Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SQUEEGEE ASSEMBLY FOR SCREEN PRINTING, SCREEN PRINTING MACHINE AND SCREEN PRINTING METHOD
Document Type and Number:
WIPO Patent Application WO/2021/144735
Kind Code:
A1
Abstract:
A squeegee assembly (1) for a screen printing machine comprises a squeegee support body (2), comprising a side (21) adapted to be fastened to the screen printing machine, a front portion (10) provided with a front element (100) and a rear portion (11) provided with a rear element (110) each having a printing end (100', 110') for screen printing by means of ink. The front element printing end (100') is spaced apart with respect to the rear element printing end (110') in the translation direction (Z), so that an ink collection space (S) is there. In the front portion (10), one or more ink passage openings (12) are obtained, adapted to allow the passage of the ink from a region (A) in front of the front element (100), towards the ink collection space (S), during the translation of the squeegee assembly (1) during the screen printing step, so that the ink resulting in the ink collection space (S) may be dragged by the rear element (110) during the step itself of translating the squeegee assembly (1).

Inventors:
QUAGLIA GIUSEPPE (IT)
Application Number:
PCT/IB2021/050258
Publication Date:
July 22, 2021
Filing Date:
January 14, 2021
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
QUAGLIA S R L (IT)
International Classes:
B41F15/44; B41F15/46
Foreign References:
JP2001196732A2001-07-19
US5680814A1997-10-28
TW200815196A2008-04-01
Attorney, Agent or Firm:
DE LORENZO, Danilo et al. (IT)
Download PDF:
Claims:
13

Claims

1. A squeegee assembly (1) for a screen printing machine comprising:

- a squeegee support body (2), comprising a side (21) adapted to be fastened to the screen printing machine,

- a front portion (10) comprising an elastically deformable front element (100) and a rear portion (11) comprising an elastically deformable rear element (110), said front (10) and rear portion (11) being supported by the squeegee support body (2), each of said front (100) and rear elements (110) mainly extending in length along a longitudinal direction (X) and in height along a vertical direction (Z) and each having a printing end (100', 110') suitable to be translated in a translation direction (Y) incident to the longitudinal direction (X) and the vertical direction (Z) and to be pressed against a screen printing mesh (T) for screen printing by means of ink; wherein the front element printing end (100') is spaced apart with respect to the rear element printing end (110') in a direction incident to the longitudinal direction (X) and to the vertical direction (Y), i.e., it is spaced apart in the translation direction (Z), said squeegee assembly (1) being characterized in that between the front element printing end (100') and the 14 rear element printing end (110') there is an ink collection space (S), in that the front element (100) has a front face (100a) and a rear face (100b) opposite to the front face (100a), said rear face (100b) facing the ink collection space (S), and in that, in the front portion (10), one or more ink passage openings (12) are obtained, adapted to allow the passage of the ink from a region (A) in front of the front element (100), i.e., on the side of the front face

(100a), towards the ink collection space (S), during the translation of the squeegee assembly (1) in the translation direction (Y) during the screen printing step, so that the ink resulting in the ink collection space (S) may be dragged by the rear element (110) during the step itself of translating the squeegee assembly (1). 2. A squeegee assembly (1) according to claim 1, wherein the front portion (10) and the rear portion (11) are each a rigid element, preferably made of metallic material, substantially non-deformable during the screen printing operation, respectively comprising a front portion seat (101) and a rear portion seat (111), in said front portion seat (101) being the elastically deformable front element (100) fastened and in said rear portion seat (111) being the elastically deformable rear element (110) 15 accommodated.

3. A squeegee assembly (1) according to claim 2, wherein the one or more ink passage openings (12) are obtained in the front portion (10), but the front element (100) is devoid of ink passage openings (12).

4. A squeegee assembly (1) according to claim 2, wherein the one or more ink passage openings (12) are obtained only in the front element (100).

5. A squeegee assembly (1) according to claim 2, wherein the one or more ink passage openings (12) are obtained both in the front element (100) as well as in the front portion (10).

6. A squeegee assembly (1) according to any one of the preceding claims, wherein the rear portion (11) and the rear element (110) are devoid of ink passage openings.

7. A squeegee assembly (1) according to any one of the preceding claims, wherein the one or more ink passage openings (12) are obtained close to the front element printing end (100') preferably so that an opening wall (121) closer to the front element printing end (100') is spaced apart from said front element printing end (100') by, at most, about 3 centimeters in the vertical direction (Z).

8. A squeegee assembly (1) according to any one of claims 2 to 7 16 wherein the front element (100) comprises an emerging portion (lOOe) which protrudes from the front portion seat (101) and is not surrounded by the front portion

(10), in said emerging portion (lOOe) being the ink passage openings (12) obtained.

9. A squeegee assembly (1) according to any one of claims 2 to 8, wherein the front portion (10) is separable from the rear portion (11), so as to allow the cleaning of the squeegee assembly (1) or the replacement of the front element (100) or rear element (110).

10. A squeegee assembly (1) according to claim 9, wherein the rear portion (11) comprises a rear fastening seat (11') and the front portion (10) comprises a front fastening seat (10') adapted to be coupled, according to a shape coupling, with the rear fastening seat (11') so as to keep the front portion (10) and the rear portion

(11) joined to each other so as to be separable from each other along the longitudinal direction (X) and to be constrained to each other in the vertical direction (Z) and in the translation direction (Y).

11. A squeegee assembly (1) according to claim 10, wherein the rear fastening seat (11') and the front fastening seat (10') together form a coupling of the dovetail type. 12. A screen printing machine comprising a squeegee 17 assembly (1) according to any one of the preceding claims.

13. A method for screen printing on a substrate to be printed, said method comprising the steps of: - providing a screen printing mesh;

- placing the ink on the screen printing mesh;

- translating the squeegee assembly according to any one of claims 1 to 11 only once, i.e., performing a single stroke along the translation direction (Y) by means of pressure against the screen printing mesh so as to obtain the screen print on the substrate.

Description:
"SQUEEGEE ASSEMBLY FOR SCREEN PRINTING, SCREEN PRINTING MACHINE AND SCREEN PRINTING METHOD"

DESCRIPTION

[0001]The present invention belongs, in general, to the field of screen printing.

[0002]More in particular, the present invention relates to a squeegee assembly for screen printing, to a screen printing machine and to a screen printing method.

[0003]In the field of screen printing, a printing head, provided with a squeegee, by means of a translation movement, transfers the ink onto a substrate to be printed, for example, onto a T-shirt, by means of a screen printing mesh mounted on a screen printing frame on which the squeegee exerts a pressure which is as uniform as possible.

[0004]In the field of screen printing, it is known that printing by using inks with chemical solvents is facilitated by the intrinsic property of such inks to pass more easily through the matrix of the screen printing mesh.

[0005]In the case of ecological, new generation, water- based inks, such ink permeability through the fabric mesh is very low, due to the different thixotropic properties. [0006]Therefore, screen printing employing the aforesaid water-based inks requires that at least two strokes of the printing head be performed on the screen printing mesh to ensure the same printing quality of a corresponding ink with solvent, which requires only one printing stroke. [0007]Unfortunately, therefore, the use of water-based inks causes an increase in printing times and production efficiency .

[0008]It is the object of the present invention to solve the aforesaid drawbacks of the known screen printing methods which employ water-based inks. In particular, it is one of the objects of the present invention to achieve a squeegee assembly for screen printing, a screen printing machine and a screen printing method which are capable of reducing printing times and of increasing production efficiency also for the types of ink with a reduced ability to pass through the matrix of the screen printing mesh.

[0009]In accordance with the invention, such objects are achieved by a squeegee assembly for screen printing, a screen printing machine and a screen printing method in accordance with the appended independent claims. Preferred embodiments of the invention are defined in the dependent claims.

[0010]The features and advantages of the squeegee assembly for screen printing, of the screen printing machine and of the screen printing method, will become apparent from the following description, given by way of explanation and not by way of limitation, in accordance with the accompanying Figures, in which: [0011]- Figure 1 shows a perspective view of a squeegee assembly according to an embodiment of the present invention;

[0012]- Figure 2 shows a further view of the squeegee assembly of Figure 1, with the printing ends facing upwards for clarity of representation;

[0013]- Figure 3 shows a perspective view of a squeegee assembly according to another embodiment of the present invention;

[0014]- Figure 4 shows a further view of the squeegee assembly of Figure 3, with the printing ends facing upwards for clarity of representation;

[0015]- Figure 5 shows a side plan view of a squeegee assembly according to an embodiment of the present invention. [0016]In accordance with the accompanying Figures, reference numeral 1 overall indicates a squeegee assembly 1 for a screen printing machine. It is clear that the present invention also relates to a screen printing machine, although not shown, comprising such squeegee assembly 1. [0017]The squeegee assembly 1 comprising a squeegee support body 2, also called squeezer, comprising a side 21 adapted to be fastened to the screen printing machine. [0018]Furthermore, the squeegee assembly 1 comprises a front portion 10 comprising an elastically deformable front element 100 and a rear portion 11 comprising an elastically deformable rear element 110. Such front element 100 and rear element 110 are properly known in the field with the term squeegee, and preferably have a laminar shape adapted to press on the screen printing mesh.

[0019]Preferably, the front element 100 and/or the rear element 110 are made of a polymeric material, for example, a synthetic rubber, or of a silicone material or a polyurethane material, possibly multilayer.

[0020]The front portion 10 and the rear portion 11 are supported by the squeegee support body 2, and preferably protrude therefrom.

[0021]The front element 100 and the rear element 110 mainly extend in length along a longitudinal direction X and in height along a vertical direction Z.

[0022]The front element 100 has a front element printing end 100' and the rear element 110 has a rear element printing end 110'. Both printing ends 100' and 110' are adapted to be translated in a translation direction Y incident to the longitudinal direction X and the vertical direction Z, and to be pressed against a screen printing mesh T for screen printing by means of ink. In other words, the printing ends 100', 110' are edges which are dragged under pressure on the screen printing mesh to transfer the ink on the substrate to be printed, for example, on a T-shirt, by means of the passage into the screen printing mesh, which acts as a mask.

[0023]The front element printing end 100' is spaced apart with respect to the rear element printing end 110' in a direction incident to the longitudinal direction X and to the vertical direction Y, i.e. it is spaced apart in the translation direction Z, which is preferably perpendicular to both the longitudinal direction X and to the vertical direction Y.

[0024]Between the front element printing end 100' and the rear element printing end 110' there is therefore an ink collection space S precisely due to the fact that such printing ends 100', 110' are spaced apart, i.e., they are arranged one in front of the other. Thereby, a double squeegee is formed, i.e., a squeegee equipped with two blades spaced apart from each other in the translation direction Y.

[0025]The ink collection space S is therefore open towards the screen printing mesh. [0026]The front element 100 has a front face 100a and a rear face 100b opposite to the front face 100a. Such rear face 100b is arranged on the side of the ink collection space S, i.e., it faces towards the ink collection space S.

[0027] In the front portion 10, one or more ink passage openings 12 are obtained, adapted to allow the passage of the ink from a region A in front of the front element 100, i.e., on the side of the front face 100a, towards the ink collection space S. This occurs during the translation of the squeegee assembly 1 in the translation direction Y during the screen printing step, so that the ink resulting in the ink collection space S may be, in turn, dragged by the rear element 110 during the step itself of translating the squeegee assembly 1. The effect of this is the fact that in a single translation operation, the ink is squeezed onto the screen printing mesh, a first time by the front element 100 and a second time by the rear element 110, generating an effect which is equivalent to a double stroke, but without the need to reposition new ink on the screen printing mesh. In fact, the ink necessary for the rear element 110 is already present and ready in the ink collection space S, by virtue of the passage through the ink passage openings 12 obtained in the front portion. In Figure 1 and Figure 5 the arrow INK indicates the movement of passage which the ink performs from the region A in front of the ink collection space S during the step of translating the squeegee group in the translation direction Y. [0028]According to an embodiment, the rear portion 11 may be entirely made of an elastically deformable material and be joined to the front portion 10 and/or to the front element 100.

[0029]In accordance with an embodiment, the front portion 10 and the rear portion 11 are each a rigid element, preferably made of metallic material, for example a metal section, substantially non-deformable during the screen printing operation. The front portion 10 and the rear portion 11 respectively comprise a front portion seat 101 and a rear portion seat 111. The elastically deformable front element 100 is fastened in the front portion seat 101 and the elastically deformable rear element 110 is accommodated in the rear portion seat 111. Elastically deformable means that it is deformable in order to perform a correct screen printing operation by means of pressure on the screen printing mesh.

[0030]Preferably, therefore, the ink passage openings 12 are openings passing through the front portion 10 and/or the front element 100. [0031]According to an embodiment, one or more ink passage

INCORPORATED BY REFERENCE (RULE 20.6) 7 the arrow INK indicates the movement of passage which the ink performs from the region A in front of the ink collection space S during the step of translating the squeegee group in the translation direction Y. [0028]According to an embodiment, the rear portion 11 may be entirely made of an elastically deformable material and be joined to the front portion 10 and/or to the front element 100.

[0029]In accordance with an embodiment, the front portion 10 and the rear portion 11 are each a rigid element, preferably made of metallic material, for example a metal section, substantially non-deformable during the screen printing operation. The front portion 10 and the rear portion 11 respectively comprise a front portion seat 101 and a rear portion seat 111. The elastically deformable front element 100 is fastened in the front portion seat 101 and 1'0 elastically deformable is accommodated in the rear portion seat 111. Elastically deformable means that it is deformable in order to perform a correct screen printing operation by means of pressure on the screen printing mesh.

[0030]Preferably, therefore, the ink passage openings 12 are openings passing through the front portion 10 and/or the front element 100. [0031]According to an embodiment, one or more ink passage 8 openings 12 are obtained in the front portion 10, but the front element 100 is devoid of ink passage openings, as shown, for example, in Figures 3 to 5.

[0032]According to another embodiment variant, the one or more ink passage openings 12 are obtained only in the front element 100, as shown, for example, in Figures 1 and 2. In other words, in this variant, the ink passage openings 12 are directly obtained in the elastically deformable front element 100. [0033]The ink passage openings 12 are preferably holes spaced apart from each other along the longitudinal direction X, preferably positioned substantially along the entire length of the front portion 10 or in any case for an extension greater than half the length of the front portion 10.

[0034]According to an embodiment variant, not shown, the one or more ink passage openings 12 are obtained both in the front element 100 as well as in the front portion 10 made of non-deformable metallic material. [0035]Preferably, the rear portion 11 and the rear element

110 are devoid of ink passage openings.

[0036]Preferably, the one or more ink passage openings 12 are obtained close to the front element printing end

100'; preferably, this is accomplished such that an opening wall 121 closer to the front element printing end 9

100' is spaced apart from said front element printing end 100' by, at most, about three centimeters in the vertical direction Z, even more preferably, by at most two centimeters. [0037]In accordance with an embodiment, the front element

100 comprises an emerging portion lOOe which protrudes from the front portion seat 101 and is not surrounded by the front portion 10. In such emerging portion lOOe, the ink passage openings 12 are obtained. [0038]According to an advantageous embodiment variant, for example, shown both in Figure 1 and in Figure 5, the front portion 10 is separable from the rear portion 11, so as to allow the cleaning of the squeegee assembly 1 or the replacement of the front element 100 or rear element 110.

[0039]Preferably, for example, as shown in Figure 5, the rear portion 11 comprises a rear fastening seat 11' and the front portion 10 comprises a front fastening seat 10' adapted to be coupled, according to a shape coupling, with the rear fastening seat 11'. Thereby, the front portion 10 and the rear portion 11 are joined to each other so as to be separable from each other along the longitudinal direction X, but, at the same time, so as to be constrained to each other in the vertical direction Z and in the translation direction Y. This allows rapid 10 separability between the front and the rear portion by means of a simple and rapid translation movement along the longitudinal direction X.

[0040]In particular, preferably, the rear fastening seat 11' and the front fastening seat 10' together form a coupling of the dovetail type.

[0041]It is also an object of the present invention a method for screen printing on a substrate to be printed, such as a T-shirt, which uses a squeegee assembly described up to now.

[0042]The method comprises, in the order indicated, the steps of:

[0043]a) providing a screen printing mesh;

[0044]b) placing the ink on the screen printing mesh; [0045]c) translating the squeegee assembly 1 previously described only once along the translation direction Y by means of pressure against the screen printing mesh, so as to obtain the screen print on the substrate, i.e., to perform a single stroke. [0046]Preferably, the method provides that the ink is an ecological water-based ink.

[0047]In particular, the method provides that during the translation of the squeegee assembly 1 no further ink is introduced into the ink collection space with respect to the ink placed during step b), but the resulting ink in 11 the ink collection space is only obtained by the passage of the ink through the ink passage openings 12.

[0048]Innovatively, the squeegee assembly according to the present invention allows to increase the production efficiency for screen printing even for the types of ink with reduced ability to pass through the matrix of the screen printing mesh, such as ecological water-based inks.

[0049]In particular, by virtue of the presence of the ink passage openings, it is not necessary to perform a second printing stroke, as in conventional screen printing techniques. In fact, the ink passage openings transfer the ink to the rear portion already during the single first stroke and the rear portion has enough ink to actually perform the second stroke.

[0050]It should be emphasized that without such ink passage openings 12, a squeegee assembly still having a front element and a rear element would not solve the technical issue solved by the present invention, since the rear element would not have enough ink to continue the printing.

[0051]Before achieving the present invention, the inventor tried numerous different solutions to improve the printing, trying both to vary the properties of the mesh of the screen printing mesh as well as to modify the 12 mechanical properties of the elastically deformable elements, but without obtaining satisfactory results.

[0052]The same inventor has also tried to provide means for facilitating the entry of ink into the ink collection space between the front element and the rear element, for example, by means of side panels or a system for injecting ink from above. However, all of the aforesaid solutions turned out to be too complex and not working. [0053]Therefore, surprisingly, the presence of openings directly obtained on the front portion, or in any case directly on the elastically deformable front element, proved to be a simple, effective solution capable of increasing screen printing production efficiency.

[0054]Furthermore, advantageously, the possibility of separating the front portion and the rear portion from each other in a rapid manner allows for an easy maintenance of the squeegee assembly both for cleaning and for replacing the elastically deformable front or rear elements. [0055]In order to meet contingent needs, it is apparent that those skilled in the art may make changes to the invention described above, all of which are contained within the scope of protection as defined in the following claims.