Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SYNTHESIS OF N-VINYL COMPOUNDS BY REACTING CYLIC NH-COMPOUNDS WITH ACETYLENE IN PRESENCE OF HOMOGENOUS CATALYST
Document Type and Number:
WIPO Patent Application WO/2021/122249
Kind Code:
A1
Abstract:
Process to produce N-vinyl compounds by homogeneous catalysis, wherein acetylene is reacted with a cyclic compound comprising a cyclic compound having at least one nitrogen as ring member, bearing a substitutable hydrogen residue (cyclic compound C), in a liquid phase in the presence of a ruthenium complex comprising at least one phosphine as ligand (RuCat).

Inventors:
SCHAUB GEORG (DE)
SEMINA ELENA (DE)
TUZINA PAVEL (DE)
BIENEWALD FRANK (DE)
HASHMI A STEPHEN K (DE)
Application Number:
PCT/EP2020/085396
Publication Date:
June 24, 2021
Filing Date:
December 10, 2020
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BASF SE (DE)
International Classes:
C07D207/267; C07B43/06; C07D209/46; C07D211/76; C07D223/10; C07D225/02; C07D239/88; C07D241/44; C07D263/22
Domestic Patent References:
WO2006056166A22006-06-01
WO2006056166A22006-06-01
Foreign References:
EP0646571A11995-04-05
EP0351603A21990-01-24
EP0512656A21992-11-11
EP0646571A11995-04-05
DE19816479A11999-10-21
Other References:
K. HENKEL: "Ullmann's Encyclopedia of Industrial Chemistry", 2005, WILEY-VCH VER-LAG GMBH & CO. KGAA, article "Reactor Types and Their Industrial Applications"
Attorney, Agent or Firm:
BASF IP ASSOCIATION (DE)
Download PDF:
Claims:
Claims

1. Process to produce N-vinyl compounds by homogeneous catalysis, wherein acetylene is reacted with a cyclic compound comprising a cyclic compound having at least one nitrogen as ring member, bearing a substitutable hydrogen residue (cyclic compound C), in a liquid phase in the presence of a ruthenium complex comprising at least one phosphine as ligand (RuCat).

2. Process according claim 1 , wherein the cyclic compound C is a cyclic amide, a cyclic urea or thiourea or a cyclic carbamate or thiocarbamate.

3. Process according to claim 1 or 2, wherein the cyclic compound C is a cyclic amide

4. Process according to any of claims 1 to 3, wherein the phosphine is a mono-, di-, tri- or tetra dentate phosphine

5. Process according to any of claims 1 to 4, wherein the phosphine is a phosphine of formula I or II shown below, wherein n is 0 or 1 ;

R4 to R12 are, independently of one another, unsubstituted or at least monosubstituted Ci- Cio-alkyl, , C3-Cio-cycloalkyl, C3-Cio-heterocyclyl comprising at least one heteroatom selected from N, O and S, C5-Ci4-aryl or C5-Ci0-heteroaryl comprising at least one heteroatom selected from N, O and S, where the substituents are selected from the group consisting of: F, Cl, Br, OH, CN, NH2 and Ci-Cio-alkyl;

A is i) a bridging group selected from the group consisting of unsubstituted or at least mono- substituted N, O, P, CrC6-alkane, C3-Cio-cycloalkane, C3-Cio-heterocycloalkane comprising at least one heteroatom selected from N, O and S, Cs-Cu-aromatic and Cs-C6-het- eroaromatic comprising at least one heteroatom selected from N, O and S, where the substituents are selected from the group consisting of:

Ci-C4-alkyl, phenyl, F, Cl, Br, OH, OR16, NH2, NHR1S or N(R1S)2, where R16 is selected from Ci-Cio-alkyl and C5-Ci0-aryl; or ii) a bridging group of the formula (VI) or (VII):

PI pi) wherein m, q are, independently of one another, 0, 1 , 2, 3 or 4;

R13, R14are, independently of one another, selected from the group consisting of C1-C10- alkyl, F, Cl, Br, OH, OR15, NH2, NHR15 and N(R15)2, where R15 is selected from Ci-Cio-alkyl and C5-Ci0-aryl; X1, X2are, independently of one another, NH, O or S;

X3 is a bond, NH, NR16, O, S or CR17R18;

R16 is unsubstituted or at least monosubstituted Ci-Cio-alkyl, C3-Cio-cycloalkyl, C3-Cio-het- erocyclyl comprising at least one heteroatom selected from N, O and S, Cs-C-u-aryl or Cs- Cio-heteroaryl comprising at least one heteroatom selected from N, O and S, where the substituents are selected from the group consisting of: F, Cl, Br, OH, CN, NH2 and Ci-Cio-alkyl;

R17, R18 are, independently of one another, unsubstituted or at least monosubstituted Cr Cio-alkyl, CrCio-alkoxy, C3-Cio-cycloalkyl, C3-Cio-cycloalkoxy, C3-Cio-heterocyclyl com prising at least one heteroatom selected from N, O and S, Cs-Ci4-aryl, C5-C14-ary loxy or C5-Cio-heteroaryl comprising at least one heteroatom selected from N, O and S, where the substituents are selected from the group consisting of: F, Cl, Br, OH, CN, NH2 and Ci-Cio-alkyl;

Y1, Y2, Y3are, independently of one another, a bond, unsubstituted or at least monosubstituted methylene, ethylene, trimethylene, tetramethylene, pentamethylene or hexameth- ylene, where the substituents are selected from the group consisting of: F, Cl, Br, OH, OR15, CN, NH2, NHR15, N(R15)2 and Ci-Cio-alkyl, where R15 is selected from Ci-Cio-alkyl and Cs-Cio-aryl.

6. Process according to any of claims 1 to 5, wherein the phosphine is a phosphine of formula (IV).

7. Process according to claim 6, wherein the phosphine is a trialkyl phosphine.

8. Process according to any of claims 1 to 7, wherein the ruthenium complex is prepared separately or in situ during the reaction of the cyclic compound with acetylene.

9. Process according to claim 8, wherein 1 to 10 mol of phosphine per mol of ruthenium are used in the preparation of the ruthenium complex 10. Process according to any of claims 1 to 9, wherein the ruthenium complex is used in an amount of 0.01 to 5 mol% based on the amount of cyclic compound. 11. Process according to any of claims 1 to 10, wherein the reaction of the cyclic compound C and the acetylene is performed in presence of a N-base.

12. Process according to any of claims 1 to 11 , wherein the liquid phase comprises a solvent. 13. Process according to any of claims 1 to 12, acetylene is fed to the reaction with a pressure of 1 to 2 bar at 20°C.

14. Process according to any of claims 1 to 13, wherein the reaction is performed at a temper ature of 50 to 200°C

15. Process according to any of claims 1 to 14, wherein the pressure during the reaction is at maximum 10 bar.

Description:
Synthesis of N-vinyl compounds by reacting cylic NH-compounds with acetylene in presence of homogenous catalyst

Object of the invention is a process to produce N-vinyl compounds by homogeneous catalysis, wherein acetylene is reacted with a cyclic compound comprising a hydrogen substituted nitro gen as ring member in the liquid phase in the presence of a ruthenium complex comprising at least one phosphine as ligand.

From EP 512656 it is known to produce vinyl compounds by reacting acetylene with a Bronsted acid in presence of a heterogeneous, supported catalyst comprising ruthenium.

EP-A 646571 discloses a homogeneously catalyzed reaction of acetylene with ammonia or a primary or secondary amino compound at 1 to 30 bars; 20 bars are used in the examples. Vari ous catalysts are disclosed, inter alia catalysts based on ruthenium are mentioned.

WO 2006/056166 discloses a reaction of substituted alkynes with lactames, ureas or carba-ma- tes which is catalyzed by a homogeneous catalyst. Acetylene is not included. As the substi tuted alkynes used are liquid, the reaction is performed at normal pressure.

In DE 19816479 a process for the synthesis of N- vinyl compounds by homogenous catalysis is described. An alkyne is reacted with ammonia or a primary or secondary amino compound in the liquid phase. Acetylene is mentioned but not used in the examples. Many suitable transi-tion metal complexes are listed, but not the use ruthenium/phosphine complexes for reactions with acetylene.

As acetylene is gaseous, reactions with acetylene are usually performed under pressure. It is economic to keep the pressure as low as possible.

It was an object of this invention to provide a process for the synthesis of N-vinyl compounds, notably cyclic N-vinyl compounds, which can be performed at low pressure and wherein the N- vinyl compounds are obtained in high yield and selectivity.

Accordingly, the process above has been found.

To the cyclic compound The cyclic compound is preferably a compound with a 5 to 8 membered ring system that com prises a cyclic compound having at least one nitrogen as ring member, bearing a substitutable hydrogen residue (cyclic compound C). Preferably, cyclic compound C has one or two nitrogen ring members bearing one or two substitutable hydrogen residues, more preferably one hydro gen residue.

In a particularly preferred embodiment, cyclic compound C is a cyclic amide, a cyclic urea or thi ourea or a cyclic carbamate or thiocarbamate.

The cyclic amide comprises an amide group -NH-C(=0)-CH2- as element to the ring system.

The cyclic urea comprises a urea group -NH-C=(0)-NH- as element to the ring system.

The cyclic thiourea comprises a thiourea group -NH-C=(S)-NH- as element to the ring system.

The cyclic carbamate comprises a carbamate group -NH-C(=0)-0- as element to the ring sys tem.

The cyclic thiocarbamate comprises a thiocarbamate group -NH-C(=S)-0- or -NH-C(=0)-S- as element to the ring system.

The further carbon atoms of the ring system may be substituted or unsubstituted. Substituents to the carbon atoms may be, for example, carbonyl groups (=0), aliphatic or aromatic hydro-car bon groups that may comprise heteroatoms, notably oxygen in form of ether groups, two neigh bored carbon atoms may be part of a further rings system, such as a cycloaliphatic or aromatic ring system.

In a most preferred embodiment, cyclic compound C is a cyclic amide.

The molecular weight of the cyclic compounds C is usually at maximum 1000g/mol, preferably at maximum 500 g/mol.

Preferred cyclic amides are:

2-Pyrrolidone, 2-Piperidinone, Caprolactam, 8-Octanelactam, 2,3-Dihydro-1 H-lsoindol-1-one, 2(1 H)-Quinoxalinone, 4(3H)-Quinazolinone, 2,5-Piperazinedione, 2-Thiazolidinone, 2-Azabicy- clo[2.2.1 ]hept-5-en-3-one Preferred cyclic urea are:

2-lmidazolidinone, 4-Methyl-2-lmidazolidinone, 1,3-Dihydro-2H-lmidazol-2-one, 1,3-Dihydro-2H- Benzimidazol-2-one, 1,3-Dihydro-1-methyl-2H-Benzimidazol-2-one, 2,4-lmidazolidinedione, 5- Methyl-2,4-lmidazolidinedione, 5,5-Dimethyl-2,4-lmidazolidinedione, 5-Methyl-2,4(1H,3H)-Py- rimidinedione,

Preferred cyclic carbamate are:

2-Oxazolidinone, 4-Methyl-2-Oxazolidinone, 5-Methyl-2-Oxazolidinone, Tetrahydro-2H-1,3-Oxa- zin-2-one, 2(3H)-Benzoxazolone.

In the process of the invention, a cyclic compound C comprising a hydrogen substituted nitro gen as ring member is reacted with acetylene in the presence of at least one homogeneous Ru metal catalyst, having at least one phosphine as ligand (RuCat); also called vinylation catalyst hereinafter.

The vinylation catalyst RuCat of the process of the invention can be employed in the form of a preformed Ru metal complex which comprises the Ru metal compound and one or more lig ands. Alternatively, the catalytic system is formed in situ in the reaction mixture by combining a Ru metal compound, herein also termed pre-catalyst, with one or more suitable ligands to form a catalytically active metal complex in the reaction mixture.

Preferred pre-catalysts are selected from neutral metal complexes, oxides and salts of ruthe nium. Ruthenium compounds that are useful as pre-catalyst are, for example, [Ru(p-cy- mene)CI2]2, [Ru(benzene)CI2]n, [Ru(CO)2CI2]n, [Ru(CO)3CI2]2, [Ru(COD) (al lyl)] ,

[RuCI3 H20], [Ru(acetylacetonate)3], [Ru(DMSO)4CI2], [Ru(PPh3)3CI2], [Ru(cyclopentadi- enyl)(PPh3)2CI], [Ru(cyclopentadienyl)(CO)2CI], [Ru(cyclopentadienyl)(CO)2H], [Ru(cyclopen- tadienyl)(CO)2]2, [Ru(pentamethylcyclopentadienyl)(CO)2CI], [Ru(pentamethylcyclopentadi- enyl)(CO)2H], [Ru(pentamethylcyclopentadienyl)(CO)2]2, [Ru(indenyl)(CO)2CI], [Ru(in- denyl)(CO)2H], [Ru(indenyl)(CO)2]2, Ruthenocen, [Ru(2,2'-bipyridin)2(CI)2 H20], [Ru(COD)(CI)2H]2, [Ru(pentamethylcyclopentadienyl)(COD)CI], [Ru3(CO)12] and [Ru(tetra- phenylhydroxycyclopentadienyl)(CO)2H]

For the vinylation of the process according to the present invention any complex ligands known in the art, in particular those known to be useful in ruthenium catalysed hydrogenations may be employed. Suitable ligands of the catalytic system for the vinylation of the process according to the inven tion are, for example, mono-, bi-, tri- and tetra dentate phosphines of the formulae I and II shown below, where n is O or l ;

R4 to R12 are, independently of one another, unsubstituted or at least monosubstituted C1- C10-alkyl, C3-C10-cycloalkyl, C3-C10-heterocyclyl comprising at least one het-eroatom se lected from N, O and S, C5-C14-aryl or C5-C10-heteroaryl comprising at least one heteroatom selected from N, O and S, where the substituents are selected from the group consisting of: F, Cl, Br, OH, CN, NH2 and C1-C10-alkyl;

A is i) a bridging group selected from the group unsubstituted or at least monosub-stituted N, O, P, C1-C6-alkane, C3-C10-cycloalkane, C3-C10-heterocycloalkane corn-prising at least one het- eroatom selected from N, O and S, C5-C14-aromatic and C5-C6-heteroaromatic comprising at least one heteroatom selected from N, O and S, where the substituents are selected from the group consisting of: C1-C4-alkyl, phenyl, F, Cl, Br, OH, OR16, NH2, NHR16 or N(R16)2, where R16 is selected from C1-C10-alkyl and C5-C10-aryl; or ii) a bridging group of the formula (VI) or (VII):

(VI) (VII)

R13, R14 are, independently of one another, selected from the group C1 C10-alkyl, F, Cl, Br, OH, OR15, NH2, NHR15 and N(R15)2, where R15 is selected from C1-C10-alkyl and C5-C10-aryl;

X1 , X2 are, independently of one another, NH, O or S;

X3 is a bond, NH, NR16, O, S or CR17R18;

R16 is unsubstituted or at least monosubstituted C1-C10-alkyl, C3 C10-cycloalkyl, C3-C10-het- erocyclyl comprising at least one heteroatom se-lected from N, O and S, C5-C14-aryl or C5- C10-heteroaryl comprising at least one heteroatom selected from N, O and S, where the substituents are selected from the group consisting of: F, Cl, Br, OH, CN, NH2 and C1-C10-alkyl;

R17, R18 are, independently of one another, unsubstituted or at least monosub-stituted C1- C10-alkyl, C1-C10-alkoxy, C3-C10-cycloalkyl, C3-C10-cycloalkoxy, C3-C10-heterocyclyl com prising at least one heteroatom se-lected from N, O and S, C5-C14-aryl, C5-C14-aryloxy or C5- C10-heteroaryl comprising at least one heteroatom selected from N, O and S, where the substituents are selected from the group consisting of: F, Cl, Br, OH, CN, NH2 and C1-C10-alkyl;

Y1, Y2, Y3 are, independently of one another, a bond, unsubstituted or at least monosubstituted methylene, ethylene, trimethylene, tetramethylene, pentameth-ylene or hexamethylene, where the substituents are selected from the group consisting of: F, Cl, Br, OH, OR15, CN,

NH2, NHR15, N(R15)2 and C1-C10-alkyl, where R15 is selected from C1-C10-alkyl and C5-C10-aryl.

A is a bridging group. For the case that A is selected from the group unsubstituted or at least monosubstituted C1-C6-alkane, C3-C10-cycloalkane, C3-C10-heterocycloalkane, C5-C14-aro- matic and C5-C6-heteroaromatic for the case (n = 0), two hydrogen atoms of the bridging group are replaced by bonds to the adjacent substituents Y1 and Y2. For the case (n = 1), three hy drogen atoms of the bridging group are replaced by three bonds to the adjacent substituents Y1 , Y2 and Y3.

For the case that A is P (phosphorus), the phosphorus forms for the case (n = 0) two bonds to the adjacent substituents Y1 and Y2 and one bond to a substituent selected from the group con sisting of C1-C4-alkyl and phenyl. For the case (n = 1), the phosphorus forms three bonds to the adjacent substituents Y1 , Y2 and Y3.

For the case that A is N (nitrogen), the nitrogen for the case (n = 0) forms two bonds to the adja cent substituents Y1 and Y2 and one bond to a substituent selected from the group consist-ing of C1-C4-alkyl and phenyl. For the case (n = 1), the nitrogen forms three bonds to the adja-cent substituents Y1 , Y2 and Y3.

For the case that A is O (oxygen), n = 0. The oxygen forms two bonds to the adjacent substitu ents Y1 and Y2.

Preference is given to complex catalysts which comprise at least one element selected from ru thenium and iridium.

In a preferred embodiment, the process according to the invention is carried out in the pres ence of at least one complex catalyst which comprises Ru and also at least one phosphorus do nor ligand of the general formula (II), where n is O or l ; R7 to R12 are, independently of one another, unsubstituted C1 C10-alkyl, C3-C10-cycloalkyl, C3-C10-heterocyclyl comprising at least one heteroatom selected from N, O and S, C5-C14-aryl or C5-C 10-heteroaryl comprising at least one heteroatom se-lected from N, O and S;

A is i) a bridging group selected from the group unsubstituted C1-C6-alkane, C3-C10-cycloal- kane, C3-C10-heterocycloalkane comprising at least one heteroatom select-ed from N, O and S, C5-C14-aromatic and C5-C6-heteroaromatic comprising at least one heteroatom selected from N, O and S; or ii) a bridging group of the formula (VI) or (VII):

(Vl| pi

R13, R14 are, independently of one another, selected from the group C1 C10-alkyl, F, Cl, Br, OH, OR15, NH2, NHR15 and N(R15)2, where R15 is selected from C1-C10-alkyl and C5-C10-aryl;

X1 , X2 are, independently of one another, NH, O or S;

X3 is a bond, NH, NR16, O, S or CR17R18;

R16 is unsubstituted C1-C10-alkyl, C3-C10-cycloalkyl, C3-C10-heterocyclyl comprising at least one heteroatom selected from N, O and S, C5-C14-aryl or C5-C 10-heteroaryl comprising at least one heteroatom selected from N, O and S;

R17, R18 are, independently of one another, unsubstituted C1-C10-alkyl, C1 C10-alkoxy, C3- C10-cycloalkyl, C3-C10-cycloalkoxy, C3-C10-heterocyclyl corn-prising at least one heteroatom selected from N, O and S, C5-C14-aryl, C5-C14-aryloxy or C5-C 10-heteroaryl comprising at least one heteroatom selected from N, O and S;

Y1 , Y2, Y3 are, independently of one another, a bond, unsubstituted methylene, ethylene, tri methylene, tetramethylene, pentamethylene or hexamethylene.

In a further preferred embodiment, the process according to the invention is carried out in the presence of at least one complex catalyst which comprises Ru and also at least one phospho rus donor ligand of the general formula (VIII), where

R7 to R10 are, independently of one another, unsubstituted or at least monosubstituted C1- C10-alkyl, C3-C10-cycloalkyl, C3-C10-heterocyclyl comprising at least one het-eroatom se lected from N, O and S, C5-C14-aryl or C5-C10-heteroaryl comprising at least one heteroatom selected from N, O and S, where the substituents are selected from the group consisting of: F, Cl, Br, OH, CN, NH2 and C1-C10-alkyl;

A is i) a bridging group selected from the group unsubstituted or at least monosub-stituted N, O, P, C1-C6-alkane, C3-C10-cycloalkane, C3-C10-heterocycloalkane corn-prising at least one het- eroatom selected from N, O and S, C5-C14-aromatic and C5-C6-heteroaromatic comprising at least one heteroatom selected from N, O and S, where the substituents are selected from the group consisting of:

C1-C4-alkyl, phenyl, F, Cl, Br, OH, OR15, NH2, NHR15 or N(R15)2, where R15 is selected from C1-C10-alkyl and C5-C10-aryl; or ii) a bridging group of the formula (VI) or (VII): I I i) a bridging group selected from the group unsubstituted or at least monosub-stituted N, O, P, C1-C6-alkane, C3-C10-cycloalkane, C3-C10-heterocycloalkane corn-prising at least one het eroatom selected from N, O and S, C5-C14-aromatic and C5-C6-heteroaromatic comprising at least one heteroatom selected from N, O and S, where the substituents are selected from the group consisting of:

C1-C4-alkyl, phenyl, F, Cl, Br, OH, OR15, NH2, NHR15 or N(R15)2, where R15 is selected from C1-C10-alkyl and C5-C10-aryl; or ii) a bridging group of the formula (VI) or (VII): m, q are, independently of one another, 0, 1 , 2, 3 or 4;

R13, R14 are, independently of one another, selected from the group C1 C10-alkyl, F, Cl, Br, OH, OR15, NH2, NHR15 and N(R15)2, where R15 is selected from C1-C10-alkyl and C5-C10-aryl;

X1 , X2 are, independently of one another, NH, O or S,

X3 is a bond, NH, NR16, O, S or CR17R18; R16 is unsubstituted or at least monosubstituted C1-C10-alkyl, C3 C10-cycloalkyl, C3-C10-het- erocyclyl comprising at least one heteroatom selected from N, O and S, C5-C14-aryl or C5-C10- heteroaryl comprising at least one heteroatom selected from N, O and S, where the substituents are selected from the group consisting of: F, Cl, Br, OH, CN, NH2 and C1-C10-alkyl;

R17, R18 are, independently of one another, unsubstituted or at least monosub-stituted C1- C10-alkyl, C1-C10-alkoxy, C3-C10-cycloalkyl, C3-C10-cycloalkoxy, C3-C10-heterocyclyl com prising at least one heteroatom se-lected from N, O and S, C5-C14-aryl, C5-C14-aryloxy or C5- C 10-heteroaryl comprising at least one heteroatom selected from N, O and S, where the substituents are selected from the group consisting of: F, Cl, Br, OH, CN, NH2 and C1-C10-alkyl;

Y1 , Y2 are, independently of one another, a bond, unsubstituted or at least mono-substi- tuted methylene, ethylene, trimethylene, tetramethylene, pentameth-ylene or hexamethylene, where the substituents are selected from the group consisting of: F, Cl, Br, OH, OR15, CN,

NH2, NHR15, N(R15)2 and C1-C10-alkyl, where R15 is selected from C1-C10-alkyl and C5-C10-aryl.

In a further preferred embodiment, the process according to the invention is carried out in the presence of at least one complex catalyst which comprises at least one element selected from groups 8, 9 and 10 of the Periodic Table of the Elements and also at least one phosphorus do nor ligand of the general formula (IX),

where

R7 to R12 are, independently of one another, unsubstituted or at least monosubstituted C1- C10-alkyl, C3-C10-heterocyclyl comprising at least one heteroatom selected from N, O and S, C5-C14-aryl or C5-C 10-heteroaryl comprising at least one heteroatom se-lected from N, O and S, where the substituents are selected from the group consisting of: F, Cl, Br, OH, CN, NH2 and C1-C10-alkyl;

A is a bridging group selected from the group unsubstituted or at least mono-substituted N, P, C1-C6-alkane, C3-C10-cycloalkane, C3-C10-heterocycloalkane corn-prising at least one het eroatom selected from N, O and S, C5-C14-aromatic and C5-C6-heteroaromatic comprising at least one heteroatom selected from N, O and S, where the substituents are selected from the group consisting of:

C1-C4-alkyl, phenyl, F, Cl, Br, OH, OR15, NH2, NHR15 or N(R15)2, where R15 is selected from C1-C10-alkyl and C5-C10-aryl;

Y1 , Y2, Y3 are, independently of one another, a bond, unsubstituted or at least monosub stituted methylene, ethylene, trimethylene, tetramethylene, pentamethylene or hexamethylene, where the substituents are selected from the group consisting of: F, Cl, Br, OH, OR15, CN,

NH2, NHR15, N(R15)2 and C1-C10-alkyl, where R15 is selected from C1-C10-alkyl and C5-C10-aryl. In a further preferred embodiment, the process according to the invention is carried out in the presence of at least one complex catalyst which comprises at least one element selected from groups 8, 9 and 10 of the Periodic Table of the Elements and also at least one phosphorus do nor ligand of the general formula (VIII), where

R7 to R10 are, independently of one another, methyl, ethyl, isopropyl, tert-butyl, cyclo-pentyl, cyclohexyl, phenyl, or mesityl;

A is i) a bridging group selected from the group methane, ethane, propane, butane, cyclohex ane, benzene, napthalene and anthracene; or ii) a bridging group of the formula (X) or (XI):

X1 , X2 are, independently of one another, NH, O or S;

X3 is a bond, NH, O, S or CR17R18;

R17, R18 are, independently of one another, unsubstituted C1-C10-alkyl;

Y1 , Y2 are, independently of one another, a bond, methylene or ethylene.

In a particularly preferred embodiment, the process according to the invention is carried out in the presence of at least one complex catalyst which comprises at least one element selected from groups 8, 9 and 10 of the Periodic T able of the Elements and also at least one phosphorus donor ligand of the general formula (XII) or (XIII), where for m, q, R7, R8, R9, R10, R13, R14, X1 , X2 and X3, the definitions and preferences listed above are applicable.

In an embodiment, the process according to the invention is carried out in the presence of at least oneRu metal complex catalyst and monodentate ligands of the formula I are preferred herein are those in which R5a, R5b and R6 are each phenyl or alkyl optionally carrying 1 or 2 C1-C4-alkyl substituents and those in which R7, R8 and R9 are each C5-C8-cycloalkyl or C2- C10-alkyl, in particular linear unbranched n-C2-C10-alkyl. The groups R5a to R6 may be differ ent or identi-cal. Preferably the groups R5a to R6 are identical and are selected from the sub stituents men-tioned herein, in particular from those indicated as preferred. Examples of prefer able mono-dentate ligands IV are triphenylphosphine (TPP), Triethylphosphine, tri-n-bu- tylphosphine, tri-n-octylphosphine and tricyclohexylphosphine.

In another embodiment, the process according to the invention is carried out in the presence of at least one Ru metal complex catalyst and at least one phosphorus donor ligand selected from the group consisting of 1,2-bis(diphenylphosphino)ethane (dppe), 1 ,2-bis(diphe- nylphosphino)propane (dppp), 1,2-bis(diphenylphosphino)butane (dppb), 2,3-bis(dicyclohex- ylphosphino)ethane (dope), 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (xantphos), bis(2- diphenylphosphinoethyl)phenylphosphine and 1 ,1 ,1-tris(diphenylphosphinomethyl)ethane (tri- phos).

In a further particularly preferred embodiment, the process according to the invention is car-ried out in the presence of a complex catalyst which comprises ruthenium and at least one phospho rus donor ligand selected from the group 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (xantphos), bis(2-diphenylphosphino _, ethyl)phenylphosphine and 1,1 ,1 -tris(diphe- nylphosphinomethyl)ethane (triphos). In a further particularly preferred embodiment, the process according to the invention is car-ried out in the presence of a complex catalyst which comprises iridium and also at least one phos phorus donor ligand selected from the group 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (xantphos), bis(2-diphenylphosphino _, ethyl)phenylphosphine and 1,1 ,1 -tris(diphe- nylphosphinomethyl)ethane (triphos).

Within the context of the present invention, C1-C10-alkyl is understood as meaning branched, unbranched, saturated and unsaturated groups. Preference is given to alkyl groups having 1 to 6 carbon atoms (C1-C6-alkyl). More preference is given to alkyl groups having 1 to 4 carbon at oms (C1-C4-alkyl).

Examples of saturated alkyl groups are methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec- butyl, tert-butyl, amyl and hexyl.

Examples of unsaturated alkyl groups (alkenyl, alkynyl) are vinyl, allyl, butenyl, ethynyl and propynyl.

The C1-C10-alkyl group can be unsubstituted or substituted with one or more substituents se lected from the group F, Cl, Br, hydroxy (OH), C1-C10-alkoxy, C5-C10-aryloxy, C5-C10-al- kylaryloxy, C5-C10-heteroaryloxy comprising at least one heteroatom selected from N, O, S, oxo, C3-C10-cycloalkyl, phenyl, C5-C 10-heteroaryl comprising at least one heteroatom selected from N, O, S, C5-C10-heterocyclyl comprising at least one heteroatom selected from N, O, S, naphthyl, amino, C1-C10-alkylamino, C5-C10-arylamino, C5-C10-heteroarylamino comprising at least one heteroatom selected from N, O, S, C1-C10-dialkylamino, C10-C12-diarylamino, C10- C20-alkylarylamino, C1-C10-acyl, C1-C10-acyloxy, N02, C1-C10-carboxy, carbamoyl, carbox amide, cyano, sulfonyl, sulfonylamino, sulfinyl, sulfinylamino, thiol, C1 -C10-alkylthiol, C5-C10- arylthiol or C1-C10-alkylsulfonyl.

The above definition for C1-C10-alkyl applies correspondingly to C1-C30-alkyl and to C1 C6- alkane.

C3-C 10-cycloalkyl is understood in the present case as meaning saturated, unsaturated mono- cyclic and polycyclic groups. Examples of C3-C10-cycloalkyl are cyclopropyl, cyclobutyl, cyclo pentyl, cyclohexyl or cycloheptyl. The cycloalkyl groups can be unsubstituted or substituted with one or more substituents as has been defined above in connection with the group C1-C10-alkyl. The active vinylation catalyst can be generated in situ in the reaction mixture by adding the lig ands to the above-mentioned precursors. The molar ratio between the transition metal and the ligand is in the range of 2 : 1 to 1 : 50, preferable in the range of 1 : 1 to 1 : 10 most prefer-ably in the range of 1 : 2 to 1 : 5.

In addition to the one or more ligands selected from the groups of ligands described above the catalytic system of the inventive process may also include at least one further ligand which is selected from halides, amides, carboxylates, acetylacetonate, aryl- or alkylsufonates, hydride, CO, olefins, dienes, cycloolefins, nitriles, aromatics and heteroaromatics, ethers, PF3, phos- pholes, phosphabenzenes, and mono-, di- and polydentate phosphinite, phosphonite, phospho- ramidite and phosphite ligands. Preferably the catalyst also contains CO as a ligand.

The active catalyst RuCat can also be preformed in a dedicated synthetic step. Appropriate pre formed catalysts can be [Ru(PPh3)3(CO)(H)CI], [Ru(PPh3)3(CO)CI2], [Ru(PPh3)3(CO)(H)2], [Ru(binap)(CI)2], [Ru(PMe3)4(H)2], [Ru(PEt3)4(H)2], [Ru(Pn-Pr3)4(H)2], [Ru(Pn-Bu3)4(H)2], [Ru(Pn-Octyl3)4(H)2], [Ru(Pn-Bu3)4(H)2], [Ru(PnOctyl3)4(H)2], [Ru(PPh3)3(CO)(H)CI] and [Ru(PPh3)3(CO)(H)2], preferably [Ru(PEt3)4(H)2], [Ru(Pn-Bu3)4(H)2] and [Ru(Pn-Oc- tyl3)4(H)2]

In one embodiment of the present invention, the inventive process is characterized in that the homogeneous transition RuCat is selected from the group consisting of [Ru(PPh3)3(CO)(H)CI], [Ru(PPh3)3(CO)CI2], [Ru(PPh3)3(CO)(H)2], [Ru(binap)(CI)2], [Ru(PMe3)4(H)2], [Ru(PEt3)4(H)2], [Ru(Pn-Pr3)4(H)2], [Ru(Pn-Bu3)4(H)2], [Ru(Pn-Octyl3)4(H)2], [Ru(Pn- Bu3)4(H)2], [Ru(PnOctyl3)4(H)2], [Ru(PPh3)3(CO)(H)CI] and [Ru(PPh3)3(CO)(H)2], preferably [Ru(PPh3)3(CO)(H)CI], [Ru(PPh3)3(CO)CI2] and [Ru(PPh3)3(CO)(H)2.

If a preformed active catalyst is used, it can also be beneficial to add additional ligand of the for mula I or II to the reaction mixture.

In the inventive process the amount of RuCat used based on the cyclic compound C can be var ied in a wide range. Usually RuCat is used in a sub-stoichiometric amount relative to the cyclic compound C. Typically, the amount of RuCat is not more than 50 mol%, frequently not more than 20 mol% and in particular not more than 10 mol% or not more than 5 mol%, based on the amount of the cyclic compound C. An amount of RuCat of from 0.001 to 50 mol%, frequently from 0.001 mol% to 20 mol% and in particular from 0.005 to 5 mol%, based on the amount of the cyclic compound C is preferably used in the process of the invention. Preference is given to using an amount of RuCat of from 0.01 to 5 mol%. All amounts of RuCat indicated are calculat ed as Ru metal and based on the amount of the cyclic compound C.

In one embodiment of the present invention, the inventive process is characterized in that the homogeneous RuCat is used in an amount of 0.001 mol% to 20 mol%, calculated as Ru metal and based on the amount of the cyclic compound C used in the process.

The reaction of a cyclic compound C with acetylene can principally be performed according to all processes known to a person skilled in the art which are suitable for the reaction of a cyclic compound C with acetylene.

The acetylene used for the reduction reaction can be used in pure form or, if desired, also in the form of mixtures with other, preferably inert gases, such as nitrogen or argon. Preference is given to using acetylene in undiluted form.

The acetylene can be applied discontinuously or continuously, e.g. by bubbling acetylene gas through the reaction mixture.

The reaction is typically carried at a acetylene pressure in the range from 0.1 to 10 bar, prefer ably in the range from 1 to 5 bar, more preferably in the range from 1 to 1.5 bar cold pressure.

In one embodiment of the present invention, the inventive process is characterized in that the reaction between a cyclic compound C and acetylene is performed at a pressure in the range from 1 to 15bar.

The reaction can principally be performed continuously, semi-continuously or discontinuously. Preference is given to a continuous process.

The vinylation reaction according to the invention is carried out in a liquid phase. This can be achieved by adding one or more solvents, preferably from the group of aliphatic as well as ar omatic hydrocarbons, linear as well as cyclic ethers, linear as well as cyclic amides, sulfox-ides, nitriles and halogenated hydrocarbons. Preferred solvents are toluene, DMF and Di-glyme. The liquid phase can also be formed by the liquid cyclic compound C without any addi-tional solvent.

Also one or more bases such as nitrogen bases like trialkylamines or pyridines, preferably N,N- dimethylaminopyridine can be added to the liquid phase, preferably in an amount of 0.5 to 20 equivalents according the amount of the used catalysts RuCat. The reaction can principally be performed in all reactors known to a person skilled in the art for this type of reaction and who will therefore select the reactors accordingly. Suitable reac-tors are described and reviewed in the relevant prior art e.g. K. Henkel, "Reactor Types and Their Industrial Applications", Ullmann's Encyclopedia of Industrial Chemistry, 2005, Wiley-VCH Ver- lag GmbH & Co. KGaA, chapter 3.3: "Reactors for gas-liquid reactions"..

The inventive process can be performed in a wide temperature range. Preferably the reaction is performed at a temperature in the range from 20°C to 200 °C, more preferably in the range from 50°C to 180 °C, in particular in the range from 100°C to 170 °C.

Examples

A) General procedure for examples 1, 9, 10, 11, 12, 14, 18, 21, 22, 23, 25, 27, 29, 30, 31, 32, 33, 38, 40, 42: An approximately 40 ml_ autoclave (Premex, Hastelloy) was charged with CodRu(met)2 (0,001-0.06 mmol), cyclic compound C (1 mmol), toluene (5.0-10.0 ml_) or di- chloromethane (10 ml, entry 9) or dimethylformamide (5 ml, entries 20, 36, 37, 40, 41), and tri- n-butylphosphine (0,005 - 0,18 mmol) or trioctylphosphine (0,1 mmol, entry 12) or tricyclohex- ylphosphine (0,1 mmol, entry 13) under argon atmosphere in the Glove-box. After closing the reaction vessel, the system was purged with acetylene (3 times). Fi-nally, the autoclave was pressurized with acetylene (at 1,5 bar for 15 min at room temper-ature) and heated at 100-140 oC. The mixture was then stirred at the specified tempera-ture for 14-18 h. Note: At this temper ature the internal pressure rises to 3-4 bar. Then, the reaction was cooled down on a water bath and depressurized carefully. The crude mixture was collected in a round bottom flask and con centrated under vacuum. Subsequently, it was dissolved in 1 ml_ of CH2CI2 and coated on sil ica. The product was isolated by column chromatography (petroleum ether/ethyl: acetate 8/2 - for different products the system ra-tio was slightly varied). When the reaction was performed in DMF, the product was either extracted with dichloromethane from aqueous solution of the reac tion mixture, organic layer was washed with water minimum 5 times (entries 40, 41) or collected in a round bot-tom flask and concentrated under vacuum followed by column chromatography isolation (petroleum ether/ethyl: acetate, entries 20, 36, 37).

B) General procedure for examples 13, 15, 16, 17, 19, 20, 26, 28, 34, 35, 36, 37, 39, 41: An approximately 40 ml_ autoclave (Premex, Hastelloy) was charged with CodRu(met)2 (0.02 0,06 mmol), cyclic compound C (1 mmol), toluene (5.0 ml_, entries 15, 17, 18, 19, 21, 22, 33, 35, 43, 47, 49) or dimethylphormamide (5-8 ml_, entries 42, 44, 45), DMAP (0,04 - 0,12 mmol) and tri- n-butylphosphine (0,06 - 0,18 mmol) under argon atmosphere in the Glovebox. After closing the reaction vessel, the system was purged with acetylene (3 times). Finally, the autoclave was pressurized with acetylene (at 1 ,5 bar for 15 min at room temperature) and heated at 100-150 oC. The mixture was then stirred at the speci-fied temperature for 14-18 h. Note: At this temper ature the internal pressure rises to 4-6 bar. Then, the reaction was cooled down on a water bath and depressurized carefully. The crude mixture was collected in a round bottom flask and con centrated under vacuum. Subsequently, it was dissolved in 1 ml_ of CH2CI2 and coated on sil ica. The product was isolated by column chromatography (petroleum ether/ethyl: acetate 8/2 - for different products the system ratio was slightly varied).

C) General procedure for the comparative examples 2 and 3: An approximately 40 ml_ auto clave (Premex, Hastelloy) was charged with Ruthenium 5% on activated charcoal (100 mg), 2- pyrrolidinone (13,1 mmol, 1.116 g), and diglyme (for entry 13) or toluene (for entry 14) (8.0 ml_) under argon atmosphere in the Glovebox. After closing the reaction vessel, the system was purged with acetylene (3 times). Finally, the autoclave was pres-surized with acetylene (at 1 ,5 bar for 15 min at room temperature) and heated at 170oC. The mixture was then stirred at the specified temperature for 14 h. Note: At this tempera-ture the internal pressure rises to 5 (di glyme)/? (toluene) bar. Then, the reaction was cooled down on a water bath and depressurized carefully. The crude mixture was collect-ed in a round bottom flask and concentrated under vac uum. The crude mixture was ana-lyzed by GC and/or NMR. Product was not isolated. The com parative examples 2 and 3 show, that by using a heterogeneous Ru-catalyst only gives the de sired product in minor amounts.

D) General procedure for comparative example 4: An approximately 40 ml_ autoclave (Pre mex, Hastelloy) was charged with Ruthenium 5% on activated charcoal (10 mg), 2-pyrrolidinone (1 mmol, 0,085 g), and toluene (10.0 ml_) under argon atmosphere in the Glovebox. After clos ing the reaction vessel, the system was purged with acetylene (3 times). Finally, the autoclave was pressurized with acetylene (at 1,5 bar for 15 min at room temperature) and heated at 170oC. The mixture was then stirred at the specified tempera-ture for 14 h. Note: At this tem perature the internal pressure rises to 7 bar. Then, the reac-tion was cooled down on a water bath and depressurized carefully. The crude mixture was collected in a round bottom flask and concentrated under vacuum. The crude mixture was analyzed by GC and/or NMR. Product was not isolated. The comparative example 4 shows, that by using a heterogeneous Ru-catalyst only gives the desired product in minor amounts.

E) General procedure for the comparative examples 5, 6, 7 and 8: An approximately 40 ml_ autoclave (Premex, Hastelloy) was charged with 2 mol % Ruthenium catalyst (RuCI3-3H20 - entry 5; Ru(AcAc)3 - entry 6; Ru3(CO)12 - entry 7; codRumet2- entry 8), 2-pyrrolidinone (1 mmol, 0,085 g), and toluene (5.0 ml_) under argon atmosphere in the Glovebox. After closing the reaction vessel, the system was purged with acetylene (3 times). Finally, the autoclave was pressurized with acetylene (at 1 ,5 bar for 15 min at room temperature) and heated at 100 oC. The mixture was then stirred at the specified tempera-ture for 16-19 h. Note: At this temperature the internal pressure rises to 3-4 bar. Then, the reaction was cooled down on a water bath and depressurized carefully. The crude mixture was collected in a round bottom flask and concen trated under vacuum. The crude mixture was analyzed by GC. Product was not isolated. The comparative examples 5, 6, 7 and 8 show, that by using only a Ruthenium complex without a phosphine ligand, under the same conditions only trace amounts of the desired product are formed.

F) General procedure for the comparative example 43: An approximately 40 ml_ auto-clave (Premex) was charged with 20 mol% of tri-n-butylphosphine (0,2 mmol, 0,042 g), 2-pyrroli- dinone (1 mmol, 0,085 g), and toluene (10.0 ml_) under argon atmosphere in the Glovebox. Af ter closing the reaction vessel, the system was purged with acetylene (3 times). Finally, the au toclave was pressurized with acetylene (at 1 ,5 bar for 15 min at room temperature) and heated at 100 oC. The mixture was then stirred at the specified tempera-ture for 16 h. Note: At this tem perature the internal pressure rises to 3-4 bar. Then, the re-action was cooled down on a water bath and depressurized carefully. The crude mixture was collected in a round bottom flask and concentrated under vacuum. The crude mixture was analyzed by GC. Product was not formed. The comparative examples 43 shows, that by using only the phosphine ligand without a Ruthe nium complex gives no product under these conditions.

G) General procedure for the example 24: An approximately 40 mL autoclave (Premex, Has- telloy) was charged with anhydrous ruthenium (III) chloride (0,03 mmol, entry 26) or ruthenium (III) chloride hydrate (0.03-0,09 mmol, entries 27, 29, 30, 31), 5-methyl-1,3-oxazolidin-2-one (1 mmol, 0,101 g), toluene (5.0 mL), and tri-n-butylphosphine (0,06 - 0,12 mmol, entries 26, 27,

29, 30) or triphenylphosphine (0,1 mmol, entry 31) under argon atmosphere in the Glovebox. After closing the reaction vessel, the system was purged with acetylene (3 times). Finally, the autoclave was pressurized with acetylene (at 1 ,5 bar for 15 min at room temperature) and heated at 100 oC. The mixture was then stirred at the specified temperature for 14-16 h. Note: At this temperature the internal pressure rises to 3-4 bar. Then, the reaction was cooled down on a water bath and depressurized carefully. The crude mixture was collected in a round bottom flask and concentrated under vacuum. The crude mixture was analyzed by GC and/or NMR. Product was not isolated.