration of the charge transfer channel.

[0064] In some embodiments, transfer gate ST0 may be configured to control a transfer of charge carriers from photodetection region PPD to charge storage region SDO. For instance, transfer gate ST0 may be configured to receive a control signal and bias a charge transfer channel electrically coupling photodetection region PPD to charge storage region SDO with the control signal. For example, when a first portion of a control signal is received at transfer gate ST0, transfer gate ST0 may be configured to bias the charge transfer channel to cause the charge transfer channel to be nonconductive, such that charge carriers are blocked from traveling from photodetection region PPD to charge storage region SDO. Alternatively, when a second portion of the control signal is received at transfer gate ST0, transfer gate ST0 may be configured to bias the charge transfer channel to cause the charge transfer channel to be conductive, such that charge carriers may flow from photodetection region PPD to charge storage region SDO via the charge transfer channel. In some embodiments, transfer gate ST0 may be formed of an electrically conductive and at least partially opaque material such as polysilicon. [0065] In some embodiments, transfer gate TXO may be configured to control a transfer of charge carriers from charge storage region SDO to readout region FD in the manner described herein for transfer gate STO in connection with photodetection region PPD and charge storage region SDO. For example, following a collection periods during which charge carriers are transferred from photodetection region PPD to charge storage region SDO, charge carriers stored in charge storage region SDO may be transferred to readout region FD to be read out to other portions of the integrated device 1-102 for processing.

[0066] In some embodiments, transfer gate REJ may be configured to control a transfer of charge carriers from photodetection region PPD to drain region D in the manner described herein for transfer gate STO above. For example, excitation photons from the excitation light source may reach photodetection region PPD before fluorescent emission photons from the sample well 1-108 reach photodetection region PPD. In some embodiments, the integrated device 1-102 may be configured to control transfer gate REJ to transfer charge carriers generated in photodetection region PPD in response to the excitation photons to drain region D during a drain period following an excitation light pulse and preceding reception of fluorescent emission charge carriers.

[0067] In some embodiments, pixel 1-112 may be electrically coupled to a control circuit of integrated device 1-102 and configured to receive control signals at transfer gates REJ, STO, and TXO. For example, metal lines of metal layers 1-240 may be configured to carry the control signals to pixels 1-112 of the integrated device 1-102. In some embodiments, a single metal line carrying a control signal may be electrically coupled to a plurality of pixels 1-112, such as an array, subarray, row, and/or column of pixels 1-112. For example, each pixel 1-112 in an array may be configured to receive a control signal from a same metal line and/or net such that the row of pixels 1-112 is configured to drain and/or collect charge carriers from photodetection region PPD at the same time. Alternatively or additionally, each row of pixels 1-112 in the array may be configured to receive different control signals (e.g., row-select signals) during a readout period such that the rows read out charge carriers one row at a time.

[0068] FIG. 1-3 is a circuit diagram of an exemplary pixel 1-312 that may be included in integrated device 1-102, according to some embodiments. In some embodiments, pixel 1-312 may be configured in the manner described for pixel 1-112. For example, as shown in FIG. 1-3, pixel 1-312 includes photodetection region PPD, charge storage region SDO, readout region FD, drain region D, and transfer gates REJ, STO, and TXO. In FIG. 1-3, transfer gate REJ is the gate of a transistor coupling photodetection region PPD to drain region D, transfer gate STO is the gate of a transistor coupling photodetection region PPD to charge storage region SDO, and transfer gate TXO is the gate of a transistor coupling charge storage region SDO to readout region FD. Pixel 1-312 also includes a reset (RST) transfer gate and a row-select (RS) transfer gate. In some embodiments, transfer gate RST may be configured to, in response to a reset control signal, clear charge carriers in readout region FD and/or charge storage region SDO. For example, transfer gate RST may be configured to cause charge carriers to flow from readout region FD and/or from charge storage region SDO via transfer gate TXO and readout region FD, to a DC supply voltage VDDP. In some embodiments, transfer gate RS may be configured to, in response to a row select control signal, transfer charge carriers from readout region FD to a bitline COL for processing.

[0069] FIG. 1-4A is a circuit diagram of pixel 1-412, which may be included in integrated device 1-102, according to some embodiments. In some embodiments, pixel 1-412 may be configured in the manner described herein for pixels 1-112 and 1-312. For example, in FIG. 1-4A, pixel 1-412 includes photodetection region PPD, charge storage region SDO, readout region FD, and transfer gates STO, TXO, RST, and RS. In addition, in FIG. 1-4A, pixel 1-412 includes a second charge storage region SD1 and transfer gates ST1 and TX1, which may be configured in the manner described herein for charge storage region SDO and transfer gates STO and TXO, respectively. For example, charge storage regions SDO and SD1 may be configured to receive charge carriers generated in photodetection region PPD, which may be transferred to readout region FD. In some embodiments, charge storage regions SDO and SD1 may be configured to receive charge carriers from photodetection region PPD at different times relative to an excitation pulse. In some embodiments, a separate readout region FD may be coupled to each charge storage region. FIG. 1-4B is a top view of pixel 1-412, according to some embodiments.

III. Techniques Incorporating Regions of Different Depths

[0070] The inventors developed techniques for discriminating spectral information (e.g., wavelength information) of incident light. For instance, as an alternative to or in addition to using time-gating techniques for discriminating timing information (e.g., lifetime information), devices described herein may be configured to determine spectral information to enhance the data that can be obtained from a sample.

[0071] In some embodiments, spectral information may be obtained using pixels having regions of differing depth (e.g., in a direction in which incident light is received). FIG. 2-1 is a side view of a pixel 2-112 that may be included in integrated device 1-102, according to some embodiments. As shown in FIG. 2-1, pixel 2-1 has a time-gated charge storage region SDO and a direct-excitation charge storage region SD1. In some embodiments, pixel 2-112 may be configured in the manner described for pixel 1-112 or any other pixel described herein. For example, charge transfer region SDO may be configured to receive charge carriers generated in photodetection region PPD when transfer gate STO controls a transfer of the charge carriers to charge storage region SDO. In some embodiments, charge storage region SD1 may be configured to receive incident photons and/or charge carriers via photodetection region PPD, as described further herein. In some embodiments, pixel 2-112 may include one or more barriers, such as metal layer MO illustrated in FIG. 2-1, which may be configured to block incident photons from reaching charge storage region SDO and/or SD1. It should be appreciated that pixel 2-112 may include any number of photodetection regions, charge storage regions, and/or transfer gates, according to various embodiments. Pixel 2-112 may alternatively or additionally include one or more drain regions.

[0072] In some embodiments, some regions of pixel 2-112 may be positioned deeper, in the direction in which incident photons are received, than other regions of pixel 2-112. For instance, in the example of FIG. 2-1, charge storage region SD1 is shown positioned deeper in a direction parallel to the optical axis OPT than charge storage region SDO. Also shown in FIG. 2- 1, charge storage region SD1 is disposed at least partially after photodetection region PPD in the direction parallel to the optical axis OPT, such that incident photons received from the light source and/or sample well may reach charge storage region SD1 after passing through at least a portion of photodetection region PPD. In some embodiments, the positioning of various regions of pixel 2-112 at different depths may facilitate discrimination of spectral and/or timing (e.g., lifetime) information in pixel 2-112. For instance, as shown in FIG. 2-1, incident photons from a light source and/or sample well may travel different distances into pixel 2-112 along the optical axis OPT. Some photons (e.g., of a first wavelength) may reach photodetection region PPD (as indicated by the shorter arrows in FIG. 2-1), generating charge carriers therein that may be conducted to charge storage region SDO via a charge transfer channel controlled by transfer gate STO during a collection period. For example, during the collection period, transfer gate STO may receive a control signal from a control circuit of pixel 2-112 and control a transfer of charge carriers from photodetection region PPD to charge storage region SDO. Other incident photons (e.g., of a second wavelength longer than the first wavelength) may travel beyond photodetection region PPD (as indicated by the longer arrows in FIG. 2-1) and reach charge storage region SD1, generating charge carriers in charge storage region SD1. In some embodiments, the configuration (e.g., timing) of draining and/or collecting charge carriers in pixel 2-112 may occur as described herein in connection with FIGs. 1-1 to 1-4B. In some embodiments, each charge carrier storage region SDO and SD1 may be coupled to a readout region and configured to transfer accumulated charge carriers during a readout period.

[0073] In some embodiments, differences between the charge carriers collected in charge storage region SDO and the charge carriers collected in charge storage region SD1 may indicate spectral and/or timing (e.g., lifetime) information of the incident light. For instance, in some embodiments, a sum and/or difference of the number of charge carriers collected in the charge storage regions may indicate a fluorescence lifetime and/or wavelength of the fluorescence emissions received from the sample well. In one example, higher wavelength photons may contribute more substantially to the number of charge carriers collected in charge storage region SDO, and lower wavelength photons may contribute more substantially to the number of charge carriers collected in charge storage region SD1. In this example, lower wavelength photons may have higher energy than higher wavelength photons, causing many of the lower wavelength photons to travel beyond photodetection region PPD to charge storage region SD1, whereas higher wavelength photons may predominantly terminate at photodetection region PPD (e.g., due to attenuation in the bulk of pixel 2-112). As a result, the higher wavelength photons may generate more charge carriers to be collected in charge storage region SDO during the collection period, and lower wavelength photons may generate more charge carriers in charge storage region SD1. Accordingly, a sum and/or difference of charge carriers accumulated in charge storage regions SDO and SD1 may indicate spectral information of the incident light, such as a wavelength of the incident light. In some embodiments, a depth of charge storage region SDO and/or a depth of charge storage region SD1 may be configured such that each charge storage region predominantly collects incident photons having a particular wavelength and/or range of wavelengths. Alternatively or additionally, in some embodiments, the difference in positioning depth between charge storage region(s) SDO and/or SD1 and photodetection region PPD may be configured such that each charge storage region predominantly collects incident photons having a particular wavelength and/or range of wavelengths.

[0074] In some embodiments, one or more processors (e.g., microprocessors, field programmable gate arrays (FPGAs), and/or application specific integrated circuits (ASICs), part or each of which may be integrated with the integrated device, etc.) coupled to pixel 2-112 may be configured to determine lifetime and/or spectral information based on the number of charge carriers accumulated in and read out from charge storage region(s) SDO and/or SD1. It should be appreciated that, alternatively or additionally, the number of charge carriers accumulated in charge storage region SDO and/or SD1 may indicate a fluorescence lifetime of the incident light. In some embodiments, charge carriers collected in one of the charge storage regions may indicate timing information, and charge carriers collected in another of the charge storage regions may indicate spectral information.

[0075] It should be appreciated that integrated circuits described herein may be configured to discriminate among incident photons having various optical wavelengths and/or ranges of optical wavelengths. In some embodiments, the higher wavelength photons of the above example may have a wavelength greater than 600nm, and the lower wavelength photons may have a wavelength less than 600 nm. In some embodiments, the higher wavelength photons of the above example may have a wavelength greater than 700nm, and the lower wavelength photons may have a wavelength less than 600 nm. In some embodiments, the higher wavelength photons of the above example may have a wavelength greater than 700nm, and the lower wavelength photons may have a wavelength less than 700 nm. In some embodiments, the higher wavelength photons of the above example may have a wavelength greater than 600nm, and the lower wavelength photons may have a wavelength less than 600 nm. In some embodiments, the higher wavelength photons of the above example may have a wavelength greater than 600nm, and the lower wavelength photons may have a wavelength less than 550 nm. In some embodiments, the higher wavelength photons of the above example may have a wavelength greater than 550nm, and the lower wavelength photons may have a wavelength less than 550 nm. In some embodiments, pixels described herein may have an area less than or equal to 40 square microns.

[0076] FIG. 2-2 is a side view of alternative pixel 2-212 that may be included in integrated device 1-102, according to some embodiments. In some embodiments, pixel 2-212 may be configured in the manner described herein for pixel 2-112. As shown in FIG. 2-2, pixel 2-212 may have a backside illumination (BSI) configuration. For example, as shown in FIG. 2- 2, transfer gates ST0, TX0, and TX1 are shown positioned after photodetection region PPD in the direction OPT in which photodetection region PPD is configured to receive incident light. In some embodiments, incident photons may be attenuated in the bulk semiconductor region of pixel 2-212 prior to reaching the charge storage regions, thus reducing the number of excitation photons and/or charge carriers that may reach and/or be generated in the charge storage regions, thus improving signal integrity of pixel operation.

[0077] As in FIG. 2-1, some regions of pixel 2-212 may be positioned deeper, parallel to the optical axis OPT, than other regions of the pixel. For instance, in the example of FIG. 2-2, charge storage region SD1 is positioned deeper than charge storage region SD0 in a direction parallel to the optical axis OPT. Alternatively or additionally, one of charge storage regions SD0 and SD1 may be configured to receive incident light and generate and store charge carriers therein. For instance, in FIG. 2-2, charge storage region SD1 is positioned such that incident photons may travel through photodetection region PPD and reach charge storage region SDO. In some embodiments, barriers MO and/or a deep trench isolation (DTI) barrier of pixel 2-212 may block at least some of the incident photons (e.g., obliquely incident photons) from reaching charge storage region SDO, such that charge carriers accumulated in charge storage region SDO are predominantly time-gated from photodetection region PPD using transfer gate TGO. In some embodiments, the difference in depth between charge storage regions SDO and SD1, and/or photodetection region PPD, may cause charge carriers accumulated in the charge storage regions to have different indicate timing and/or spectral information of the incident light. For instance, in some embodiments, a depth of charge storage region SDO, a depth of charge storage region SD1, and/or a depth of photodetection region PPD may be configured such that each charge storage region predominantly collects incident photons having a particular wavelength and/or range of wavelengths.

[0078] FIG. 2-3 is a side view of pixel 2-312 that may be included in integrated device 1- 102, according to some embodiments. In some embodiments, pixel 2-312 may be configured in the manner described herein for pixel 2-212 and/or any other pixel described herein. In some embodiments, the difference in depth between charge storage regions SDO and SD1 and/or photodetection region PPD may cause charge carriers accumulated in charge storage regions SDO and SD1 to indicate different timing and/or spectral information of the incident light. For instance, in some embodiments, a depth of charge storage region SDO, a depth of charge storage region SD1, and/or a depth of photodetection region PPD may be configured such that charge storage regions SDO and/or SD1 predominantly collect incident photons having a particular wavelength and/or range of wavelengths. As shown in FIG. 2-3, photodetection region PPD of pixel 2-312 is configured to receive incident photons having traveled through charge storage region SDO. As a result, more lower wavelength photons may reach photodetection region PPD than higher wavelength photons, such that more lower wavelength charge carriers may be generated and stored in charge storage region SD1 than higher wavelength charge carriers. Likewise, more higher wavelength photons may generate high wavelength charge carriers in photodetection region PPD, resulting in more higher wavelength charge carriers accumulated in charge storage region SDO by time-gating via transfer gate STO.

[0079] FIG. 2-4 is a side view of pixel 2-412 that may be included in integrated device 1- 102, according to some embodiments. In some embodiments, pixel 2-412 may be configured in the manner described herein for pixel 2-112 and/or any other pixel described herein. As shown in FIG. 2-4, pixel 2-412 includes multiple photodetection regions PPD0 and PPD1 respective coupled to charge storage regions SDO and SD1, with transfer gate STO configured to control the transfer of charge carriers from photodetection region PPD to charge storage region SDO and transfer gate ST1 configured to control the transfer of charge carriers from photodetection region PPD1 to charge storage region SD1. In FIG. 2-4, photodetection regions PPDO and PPD1 are shown with photodetection region PPD1 positioned deeper than photodetection region PPD1 in the direction OPT. In one example, more lower wavelength incident photons may reach photodetection region PPD1 than higher wavelength incident photons. As a result, more lower wavelength charge carriers may be accumulated in charge storage region SD1 by time-gating via transfer gate ST1 than higher wavelength charge carriers. Likewise, more higher wavelength incident photons may generate charge carriers in photodetection region PPDO than lower wavelength incident photons, resulting in more higher wavelength charge carriers accumulated in charge storage region SDO by time-gating via transfer gate STO than lower wavelength charge carriers.

[0080] FIG. 2-5 is a side view of pixel 2-512 that may be included in integrated device 1- 102, according to some embodiments. In some embodiments, pixel 2-512 may be configured in the manner described herein for pixel 2-415 and/or any other pixel described herein. For instance, as shown in FIG. 2-5, pixel 2-512 includes multiple photodetection regions PPDO, PPD1, and PPD2 respectively coupled to charge storage regions SDO, SD1, and SD2. In FIG. 2- 5, photodetection regions PPDO, PPD1, and PPD2 are shown positioned at different depths in the direction OPT. As shown in FIG. 2-5, one or more charge storage regions may be positioned between adjacent ones of the photodetection regions. As shown in FIG. 2-5, pixel 2-512 includes barriers 2-502 positioned between adjacent photodetection regions. For example, barriers 2-502 may be doped with an opposite conductivity type than photodetection regions PPDO, PPD1, and PPD2, such as being p-type doped when photodetection regions PPDO, PPD1, and PPD2 are n-type doped.

[0081] In some embodiments, pixels described herein may be used to determine spectral information of incident light without using regions positioned at different depths. FIG. 2-6A is a top view of pixel 2-612 that may be included in integrated device 1-102, according to some embodiments. FIG. 2-6B is a cross-sectional view of Pixel 2-612 along line A of FIG. 2-6A, according to some embodiments. FIG. 2-6C is a cross-sectional view of pixel 2-612 along line B of FIG. 2-6C, according to some embodiments. In some embodiments, pixel 2-612 may be configured in the manner described for pixel 2-212 and/or any other pixel described herein. As shown in FIG. 2-6A, pixel 2-612 includes photodetection region PPD coupled to charge storage regions SDO and SD1, with transfer gate STO configured to control the transfer of charge carriers from photodetection region PPD to charge storage region SDO and with transfer gate ST1 configured to control the transfer of charge carriers from photodetection region PPD to charge storage region SD1. As shown in FIG. 2-6B, charge storage region SD1 may be further configured to receive incident photons having traveled beyond photodetection region PPD. As shown in FIG. 2-6C, pixel 2-612 may include a metal barrier MO configured to block incident photons from reaching charge storage region SDO other than via transfer from photodetection region PPD as controlled using transfer gate STO. Also shown in FIG. 2-6C, pixel 2-612 may include one or more barriers DTI configured to block charge carriers from reaching charge storage region SDO from photodetection region PPD and/or from traveling between adjacent pixels 2-612. In some embodiments, charge carriers accumulated in the respective charge storage regions SDO and SD1 may indicate timing and/or spectral information. In one example, a difference in the number of charge carriers accumulated in each of the charge storage regions may indicate a difference in the wavelength content of the incident photons (e.g., a quantity of the incident light that is lower wavelength, a quantity that is higher wavelength, etc.).

[0082] FIG. 3-1 A is a top view of pixel 3-112 that may be included in integrated device 1-102, according to some embodiments. FIG. 3-1B is a side view of pixel 3-112 along cross- section A in FIG. 3-1 A, according to some embodiments. In some embodiments, pixel 3-112 may be configured in the manner described for pixel 2-412 and/or any other pixel described herein. As shown in FIGs. 3-1A and 3-1B, pixel 3-112 includes multiple photodetection regions positioned at different depths in the direction OPT, of which photodetection regions PPDO and PPD1 are shown in FIG. 3-1B. in FIG. 3-1B, charge storage region SDO is coupled to photodetection region PPDO, with transfer gate STO configured to control the transfer of charge carriers from photodetection region PPDO to charge storage region SDO and charge storage region SD3 is coupled to photodetection region PPD1, with transfer gate ST3 configured to control the transfer of charge carriers from photodetection region PPD1 to charge storage region SD3. Although not shown in FIGs. 3-1A and 3-1B, pixel 3-112 may include additional photodetection regions (e.g., PPD2 and PPD3) and charge storage regions (e.g., SD1 and SD2) whose charge transfer is controlled by transfer gates ST1 and ST2. Alternatively, the additional charge storage regions (e.g., SD1 and SD2) may be respectively coupled to photodetection regions PPDO and PPD1 shown in FIG. 3- IB.

[0083] In some embodiments, regions of pixel 3-112 may be positioned at different depths in the direction OPT. As shown in FIG. 3-1B, photodetection regions PPDO and PPD1 are positioned at different depths in the direction OPT. Also shown in FIG. 3- IB, the charge transfer channels coupling photodetection region PPDO to charge storage region SDO and photodetection region PPD1 to charge storage region SD3 are positioned at different depths in the direction OPT. In some embodiments, multiple charge storage regions (e.g., SDO and SD1) may be coupled to a same photodetection region or to multiple photodetection regions positioned at a same depth in the direction OPT (e.g., the depth of photodetection region PPDO), such that the charge storage regions receive equal numbers of charge carriers when collecting at the same time. In some embodiments, such charge storage regions may be configured to collect at different times (e.g., at different times following an excitation pulse) such that a difference in the number of charge carriers collected in each charge storage region indicates timing information of the incident light. In some embodiments, other charge storage regions (e.g., SD2 and SD3) may be coupled to one or more photodetection regions at a same depth positioning in the direction OPT (e.g., the depth of photodetection region PPD1) that is different from the depth positioning of other photodetection regions of the pixel, and configured to collect charge carriers at different times following an excitation pulse. Accordingly, in some embodiments, differences between numbers of charge carriers collected in various pairs of charge storage regions may indicate timing and/or wavelength information.

[0084] FIG. 3-2A is a top view of pixel 3-212 that may be included in integrated device 1-102, according to some embodiments. FIG. 3-2B is a cross-sectional view of pixel 3-212 along line B in FIG. 3-2A, according to some embodiments. In some embodiments, pixel 2-812 may be configured in the manner described herein for pixel 3-112 and/or any other pixel described herein. As shown in FIGs. 3-2A and 3-2B, pixel 3-212 further includes charge storage region SD4 coupled to photodetection region PPD2 having a different depth positioning than photodetection regions PPDO and PPD1. In some embodiments, charge storage region SD4 and another charge storage region (e.g., SD5, not shown) positioned below transfer gate ST5 may be configured to receive charge carriers from photodetection region PPD2, such as at different times following an excitation pulse, such that additional timing and/or wavelength information of incident light may be obtained using a difference between the number of charge carriers collected in charge storage regions SD4 and SD5 and/or other charge storage regions of pixel 3- 212.

IV. Techniques Incorporating One or More Optical Sorting Elements

[0085] The inventors have also developed techniques for obtaining spectral and other information from incident light by optically sorting incident photons as described further herein. In some embodiments, a pixel may include one or more optical sorting elements configured to direct incident photons to different photodetection regions. For example, an optical sorting element may be configured as at least partially refractive, diffractive, scattering, and/or plasmonic, as described further herein.

[0086] FIG. 4-1 is a side view of pixel 4-112 that may be included in integrated device 1- 102, according to some embodiments. In some embodiments, pixel 4-112 may be configured in the manner described for pixel 2-412 and/or any other pixel described herein. As shown in FIG. 4-1, pixel 4-112 includes multiple photodetection regions PPDO and PPD1 coupled to charge storage regions SDO and SD1, with transfer gate STO configured to control the transfer of charge carriers from photodetection region PPDO to charge storage region SDO and transfer gate ST1 configured to control the transfer of charge carriers from photodetection region PPD1 to charge storage region SD1. In some embodiments, photodetection regions PPDO and PPD1 may be positioned at a same depth in the direction OPT. In FIG. 4-1, pixel 4-112 includes an optical sorting element (OSE). In some embodiments, the OSE may be configured to direct at least some incident photons from the light source towards charge storage region SDO and at least some other incident photons from the light source towards charge storage region SD1. For example, in FIG. 4-1, the OSE is shown configured to direct at least some incident photons toward photodetection region PPDO to be transferred to charge storage region SDO (e.g., during a collection period) and at least some photons toward photodetection region PPD1 to be transferred to charge storage region SD1. In some embodiments, the OSE may be configured to direct incident photons in different directions based on the wavelengths of the incident photons. In some embodiments, the charge carriers accumulated in charge storage regions SDO and SD1 may be indicative of timing and/or spectral information of the incident light. For instance, a number of charge carriers collected in charge storage region SDO may indicate timing and/or spectral information particular to the incident photons directed towards charge storage region SDO, and a number of charge carriers collected in charge storage region SD1 may indicate such information for the incident photons directed towards charge storage region SD1. In some embodiments, the charge carriers stored in charge storage region SDO may indicate timing information and the charge carriers stored in charge storage region SDO may indicate wavelength information. Alternatively or additionally, information from each charge storage region may be combined to determine timing and/or spectral information of the incident light received by each charge storage region.

[0087] In accordance with various embodiments, the OSE may be configured as at least partially refractive, diffractive, scattering, and/or plasmonic. For instance, in some embodiments, the OSE may include a micro-disk, a micro-lens, and/or a prism configured to refract incident light towards the charge storage regions SDO and SD1, such as depending on a wavelength of the incident light. In some embodiments, the OSE may include a linear grating element, a curved grating element, a zone plate, and/or a photonic crystal configured to diffract the incident light towards the charge storage regions SDO and SD1, such as depending on the wavelength of the incident light. In some embodiments, the OSE may include a scattering element, such as having multiple elements with different refractive indices. In some embodiments, the OSE may include a plasmonic element, such as nano-holes and/or an extraordinary optical transmission element. Because the OSE may cause incident photons having different wavelengths towards the different photodetection regions PPDO and PPD1, charge carriers accumulated in the charge storage regions SDO and SD1 may be indicative of different spectral information of the incident photons, such as different wavelength information.

[0088] It should be appreciated that, in some embodiments, one or more of the charge storage regions may be configured to receive incident photons directly from the OSE and generate and store charge carriers in response.

[0089] FIG. 4-2 is a side view of pixel 4-212 that may be included in integrated device 1- 102, according to some embodiments. In some embodiments, pixel 4-212 may be configured in the manner described herein for pixel 4-112 and/or any other pixel described herein. For example, in FIG. 4-2, pixel 4-212 includes an OSE that may be configured as described herein for the OSE of pixel 4-112 shown in FIG. 4-1. Also shown in FIG. 4-2, pixel 4-212 includes barriers DTI that may be configured to block charge carriers from reaching charge storage regions SDO and SD1 when not transferred using transfer gates ST0 and ST1.

V. DNA and/or RNA Sequencing Applications

[0090] An analytic system described herein may include an integrated device and an instrument configured to interface with the integrated device. The integrated device may include an array of pixels, where a pixel includes a reaction chamber and at least one photodetector. A surface of the integrated device may have a plurality of reaction chambers, where a reaction chamber is configured to receive a sample from a suspension placed on the surface of the integrated device. A suspension may contain multiple samples of a same type, and in some embodiments, different types of samples. In this regard, the phrase “sample of interest” as used herein can refer to a plurality of samples of a same type that are dispersed in a suspension, for example. Similarly, the phrase “molecule of interest” as used herein can refer to a plurality of molecules of a same type that are dispersed in a suspension. The plurality of reaction chambers may have a suitable size and shape such that at least a portion of the reaction chambers receive one sample from a suspension. In some embodiments, the number of samples within a reaction chamber may be distributed among the reaction chambers such that some reaction chambers contain one sample with others contain zero, two or more samples.

[0091] In some embodiments, a suspension may contain multiple single-stranded DNA templates, and individual reaction chambers on a surface of an integrated device may be sized and shaped to receive a sequencing template. Sequencing templates may be distributed among the reaction chambers of the integrated device such that at least a portion of the reaction chambers of the integrated device contain a sequencing template. The suspension may also contain labeled nucleotides which then enter in the reaction chamber and may allow for identification of a nucleotide as it is incorporated into a strand of DNA complementary to the single-stranded DNA template in the reaction chamber. In some embodiments, the suspension may contain sequencing templates and labeled nucleotides may be subsequently introduced to a reaction chamber as nucleotides are incorporated into a complementary strand within the reaction chamber. In this manner, timing of incorporation of nucleotides may be controlled by when labeled nucleotides are introduced to the reaction chambers of an integrated device.

[0092] Excitation light is provided from an excitation source located separate from the pixel array of the integrated device. The excitation light is directed at least in part by elements of the integrated device towards one or more pixels to illuminate an illumination region within the reaction chamber. A marker may then emit emission light when located within the illumination region and in response to being illuminated by excitation light. In some embodiments, one or more excitation sources are part of the instrument of the system where components of the instrument and the integrated device are configured to direct the excitation light towards one or more pixels.

[0093] Emission light emitted from a reaction chamber (e.g., by a fluorescent label) may then be detected by one or more photodetectors within a pixel of the integrated device. Characteristics of the detected emission light may provide an indication for identifying the marker associated with the emission light. Such characteristics may include any suitable type of characteristic, including an arrival time of photons detected by a photodetector, an amount of photons accumulated over time by a photodetector, and/or a distribution of photons across two or more photodetectors. In some embodiments, a photodetector may have a configuration that allows for the detection of one or more timing characteristics associated with emission light (e.g., fluorescence lifetime). The photodetector may detect a distribution of photon arrival times after a pulse of excitation light propagates through the integrated device, and the distribution of arrival times may provide an indication of a timing characteristic of the emission light (e.g., a proxy for fluorescence lifetime). In some embodiments, the one or more photodetectors provide an indication of the probability of emission light emitted by the marker (e.g., fluorescence intensity). In some embodiments, a plurality of photodetectors may be sized and arranged to capture a spatial distribution of the emission light. Output signals from the one or more photodetectors may then be used to distinguish a marker from among a plurality of markers, where the plurality of markers may be used to identify a sample or its structure. In some embodiments, a sample may be excited by multiple excitation energies, and emission light and/or timing characteristics of the emission light from the reaction chamber in response to the multiple excitation energies may distinguish a marker from a plurality of markers.

[0094] A schematic overview of the system 5-100 is illustrated in FIG. 5-1 A. The system comprises both an integrated device 5-102 that interfaces with an instrument 5-104. In some embodiments, instrument 5-104 may include one or more excitation sources 5-106 integrated as part of instrument 5-104. In some embodiments, an excitation source may be external to both instrument 5-104 and integrated device 5-102, and instrument 5-104 may be configured to receive excitation light from the excitation source and direct excitation light to the integrated device. The integrated device may interface with the instrument using any suitable socket for receiving the integrated device and holding it in precise optical alignment with the excitation source. The excitation source 5-106 may be configured to provide excitation light to the integrated device 5-102. As illustrated schematically in FIG. 5-1A, the integrated device 5- 102 has a plurality of pixels 5-112, where at least a portion of pixels may perform independent analysis of a sample of interest. Such pixels 5-112 may be referred to as “passive source pixels” since a pixel receives excitation light from a source 5-106 separate from the pixel, where excitation light from the source excites some or all of the pixels 5-112. Excitation source 5-106 may be any suitable light source. Examples of suitable excitation sources are described in U.S. Pat. Application No. 14/821,688, filed August 7, 2015, titled “INTEGRATED DEVICE FOR PROBING, DETECTING AND ANALYZING MOLECULES,” which is incorporated by reference in its entirety. In some embodiments, excitation source 5-106 includes multiple excitation sources that are combined to deliver excitation light to integrated device 5-102. The multiple excitation sources may be configured to produce multiple excitation energies or wavelengths.

[0095] A pixel 5-112 has a reaction chamber 5-108 configured to receive a single sample of interest and a photodetector 5-110 for detecting emission light emitted from the reaction chamber in response to illuminating the sample and at least a portion of the reaction chamber 5- 108 with excitation light provided by the excitation source 5-106. In some embodiments, reaction chamber 5-108 may retain the sample in proximity to a surface of integrated device 5- 102, which may ease delivery of excitation light to the sample and detection of emission light from the sample or a reaction component (e.g., a labeled nucleotide).

[0096] Optical elements for coupling excitation light from excitation light source 5-106 to integrated device 5-102 and guiding excitation light to the reaction chamber 5-108 are located both on integrated device 5-102 and the instrument 5-104. Source-to-chamber optical elements may comprise one or more grating couplers located on integrated device 5-102 to couple excitation light to the integrated device and waveguides to deliver excitation light from instrument 5-104 to reaction chambers in pixels 5-112. One or more optical splitter elements may be positioned between a grating coupler and the waveguides. The optical splitter may couple excitation light from the grating coupler and deliver excitation light to at least one of the waveguides. In some embodiments, the optical splitter may have a configuration that allows for delivery of excitation light to be substantially uniform across all the waveguides such that each of the waveguides receives a substantially similar amount of excitation light. Such embodiments may improve performance of the integrated device by improving the uniformity of excitation light received by reaction chambers of the integrated device.

[0097] Reaction chamber 5-108, a portion of the excitation source-to-chamber optics, and the reaction chamber-to-photodetector optics are located on integrated device 5-102. Excitation source 5-106 and a portion of the source-to-chamber components are located in instrument 5- 104. In some embodiments, a single component may play a role in both coupling excitation light to reaction chamber 5-108 and delivering emission light from reaction chamber 5-108 to photodetector 5-110. Examples of suitable components, for coupling excitation light to a reaction chamber and/or directing emission light to a photodetector, to include in an integrated device are described in U.S. Pat. Application No. 14/821,688, filed August 7, 2015, titled “INTEGRATED DEVICE FOR PROBING, DETECTING AND ANALYZING MOLECULES,” and U.S. Pat. Application No. 14/543,865, filed November 17, 2014, titled “INTEGRATED DEVICE WITH EXTERNAL LIGHT SOURCE FOR PROBING, DETECTING, AND ANALYZING MOLECULES,” both of which are incorporated by reference in their entirety.

[0098] Pixel 5-112 is associated with its own individual reaction chamber 5-108 and at least one photodetector 5-110. The plurality of pixels of integrated device 5-102 may be arranged to have any suitable shape, size, and/or dimensions. Integrated device 5-102 may have any suitable number of pixels. The number of pixels in integrated device 5-102 may be in the range of approximately 10,000 pixels to 1,000,000 pixels or any value or range of values within that range. In some embodiments, the pixels may be arranged in an array of 512 pixels by 512 pixels. Integrated device 5-102 may interface with instrument 5-104 in any suitable manner. In some embodiments, instrument 5-104 may have an interface that detachably couples to integrated device 5-102 such that a user may attach integrated device 5-102 to instrument 5-104 for use of integrated device 5-102 to analyze at least one sample of interest in a suspension and remove integrated device 5-102 from instrument 5-104 to allow for another integrated device to be attached. The interface of instrument 5-104 may position integrated device 5-102 to couple with circuitry of instrument 5-104 to allow for readout signals from one or more photodetectors to be transmitted to instrument 5-104. Integrated device 5-102 and instrument 5-104 may include multi-channel, high-speed communication links for handling data associated with large pixel arrays (e.g., more than 10,000 pixels).

[0099] A cross-sectional schematic of integrated device 5-102 illustrating a row of pixels 5-112 is shown in FIG. 5-1B. Integrated device 5-102 may include coupling region 5-201, routing region 5-202, and pixel region 5-203. Pixel region 5-203 may include a plurality of pixels 5-112 having reaction chambers 5-108 positioned on a surface at a location separate from coupling region 5-201, which is where excitation light (shown as the dashed arrow) couples to integrated device 5-102. Reaction chambers 5-108 may be formed through metal layer(s) 5-116. One pixel 5-112, illustrated by the dotted rectangle, is a region of integrated device 5-102 that includes a reaction chamber 5-108 and a photodetection region having one or more photodetectors 5-110.

[0100] FIG. 5-1B illustrates the path of excitation (shown in dashed lines) by coupling a beam of excitation light to coupling region 5-201 and to reaction chambers 5-108. The row of reaction chambers 5-108 shown in FIG. 5- IB may be positioned to optically couple with waveguide 5-220. Excitation light may illuminate a sample located within a reaction chamber. The sample or a reaction component (e.g., fluorescent label) may reach an excited state in response to being illuminated by the excitation light. When in an excited state, the sample or reaction component may emit emission light, which may be detected by one or more photodetectors associated with the reaction chamber. FIG. 5- IB schematically illustrates the path of emission light (shown as the solid line) from a reaction chamber 5-108 to photodetector(s) 5-110 of pixel 5-112. The photodetector(s) 5-110 of pixel 5-112 may be configured and positioned to detect emission light from reaction chamber 5-108. Examples of suitable photodetectors are described in U.S. Pat. Application No. 14/821,656, filed August 7, 2015, titled “INTEGRATED DEVICE FOR TEMPORAL BINNING OF RECEIVED PHOTONS,” which is incorporated by reference in its entirety. For an individual pixel 5-112, a reaction chamber 5-108 and its respective photodetector(s) 5-110 may be aligned along a common axis (along the y-direction shown in FIG. 5- IB). In this manner, the photodetector(s) may overlap with the reaction chamber within a pixel 5-112.

[0101] The directionality of the emission light from a reaction chamber 5-108 may depend on the positioning of the sample in the reaction chamber 5-108 relative to metal layer(s) 5-116 because metal layer(s) 5-116 may act to reflect emission light. In this manner, a distance between metal layer(s) 5-116 and a fluorescent marker positioned in a reaction chamber 5-108 may impact the efficiency of photodetector(s) 5-110, that are in the same pixel as the reaction chamber, to detect the light emitted by the fluorescent marker. The distance between metal layer(s) 5-116 and the bottom surface of a reaction chamber 5-106, which is proximate to where a sample may be positioned during operation, may be in the range of 100 nm to 500 nm, or any value or range of values in that range. In some embodiments the distance between metal layer(s) 5-116 and the bottom surface of a reaction chamber 5-108 is approximately 300 nm.

[0102] The distance between the sample and the photodetector(s) may also impact efficiency in detecting emission light. By decreasing the distance light has to travel between the sample and the photodetector(s), detection efficiency of emission light may be improved. In addition, smaller distances between the sample and the photodetector(s) may allow for pixels that occupy a smaller area footprint of the integrated device, which can allow for a higher number of pixels to be included in the integrated device. The distance between the bottom surface of a reaction chamber 5-108 and photodetector(s) may be in the range of 1 pm to 15 pm, or any value or range of values in that range.

[0103] Photonic structure(s) 5-230 may be positioned between reaction chambers 5-108 and photodetectors 5-110 and configured to reduce or prevent excitation light from reaching photodetectors 5-110, which may otherwise contribute to signal noise in detecting emission light. As shown in FIG. 5-1B, the one or more photonic structures 5-230 may be positioned between waveguide 5-220 and photodetectors 5-110. Photonic structure(s) 5-230 may include one or more optical rejection photonic structures including a spectral filter, a polarization filter, and a spatial filter. Photonic structure(s) 5-230 may be positioned to align with individual reaction chambers 5-108 and their respective photodetector(s) 5-110 along a common axis. Metal layers 5-240, which may act as a circuitry for integrated device 5-102, may also act as a spatial filter, in accordance with some embodiments. In such embodiments, one or more metal layers 5-240 may be positioned to block some or all excitation light from reaching photodetector(s) 5-110.

[0104] Coupling region 5-201 may include one or more optical components configured to couple excitation light from an external excitation source. Coupling region 5-201 may include grating coupler 5-216 positioned to receive some or all of a beam of excitation light. Examples of suitable grating couplers are described in U.S. Pat. Application No. 15/844,403, filed December 15, 2017, titled “OPTICAL COUPLER AND WAVEGUIDE SYSTEM,” which is incorporated by reference in its entirety. Grating coupler 5-216 may couple excitation light to waveguide 5-220, which may be configured to propagate excitation light to the proximity of one or more reaction chambers 5-108. Alternatively, coupling region 5-201 may comprise other well-known structures for coupling light into a waveguide.

[0105] Components located off of the integrated device may be used to position and align the excitation source 5-106 to the integrated device. Such components may include optical components including lenses, mirrors, prisms, windows, apertures, attenuators, and/or optical fibers. Additional mechanical components may be included in the instrument to allow for control of one or more alignment components. Such mechanical components may include actuators, stepper motors, and/or knobs. Examples of suitable excitation sources and alignment mechanisms are described in U.S. Pat. Application No. 15/161,088, filed May 20, 2016, titled “PULSED LASER AND SYSTEM,” which is incorporated by reference in its entirety. Another example of a beam-steering module is described in U.S. Pat. Application No. 15/842,720, filed December, 14, 2017, titled “COMPACT BEAM SHAPING AND STEERING ASSEMBLY,” which is incorporated herein by reference.

[0106] A sample to be analyzed may be introduced into reaction chamber 5-108 of pixel 5-112. The sample may be a biological sample or any other suitable sample, such as a chemical sample. In some cases, the suspension may include multiple molecules of interest and the reaction chamber may be configured to isolate a single molecule. In some instances, the dimensions of the reaction chamber may act to confine a single molecule within the reaction chamber, allowing measurements to be performed on the single molecule. Excitation light may be delivered into the reaction chamber 5-108, so as to excite the sample or at least one fluorescent marker attached to the sample or otherwise associated with the sample while it is within an illumination area within the reaction chamber 5-108.

[0107] In operation, parallel analyses of samples within the reaction chambers are carried out by exciting some or all of the samples within the reaction chambers using excitation light and detecting signals with the photodetectors that are representative of emission light from the reaction chambers. Emission light from a sample or reaction component (e.g., fluorescent label) may be detected by a corresponding photodetector and converted to at least one electrical signal. The electrical signals may be transmitted along conducting lines (e.g., metal layers 5-240) in the circuitry of the integrated device, which may be connected to an instrument interfaced with the integrated device. The electrical signals may be subsequently processed and/or analyzed. Processing or analyzing of electrical signals may occur on a suitable computing device either located on or off the instrument.

[0108] Instrument 5-104 may include a user interface for controlling operation of instrument 5-104 and/or integrated device 5-102. The user interface may be configured to allow a user to input information into the instrument, such as commands and/or settings used to control the functioning of the instrument. In some embodiments, the user interface may include buttons, switches, dials, and a microphone for voice commands. The user interface may allow a user to receive feedback on the performance of the instrument and/or integrated device, such as proper alignment and/or information obtained by readout signals from the photodetectors on the integrated device. In some embodiments, the user interface may provide feedback using a speaker to provide audible feedback. In some embodiments, the user interface may include indicator lights and/or a display screen for providing visual feedback to a user.

[0109] In some embodiments, instrument 5-104 may include a computer interface configured to connect with a computing device. Computer interface may be a USB interface, a FireWire interface, or any other suitable computer interface. Computing device may be any general purpose computer, such as a laptop or desktop computer. In some embodiments, computing device may be a server (e.g., cloud-based server) accessible over a wireless network via a suitable computer interface. The computer interface may facilitate communication of information between instrument 5-104 and the computing device. Input information for controlling and/or configuring the instrument 5-104 may be provided to the computing device and transmitted to instrument 5-104 via the computer interface. Output information generated by instrument 5-104 may be received by the computing device via the computer interface. Output information may include feedback about performance of instrument 5-104, performance of integrated device 5-112, and/or data generated from the readout signals of photodetector 5-110.

[0110] In some embodiments, instrument 5-104 may include a processing device configured to analyze data received from one or more photodetectors of integrated device 5-102 and/or transmit control signals to excitation source(s) 2-106. In some embodiments, the processing device may comprise a general purpose processor, a specially- adapted processor (e.g., a central processing unit (CPU) such as one or more microprocessor or microcontroller cores, a field-programmable gate array (FPGA), an application- specific integrated circuit (ASIC), a custom integrated circuit, a digital signal processor (DSP), or a combination thereof.) In some embodiments, the processing of data from one or more photodetectors may be performed by both a processing device of instrument 5-104 and an external computing device. In other embodiments, an external computing device may be omitted and processing of data from one or more photodetectors may be performed solely by a processing device of integrated device 5-102.

[0111] Referring to FIG. 5- 1C, a portable, advanced analytic instrument 5-100 can comprise one or more pulsed optical sources 5-106 mounted as a replaceable module within, or otherwise coupled to, the instrument 5-100. The portable analytic instrument 5-100 can include an optical coupling system 5-115 and an analytic system 5-160. The optical coupling system 5- 115 can include some combination of optical components (which may include, for example, none, one from among, or more than one component from among the following components: lens, mirror, optical filter, attenuator, beam-steering component, beam shaping component) and be configured to operate on and/or couple output optical pulses 5-122 from the pulsed optical source 5-106 to the analytic system 5-160. The analytic system 5-160 can include a plurality of components that are arranged to direct the optical pulses to at least one reaction chamber for sample analysis, receive one or more optical signals (e.g., fluorescence, backscattered radiation) from the at least one reaction chamber, and produce one or more electrical signals representative of the received optical signals. In some embodiments, the analytic system 5-160 can include one or more photodetectors and may also include signal-processing electronics (e.g., one or more microcontrollers, one or more field-programmable gate arrays, one or more microprocessors, one or more digital signal processors, logic gates, etc.) configured to process the electrical signals from the photodetectors. The analytic system 5-160 can also include data transmission hardware configured to transmit and receive data to and from external devices (e.g., one or more external devices on a network to which the instrument 5-100 can connect via one or more data communications links). In some embodiments, the analytic system 5-160 can be configured to receive a bio-optoelectronic chip 5-140, which holds one or more samples to be analyzed.

[0112] FIG. 5- ID depicts a further detailed example of a portable analytical instrument 5-100 that includes a compact pulsed optical source 5-108. In this example, the pulsed optical source 5-108 comprises a compact, passively mode-locked laser module 5-113. A passively mode-locked laser can produce optical pulses autonomously, without the application of an external pulsed signal. In some implementations, the module can be mounted to an instrument chassis or frame 5-103, and may be located inside an outer casing of the instrument. According to some embodiments, a pulsed optical source 5-106 can include additional components that can be used to operate the optical source and operate on an output beam from the optical source 5- 106. A mode-locked laser 5-113 may comprise an element (e.g., saturable absorber, acousto optic modulator, Kerr lens) in a laser cavity, or coupled to the laser cavity, that induces phase locking of the laser’s longitudinal frequency modes. The laser cavity can be defined in part by cavity end mirrors 5-111, 5-119. Such locking of the frequency modes results in pulsed operation of the laser (e.g., an intracavity pulse 5-120 bounces back-and-forth between the cavity end mirrors) and produces a stream of output optical pulses 5-122 from one end mirror 5-111 which is partially transmitting.

[0113] In some cases, the analytic instrument 5-100 is configured to receive a removable, packaged, bio-optoelectronic or optoelectronic chip 5-140 (also referred to as a “disposable chip”). The disposable chip can include a bio-optoelectronic chip, for example, that comprises a plurality of reaction chambers, integrated optical components arranged to deliver optical excitation energy to the reaction chambers, and integrated photodetectors arranged to detect fluorescent emission from the reaction chambers. In some implementations, the chip 5-140 can be disposable after a single use, whereas in other implementations the chip 5-140 can be reused two or more times. When the chip 5-140 is received by the instrument 5-100, it can be in electrical and optical communication with the pulsed optical source 5-106 and with apparatus in the analytic system 5-160. Electrical communication may be made through electrical contacts on the chip package, for example.

[0114] In some embodiments and referring to FIG. 5- ID, the disposable chip 5-140 can be mounted (e.g., via a socket connection) on an electronic circuit board 5-130, such as a printed circuit board (PCB) that can include additional instrument electronics. For example, the PCB 5- 130 can include circuitry configured to provide electrical power, one or more clock signals, and control signals to the optoelectronic chip 5-140, and signal-processing circuitry arranged to receive signals representative of fluorescent emission detected from the reaction chambers. Data returned from the optoelectronic chip can be processed in part or entirely by electronics on the instrument 5-100, although data may be transmitted via a network connection to one or more remote data processors, in some implementations. The PCB 5-130 can also include circuitry configured to receive feedback signals from the chip relating to optical coupling and power levels of the optical pulses 5-122 coupled into waveguides of the optoelectronic chip 5-140. The feedback signals can be provided to one or both of the pulsed optical source 5-106 and optical system 5-115 to control one or more parameters of the output beam of optical pulses 5-122. In some cases, the PCB 5-130 can provide or route power to the pulsed optical source 5-106 for operating the optical source and related circuitry in the optical source 5-106.

[0115] According to some embodiments, the pulsed optical source 5-106 comprises a compact mode-locked laser module 5-113. The mode-locked laser can comprise a gain medium 5-105 (which can be solid-state material in some embodiments), an output coupler 5-111, and a laser-cavity end mirror 5-119. The mode-locked laser’s optical cavity can be bound by the output coupler 5-111 and end mirror 5-119. An optical axis 5-125 of the laser cavity can have one or more folds (turns) to increase the length of the laser cavity and provide a desired pulse repetition rate. The pulse repetition rate is determined by the length of the laser cavity (e.g., the time for an optical pulse to make a round-trip within the laser cavity).

[0116] In some embodiments, there can be additional optical elements (not shown in FIG. 5-ID) in the laser cavity for beam shaping, wavelength selection, and/or pulse forming. In some cases, the end mirror 5-119 comprises a saturable-absorber mirror (SAM) that induces passive mode locking of longitudinal cavity modes and results in pulsed operation of the mode- locked laser. The mode-locked laser module 5-113 can further include a pump source (e.g., a laser diode, not shown in FIG. 5-ID) for exciting the gain medium 5-105. Further details of a mode-locked laser module 5-113 can be found in U.S. patent application No. 15/844,469, titled “Compact Mode-Locked Laser Module,” filed December 15, 2017, each application of which is incorporated herein by reference.

[0117] When the laser 5-113 is mode locked, an intracavity pulse 5-120 can circulate between the end mirror 5-119 and the output coupler 5-111, and a portion of the intracavity pulse can be transmitted through the output coupler 5-111 as an output pulse 5-122. Accordingly, a train of output pulses 5-122, as depicted in the graph of FIG. 5-2, can be detected at the output coupler as the intracavity pulse 5-120 bounces back-and-forth between the output coupler 5-111 and end mirror 5-119 in the laser cavity.

[0118] FIG. 5-2 depicts temporal intensity profiles of the output pulses 5-122, though the illustration is not to scale. In some embodiments, the peak intensity values of the emitted pulses may be approximately equal, and the profiles may have a Gaussian temporal profile, though other profiles such as a sech2 profile may be possible. In some cases, the pulses may not have symmetric temporal profiles and may have other temporal shapes. The duration of each pulse may be characterized by a full-width-half-maximum (FWHM) value, as indicated in FIG. 5-2. According to some embodiments of a mode-locked laser, ultrashort optical pulses can have FWHM values less than 100 picoseconds (ps). In some cases, the FWHM values can be between approximately 5 ps and approximately 30 ps.

[0119] The output pulses 5-122 can be separated by regular intervals T. For example, T can be determined by a round-trip travel time between the output coupler 5-111 and cavity end mirror 5-119. According to some embodiments, the pulse-separation interval T can be between about 1 ns and about 30 ns. In some cases, the pulse-separation interval T can be between about 5 ns and about 20 ns, corresponding to a laser-cavity length (an approximate length of the optical axis 5-125 within the laser cavity) between about 0.7 meter and about 3 meters. In embodiments, the pulse- separation interval corresponds to a round trip travel time in the laser cavity, so that a cavity length of 3 meters (round-trip distance of 6 meters) provides a pulse- separation interval T of approximately 20 ns.

[0120] According to some embodiments, a desired pulse- separation interval T and laser- cavity length can be determined by a combination of the number of reaction chambers on the chip 5-140, fluorescent emission characteristics, and the speed of data-handling circuitry for reading data from the optoelectronic chip 5-140. In embodiments, different fluorophores can be distinguished by their different fluorescent decay rates or characteristic lifetimes. Accordingly, there needs to be a sufficient pulse- separation interval T to collect adequate statistics for the selected fluorophores to distinguish between their different decay rates. Additionally, if the pulse- separation interval T is too short, the data handling circuitry cannot keep up with the large amount of data being collected by the large number of reaction chambers. Pulse-separation interval T between about 5 ns and about 20 ns is suitable for fluorophores that have decay rates up to about 2 ns and for handling data from between about 60,000 and 10,000,000 reaction chambers.

[0121] According to some implementations, a beam-steering module 5-150 can receive output pulses from the pulsed optical source 5-106 and is configured to adjust at least the position and incident angles of the optical pulses onto an optical coupler (e.g., grating coupler) of the optoelectronic chip 5-140. In some cases, the output pulses 5-122 from the pulsed optical source 5-106 can be operated on by a beam-steering module 5-150 to additionally or alternatively change a beam shape and/or beam rotation at an optical coupler on the optoelectronic chip 5-140. In some implementations, the beam-steering module 5-150 can further provide focusing and/or polarization adjustments of the beam of output pulses onto the optical coupler. One example of a beam-steering module is described in U.S. patent application 15/161,088 titled “Pulsed Laser and Bioanalytic System,” filed May 20, 2016, which is incorporated herein by reference. Another example of a beam-steering module is described in a separate U.S. patent application No. 62/435,679, filed December 16, 2016 and titled “Compact Beam Shaping and Steering Assembly,” which is incorporated herein by reference.

[0122] Referring to FIG. 5-3, the output pulses 5-122 from a pulsed optical source can be coupled into one or more optical waveguides 5-312 on a bio-optoelectronic chip 5-140, for example. In some embodiments, the optical pulses can be coupled to one or more waveguides via a grating coupler 5-310, though coupling to an end of one or more optical waveguides on the optoelectronic chip can be used in some embodiments. According to some embodiments, a quad detector 5-320 can be located on a semiconductor substrate 5-305 (e.g., a silicon substrate) for aiding in alignment of the beam of optical pulses 5-122 to a grating coupler 5-310. The one or more waveguides 5-312 and reaction chambers or reaction chambers 5-330 can be integrated on the same semiconductor substrate with intervening dielectric layers (e.g., silicon dioxide layers) between the substrate, waveguide, reaction chambers, and photodetectors 5-322.

[0123] Each waveguide 5-312 can include a tapered portion 5-315 below the reaction chambers 5-330 to equalize optical power coupled to the reaction chambers along the waveguide. The reducing taper can force more optical energy outside the waveguide’s core, increasing coupling to the reaction chambers and compensating for optical losses along the waveguide, including losses for light coupling into the reaction chambers. A second grating coupler 5-317 can be located at an end of each waveguide to direct optical energy to an integrated photodiode 5-324. The integrated photodiode can detect an amount of power coupled down a waveguide and provide a detected signal to feedback circuitry that controls the beam-steering module 5-150, for example.

[0124] The reaction chambers 5-330 or reaction chambers 5-330 can be aligned with the tapered portion 5-315 of the waveguide and recessed in a tub 5-340. There can be photodetectors 5-322 located on the semiconductor substrate 5-305 for each reaction chamber 5- 330. In some embodiments, a semiconductor absorber (shown in FIG. 5-5 as an optical filter 5- 530) may be located between the waveguide and a photodetector 5-322 at each pixel. A metal coating and/or multilayer coating 5-350 can be formed around the reaction chambers and above the waveguide to prevent optical excitation of fluorophores that are not in the reaction chambers (e.g., dispersed in a solution above the reaction chambers). The metal coating and/or multilayer coating 5-350 may be raised beyond edges of the tub 5-340 to reduce absorptive losses of the optical energy in the waveguide 5-312 at the input and output ends of each waveguide.

[0125] There can be a plurality of rows of waveguides, reaction chambers, and time- binning photodetectors on the optoelectronic chip 5-140. For example, there can be 128 rows, each having 512 reaction chambers, for a total of 65,536 reaction chambers in some implementations. Other implementations may include fewer or more reaction chambers, and may include other layout configurations. Optical power from the pulsed optical source 5-106 can be distributed to the multiple waveguides via one or more star couplers or multi-mode interference couplers, or by any other means, located between an optical coupler 5-310 to the chip 5-140 and the plurality of waveguides 5-312.

[0126] FIG. 5-4 illustrates optical energy coupling from an optical pulse 5-122 within a tapered portion of waveguide 5-315 to a reaction chamber 5-330. The drawing has been produced from an electromagnetic field simulation of the optical wave that accounts for waveguide dimensions, reaction chamber dimensions, the different materials’ optical properties, and the distance of the tapered portion of waveguide 5-315 from the reaction chamber 5-330.

The waveguide can be formed from silicon nitride in a surrounding medium 5-410 of silicon dioxide, for example. The waveguide, surrounding medium, and reaction chamber can be formed by microfabrication processes described in U.S. application No. 14/821,688, filed August 7, 2015, titled “Integrated Device for Probing, Detecting and Analyzing Molecules.” According to some embodiments, an evanescent optical field 5-420 couples optical energy transported by the waveguide to the reaction chamber 5-330.

[0127] A non-limiting example of a biological reaction taking place in a reaction chamber 5-330 is depicted in FIG. 5-5. The example depicts sequential incorporation of nucleotides or nucleotide analogs into a growing strand that is complementary to a target nucleic acid. The sequential incorporation can take place in a reaction chamber 5-330, and can be detected by an advanced analytic instrument to sequence DNA. The reaction chamber can have a depth between about 150 nm and about 250 nm and a diameter between about 80 nm and about 160 nm. A metallization layer 5-540 (e.g., a metallization for an electrical reference potential) can be patterned above a photodetector 5-322 to provide an aperture or iris that blocks stray light from adjacent reaction chambers and other unwanted light sources. According to some embodiments, polymerase 5-520 can be located within the reaction chamber 5-330 (e.g., attached to a base of the chamber). The polymerase can take up a target nucleic acid 5-510 (e.g., a portion of nucleic acid derived from DNA), and sequence a growing strand of complementary nucleic acid to produce a growing strand of DNA 5-512. Nucleotides or nucleotide analogs labeled with different fluorophores can be dispersed in a solution above and within the reaction chamber.

[0128] When a labeled nucleotide or nucleotide analog 5-610 is incorporated into a growing strand of complementary nucleic acid, as depicted in FIG. 5-6, one or more attached fluorophores 5-630 can be repeatedly excited by pulses of optical energy coupled into the reaction chamber 5-330 from the waveguide 5-315. In some embodiments, the fluorophore or fluorophores 5-630 can be attached to one or more nucleotides or nucleotide analogs 5-610 with any suitable linker 5-620. An incorporation event may last for a period of time up to about 100 ms. During this time, pulses of fluorescent emission resulting from excitation of the fluorophore(s) by pulses from the mode-locked laser can be detected with a time-binning photodetector 5-322, for example. In some embodiments, there can be one or more additional integrated electronic devices 5-323 at each pixel for signal handling (e.g., amplification, read out, routing, signal preprocessing, etc.). According to some embodiments, each pixel can include at least one optical filter 5-530 (e.g., a semiconductor absorber) that passes fluorescent emission and reduces transmission of radiation from the excitation pulse. Some implementations may not use the optical filter 5-530. By attaching fluorophores with different emission characteristics (e.g., fluorescent decay rates, intensity, fluorescent wavelength) to the different nucleotides (A,C,G,T), detecting and distinguishing the different emission characteristics while the strand of DNA 5-512 incorporates a nucleic acid and enables determination of the genetic sequence of the growing strand of DNA.

[0129] According to some embodiments, an advanced analytic instrument 5-100 that is configured to analyze samples based on fluorescent emission characteristics can detect differences in fluorescent lifetimes and/or intensities between different fluorescent molecules, and/or differences between lifetimes and/or intensities of the same fluorescent molecules in different environments. By way of explanation, FIG. 5-7 plots two different fluorescent emission probability curves (A and B), which can be representative of fluorescent emission from two different fluorescent molecules, for example. With reference to curve A (dashed line), after being excited by a short or ultrashort optical pulse, a probability pA(t) of a fluorescent emission from a first molecule may decay with time, as depicted. In some cases, the decrease in the probability of a photon being emitted over time can be represented by an exponential decay function p_A (t)=P_Ao c A (-t/r_l ), where PAo is an initial emission probability and t_1 is a temporal parameter associated with the first fluorescent molecule that characterizes the emission decay probability. t_1 may be referred to as the “fluorescence lifetime,” “emission lifetime,” or “lifetime” of the first fluorescent molecule. In some cases, the value of t_1 can be altered by a local environment of the fluorescent molecule. Other fluorescent molecules can have different emission characteristics than that shown in curve A. For example, another fluorescent molecule can have a decay profile that differs from a single exponential decay, and its lifetime can be characterized by a half-life value or some other metric.

[0130] A second fluorescent molecule may have a decay profile pB(t) that is exponential, but has a measurably different lifetime t_2, as depicted for curve B in FIG. 5-7. In the example shown, the lifetime for the second fluorescent molecule of curve B is shorter than the lifetime for curve A, and the probability of emission pB(t) is higher sooner after excitation of the second molecule than for curve A. Different fluorescent molecules can have lifetimes or half-life values ranging from about 0.1 ns to about 20 ns, in some embodiments.

[0131] Differences in fluorescent emission lifetimes can be used to discern between the presence or absence of different fluorescent molecules and/or to discern between different environments or conditions to which a fluorescent molecule is subjected. In some cases, discerning fluorescent molecules based on lifetime (rather than emission wavelength, for example) can simplify aspects of an analytical instrument 5-100. As an example, wavelength- discriminating optics (such as wavelength filters, dedicated detectors for each wavelength, dedicated pulsed optical sources at different wavelengths, and/or diffractive optics) can be reduced in number or eliminated when discerning fluorescent molecules based on lifetime. In some cases, a single pulsed optical source operating at a single characteristic wavelength can be used to excite different fluorescent molecules that emit within a same wavelength region of the optical spectrum but have measurably different lifetimes. An analytic system that uses a single pulsed optical source, rather than multiple sources operating at different wavelengths, to excite and discern different fluorescent molecules emitting in a same wavelength region can be less complex to operate and maintain, more compact, and can be manufactured at lower cost.

[0132] Although analytic systems based on fluorescent lifetime analysis can have certain benefits, the amount of information obtained by an analytic system and/or detection accuracy can be increased by allowing for additional detection techniques. For example, some analytic systems 5-160 can additionally be configured to discern one or more properties of a sample based on fluorescent wavelength and/or fluorescent intensity.

[0133] Referring again to FIG. 5-7, according to some embodiments, different fluorescent lifetimes can be distinguished with a photodetector that is configured to time-bin fluorescent emission events following excitation of a fluorescent molecule. The time binning can occur during a single collection sequence for the photodetector. A collection sequence is an interval between readout periods during which charge carriers are accumulated in charge storage regions of the time-binning photodetector. The concept of determining fluorescent lifetime by time-binning of emission events is introduced graphically in FIG. 5-8. At time t e just prior to ti, a fluorescent molecule or ensemble of fluorescent molecules of a same type (e.g., the type corresponding to curve B of FIG. 5-7) is (are) excited by a short or ultrashort optical pulse. For a large ensemble of molecules, the intensity of emission can have a time profile similar to curve B, as depicted in FIG. 5-8.

[0134] For a single molecule or a small number of molecules, however, the emission of fluorescent photons occurs according to the statistics of curve B in FIG. 5-7, for this example. A time-binning photodetector 5-322 can accumulate charge carriers generated from emission events into charge storage regions. Three charge storage regions are indicated in FIG. 5-8, though fewer charge storage regions or more charge storage regions may be used in embodiments. The charge storage regions may be temporally resolved with respect to the excitation time t e of the fluorescent molecule(s). For example, a first charge storage region (e.g., SDO) can accumulate charge carriers produced during an interval between times ti and t2, occurring after the excitation event at time t e . A second charge storage region (e.g., SD1) can accumulate carriers produced during an interval between times t2 and t3, and a third charge storage region (e.g., SD2) can accumulate carriers produced during an interval between times t3 and U. When a large number of emission events are summed, charge carriers accumulated in the charge storage regions can approximate the decaying intensity curve shown in FIG. 5-8, and the binned signals can be used to distinguish between different fluorescent molecules or different environments in which a fluorescent molecule is located.

[0135] Examples of a time-binning photodetector 5-322 are described in U.S. patent application No. 14/821,656, filed August 7, 2015, titled “Integrated Device for Temporal Binning of Received Photons” and in U.S. patent application 15/852,571, filed December 22, 2017, titled “Integrated Photodetector with Direct Binning Pixel,” which are both incorporated herein by reference in their entirety. For explanation purposes, a non-limiting embodiment of a time-binning photodetector is depicted in FIG. 5-9. A single time-binning photodetector 5-322 can comprise a photodetection region 5-902, a charge transfer channel 5-906, and a plurality of charge storage regions 5-908a, 5-908b all formed on a semiconductor substrate. Charge transfer channels 5-907 can connect between the photodetection region 5-902 and charge storage regions 5-908a, 5-908b. In the illustrated example, two charge storage regions are shown, but there may be more or fewer. There can be a readout channel 5-910 connected to the carrier- storage regions. The photodetection region 5-902, charge transfer channel 5-906, charge storage regions 5-908a, 5-908b, and readout channel 5-910 can be formed by doping the semiconductor locally and/or forming adjacent insulating regions to provide photodetection capability, confinement, and transport of carriers. A time-binning photodetector 5-322 can also include a plurality of transfer gates 5-920, 5-921, 5-922, 5-923, 5-924 formed on the substrate that are configured to generate electric fields in the device for transporting carriers through the device.

[0136] In operation, a portion of an excitation pulse 5-122 from a pulsed optical source 5-106 (e.g., a mode-locked laser) is delivered to a reaction chamber 5-330 over the time-binning photodetector 5-322. Initially, some excitation radiation photons 5-901 may arrive at the photodetection region 5-902 and produce carriers (shown as light-shaded circles). There can also be some fluorescent emission photons 5-903 that arrive with the excitation radiation photons 5- 901 and produce corresponding charge carriers (shown as dark-shaded circles). Initially, the number of charge carriers produced by the excitation radiation can be too large compared to the number of charge carriers produced by the fluorescent emission. The initial charge carriers produced during a time interval t e - ti can be rejected by gating them into a charge transfer channel 5-906 with a first transfer gate 5-920, for example.

[0137] At a later times mostly fluorescent emission photons 5-903 arrive at the photodetection region 5-902 and produce charge carriers (indicated a dark-shaded circles) that provide useful and detectable signal that is representative of fluorescent emission from the reaction chamber 5-330. According to some detection methods, a second transfer gate 5-921 and third transfer gate 5-923 can be gated at a later time to direct carriers produced at a later time (e.g., during a second time interval ti - t2) to a first charge storage region 5-908a. Subsequently, a fourth transfer gate 5-922 and fifth transfer gate 5-924 can be gated at a later time (e.g., during a third time interval t2 - t3) to direct charge carriers to a second charge storage region 5 -908b. Charge carrier accumulation can continue in this manner after excitation pulses for a large number of excitation pulses to accumulate an appreciable number of charge carriers and signal level in each charge storage region 5-908a, 5-908b. At a later time, the signal can be read out from the charge storage regions. In some implementations, the time intervals corresponding to each charge storage region are at the sub-nanosecond time scale, though longer time scales can be used in some embodiments (e.g., in embodiments where fluorophores have longer decay times).

[0138] The process of generating and time-binning charge carriers after an excitation event (e.g., excitation pulse from a pulsed optical source) can occur once after a single excitation pulse or be repeated multiple times after multiple excitation pulses during a single charge- accumulation cycle for the time-binning photodetector 5-322. After charge accumulation is complete, charge carriers can be read out of the charge storage regions via the readout channel 5- 910. For example, an appropriate biasing sequence can be applied to transfer gates 5-923, 5-924 and at least to transfer gate 5-940 to remove carriers from the charge storage regions 5-908a, 5- 908b. The charge accumulation and readout processes can occur in a massively parallel operation on the optoelectronic chip 5-140 resulting in frames of data.

[0139] Although the described example in connection with FIG. 5-9 includes multiple charge storage regions 5-908a, 5-908b, in some cases a single charge storage region may be used instead. For example, only charge storage region SD0 may be present in a time-binning photodetector 5-322. In such a case, a single charge storage region 5-908a can be operated in a variable time-gated manner to look at different time intervals after different excitation events.

For example, after pulses in a first series of excitation pulses, transfer gates for the storage region 5-908a can be gated to collect carriers generated during a first time interval (e.g., during the second time interval ti - 12), and the accumulated signal can be read out after a first predetermined number of pulses. After pulses in a subsequent series of excitation pulses at the same reaction chamber, the same transfer gates for the charge storage region 5-908a can be gated to collect charge carriers generated during a different interval (e.g., during the third time interval t2 - t3), and the accumulated signal can be read out after a second predetermined number of pulses. Charge carriers could be collected during later time intervals in a similar manner if needed. In this manner, signal levels corresponding to fluorescent emission during different time periods after arrival of an excitation pulse at a reaction chamber can be produced using a single charge storage region.

[0140] In some embodiments, charge carriers produced during the second and third time intervals may be collected and stored using charge storage regions. For example, charge carriers produced during the time interval ti - 12 may be collected in charge storage region SDO, and then charge carriers produced during the time interval t2 - 13 may be collected in charge storage region SD1, after which the charge carriers collected during time interval ti - 13 may be read out from the respective charge storage regions to readout region FD. Alternatively or additionally, the charge carriers produced during time interval t2 - t3 can be collected in charge storage region SDO after the charge carriers collected during time interval ti - 12 have been read out from charge storage region SDO to readout region FD.

[0141] Regardless of how charge accumulation is carried out for different time intervals after excitation, signals that are read out can provide a histogram of bins that are representative of the fluorescent emission decay characteristics, for example. An example process is illustrated in FIG. 5-10A and FIG. 5-10B, for which two charge storage regions are used to acquire fluorescent emission from the reaction chambers. The histogram’s bins can indicate a number of photons detected during each time interval after excitation of the fluorophore(s) in a reaction chamber 5-330. In some embodiments, signals for the bins will be accumulated following a large number of excitation pulses, as depicted in FIG. 5-10A. The excitation pulses can occur at times t ei , t e 2, t e 3, ... t eN which are separated by the pulse interval time T. In some cases, there can be between 105 and 107 excitation pulses 5-122 (or portions thereof) applied to a reaction chamber during an accumulation of signals in the charge storage regions for a single event being observed in the reaction chamber (e.g., a single nucleotide incorporation event in DNA analysis). In some embodiments, one charge storage region (bin 0 or SDO) can be configured to detect an amplitude of excitation energy delivered with each optical pulse, and may be used as a reference signal (e.g., to normalize data). In other cases, the excitation pulse amplitude may be stable, determined one or more times during signal acquisition, and not determined after each excitation pulse so that there is no binO signal acquisition after each excitation pulse. In such cases, carriers produced by an excitation pulse can be rejected and dumped from the photodetection region 5- 902 as described above in connection with FIG. 5-9.

[0142] In some implementations, only a single photon may be emitted from a fluorophore following an excitation event, as depicted in FIG. 5-10A. After a first excitation event at time t ei , the emitted photon at time tn may occur within a first time interval (c.g. between times ti and t2), so that the resulting charge carriers are accumulated in the first charge storage region (contributes to bin 1). In a subsequent excitation event at time t e 2, the emitted photon at time to may occur within a second time interval (c.g. between times t2 and t3), so that the resulting charge signal contributes to bin 2. After a next excitation event at time t e 3, a photon may emit at a time to occurring within the first time interval.

[0143] In some implementations, there may not be a fluorescent photon emitted and/or detected after each excitation pulse received at a reaction chamber 5-330. In some cases, there can be as few as one fluorescent photon that is detected at a reaction chamber for every 10,000 excitation pulses delivered to the reaction chamber. One advantage of implementing a mode- locked laser 5-113 as the pulsed excitation source 5-106 is that a mode-locked laser can produce short optical pulses having high intensity and quick turn-off times at high pulse-repetition rates (e.g., between 50 MHz and 250 MHz). With such high pulse-repetition rates, the number of excitation pulses within a 10 millisecond charge- accumulation interval can be 50,000 to 250,000, so that detectable signal can be accumulated.

[0144] After a large number of excitation events and charge carrier accumulations, the charge storage regions of the time-binning photodetector 5-322 can be read out to provide a multi-valued signal (e.g., a histogram of two or more values, an N-dimensional vector, etc.) for a reaction chamber. The signal values for each bin can depend upon the decay rate of the fluorophore. For example and referring again to FIG. 5-8, a fluorophore having a decay curve B will have a higher ratio of signal in bin 1 to bin 2 than a fluorophore having a decay curve A.

The values from the bins can be analyzed and compared against calibration values, and/or each other, to determine the particular fluorophore present. For a sequencing application, identifying the fluorophore can determine the nucleotide or nucleotide analog that is being incorporated into a growing strand of DNA, for example. For other applications, identifying the fluorophore can determine an identity of a molecule or specimen of interest, which may be linked to the fluorophore.

[0145] To further aid in understanding the signal analysis, the accumulated, multi-bin values can be plotted as a histogram, as depicted in FIG. 5-10B for example, or can be recorded as a vector or location in N-dimensional space. Calibration runs can be performed separately to acquire calibration values for the multi-valued signals (e.g., calibration histograms) for four different fluorophores linked to the four nucleotides or nucleotide analogs. As an example, the calibration histograms may appear as depicted in FIG. 5-11 A (fluorescent label associated with the T nucleotide), FIG. 5-1 IB (fluorescent label associated with the A nucleotide), FIG. 5-11C (fluorescent label associated with the C nucleotide), and FIG. 5-1 ID (fluorescent label associated with the G nucleotide). A comparison of the measured multi-valued signal (corresponding to the histogram of FIG. 5-10B) to the calibration multi-valued signals can determine the identity “T” (FIG. 5-11A) of the nucleotide or nucleotide analog being incorporated into the growing strand of DNA.

[0146] In some implementations, fluorescent intensity can be used additionally or alternatively to distinguish between different fluorophores. For example, some fluorophores may emit at significantly different intensities or have a significant difference in their probabilities of excitation (e.g., at least a difference of about 35%) even though their decay rates may be similar. By referencing binned signals (bins 5-3) to measured excitation energy and/or other acquired signals, it can be possible to distinguish different fluorophores based on intensity levels.

[0147] In some embodiments, different numbers of fluorophores of the same type can be linked to different nucleotides or nucleotide analogs, so that the nucleotides can be identified based on fluorophore intensity. For example, two fluorophores can be linked to a first nucleotide (e.g., “C”) or nucleotide analog and four or more fluorophores can be linked to a second nucleotide (e.g., “T”) or nucleotide analog. Because of the different numbers of fluorophores, there may be different excitation and fluorophore emission probabilities associated with the different nucleotides. For example, there may be more emission events for the “T” nucleotide or nucleotide analog during a signal accumulation interval, so that the apparent intensity of the bins is significantly higher than for the “C” nucleotide or nucleotide analog.

[0148] Distinguishing nucleotides or any other biological or chemical specimens based on fluorophore decay rates and/or fluorophore intensities enables a simplification of the optical excitation and detection systems in an analytical instrument 5-100. For example, optical excitation can be performed with a single-wavelength source (e.g., a source producing one characteristic wavelength rather than multiple sources or a source operating at multiple different characteristic wavelengths). Additionally, wavelength-discriminating optics and filters may not be needed in the detection system to distinguish between fluorophores of different wavelengths. Also, a single photodetector can be used for each reaction chamber to detect emission from different fluorophores. [0149] The phrase “characteristic wavelength” or “wavelength” is used to refer to a central or predominant wavelength within a limited bandwidth of radiation (e.g., a central or peak wavelength within a 20 nm bandwidth output by a pulsed optical source). In some cases, “characteristic wavelength” or “wavelength” may be used to refer to a peak wavelength within a total bandwidth of radiation output by a source.

[0150] Fluorophores having emission wavelengths in a range between about 560 nm and about 900 nm can provide adequate amounts of fluorescence to be detected by a time-binning photodetector (which can be fabricated on a silicon wafer using CMOS processes). These fluorophores can be linked to biological molecules of interest, such as nucleotides or nucleotide analogs for genetic sequencing applications. Fluorescent emission in this wavelength range can be detected with higher responsivity in a silicon-based photodetector than fluorescence at longer wavelengths. Additionally, fluorophores and associated linkers in this wavelength range may not interfere with incorporation of the nucleotides or nucleotide analogs into growing strands of DNA. In some implementations, fluorophores having emission wavelengths in a range between about 560 nm and about 660 nm can be optically excited with a single- wavelength source. An example fluorophore in this range is Alexa Fluor 647, available from Thermo Fisher Scientific Inc. of Waltham, Massachusetts. Excitation energy at shorter wavelengths (e.g., between about 500 nm and about 650 nm) may be used to excite fluorophores that emit at wavelengths between about 560 nm and about 900 nm. In some embodiments, the time-binning photodetectors can efficiently detect longer-wavelength emission from the reaction chambers, e.g., by incorporating other materials, such as Ge, into the photodetectors’ active regions.

VI. Protein Sequencing Applications

[0151] Some aspects of the present disclosure may be useful for protein sequencing. For example, some aspects of the present disclosure are useful for determining amino acid sequence information from polypeptides (e.g., for sequencing one or more polypeptides). In some embodiments, amino acid sequence information can be determined for single polypeptide molecules. In some embodiments, one or more amino acids of a polypeptide are labeled (e.g., directly or indirectly) and the relative positions of the labeled amino acids in the polypeptide are determined. In some embodiments, the relative positions of amino acids in a protein are determined using a series of amino acid labeling and cleavage steps.

[0152] In some embodiments, the identity of a terminal amino acid (e.g., an N-terminal or a C-terminal amino acid) is assessed, after which the terminal amino acid is removed and the identity of the next amino acid at the terminus is assessed, and this process is repeated until a plurality of successive amino acids in the polypeptide are assessed. In some embodiments, assessing the identity of an amino acid comprises determining the type of amino acid that is present. In some embodiments, determining the type of amino acid comprises determining the actual amino acid identity, for example by determining which of the naturally-occurring 20 amino acids is the terminal amino acid is (e.g., using a recognition molecule that is specific for an individual terminal amino acid). However, in some embodiments assessing the identity of a terminal amino acid type can comprise determining a subset of potential amino acids that can be present at the terminus of the polypeptide. In some embodiments, this can be accomplished by determining that an amino acid is not one or more specific amino acids (and therefore could be any of the other amino acids). In some embodiments, this can be accomplished by determining which of a specified subset of amino acids (e.g., based on size, charge, hydrophobicity, binding properties) could be at the terminus of the polypeptide (e.g., using a recognition molecule that binds to a specified subset of two or more terminal amino acids).

[0153] Amino acids of a polypeptide can be indirectly labeled, for example, using amino acid recognition molecules that selectively bind one or more types of amino acids on the polypeptide. Amino acids of a polypeptide can be directly labeled, for example, by selectively modifying one or more types of amino acid side chains on the polypeptide with uniquely identifiable labels. Methods of selective labeling of amino acid side chains and details relating to the preparation and analysis of labeled polypeptides are known in the art (see, e.g.,

Swaminathan, et al. PLoS Comput Biol. 2015, ll(2):el004080). Accordingly, in some embodiments, the one or more types of amino acids are identified by detecting binding of one or more amino acid recognition molecules that selectively bind the one or more types of amino acids. In some embodiments, the one or more types of amino acids are identified by detecting labeled polypeptide.

[0154] In some embodiments, the relative position of labeled amino acids in a protein can be determined without removing amino acids from the protein but by translocating a labeled protein through a pore (e.g., a protein channel) and detecting a signal (e.g., a Forster resonance energy transfer (FRET) signal) from the labeled amino acid(s) during translocation through the pore in order to determine the relative position of the labeled amino acids in the protein molecule.

[0155] As used herein, sequencing a polypeptide refers to determining sequence information for a polypeptide. In some embodiments, this can involve determining the identity of each sequential amino acid for a portion (or all) of the polypeptide. However, in some embodiments, this can involve assessing the identity of a subset of amino acids within the polypeptide (e.g., and determining the relative position of one or more amino acid types without determining the identity of each amino acid in the polypeptide). However, in some embodiments amino acid content information can be obtained from a polypeptide without directly determining the relative position of different types of amino acids in the polypeptide. The amino acid content alone may be used to infer the identity of the polypeptide that is present (e.g., by comparing the amino acid content to a database of polypeptide information and determining which polypeptide(s) have the same amino acid content).

[0156] In some embodiments, sequence information for a plurality of polypeptide products obtained from a longer polypeptide or protein (e.g., via enzymatic and/or chemical cleavage) can be analyzed to reconstruct or infer the sequence of the longer polypeptide or protein. Accordingly, some embodiments provide compositions and methods for sequencing a polypeptide by sequencing a plurality of fragments of the polypeptide. In some embodiments, sequencing a polypeptide comprises combining sequence information for a plurality of polypeptide fragments to identify and/or determine a sequence for the polypeptide. In some embodiments, combining sequence information may be performed by computer hardware and software. The methods described herein may allow for a set of related polypeptides, such as an entire proteome of an organism, to be sequenced. In some embodiments, a plurality of single molecule sequencing reactions may be performed in parallel (e.g., on a single chip). For example, in some embodiments, a plurality of single molecule sequencing reactions are each performed in separate sample wells on a single chip.

[0157] In some embodiments, methods provided herein may be used for the sequencing and identification of an individual protein in a sample comprising a complex mixture of proteins. Some embodiments provide methods of uniquely identifying an individual protein in a complex mixture of proteins. In some embodiments, an individual protein is detected in a mixed sample by determining a partial amino acid sequence of the protein. In some embodiments, the partial amino acid sequence of the protein is within a contiguous stretch of approximately 5 to 50 amino acids.

[0158] Without wishing to be bound by any particular theory, it is believed that most human proteins can be identified using incomplete sequence information with reference to proteomic databases. For example, simple modeling of the human proteome has shown that approximately 98% of proteins can be uniquely identified by detecting just four types of amino acids within a stretch of 6 to 40 amino acids (see, e.g., Swaminathan, et al. PLoS Comput Biol. 2015, ll(2):el004080; and Yao, et al. Phys. Biol. 2015, 12(5):055003). Therefore, a complex mixture of proteins can be degraded (e.g., chemically degraded, enzymatically degraded) into short polypeptide fragments of approximately 6 to 40 amino acids, and sequencing of this polypeptide library would reveal the identity and abundance of each of the proteins present in the original complex mixture. Compositions and methods for selective amino acid labeling and identifying polypeptides by determining partial sequence information are described in in detail in U.S. Pat. Application No. 15/510,962, filed September 15, 2015, titled “SINGLE MOLECULE PEPTIDE SEQUENCING,” which is incorporated by reference in its entirety.

[0159] Sequencing in accordance with some embodiments can involve immobilizing a polypeptide on a surface of a substrate or solid support, such as a chip or integrated device. In some embodiments, a polypeptide can be immobilized on a surface of a sample well (e.g., on a bottom surface of a sample well) on a substrate. In some embodiments, a first terminus of a polypeptide is immobilized to a surface, and the other terminus is subjected to a sequencing reaction as described herein. For example, in some embodiments, a polypeptide is immobilized to a surface through a C-terminal end, and terminal amino acid recognition and degradation proceeds from an N-terminal end of the polypeptide toward the C-terminal end. In some embodiments, the N-terminal amino acid of the polypeptide is immobilized (e.g., attached to the surface). In some embodiments, the C-terminal amino acid of the polypeptide is immobilized (e.g., attached to the surface). In some embodiments, one or more non-terminal amino acids are immobilized (e.g., attached to the surface). The immobilized amino acid(s) can be attached using any suitable covalent or non-covalent linkage, for example as described herein. In some embodiments, a plurality of polypeptides are attached to a plurality of sample wells (e.g., with one polypeptide attached to a surface, for example a bottom surface, of each sample well), for example in an array of sample wells on a substrate.

[0160] Some aspects of the present disclosure provide a method of sequencing a polypeptide by detecting luminescence of a labeled polypeptide which is subjected to repeated cycles of terminal amino acid modification and cleavage. For example, FIG. 5-12 shows a method of sequencing a labeled polypeptide by Edman degradation in accordance with some embodiments. In some embodiments, the method generally proceeds as described herein for other methods of sequencing by Edman degradation. For example, in some embodiments, steps (1) and (2) shown in FIG. 5-12 may be performed as described elsewhere herein for terminal amino acid modification and terminal amino acid cleavage, respectively, in an Edman degradation reaction.

[0161] As shown in the example depicted in FIG. 5-12, in some embodiments, the method comprises a step of (1) modifying the terminal amino acid of a labeled polypeptide. As described elsewhere herein, in some embodiments, modifying comprises contacting the terminal amino acid with an isothiocyanate (e.g., PITC) to form an isothiocyanate-modified terminal amino acid. In some embodiments, an isothiocyanate modification 5-1210 converts the terminal amino acid to a form that is more susceptible to removal by a cleaving reagent (e.g., a chemical or enzymatic cleaving reagent, as described herein). Accordingly, in some embodiments, the method comprises a step of (2) removing the modified terminal amino acid using chemical or enzymatic means detailed elsewhere herein for Edman degradation.

[0162] In some embodiments, the method comprises repeating steps (1) through (2) for a plurality of cycles, during which luminescence of the labeled polypeptide is detected, and cleavage events corresponding to the removal of a labeled amino acid from the terminus may be detected as a decrease in detected signal. In some embodiments, no change in signal following step (2) as shown in FIG. 5-12 identifies an amino acid of unknown type. Accordingly, in some embodiments, partial sequence information may be determined by evaluating a signal detected following step (2) during each sequential round by assigning an amino acid type by a determined identity based on a change in detected signal or identifying an amino acid type as unknown based on no change in a detected signal.

[0163] Some aspects of the present disclosure provide methods of polypeptide sequencing in real-time by evaluating binding interactions of terminal amino acids with labeled amino acid recognition molecules and a labeled cleaving reagent (e.g., a labeled exopeptidase). FIG. 5-13 shows an example of a method of sequencing in which discrete binding events give rise to signal pulses of a signal output 5-1300. The inset panel of FIG. 5-13 illustrates a general scheme of real-time sequencing by this approach. As shown, a labeled amino acid recognition molecule 5-1310 selectively binds to and dissociates from a terminal amino acid (shown here as lysine), which gives rise to a series of pulses in signal output 5-1300 which may be used to identify the terminal amino acid. In some embodiments, the series of pulses provide a pulsing pattern which may be diagnostic of the identity of the corresponding terminal amino acid.

[0164] Without wishing to be bound by theory, labeled amino acid recognition molecule 5-1310 selectively binds according to a binding affinity (KD) defined by an association rate of binding (kon) and a dissociation rate of binding (koff). The rate constants koff and kon are the critical determinants of pulse duration (e.g., the time corresponding to a detectable binding event) and interpulse duration (e.g., the time between detectable binding events), respectively. In some embodiments, these rates can be engineered to achieve pulse durations and pulse rates that give the best sequencing accuracy.

[0165] As shown in the inset panel, a sequencing reaction mixture further comprises a labeled cleaving reagent 5-1320 comprising a detectable label that is different than that of labeled amino acid recognition molecule 5-1310. In some embodiments, labeled cleaving reagent 5-1320 is present in the mixture at a concentration that is less than that of labeled amino acid recognition molecule 5-1310. In some embodiments, labeled cleaving reagent 5-1320 displays broad specificity such that it cleaves most or all types of terminal amino acids.

[0166] As illustrated by the progress of signal output 5-1300, in some embodiments, terminal amino acid cleavage by labeled cleaving reagent 5-1320 gives rise to a uniquely identifiable signal pulse, and these events occur with higher wavelength than the binding pulses of a labeled amino acid recognition molecule 5-1310. In this way, amino acids of a polypeptide can be counted and/or identified in a real-time sequencing process. As further illustrated in signal output 5-1300, in some embodiments, a labeled amino acid recognition molecule 5-1310 is engineered to bind more than one type of amino acid with different binding properties corresponding to each type, which produces uniquely identifiable pulsing patterns. In some embodiments, a plurality of labeled amino acid recognition molecules may be used, each with a diagnostic pulsing pattern which may be used to identify a corresponding terminal amino acid.

VII. _ Conclusion

[0167] Having thus described several aspects and embodiments of the technology of the present disclosure, it is to be appreciated that various alterations, modifications, and improvements will readily occur to those of ordinary skill in the art. Such alterations, modifications, and improvements are intended to be within the spirit and scope of the technology described herein. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, inventive embodiments may be practiced otherwise than as specifically described. In addition, any combination of two or more features, systems, articles, materials, kits, and/or methods described herein, if such features, systems, articles, materials, kits, and/or methods are not mutually inconsistent, is included within the scope of the present disclosure.

[0168] Also, as described, some aspects may be embodied as one or more methods. The acts performed as part of the method may be ordered in any suitable way. Accordingly, embodiments may be constructed in which acts are performed in an order different than illustrated, which may include performing some acts simultaneously, even though shown as sequential acts in illustrative embodiments.

[0169] All definitions, as defined and used herein, should be understood to control over dictionary definitions, definitions in documents incorporated by reference, and/or ordinary meanings of the defined terms.

[0170] The indefinite articles “a” and “an,” as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean “at least one.”

[0171] The phrase “and/or,” as used herein in the specification and in the claims, should be understood to mean “either or both” of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases.

[0172] As used herein in the specification and in the claims, the phrase “at least one,” in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements. This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase “at least one” refers, whether related or unrelated to those elements specifically identified.

[0173] In the claims, as well as in the specification above, all transitional phrases such as “comprising,” “including,” “carrying,” “having,” “containing,” “involving,” “holding,” “composed of,” and the like are to be understood to be open-ended, i.e., to mean including but not limited to. The transitional phrases “consisting of’ and “consisting essentially of’ shall be closed or semi-closed transitional phrases, respectively.

[0174] The terms “approximately,” “substantially,” and “about” may be used to mean within ±20% of a target value and/or aspect in some embodiments, within ±10% of a target value in some embodiments, within ±5% of a target value in some embodiments, and yet within ±2% of a target value in some embodiments. The terms “approximately,” “substantially,” and “about” may include the target value.