Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SULFONIC ACID PREPARATION METHOD
Document Type and Number:
WIPO Patent Application WO/2019/043339
Kind Code:
A1
Abstract:
The present invention relates to a method for preparing a sulfonic acid that is slightly corrosive, or even non-corrosive, with respect to stainless steels, said method comprising at least the steps of adding at least one nitrite to a sulfonic acid, curing under agitation with sparging of the mixture and recuperation of the low-corrosion sulfonic acid obtained. The invention also concerns the low-corrosion sulfonic acid obtained according to the method of the invention, as well as the use thereof as low-corrosion sulfonic acid.

Inventors:
LAFFITTE JEAN-ALEX (FR)
MONGUILLON BERNARD (FR)
Application Number:
PCT/FR2018/052127
Publication Date:
March 07, 2019
Filing Date:
August 30, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ARKEMA FRANCE (FR)
International Classes:
C07C303/42; C07C309/04; C23F11/16
Foreign References:
BE613776A1962-08-13
US3505367A1970-04-07
US2455659A1948-12-07
EP0931854A11999-07-28
EP0931854A11999-07-28
Other References:
B. GAUR; H. S. SRINIVASAN, BRITISH CORROSION JOURNAL, vol. 34, no. 1, 1999, pages 63 - 66
Attorney, Agent or Firm:
STEFENEL, Alexandra (FR)
Download PDF:
Claims:
REVENDICATIONS

1. Procédé de préparation d'un acide sulfonique faible corrosion comprenant au moins les étapes suivantes :

a) ajout d'au moins un nitrite dans un acide sulfonique conventionnel ;

b) cuisson du mélange obtenu à l'étape a) à une température comprise entre 0°C et 100°C, de préférence entre 0°C et 80°C, plus particulièrement entre 10°C et 60°C, encore plus particulièrement entre 10°C et 50°C, pendant une durée comprise entre quelques secondes et quelques heures, de préférence entre 1 min et 4 h, plus particulièrement entre 10 min et 2 h, encore plus particulièrement entre 10 min et 1 h ;

c) récupérer l'acide sulfonique faible corrosion.

2. Procédé selon la revendication 1 , dans lequel le nitrite est choisi parmi les nitrites de métaux alcalins les nitrites d'alcalino-terreux et le nitrite d'ammonium, de préférence parmi le nitrite de sodium et le nitrite de potassium, de préférence encore, le nitrite est le nitrite de sodium.

3. Procédé selon la revendication 1 ou la revendication 2, dans lequel acide sulfonique est un acide sulfonique de formule R-SO3H, où R représente une chaîne hydrocarbonée saturée ou insaturée, linéaire, ramifiée ou cyclique, comportant de 1 à 12 atomes de carbone, substituée ou non substituée par un ou plusieurs radicaux et/ou atomes choisis parmi les atomes d'halogène, les radicaux alkyles contenant de 1 à 6 atomes de carbone et les radicaux aryles et hétéroaryles à 6 ou 10 chaînons.

4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel l'acide sulfonique est choisi parmi l'acide méthane-sulfonique, l'acide éthane- sulfonique, l'acide n-propane-sulfonique, l'acide /'so-propane-sulfonique, l'acide n-butane-sulfonique, l'acide /'so-butane-sulfonique, l'acide sec-butane- sulfonique, l'acide terf-butane-sulfonique, l'acide trifluorométhanesulfonique, l'acide para-toluènesulfonique, l'acide benzènesulfonique, l'acide naphtalènesulfonique et les mélanges de deux ou plusieurs d'entre eux en toutes proportions, de préférence parmi l'acide méthane-sulfonique, l'acide éthane-sulfonique, l'acide trifluorométhanesulfonique et l'acide para- toluènesulfonique, de manière tout à fait préférée l'acide sulfonique est l'acide méthane-sulfonique.

5. Procédé selon l'une quelconque des revendications précédentes, dans lequel le ratio molaire nitrite/acide sulfonique est compris entre 200 ppm et 6000 ppm, de préférence entre 400 ppm et 2000 ppm, particulièrement entre 500 ppm et 1900 ppm.

6. Procédé selon l'une quelconque des revendications précédentes, dans lequel le mélange obtenu après cuisson de l'étape b), ou encore pendant la cuisson de l'étape b), ou encore pendant et après la cuisson de l'étape b), est soumis à une étape de bullage d'air et/ou de gaz inerte, de préférence de gaz inerte.

7. Acide sulfonique faible corrosion substantiellement obtenu selon le procédé de l'une quelconque des revendications 1 à 6.

8. Utilisation de l'acide sulfonique faible corrosion selon la revendication 7 ou obtenu selon l'une quelconque des revendications précédentes, pour limiter, voire éviter, la corrosion des métaux par les acides sulfoniques.

Description:
PROCÉDÉ DE PRÉPARATION D'ACIDE SULFONIQUE

[0001] La présente invention concerne le domaine de la protection de la corrosion des métaux contre les attaques par les acides, et notamment un procédé de préparation d'un acide sulfonique peu, voire non, corrosif vis-à-vis des métaux et en particulier des aciers inoxydables.

[0002] Les acides sulfoniques, et en particulier les acides sulfoniques dits organiques, tels que par exemple l'acide méthane-sulfonique (AMS), l'acide para- toluène-sulfonique (APTS), l'acide benzène-sulfonique (BS), l'acide trifluoro- méthane-sulfonique sont des acides forts largement utilisés dans de nombreuses applications, notamment en catalyse et en traitement de surfaces, telles que la galvanoplastie, le décapage, le nettoyage, le détartrage, pour ne citer que les principales d'entre elles, s'en s'y limiter.

[0003] Il a cependant été observé que les solutions aqueuses de tels acides sulfoniques corrodent les métaux, les vitesses de corrosion dépendant à la fois de la concentration en acide, de la température et de la nature du métal. Par exemple, à température ambiante, l'acier inoxydable du type 304L ou 1 .4307 est corrodable à des concentrations d'AMS supérieures à 5% en poids dans l'eau. De tels risques de corrosion sont inacceptables dans de nombreuses applications, et particulièrement pour le stockage de ces acides principalement lorsqu'ils sont en solution aqueuse.

[0004] Pour rendre les acides sulfoniques peu, voire non, corrosifs envers les métaux, et particulièrement envers les aciers inoxydables, de nombreux travaux ont déjà été réalisés, parmi lesquels une technique qui a montré des résultats satisfaisants consiste en l'ajout de nitrates dans lesdits acides. Cette méthode est en particulier décrite par B. Gaur et H. S. Srinivasan (« British Corrosion Journal », 34(1 ), (1999), 63-66) qui ont montré que l'addition d'ions ferriques ou nitrates permet de produire un effet inhibiteur de corrosion par l'AMS sur divers aciers.

[0005] D'autres solution ont été étudiées, parmi lesquelles on peut par exemple citer celle décrite dans la demande EP0931854, qui propose d'inhiber la corrosion des aciers inoxydables en milieu acide organo-sulfonique, en ajoutant au moins un oxydant choisi parmi les sels ou oxydes de cérium(IV), de fer(lll), de molybdène(VI) ou de vanadium(V), les nitrites et les persulfates. Or, l'addition de certains de ces inhibiteurs, tels que les nitrites, conduit généralement à des dégagements d'oxydes d'azote (NOx) qui peuvent se révéler dangereux ou tout au moins néfastes et toxiques à la fois pour les opérateurs et les utilisateurs, ainsi que pour l'environnement. Cette demande de brevet est notamment silencieuse sur la manière de préparer les mélanges nitrites / acides sulfoniques, sans provoquer de dégagement de NOx.

[0006] Ainsi, il reste par conséquent un besoin pour un procédé de préparation d'un acide sulfonique peu, voire non, corrosif (dit « faible corrosion ») vis-à-vis des métaux, et des aciers inoxydables en particulier, ledit procédé étant moins toxique et moins nocif pour les opérateurs, les utilisateurs et pour l'environnement, par rapport aux procédés connus de l'art antérieur.

[0007] La Demanderesse a maintenant découvert de manière surprenante que l'ajout d'un inhibiteur de corrosion dans des conditions précises et adaptées permet de pallier les inconvénients décrits ci-dessus. La Demanderesse a donc mis en œuvre un procédé de préparation d'un acide sulfonique répondant à ces conditions précises et dont la mise en œuvre apparaîtra à la lumière de la description qui suit.

[0008] Ainsi un premier objet de l'invention concerne un procédé de préparation d'un acide sulfonique faible corrosion comprenant au moins les étapes suivantes : a) ajout d'au moins un nitrite dans un acide sulfonique conventionnel ;

b) cuisson du mélange obtenu à l'étape a) à une température comprise entre 0°C et 100°C, de préférence entre 0°C et 80°C, plus particulièrement entre 10°C et 60°C, encore plus particulièrement entre 10°C et 50°C, pendant une durée comprise entre quelques secondes et quelques heures, de préférence entre 1 min et 4 h, plus particulièrement entre 10 min et 2 h, encore plus particulièrement entre 10 min et 1 h ;

c) récupérer l'acide sulfonique faible corrosion.

[0009] Dans la présente invention, on entend par « acide sulfonique faible corrosion », un acide sulfonique dont le potentiel reste quasiment au même niveau et ne remonte pas après application d'une une quantité de courant de -800 μΑ.αττ 2 , pendant 1 minute, puis arrêt de l'application de ce courtant, comme expliqué plus loin dans le protocole de test de validation « faible corrosion ». En d'autres termes un acide sulfonique faible corrosion selon la présente invention reste à l'état passif après application d'un courant de -800 μΑ.αττ 2 , pendant 1 minute, alors qu'un acide sulfonique non conforme à la présente invention (corrosif), retourne à l'état actif (corrosion) après dépassivation par application de ladite quantité de courant de -800 μΑ.αττ 2 , pendant 1 minute.

[0010] Dans la présente invention, le nitrite, utilisé en tant qu'inhibiteur de corrosion, peut être tout nitrite connu de l'homme du métier, et de préférence est choisi parmi les nitrites de métaux alcalins ou alcalino-terreux, ou encore le nitrite d'ammonium. Parmi les nitrites alcalins, on préfère le nitrite de sodium et le nitrite de potassium. Selon un mode de réalisation préféré de l'invention, on utilise le nitrite de sodium. D'autres nitrites peuvent être utilisés ; cependant, pour des raisons évidentes de coûts, de disponibilité, de protection de l'environnement, on évitera l'utilisation de nitrites de métaux tels que, par exemple, le nitrite de cuivre ou autres nitrites de métaux lourds.

[0011] Dans la présente invention, on entend notamment par « acide sulfonique conventionnel », tout acide sulfonique connu de l'homme du métier ne comprenant pas d'inhibiteur de corrosion, en particulier d'inhibiteur de corrosion tel que défini ci- dessus. Par exemple, il s'agit d'un acide sulfonique n'ayant pas subi de traitement chimique et/ou physique visant à lui conférer des propriétés anticorrosives vis-à-vis des métaux, et des aciers inoxydables tel que mentionné ci-dessus. En particulier, on entend par « acides sulfoniques conventionnels », les acides sulfoniques de formule R-SO3H, où R représente une chaîne hydrocarbonée saturée ou insaturée, linéaire, ramifiée ou cyclique, comportant de 1 à 12 atomes de carbone, substituée ou non substituée par un ou plusieurs radicaux et/ou atomes choisis parmi les atomes d'halogène (tels que fluor, chlore, brome), les radicaux alkyles contenant de 1 à 6 atomes de carbone et les radicaux aryles et hétéroaryles à 6 ou 10 chaînons ne comprenant pas d'inhibiteur de corrosion, en particulier d'inhibiteur de corrosion tel que défini ci-dessus. Selon un mode de réalisation, les « acides sulfoniques conventionnels » ne sont pas des acides sulfoniques à faible corrosion tels que définis ci-dessus.

[0012] Dans la présente invention, on entend par acide sulfonique tout acide sulfonique connu de l'homme du métier et plus particulièrement les acides sulfoniques de formule R-SO3H, où R représente une chaîne hydrocarbonée saturée ou insaturée, linéaire, ramifiée ou cyclique, comportant de 1 à 12 atomes de carbone, substituée ou non substituée par un ou plusieurs radicaux et/ou atomes choisis parmi les atomes d'halogène (tels que fluor, chlore, brome), les radicaux alkyles contenant de 1 à 6 atomes de carbone et les radicaux aryles et hétéroaryles à 6 ou 10 chaînons.

[0013] Par « alkyle » on entend un radical hydrocarboné saturé, linéaire ou ramifié. Par « aryle », on entend un radical aromatique, de préférence phényle ou naphtyle, plus préférentiellement phényle. Par « hétéroaryle » on entend un radical aromatique possédant un ou plusieurs hétéroatomes choisis parmi oxygène, azote et soufre.

[0014] De préférence R représente une chaîne hydrocarbonée comportant de 1 à 6 atomes de carbone, plus particulièrement choisie parmi méthyle, éthyle, n-propyle, / ' so-propyle, n-butyle, / ' so-butyle, sec-butyle, terf-butyle, les radicaux pentyles linéaire ou ramifiés, les radicaux hexyles linéaire ou ramifiés, et les radicaux phényle et naphtyle.

[0015] Ainsi, et de manière non limitative, les acides sulfoniques compris dans le cadre de la présente invention sont de préférence choisis parmi l'acide méthane- sulfonique, l'acide éthane-sulfonique, l'acide n-propane-sulfonique, l'acide iso- propane-sulfonique, l'acide n-butane-sulfonique, l'acide / ' so-butane-sulfonique, l'acide sec-butane-sulfonique, l'acide terf-butane-sulfonique, l'acide trifluoro- méthanesulfonique, l'acide para-toluènesulfonique, l'acide benzènesulfonique, l'acide naphtalènesulfonique et les mélanges de deux ou plusieurs d'entre eux en toutes proportions.

[0016] Selon un mode de réalisation tout particulièrement préféré, l'acide sulfonique utilisé dans le cadre de la présente invention est l'acide méthane- sulfonique, l'acide éthane-sulfonique, l'acide trifluorométhanesulfonique ou l'acide para-toluènesulfonique, de manière tout à fait préférée l'acide sulfonique est l'acide méthane-sulfonique.

[0017] L'acide sulfonique utilisé dans le cadre de la présente invention peut être l'acide sulfonique seul ou un mélange de deux ou plusieurs acides sulfoniques, éventuellement en milieu solvanté et éventuellement en mélange avec un ou plusieurs additifs et/ou charges bien connus de l'homme du métier. [0018] Ainsi, le ou les acides sulfonique peuv(en)t être en milieu solvanté, ledit solvant pouvant être l'eau ou un solvant organique ou un mélange de solvants organiques, ou encore de l'eau en mélange avec un ou plusieurs autres solvants organiques. En règle générale, la concentration en acide(s) sulfonique(s) dans le(s) solvant(s) est comprise entre 0,01 % et 100 %, bornes incluses, en poids d'acide(s) sulfonique(s) par rapport au poids total d'acide(s) sulfonique(s) en milieu solvanté, étant entendu que lorsque la concentration est égale à 100%, la quantité de solvant est nulle ou négligeable ou non détectable. De préférence, cette concentration est comprise entre 0,01 % et 99,99%, de préférence entre 0,1 % et 99,9%, de préférence encore entre 0,5 % et 75 %, bornes incluses, en poids d'acide(s) sulfonique(s) par rapport au poids total d'acide(s) sulfonique(s) en milieu solvanté.

[0019] Les solvants organiques indiqués ci-dessus et utilisables pour solvanter le(s) acide(s) sulfonique(s) peuvent être de tout type connu de l'homme du métier, et de préférence les solvants organiques solubles dans l'eau, tels que les alcools, les sulfoxydes, les acides minéraux ou organiques, plus préférentiellement le méthanol, l'éthanol, le diméthylsulfoxyde, l'acide sulfurique, pour ne citer que les plus courants et les plus connus d'entre eux.

[0020] Les additifs et charges qui peuvent être présents en mélange avec les acides sulfoniques peuvent par exemples être, à titre non limitatif, un ou plusieurs additifs et/ou charges choisi parmi les modificateurs de viscosité ou de rhéologie, les agents moussants, les agents anti-moussants, les surfactants, les désinfectants, les biocides, les stabilisateurs, les agents oxydants, les enzymes, les pigments, les colorants, les ignifugeants, les agents retardateurs de flamme, les parfums les arômes, et autres.

[0021] Ces divers additifs et charges sont présents dans des quantités bien connues de l'homme du métier, qui peuvent varier en fonction de l'effet recherché, de la nature de l'acide sulfonique utilisé et de l'application considérée pour ledit acide sulfonique utilisé.

[0022] L'étape a) du procédé selon l'invention comprend l'ajout d'au moins un nitrite (ou une solution comprenant au moins un nitrite) dans un acide sulfonique (ou une solution comprenant au moins un acide sulfonique). On préfère particulièrement ajouter ledit au moins un nitrite dans l'acide sulfonique et non l'inverse. En effet, l'addition peut être plus ou moins exothermique, et l'ajout d'acide sulfonique dans le nitrite peut conduire à une élévation très rapide et importante de la température et par conséquent provoquer potentiellement une décomposition du nitrite et/ou à une vaporisation dudit nitrite.

[0023] Ledit au moins un nitrite est ajouté dans l'acide sulfonique de telle sorte que le ratio molaire nitrite/acide sulfonique est compris entre 200 ppm et 6000 ppm, de préférence entre 400 ppm et 2000 ppm, en particulier entre 500 ppm et 1900 ppm.

[0024] Le nitrite peut être ajouté sous forme pure ou en solution dans l'eau, ou tout milieu solvant organique ou minéral, et en particulier un alcool ou l'acide sulfurique. Lorsque le nitrite est en solution dans un alcool, l'alcool utilisé peut être tout type d'alcool comportant de 1 à 6 atomes de carbone, de préférence le méthanol ou l'éthanol.

[0025] L'addition selon l'étape a) du procédé selon la présente invention, est généralement réalisée sous agitation, plus ou moins vigoureuse, selon la viscosité du milieu réactionnel, et selon la vitesse d'addition et d'homogénéisation souhaitées. Il est en effet important d'effectuer l'ajout et l'homogénéisation de manière suffisamment lente pour éviter les éventuels problèmes de décomposition et/ou vaporisation du nitrite, comme indiqué ci-dessus.

[0026] Sans être lié par la théorie, il a été découvert que la nécessaire étape b) de « cuisson » permet la parfaite homogénéisation du nitrite dans l'acide sulfonique et « l'activation » dudit nitrite permettant de conférer à l'acide sulfonique sa propriété dite de « faible corrosion » comme indiqué plus haut.

[0027] Selon un mode de réalisation, l'étape b) de cuisson est effectuée pendant une durée comprise entre 1 h et 5h, de préférence entre 1 h et 4h, par exemple environ 3h.

[0028] L'étape b) est avantageusement réalisée sous agitation selon tous moyens connus de l'homme du métier, lorsqu'il s'agit de mettre sous agitation un mélange comprenant un acide fort chauffé à la température de cuisson exposée plus haut.

[0029] La cuisson opérée à l'étape b) peut conduire à la formation d'oxydes d'azote (notés « NOx » dans la suite), qui peuvent s'échapper du milieu réactionnel et être éventuellement visuellement observés sous forme de vapeurs rousses se dégageant du milieu réactionnel. Pour des raisons évidentes de sûreté et de sécurité, ces NOx peuvent avantageusement être aspirés et évacués pour traitement, par exemple par abattage, de préférence abattage par une base aqueuse telle qu'une solution d'hydroxyde de sodium, qui sera traitée avant rejet dans l'environnement, selon les techniques classiques connues de l'homme du métier.

[0030] Selon un mode de réalisation avantageux du procédé selon la présente invention, on soumet le mélange obtenu après cuisson de l'étape b), ou encore pendant la cuisson de l'étape b), ou encore pendant et après la cuisson de l'étape b), à une étape permettant de faciliter et/ou accélérer l'élimination de tout ou partie des NOx formés pendant la cuisson de ladite étape b).

[0031] L'élimination de tout ou partie des NOx formés peut être réalisée selon tous moyens connus de l'homme du métier, et par exemple par « stripping », bullage ou barbotage. Ces dernières méthodes consistent à faire buller de l'air et/ou un gaz inerte, de préférence un gaz inerte dans le mélange réactionnel pendant et/ou après l'étape b). Selon un mode de réalisation tout particulièrement préféré du procédé de la présente invention, le gaz inerte utilisé est l'azote. La quantité et le débit d'air et/ou de gaz inerte mis en œuvre dépendent de nombreux facteurs tels que la quantité de milieu réactionnel, de la concentration en nitrite et en acide sulfonique. L'homme du métier saura aisément adapter ladite quantité et le débit d'air et/ou de gaz inerte à mettre en œuvre.

[0032] À titre d'exemple, lorsque l'élimination des NOx est effectué par bullage avec de l'air ou un gaz inerte, de préférence un gaz inerte, le bullage est réalisé sur le mélange issu de l'étape b), par exemple à une température comprise entre 0°C et 100°C, de préférence entre 0°C et 80°C, plus particulièrement entre 10°C et 60°C, encore plus particulièrement entre 10°C et 50°C, pendant une durée comprise entre quelques minutes et quelques heures, de préférence entre 10 mn et 12 heures, plus particulièrement entre 15 mn et 8 heures, encore plus particulièrement entre 30 mn et 7 heures, par exemple entre 30 minutes et environ 6 heures.

[0033] On peut opérer l'étape d'élimination des NOx en une ou plusieurs fois, de manière continue, séquencée, ou alternée ou encore concomitante ave l'étape b) de cuisson du mélange. On préfère réaliser l'étape d'élimination de tout ou partie des NOx en une seule fois pendant l'étape b) de cuisson. Selon un autre mode de réalisation préféré l'étape d'élimination de tout ou partie des NOx est réalisée en une seule fois après l'étape b) de cuisson. [0034] Le procédé selon l'invention peut s'effectuer en batch ou en continu. Dans le cas d'un procédé en continu, l'acide sulfonique et le nitrite sont de préférence ajoutés à contre-courant. Dans le cas d'un procédé en batch, le réacteur peut être équipé de tout type d'agitation telle qu'ancre, impeller et agitation par boucle extérieure.

[0035] Le procédé selon l'invention permet ainsi d'obtenir un acide sulfonique faible corrosion, ledit acide sulfonique ne comprenant qu'une faible quantité de nitrites, ce qui n'altère en aucune façon ledit acide sulfonique qui peut ainsi être utilisé comme tout acide sulfonique conventionnel, ledit acide présentant l'avantage de ne pas corroder et de très faiblement corroder les métaux et en particulier les métaux et alliages passivables, notamment à base de fer, nickel, titane, cuivre, aluminium, molybdène, manganèse, plomb, et de leurs alliages, ainsi que les couples de ces métaux ou alliages obtenus par contact (sertissage, rivetage, boulonnage, soudage, brasage), notamment les aciers inoxydables, et en particulier les aciers inoxydables courants (par exemple de type AISI 304L et AISI 316L), mais aussi plus généralement tout acier inoxydable tel que défini dans la norme NF EN 10088-1 .

[0036] Un second objet de la présente invention concerne un acide sulfonique faible corrosion substantiellement obtenu selon le procédé décrit précédemment. Ledit acide selon l'invention montre des propriétés tout à fait remarquables en ce qu'il est peu, voire non, corrosif vis-à-vis des métaux, et en particulier des aciers inoxydables tels que par exemple les aciers inoxydables ferritiques, martensitiques, austénitiques et duplex. Parmi les aciers inoxydables austénitiques, on retiendra plus particulièrement l'acier AISI 304L et l'acier AISI 316L.

[0037] Un troisième objet de la présente invention concerne l'utilisation dudit acide sulfonique faible corrosion préparé selon le procédé précédemment décrit, pour limiter, voire éviter, la corrosion des métaux par les acides sulfoniques.

[0038] L'invention sera mieux comprise à l'aide des exemples qui suivent, lesdits exemples n'étant en aucun cas limitatifs et servant uniquement à illustrer l'invention. EXEMPLES

[0039] L'acide sulfonique utilisé dans les exemples suivants est de l'acide méthane sulfonique à 70% (AMS), c'est-à-dire de l'acide méthane-sulfonique dilué à 70% en poids dans l'eau.

Exemple 1 : Procédé sans barbotage

[0040] Dans un ballon tricol de 250 mL relié à un réfrigérant à eau (lui-même relié à une fiole de garde suivie d'un piège contenant de l'hydroxyde de sodium (NaOH), puis un piège contenant du permanganate de potassium (KMnO 4 )), un tube d'introduction d'azote et un col pour ajout de nitrite de sodium (NaNO2), on introduit, à 20°C, 135 g d'AMS que l'on met sous agitation (400 rotations par minute ou rpm).

[0041] On ajoute ensuite, en 1 minute et par l'intermédiaire d'une pipette automatique, 0,24 mL (soit 0,30375 g) d'une solution de NaNO2 à 40% en poids dans l'eau. Le ratio molaire NaNO2/AMS est de 1800 ppm. On pourrait également ajouter le NaNO2 sous forme solide (0,1215 g).

[0042] On referme immédiatement le ballon avec un bouchon et on met sous agitation (400 rpm) pendant 60 min à 20°C. On récupère alors l'AMS faible corrosion obtenu.

Exemple 2 : procédé selon l'invention (avec barbotage)

[0043] Dans un ballon tricol de 250 mL relié à un réfrigérant à eau (lui-même relié à une fiole de garde suivie d'un piège contenant NaOH puis un piège contenant KMnO 4 ), un tube d'introduction d'azote et un col pour ajout de NaNO2, on introduit à 20°C, 135 g d'AMS que l'on met sous agitation (400 rpm).

[0044] On ajoute ensuite, en 1 minute et par l'intermédiaire d'une pipette automatique, soit 0,24 mL (soit 0,30375 g) d'une solution de NaNÛ2 à 40% en poids dans l'eau. Le ratio molaire NaNO2/AMS de 1800 ppm.

[0045] On referme immédiatement le ballon avec un bouchon et on met sous agitation (400 rpm) pendant 60 min à 20°C.

[0046] Une partie du mélange est soumise à une étape de barbotage pendant 240 min à 20°C et la seconde partie du mélange est soumise à une étape de barbotage pendant 360 min à 20°C. Le barbotage est un bullage d'azote dans le milieu réactionnel avec un débit d'azote d'environ 30 mL/minute. On récupère ensuite les AMS faible corrosion obtenus.

Exemple 3 : Mesure des NOx

[0047] Un dosage des NOx est effectué sur chacun des 3 AMS faible corrosion précédemment obtenus.

[0048] On pèse dans un ballon bicol de 500 ml_, 100 g d'AMS faible corrosion à doser et on ajoute un barreau aimanté. Le ballon est fermé par un bouchon en verre. On raccorde un tube pour analyse des NOx, de la société Draeger, au ciel du ballon qui est chauffé à 60°C pendant 30 minutes.

[0049] On aspire ensuite le ciel avec un nombre de coups de pompe déterminé par le mode opératoire fourni avec les tubes de la société Draeger, et on lit les mesures.

[0050] Les résultats sont présentés dans le tableau 1 ci-dessous.

-- Tableau 1 --

[0051] On constate que sans étape de barbotage, la quantité de NOx dans l'AMS faible corrosion est beaucoup plus importante que dans les formulations d'AMS faible corrosion soumises au barbotage. De plus, on constate qu'après un barbotage de 360 min, la quantité de NOx présent dans la formulation d'AMS faible corrosion est 3 fois plus faible que celle présente dans la formulation d'AMS faible corrosion préalablement soumis à un barbotage de 240 min. Ceci démontre l'impact de l'étape de barbotage sur l'élimination des NOx de l'AMS ainsi que l'impact de la durée de barbotage sur la production de NOx.

PROTOCOLE DE TEST DE VALIDATION

D'ACIDE SULFONIQUE FAIBLE CORROSION

[0052] Afin de vérifier la qualité « faible corrosion », au sens de la présente invention, d'un acide sulfonique, on réalise un essai d'électrochimie à l'aide d'un montage à 3 électrodes connectées sur un potentiostat BIOLOGIC VMP3 : 1 ) électrode de référence : électrode au calomel saturé ou « ECS »,

2) électrode de travail : éprouvette en acier inoxydable 304L de taille 1 cm 2 , et

3) contre électrode en platine.

[0053] L'éprouvette du matériau à tester est polie au papier abrasif P400 puis passivée pendant 1 heure dans une solution d'acide nitrique 10% à température ambiante. Ceci permet un état de départ identique pour tous les essais. La température de l'essai est thermostatée à 20°C ± 2°C.

[0054] Le protocole appliqué comporte les trois étapes suivantes :

a) suivi du potentiel d'abandon de l'électrode de travail (304L) dans l'acide sulfonique additivé selon le procédé de la présente invention, c'est-à-dire mesure du potentiel du matériau dans la solution en fonction du temps, pendant 30 minutes,

b) immersion du système à trois électrodes dans une solution d'acide sulfonique standard (i.e. non additivé), puis application à l'électrode de travail d'un courant de -800 μΑ.αττ 2 pendant 1 minute afin de dépassiver le matériau de manière artificielle en fixant le potentiel de celui-ci dans le domaine de corrosion, c) immersion du système à trois électrodes à nouveau dans la solution d'acide sulfonique additivé selon le procédé de la présente invention, et suivi à nouveau du potentiel d'abandon de l'électrode de travail, jusqu'à stabilisation de celui-ci.

RÉSULTATS DU TEST DE VALIDATION

[0055] Dans le cas d'un acide méthane-sulfonique standard, c'est-à-dire non additivé, en solution à 70% en poids dans l'eau, après application d'une quantité de courant de -800 μΑ.αττ 2 , le potentiel de l'électrode de travail (éprouvette en acier inoxydable 304L) chute aux alentours de -350 mV, ce qui correspond au passage de l'inox 304L a l'état actif. Lorsque l'application du courant est stoppée, le potentiel du matériau reste quasiment au même niveau et ne remonte pas. L'inox 304L reste à l'état actif et se corrode.

[0056] Le comportement est totalement différent dans une solution à 70% en poids dans l'eau d'un acide méthane-sulfonique additivé selon le procédé de la présente invention (exemples 1 et 2 ci-dessus).

[0057] On note tout d'abord un potentiel à l'abandon de l'inox 304L de l'ordre de 750 mV après 30 minutes. Lors de l'application du courant de -800 μΑ.αττ 2 , le potentiel du matériau chute aux alentours de -200 mV (passage de l'inox 304L à l'état actif). Lorsque l'on arrête l'application du courant, le potentiel du matériau remonte très rapidement. Il est de 780 mV après 2 heures de suivi de potentiel et on note une absence totale de corrosion.

[0058] Dans tous les cas (exemples 1 et 2 ci-dessus), l'acide méthane-sulfonique additivé par le nitrite de sodium est un acide méthane-sulfonique faible corrosion au sens de la présente invention.