Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SYSTEM AND METHODS FOR PRODUCING LIGHT EMITTING DIODE ARRAY
Document Type and Number:
WIPO Patent Application WO/2006/076209
Kind Code:
A3
Abstract:
Systems and methods are disclosed for producing vertical LED (201) array on a metal substrate (60) ; evaluating said array of LEDs (201) for defects; destroying one or more defective LEDs; forming good LEDs (201) only LED array suitable for wafer level package.

More Like This:
JP2008207293ROTARY JOINT
Inventors:
DOAN TRUNG TRI
TRAN CHUONG ANH
Application Number:
PCT/US2006/000353
Publication Date:
February 22, 2007
Filing Date:
January 09, 2006
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SEMILEDS CORP (US)
DOAN TRUNG TRI
TRAN CHUONG ANH
International Classes:
H01R39/00; H01R29/00; H01R33/00; H02B1/056; H01L33/00
Foreign References:
US6300590B12001-10-09
US20040135158A12004-07-15
Other References:
See also references of EP 1836723A4
Attorney, Agent or Firm:
READ, Randol, W. et al. (L.L.P. 3040 Post Oak Blvd., Suite 150, Houston TX, US)
Download PDF:
Claims:

What is claimed is:

1. A method for producing known good LEDs LED array, comprising: forming LEDs on a metal substrate; evaluating said LEDs for defects including optical and electrical non-functionality compared to preset criteria; removing one or more defective LEDs and leaving good LEDs on the metal substrate.

2. The method of claim 1, wherein the removing comprises vaporizing a defective LED structure using laser to elevate the temperature of the LED to higher than the evaporation temperature.

3. The method of claim 1, wherein the removing of one or more defective LEDs comprises applying a laser beam along the kerfs of defective LEDs and cutting through the metal substrate. 4. The method of claim 1, wherein the evaluating process comprises performing optical and electrical functionality on testing each of said plurality of LED to identify a satisfactorily non-defective LED array. 5. The method of claim 1, comprising packaging an array of nondefective LEDs at wafer level. 6. The method of claim 1 , wherein the multi layer epitaxial structure comprises: an n-type layer made from one of: GaN and AlGaN, one or more quantum wells with InAlGaN/GaN layers, and an p-type layer made from one of: GaN and AlGaN.

7. The method of claim 1, wherein the one or more metal layers above the multi layer epitaxial structure comprises one of: Indium Tin Oxide (ITO), Silver, Al, Cr, Pt, Ni, Au,

Mo, W, a refractory metal, a metal alloy thereof. S. A method for producing known good LED array, comprising: forming an array of LEDs on a metal substrate; evaluating said array of LEDs for defects for optical and electrical non- functionality compared to a preset criteria; and removing one or more defective LEDs from the metal substrate.

9. The method of claim S, wherein the removing process comprises vaporizing a defective LED structure using laser to elevate the temperature of the LED to higher than the evaporation temperature. 10. The method of claim 8, wherein the removing of one or more defective LEDs comprises applying a laser beam along the kerfs of defective LEDs and cutting through the metal substrate.

11. The method of claim 8, the evaluating process comprises performing optical and electrical functionality on testing each of said plurality of LED to identify a satisfactorily nondefective LED array.

12. The method of claim 8, comprising packaging a nondefective LED array at wafer level.

13. The method of claim 8, wherein the multi layer epitaxial structure comprises: an n-type layer made from one of: GaN and AlGaN, one or more quantum wells with InAlGaN/GaN layers, and an p-type layer made from one of: GaN and AlGaN.

14. The method of claim 8, wherein the one or more metal layers above the multi layer epitaxial structure comprises one of: Indium Tin Oxide (ITO), Silver, Al, Cr, Pt, Ni, Au, Mo, W, a refractory metal, a metal alloy thereof. 15. A method of manufacturing vertical LED array on metal substrate, comprising:

providing a carrier substrate; depositing a n-GaN portion above the carrier substrate; depositing active layers above the n-GaN portion; depositing a p-GaN portion above the active layers; depositing one or more metal layers applying a masking layer; etching the metal, p-GaN layer, active layers and n-GaN layer, removing the masking layer; depositing a passivation layer; removing portion of the passivation layer on top of the p-GaN to expose the metal; depositing one or more metal layers; depositing a metal substrate; removing the carrier substrate to expose the n-GaN surface; evaluating each LED sites for defect using mapping; removing one or more defective LEDs.

16. The method of claim 15, wherein the removing process comprises vaporizing a defective LED structure using laser to elevate the temperature of the LED to higher than the evaporation temperature.

17. The method of claim 15, wherein the removing of one or more defective LEDs comprises applying a laser beam along the kerfs of defective LEDs and cutting thru the metal substrate.

18. The method of- claim 15, wherein the removing of one or more defective LEDs comprises using a saw blade to cut along the kerfs of defective LEDs and cutting through the metal substrate. 19. The method of claim 15, metal substrate comprises using one of: copper, nickel,

silver, platinum, aluminum, Mo, tungsten.

20. The method of claim 8, the metal substrate comprises depositing Copper using one of: electro plating, electroless plating.

21. A method of manufacturing vertical LED array on metal substrate, comprising: providing a carrier substrate; depositing a n-GaN portion above the carrier substrate; depositing active layers above the n-GaN portion; depositing a p-GaN portion above the active layers; depositing one or more metal layers applying a masking layer; etching the metal, p-GaN layer, active layers and n-GaN layer, removing the masking layer; depositing a passivation layer; removing portion of the passivation layer on top of the p-GaN to expose the metal; depositing one or more metal layers; depositing a metal substrate; removing the carrier substrate to expose the n-GaN surface; forming a metal electrode on the top of the n-GaN surface evaluating each LED sites for defect using mapping; removing one or more defective LEDs.

22. The method of claim 21, wherein the removing process comprises vaporizing a defective LED structure using laser to elevate the temperature of the LED to higher than the evaporation temperature.

23. The method of claim 21, wherein the removing of one or more defective LEDs comprises applying a laser beam along the kerfs of defective LEDs and cutting thru

the metal substrate.

24. The method of claim 21, wherein the removing of one or more defective LEDs comprises using a saw blade to cut along the kerfs of defective LEDs and cutting through the metal substrate. 25. The method of claim 21, metal substrate comprises using one of: copper, nickel, silver, platinum, aluminum, Mo, tungsten.

26. The method of claim 21 the metal substrate comprises depositing Copper using one of: electro plating, electroless plating.

27. The method of claim 21, wherein the LED array comprised two or more known good LEDs

28. The method of claim 27, wherein the known good LEDs are electrically couple with each others via bonding wires

Description:

SYSTEMS AND METHODS FOR PRODUCING LIGHT EMITTING DIODE ARRAY

Inventor: Chuong A. Tran, Trung T. Doan

This invention relates to semiconductor manufacture and more particularly to a method and apparatus for manufacturing light emitting diodes (LEDs) array.

One of the fastest growing segments of the semiconductor industry is the manufacture of multi-chip modules (MCM). Multi-chip modules are being increasingly used in computers to form PC chip sets and in telecommunication items such as modems and cellular telephones. In addition, consumer electronic products such as watches and calculators typically include multi-chip modules.

With a multi-chip module, non-packaged or LEDs (i.e., chips) are secured to a substrate (e.g., printed circuit board) using an adhesive. Electrical connections are then made directly to the bond pads on each LED and to electrical leads on the substrate. In an effort to minimize the cost and maximize the quality of assembled packages, steps are typically taken to ensure that only LEDs which are found to be functional are assembled with one another. Therefore, prior to the LED attachment process, LEDs and carrier substrates are typically tested for optical and electrical defects, contamination, and other irregularities. LEDs in the array are found to be defective are typically marked in a manner so as to distinguish them from known good components.

Thus, with unpackaged LEDs, semiconductor manufacturers are required to supply LED arrays that have been tested and certified as known good LED (KGD). On a parallel note, light -emitting diodes (LEDs) are playing an increasingly important role in our daily life. Traditionally, LEDs are become ubiquitous in many applications, such as communications and other areas, such as mobile phones, appliances and other electronic devices. Recently, the demand for nitride based semiconductor materials (e.g., having

Gallium Nitride or GaN) for opto-electronics has increased dramatically for applications such as video displays, optical storage, lighting, medical instruments, for-example. Conventional blue light-emitting diodes (LEDs) are formed using semiconductor materials of nitride, such as GaN, AlGaN, InGaN and AlInGaN. Most of the semiconductor layers of the aforementioned-typed light emitting devices are epitaxially formed on electrically non- conductive sapphire substrates. Since the sapphire substrate is an electrically insulator, electrodes cannot be directly formed on the sapphire substrate to drive currents through the LEDs. Rather, the electrodes directly contact a p-typed semiconductor layer and an n-typed semiconductor layer individually, so as to complete the fabrication of the LED devices. However such configuration of electrodes and electrically non-conductive nature of sapphire substrate represents a significant limitation for the device operation. For example, a semi- transparent contact needs to be formed on the p-layer to spread out the current from p-electrode to n-electrode. This semi-transparent contact reduces the light intensity emitted from the device due to internal reflectance and absorption. Moreover, p and n- electrodes obstruct the light and reduce the area of light emitting from the device. Additionally, the sapphire substrate is a heat insulator (or a thermal insulator) and the heat generated during the device operation can not be effectively dissipated, thus limiting the device reliability.

Fig. 1 shows one such conventional LED. As shown therein, the substrate is denoted as 1. The substrate 1 can be mostly sapphire. Over the substrate 1, a buffer layer 2 is formed to reduce the lattice mismatch between substrate 1 and GaN. The buffer layer 2 can be epitaxially grown on the substrate 1 and can be AlN, GaN, AlGaN or AlInGaN. Next, an n-GaN based layer 3, a multi-quantum well (MQW) layer 4, and a p-GaN layer 5 are formed in sequence. An etching method is employed to foπn an exposing region 6 on the n- GaN based layer 3. An electrical conductive semi-transparent coating is provided above the p-GaN layer 5. Finally, the n-electrode 9 and p-electrode 8 are formed on selected electrode

areas. The n-electrode 9 is needed on the same side of device as p-electrode to inject electrons and holes into the MQW active layer 4, respectively. The radiative recombination of holes and electrons in the layer 4 emits light. However, limitations of this conventional LED structure include: (1) Semi-transparent contact on p-layer 5 is about 70% transparent at best and can block the light emitted from layer 4; (2) current spreading from n-electrode to p-electrode is not uniform due to position of electrodes; and (3) heat is accumulated during device operation since sapphire is a thermal and electrical insulator.

To increase available lighting area, vertical LEDs have been developed. As shown in Fig. 2, a typical vertical LED has a substrate 10 (typically silicon, GaAs or Ge). Over the substrate 10, a transition metal multi-layer 12, a p-GaN layer 14, an MQW layer 16, a n- GaN layer 18 are then formed. The n-electrode 20 and the p-electrode 22 are then formed on selected areas as electrodes.

US patent Application No. 20040135158 shows one way to realize vertical LED structure by (a) forming a buffering layer over a sapphire substrate; (b) forming a plurality of masks over said buffering layer, wherein said substrate, said buffering layer and said plurality of masks jointly form a substrate unit; (c) forming a multi-layer epitaxial structure over said plurality of masks, wherein said multi-layer epitaxial structure comprises an active layer; extracting said multi-layer epitaxial structure; (d) removing said remaining masks bonding with a bottom side of said multi-layer epitaxial structure after extracting; (e) coating a metal reflector over said bottom side of said multi-layer epitaxial structure; (f) bonding a conductive substrate to said metal reflector; and (g) disposing a p-electrode over an upper surface of said multi-layer structure and an n-electrode over a bottom side of said conductive substrate.

SUMMARY

In one aspect, systems and methods are disclosed for producing vertical LED

including forming an array of LEDs on a metal substrate; evaluating said array of LEDs for defects; destroying or removing one or more defective LEDs and then forming arrays containing only good LEDs. These good LEDs only array then can be packaged including at the wafer level to serve the purpose of multi chip power LED device. Implementations of the above aspect can include one or more of the following.

The destroying includes vaporizing a defective LED, or alternatively includes applying a laser beam on a defective LEDs or using laser cutting to cut thru the metal substrate to remove them. Electrical functionality can be done for testing each of said plurality of LED to identify a satisfactorily nondefective LED. Nondefective LEDs are then supplied in form of array ready for packaging including wafer level packaging.

Advantages of the system may include one or more of the following. The above system provide manufacturing processes suitable for fabricating and testing or unpackaged vertical LEDs on metal substrate. The present method of manufacturing and checking LEDs is suitable for the burn-in and checking in practice all kind of LEDs, especially the vertical LED on metal substrate described in this invention. It is highly economical because it provides testing before final component fabrication, making the present method highly reliable in comparison with conventional methods. In addition to enhancing the standard manufacturing testing for LEDs, the system can be a major development for producing good LEDs array Such improvements can improve-packaging assembly, screening, and assembly yields, dramatically reducing costs. Additionally, overall product failure rates can potentially be reduced, thereby improving system and life cycle costs, minimizing program delays and cost associated with component fails late within system integration.

These and other embodiments, aspects, advantages, and features of the present invention will be set forth in part in the description which follows, and in part will become apparent to those skilled in the art by reference to the following description of the invention

and referenced drawings or by practice of the invention. The aspects, advantages, and features of the invention are realized and attained by means of the instrumentalities, procedures, and combinations particularly pointed out in the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

To better understand the other features, technical concepts and objects of the present invention, one may clearly read the description of the following preferred embodiments and the accompanying drawings, in which:

Fig. 1 shows a prior ait conventional LED. Fig. 2 shows a prior art vertical LED.

Figs. 3-8 show operations in an exemplary process to fabricate vertical LED on metal substrate.

Fig. 9 shows the way how to remove a bad LED using laser beam. The bad LED is either evaporated or removed by cutting through the metal substrate along the kerfs bordering the bad LED.

Fig.10 shows the empty space where the bad LED was positioned before removal. Fig.11 shows a known good LED array with known good LEDs electrically couple by bond wires for n-electrode and the p-electrode for all four known good LEDs is the metal substrate

DESCRIPTION

In reading the detailed description, the accompanying drawings may be referenced at the same time and considered as part of the detailed description.

Referring to FIGS. 3 to 8, a manufacturing method for vertical LEDs on metal substrate is illustrated therein. In the description, the reference numerals given for the

inventive device structure will be also used in the recitation of the steps of the inventive manufacturing method.

The process described below is for one embodiment with InGaN LEDs initially grown on sapphire. Electro or Electroless Chemical plating is then used to deposit a thick metal substrate for electrical and thermal conduction for the resulting LED device. Electro or Electroless Chemical plating is used in lieu of wafer bonding. The process can be applied to any optoelectronic device where bonding was used to attach the epilayer to a new host substrate for improvement of optical, electrical and thermal properties.

Turning now to the diagrams, Fig. 3 shows a multi-layer epitaxial structure of an exemplary InGaN LED on a carrier 40, which can be a sapphire substrate in one embodiment. The multi-layer epitaxial structure formed above the sapphire substrate 40 includes an ii-GaN based layer 42, an MQW active layer 44 and a p-GaN layer 46. The n- GaN based layer 42 having a thickness of about 4 microns, for example.

The MQW active layer 44 can be an InGaN/GaN (or AUnGaN/GaN) MQW active layer. Once an electric power is fed between the n-GaN based layer 42 and the p-GaN-layer 46, the MQW active layer 44 may be excited and thus generates a light. The produced light can have a wavelength between 250nm to 600nm. The p-GaN layer can be a p -GaN based layer, such as a P + -GaN, a P + -InGaN or a P + -AlInGaN layer and the thickness thereof may be between 0.01-0.5 microns. Next, as shown in Fig. 4, a mesa definition process is performed and p-type contacts

48 are formed above the p-GaN layer 46. The contacts 48 above the multi layer epitaxial structure can be Indium Tin Oxide (ITO), Ag, Al, Cr, Ni 5 Au, Pt, Pd, Ti, Ta, ,TiN, TaN, Mo, W, a refractory metal, or a metal alloy, or a composite of these materials (for example Ni/ Au), among others. In addition, direct reflected Ag deposition as a metal contact could be also formed. In Fig. 4, individual LED devices are formed following mesa definition. Ion

coupled plasma etching is used to etch GaN into separate devices; other mesa definition process techniques could be utilized such as laser, saw or water jet.

Next, as shown in Fig. 5, a passivation layer 50 is deposited and reflective metal deposition is performed to foπn a reflective metal 52 such as Al, Ag, Ni, Pt and Cr, among others, in a window etched into the passivation layer 50 to allow the reflective metal 52 to p-GaN layer 46 . The passivation layer 50 is non-conductive. The reflective metal 52 forms a mirror surface. The contact layer 48 and the reflective metal 52 could be one layer containing one or more metal layers ( for examples: Ni/Ag/Ni/Au) formed before or after the passivation layer 50. Fig. 6 shows that a thin metal layer or a multi-metal layerϋ (Cr, Pt, Pd, Pt/Au,

Cr/Au, Ni/ Au, TVAu, TaN/ Au among others) is deposited over the structure to serve as a barrier/seed layer for the electro/electro less chemical plating process. However the depositing operation is not needed if an electro less chemical process, sputtering or magneto- sputtering process is used in lieu of electroplating. A metal substrate layer 60 is deposited thereon.

Turning now to Fig. 7, the multi-layer epitaxial structure is coated with a metal plating layer 60 using techniques such as electro and electroless chemical plating. With electroless chemical plating, the sapphire substrate 40 is protected using a organic or polymer layer or a coating that can be easily removed without damaging the sapphire or the electroless chemical plated metal of a relatively thick metal such as Ni, Cu, Ag, W, Mo, Pd, Pt, among others.

Next, the sapphire substrate 40 is removed. In one embodiment shown in Fig. 8, a laser lift-off (LLO) operation is applied to the sapphire substrate 40. Sapphire substrate removal using laser lift-off is known, reference U.S. Pat. No. 6,071,795 to Cheung et al, entitled, "Separation of Thin Films From Transparent Substrates By Selective Optical

Processing," issued on Jun. 6, 2000, and Kelly et al. "Optical process for liftoff of group III- nitride films", Physica Status Solidi (a) vol. 159, 1997, pp. R3-R4). Furthermore, highly advantageous methods of fabricating GaN semiconductor layers on sapphire (or other insulating and/or hard) substrates are taught in U.S. patent application Ser. No. 10/118,317 entitled "A Method of Fabricating Vertical Devices Using a Metal Support

Film" and filed on Apr. 9, 2002 by Myung Cheol Yoo, and in U.S. patent application Ser. No. 10/118,316 entitled "Method of Fabricating Vertical Structure" and filed on Apr. 9, 2002 by Lee et al. Additionally, a method of etching GaN and sapphire (and other materials) is taught in U.S. patent application Ser. No. 10/118,318 entitled "A Method to Improve Light Output of GaN-Based Light Emitting Diodes" and filed on Apr. 9, 2002

10 by Yeom et al., all of which are hereby incorporated by reference as if fully set forth herein. As shown in Fig. 8, an n-type electrode 70 such as Cr/Ni ( Cr or Ni) is patterned on the top of n-GaN layer 42 to complete the vertical LED.

At this stage, all the LEDs on metal substrate are probed and mapped for defects. Wafer mapping is performed to test the gross functionality of the LEDs on the wafer. Normally for each LED, wavelength, brightness, forward voltage at certain driving current and leakage current at certain reverse bias are recorded in the mapping data. The nonfunctional LEDs are mechanically marked or mapped in software. Positions of each bad LED could be traced back for the purpose of removing them for subsequent separation into known-good LEDs only arrays.

A laser is used to destroy no n- functioning LEDs. As shown in the example of Fig. 9, the middle LED is defective and the laser burns up the middle LED structure prior to the next operation. The laser can be an UV-Diode Pump Solid State (DPSS) laser or excimer laser with wavelength at 266 nm or 355 nm or 248 nm, for example. All laser wavelengths that are strongly absorbed by GaN and any metal used as metal substrate could be utilized.

This absorption results in energy transfer from laser pulse into the defective LED and elevate its temperature to higher temperature than evaporation temperature of GaN. When burning a defective LED on the wafer level, a laser pulse is radiated and repeated until the LED is totally evaporated. A second way to remove a bad LED or a cluster of bad LEDs is using the laser beam to cut the LED off the metal substrate. In this case the laser beam is guided along kerfs bordering the LED. The laser beam can be stationary while the metal substrate moves to achieve the same effect. A third way to remove a bad LED or a cluster of bad LEDs is using diamond saw cut. In addition to performing the functions outlined above, the system may include computer hardware and software capable of monitoring, controlling and collecting process data. This data collection capability allows process monitoring and permits real-time traceability of devices. This permits faster internal process feedback specific to device performance to be generated without introducing final packaging process variations. Known good LED array has two or more known good LEDs. As shown in figure 1 1 ,

The example known good LED array has four known good LEDs 201 and two electrodes: n-electrode 70 electrically couple to n-GaN layer 42 and p-electrode electrically couple to p- GaN layer 46; the p-electrodes 52 of the known good LEDs of the KGD array are electrically connected by the metal substrate layer 60; the n-electrodes of the known good LEDs of the KGD array are electrically isolated from each other before packaging. During the packaging process, the n-electrodes of the known good LEDs of the KGD array are electrically couple with each others via bond wires 300.

In association with vertical LED on metal substrate, this invention can be used for producing known good LED (KGD) arrays, ready for wafer level packaging. While the invention has been described with reference to certain preferred

embodiments, as will be apparent to those skilled in the art, certain changes and modifications can be made without departing from the scope of the invention as defined by the following claims.