Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SYSTEM TO PROVIDE AC OR DC POWER TO ELECTRONIC EQUIPMENT
Document Type and Number:
WIPO Patent Application WO/2021/046123
Kind Code:
A2
Abstract:
A system and method is provided to provide power to a load or electronic equipment which includes a multi-pole switch that connects the input of the load or electronic equipment to a first AC source or a DC source or an optional second AC source created from the DC source through a DC-AC converter. The connection to the DC source is either direct or through a DC-DC converter that provides voltage adjustment or isolation. A controller changes the position of the switch in response to the sensing of the presence and magnitude of the sources or in response to an external command to select a preferred source. The controller further activates or deactivates the DC-DC and DC-AC converters to improve system efficiency.

Inventors:
RAJU RAVISEKHAR (US)
Application Number:
PCT/US2020/049058
Publication Date:
March 11, 2021
Filing Date:
September 02, 2020
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
RAJU RAVISEKHAR (US)
International Classes:
H02J1/00
Download PDF:
Claims:
CLAIMS

What is claimed is:

1. A system providing power to an electronic equipment with a built-in rectifier, wherein the system comprises an AC source, a DC source and a multiple-throw switch, wherein the switch is used to feed the electronic equipment with AC or DC by connecting the input terminals of the electronic equipment either to the AC source or to the DC source.

2. The system of claim 1, wherein the switch is a single pole, double throw relay that transfers an input terminal connection of the electronic equipment either to an AC source terminal or to a DC source terminal.

3. The system of claim 2, wherein the single pole, double throw relay has a coil that is fed from the AC source such that it transfers an input terminal of the electronic equipment to the AC source terminal if the AC source is present and of suitable magnitude or to the DC source terminal otherwise.

4. The system of claim 2, wherein the single pole, double throw relay has a coil that is fed from the DC source such that it transfers an input terminal of the electronic equipment to the DC source terminal if the DC source is present and of suitable magnitude or to the AC source terminal otherwise.

5. The system of claim 1, further comprising a controller that senses the AC or DC source voltages and controls the switch to transfer an input terminal of the electronic equipment between the AC source and the DC source in response to the source voltage measurements.

6. The system of claim 1, further comprising a controller that controls the switch to transfer an input terminal of the electronic equipment between an AC source and a DC source in response to system conditions or commands to relieve the AC source or DC source from loading.

7. The system of claim 1, further comprising DC energy storage as the DC source and a charger to replenish the DC energy storage from the AC source when the AC source is present and of sufficient magnitude.

8. A system providing power to an electronic equipment with a built-in rectifier, wherein the system comprises an AC source, a DC source, a DC-DC converter and a switch; wherein the DC-DC converter converts the DC source voltage to a second DC voltage level; and wherein the switch is used to feed the electronic equipment with AC or DC by connecting the input terminals of the electronic equipment either to the AC source or to the terminals of the DC-DC converter that are at the second DC voltage level.

9. The system of claim 8, further comprising DC energy storage as the DC source and a charger to replenish the DC energy storage from the AC source when the AC source is present and of sufficient magnitude.

10. The system of claim 9; wherein the DC energy storage, charger and DC-DC converter or components thereof are in the form of a portable package that can be detached from the system for use elsewhere.

11. A system providing power to an electronic equipment through a switched-mode power adapter; wherein the system comprises an AC source, a DC source and a switch, wherein the switch is used to feed the power adapter with AC or DC by connecting the input terminals of the power adapter directly either to the AC source or the DC source.

12. A system providing power to an electronic equipment through a switched-mode power adapter; wherein the system comprises an AC source, a DC source, a DC- DC converter and a switch; wherein the DC-DC converter converts the DC source voltage to a second DC voltage level; and wherein the switch is used to feed the power adapter with AC or DC by connecting the input terminals of the power adapter either to the AC source or to the terminals of the DC-DC converter that are at the second DC voltage level.

13. The system of claim 12, further comprising DC energy storage as the DC source and a charger to replenish the DC energy storage from the AC source when the AC source is present and of sufficient magnitude.

14. The system of claim 13; wherein the DC energy storage, charger and DC-DC converter or components thereof are in the form of a portable package that can be detached from the system for use elsewhere.

15. A system providing power to an electronic equipment with a built-in rectifier or through a power adapter; wherein the system comprises an AC source, a DC source, a switch, and a controller; wherein the controller in response to the AC source conditions, DC source conditions, user command, or communication from the electronic equipment connects the electronic equipment or its power adapter to the AC source or DC source or leaves it disconnected.

16. A system providing power to an electronic equipment wherein the system comprises an AC source, a DC source, a DC-AC converter and a three-position switch; wherein the DC-AC converter converts the DC source to a AC; and wherein the switch is used to feed the electronic equipment with AC or DC by connecting the input terminals of the power adapter to one of three positions, i.e., the AC source, the DC source or the output terminals of the DC-AC converter fed from the DC source.

17. A system providing power to an electronic equipment wherein the system comprises an AC source, a DC source, a DC-AC converter, a DC-DC converter, and a three-position switch; wherein the DC-AC converter converts the DC source to a AC voltage and the DC-DC converter converts the DC source voltage to a second DC voltage level; and wherein the switch is used to feed the electronic equipment with AC or DC by connecting the input terminals of the power adapter to one of three positions, i.e., the AC source, the output terminals of the DC-AC converter fed from the DC source, or the output terminals of the DC-DC converter fed from the DC source.

Description:
SYSTEM TO PROVIDE AC OR DC POWER TO ELECTRONIC EQUIPMENT

CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application claims the benefit of U.S. Provisional Patent Application

No. 62894863, filed 02-SEP-2019, which is incorporated by reference herein in its entirety.

FIELD OF THE INVENTION

[0002] The present invention relates to the field of electrical power supplies and uninterruptible power supplies. Specifically, the present invention relates to a system to supply power to electronic equipment.

BACKGROUND

[0003] Electronic equipment such as laptop computers, modems and routers are often supplied through a switch-mode AC adapter that feeds DC to the equipment. Some other electronic equipment such as desktop computers, television sets and LED bulbs typically include rectifiers in their internal power supplies that convert the input AC to DC. Typically uninterruptible power supplies use inverters to create AC from a battery DC source and feed this AC to loads such as electronic equipment in case of an outage of the main AC supply. Disadvantages of this include the power losses and cost of the inverter. Some uninterruptible supplies tap into the DC bus downstream of the power adapter or rectifier in the electronic equipment and feed DC power from a source such as a battery to this DC bus in case of an outage of the main AC supply. Disadvantages of this include the need to access the DC bus. Therefore, what is needed are techniques that overcome the above mentioned disadvantages.

BRIEF SUMMARY OF THE INVENTION

[0004] Embodiments of the invention provide a system to supply AC or DC power to an electronic equipment. [0005] In accordance with one aspect of the invention, an electronic equipment with a built-in rectifier is connected to a double-throw switch at its input, and the switch is controlled to connect the equipment directly either to an AC input or to a DC input. The built-in rectifier processes the AC or DC input and provides a DC output for the load.

[0006] According to another aspect of the invention, the aforementioned switch is used to connect the equipment either to an AC supply directly or to the DC supply through a DC-DC converter.

[0007] According to yet another aspect of the invention, the aforementioned switch is used to selectively connect the electronic equipment either to an AC supply or to a DC supply based on sensing of the presence and magnitude of the AC or DC supply voltages.

[0008] According to yet another aspect of the invention, the aforementioned switch comprises of a relay with a control coil energized from an AC supply thereby connecting the electronic equipment to the AC supply when it is present and connecting the electronic equipment to a DC supply when the AC supply is absent.

[0009] According to yet another aspect of the invention, the aforementioned switch consists of a relay with a control coil energized from a DC supply thereby connecting the electronic equipment to the DC supply when it is present and connecting the electronic equipment to an AC supply when the DC supply is absent.

[0010] According to yet another aspect of the invention, the aforementioned DC supply consists of a DC energy storage component that is replenished through an AC -DC charger connected to the AC supply or a DC-DC charger connected to a DC source.

[0011] According to yet another aspect of the invention, the electronic equipment is fed by a switch-mode power adapter, the input of which is connected directly either to an AC supply or to a DC supply through a switch.

[0012] According to yet another aspect of the invention, the electronic equipment is fed by a switch-mode power adapter, the input of which is connected through a switch to three positions based on a controller command: one that directly connects the adapter input to an AC supply, a second that connects the adapter directly to a DC supply or a third that leaves the adapter disconnected.

[0013] According to other embodiments of the invention, the electronic equipment is connected through a triple-throw switch that connects an input terminal of the electronic equipment selectively to a first AC input or to a DC input or to a second AC input wherein the second AC input is generated from the DC input through a DC- AC converter and the DC input is optionally processed through a DC-DC converter to provide voltage adjustment, galvanic isolation or protection.

[0014] According to other embodiments of the invention, the aforementioned switch mentioned in the previous embodiments is a semiconductor device instead of an electro-mechanical device or is a combination of the two.

[0015] Various other features and advantages will be made apparent from the following detailed description and the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016] The present invention is illustrated by way of example and not limitation in the figures of the accompanying drawings in which like references indicate similar elements.

[0017] Figure 1 illustrates a system to provide power to an electronic equipment with a built-in rectifier; wherein a switch directly connects the equipment to an AC input or DC input to feed AC or DC power to the equipment, according to one embodiment of the present invention.

[0018] Figure 2 illustrates a system to provide power to an electronic equipment with a built-in rectifier; wherein a switch directly connects the equipment to an AC input or to a DC voltage derived through a DC-DC converter from a DC input, according to one embodiment of the present invention.

[0019] Figure 3 illustrates a system to provide power to an electronic equipment with a built-in rectifier; wherein a switch directly connects the equipment to an AC input or DC input to feed AC or DC power to the equipment, and wherein the switch is controlled by a sensing and control component that senses the AC input, according to one embodiment of the present invention.

[0020] Figure 4 shows a system to provide power to an electronic equipment with a built-in rectifier; wherein a switching relay connects the equipment to an AC input when activated by a relay coil energized from the AC input; and wherein the switching relay connects the equipment to a DC voltage from a DC input or DC-DC converter when the relay coil is de-energized due to absence of adequate AC input, according to one embodiment of the present invention.

[0021] Figure 5 shows a system to provide power to an electronic equipment with a built-in rectifier; wherein a switching relay connects the equipment to a DC input when activated by a relay coil energized from the DC input; and wherein the switching relay connects the equipment to a AC voltage when the relay coil is de-energized due to absence of adequate DC input, according to one embodiment of the present invention.

[0022] Figure 6 illustrates a system to provide power to an electronic equipment with a built-in rectifier, according to one embodiment of the present invention; wherein a switch connects an input terminal of the electronic equipment selectively to an AC input voltage or to a DC voltage; and wherein the DC voltage is produced by a DC-DC converter supplied by a DC source or DC energy storage; and wherein the DC energy storage is optionally charged from the AC input through a AC-to-DC charger.

[0023] Figure 7 illustrates a system to provide power to a switched-mode adapter which feeds an electronic equipment, wherein a switch selectively connects the switched- mode adapter to an AC input or to a DC input, according to one embodiment of the present invention.

[0024] Figure 8 shows a system, according to one embodiment of the present invention, to provide power to a switched-mode adapter which feeds an electronic equipment, wherein a switch selectively connects the switched-mode adapter to an AC input or to a DC input or disconnects the adapter, according to a command from a controller which receives sensing and communication from the electronic equipment or from an external interface. [0025] Figure 9 illustrates a system to provide power to an electronic equipment with a built-in rectifier, according to one embodiment of the present invention; wherein a triple-throw switch connects an input terminal of the electronic equipment selectively to a first AC input voltage or to a DC voltage or to a second AC voltage that is generated by a DC-AC converter from the aforementioned DC voltage.

[0026] Figure 10 illustrates a system to provide power to an electronic equipment with a built-in rectifier, according to one embodiment of the present invention; wherein a triple-throw switch connects an input terminal of the electronic equipment selectively to a first AC input voltage or to a DC voltage or to a second AC voltage wherein the DC voltage and the second AC voltage are generated by a DC-DC converter and a DC-AC converter respectively from a DC input.

[0027] Figure 11 illustrates a system to provide power to an electronic equipment with a built-in rectifier; wherein semiconductor switches directly connect the equipment to an AC input or DC input to feed AC or DC power to the equipment, according to one embodiment of the present invention.

DETAILED DESCRIPTION

[0028] Various embodiments and aspects of the inventions will be described with reference to details discussed below, and the accompanying drawings will illustrate the various embodiments. The following description and drawings are illustrative of the invention and are not to be construed as limiting the invention. Numerous specific details are described to provide a thorough understanding of various embodiments of the present invention. However, in certain instances, well-known or conventional details are not described in order to provide a concise discussion of embodiments of the present inventions.

[0029] Reference in the specification to “one embodiment” or “an embodiment” or “another embodiment” means that a particular feature, structure, or characteristic described in conjunction with the embodiment can be included in at least one embodiment of the invention.

[0030] Figure 1 illustrates a system 100, comprising an electronic equipment 110, a double-throw switch 120, an AC supply 130, and a DC supply 140, according to one embodiment of the present invention. The electronic equipment has an in-built power supply rectifier, 116, that feeds DC internally to the loads within the equipment 110. Terminal 114 of the equipment, 110, is directly connected to terminal 134 of the AC input, 130 and terminal 144 of the DC input, 140. Terminal 134 can, for example, be the neutral of the AC input and terminal 144 can, for example, be the negative of the DC input. A second terminal, 112, of the equipment, 110, is connected to a switch, 120, which connects terminal 112 either to terminal 132 of the AC supply or to terminal 142 of the DC supply. An optional controller, 150, senses, for example, the source voltages and places the switch in an appropriate state, for example, connecting the equipment to the DC supply if the AC supply voltage falls below a threshold level. Although, only one terminal 112 has been shown as switched between the AC and DC inputs in this embodiment, multiple terminals such as 112 and 114 can be switched between the AC and DC inputs.

[0031] Figure 2 illustrates, according to one embodiment of the present invention, a system 200, comprising an electronic equipment 210, a switch 220, an AC supply 230, a DC supply 240 and a DC-DC converter, 250, which converts the DC input to a DC output 260. The electronic equipment has an in-built power supply rectifier, 216, that feeds DC internally. The switch, 220, selectively connects an input terminal, 212, of the equipment, 210, to a terminal, 232, of the AC supply or to a terminal, 262, at the DC-DC converter output. An optional controller, 270, senses the AC and DC inputs and controls the switch, for instance, connecting the equipment to the DC-DC converter if the AC input voltage is absent or too low for proper functioning of equipment 210. In addition, controller 270 optionally activates or deactivates the DC-DC converter, 250, for example, to reduce power losses by turning it off when switch 220 is connected to the AC input. As another application example, the controller connects the switch to the DC feed if a DC input such as a photovoltaic source is available with adequate power so that power draw from the AC supply can be avoided.

[0032] Figure 3 illustrates, according to one embodiment of the present invention, a system 300, comprising an electronic equipment 310, a switch 320, an AC supply 330, and a DC supply 340. The electronic equipment has an in-built power supply rectifier that feeds DC internally. A terminal, 312, of the equipment, 310, is connected to a switch, 320, which connects terminal 312 either to terminal 332 of the AC supply or to terminal 342 of the DC supply. A sensing and control component, 350, senses the AC source voltage and places the switch in an appropriate state, e.g., connecting the equipment to the AC supply if the AC supply voltage is above a threshold level or connecting the equipment to the DC supply otherwise.

[0033] Figure 4 illustrates, according to one embodiment of the present invention, a system 400, comprising an electronic equipment 410, a switching relay 420, an AC supply 430, a DC supply 440, and a DC-DC converter 450. The electronic equipment has a built-in rectifier that feeds DC internally. A terminal, 412, of the equipment, 410, is connected to the switching relay, 420, which connects terminal 412 either to terminal 432 of the AC supply or to terminal 452 at the DC-DC converter output. The switching relay has a coil 432 which is energized from the AC input source. If the AC input has a sufficient voltage, the relay coil stays energized and switch 420 connects the equipment 410 to the AC input 430. If the AC input drops below a threshold voltage, the relay coil gets de-energized and switch 420 connects equipment 410 to the output of the DC-DC converter 450. The optional DC-DC converter is used to step-up or step-down the DC input voltage to a level that is suitable to feed the equipment 410. As an example, the DC input can be stepped up from a 5-volt or 9-volt level to 150 volts DC to feed the equipment 410. In addition, the DC-DC converter can provide galvanic isolation and protection for the DC source or load in case of fault conditions.

[0034] Figure 5 illustrates, according to one embodiment of the present invention, a system 500, comprising an electronic equipment 510, a switching relay 520, an AC supply 530, a DC supply 540, and a DC-DC converter 550. The electronic equipment has a built-in rectifier that feeds DC internally. A terminal, 512, of the equipment, 510, is connected to the switching relay, 520, which connects terminal 512 either to terminal 532 of the AC supply or to terminal 552 at the DC-DC converter output. The switching relay has a coil 532 which is energized from the AC input source. If the AC input has a sufficient voltage, the relay coil stays energized and switch 520 connects the equipment 510 to the AC input 530. If the AC input drops below a threshold voltage, the relay coil gets de-energized and switch 520 connects equipment 510 to the output of the DC-DC converter 550. The optional DC-DC converter is used to step-up or step-down the DC input voltage to a level that is suitable to feed the equipment 510. As an example, the DC input can be stepped up from a 5-volt or 9-volt level to 150 volts DC to feed the equipment 510. In addition, the DC-DC converter can provide galvanic isolation and protection for the DC source or load in case of fault conditions.

[0035] Figure 6 illustrates, according to one embodiment of the present invention, a system 600, comprising an electronic equipment 610, a switch 620, a controller 670, an AC supply 630, a DC energy storage component 650 supplied by an optional AC -DC charger 640, and an optional DC-DC converter 660 that is supplied by the DC storage component. The electronic equipment has an in-built power supply rectifier that feeds DC internally. A terminal, 612, of the equipment, 610, is connected to a switch, 620, which connects terminal 612 either to terminal 632 of the AC supply or to terminal 662 at the DC-DC converter output. The DC-DC converter is optional and converts the voltage level from DC storage 650 to a level that is suitable for feeding the electronic equipment 610.

In addition, the DC-DC converter can provide galvanic isolation and protection for the DC input in case of short circuits or faults in equipment 610. The DC storage 650 can feed the terminal 662 directly if the aforementioned functions of the DC-DC converter are not needed. The controller, 670, senses the AC and DC inputs and controls the switch, e.g. connecting the equipment to the DC-DC converter if the AC input voltage is low. In addition, controller 670 optionally activates or deactivates the DC-DC converter, 660, e.g. to reduce power losses by turning it off when switch 620 is connected to the AC input. As another application example, the controller connects the switch to the DC feed 662 if it is preferable to avoid power draw from the AC supply, for example, in case the utility AC system has a very high load and requires relief.

[0036] Figure 7 illustrates a system 700, comprising an electronic equipment 710, a switched-mode adapter 720 that feeds the equipment 710, switch 730, an AC supply 740, a DC supply 750, and a controller 760, according to one embodiment of the present invention. The switched-mode adapter feeds DC to equipment 710 through connections 712 and 714. An input terminal, 722, of the adapter, 720, is connected to a switch, 730, which connects terminal 722 either to terminal 742 of the AC supply or to terminal 752 of the DC supply. An optional controller, 760, senses, for example, the source voltages and places the switch in an appropriate state, e.g., connecting the adapter to the DC supply if the AC supply voltage falls below a threshold level.

[0037] Figure 8 illustrates a system 800, comprising an electronic equipment 810, a switch-mode adapter 820 that feeds the equipment 810, switch 830, an AC supply 840, a DC supply 850, and a controller 860, according to one embodiment of the present invention. The switch 830 can transfer an input terminal, 822, of the adapter, 820, to three positions: the first position connects it to a terminal 842 of the AC supply 840; the second position connects it to a terminal 852 of the DC supply 850; and the third position, 832, leaves it unconnected. An optional controller, 860, controls the switch 830 according to sensor measurements of the AC and DC inputs, or commands 866 and 862 from an external interface or from the electronic equipment respectively. For example, the controller can leave the adapter disconnected at position 832 if both the AC input and the DC input have voltage levels outside a prescribed band. As another example, the controller can place the switch in a position that connects the adapter to the AC input if the AC input is present and has a suitable voltage magnitude. As yet another example, the controller can place the switch in a position that connects the adapter to the DC input if the AC input is absent and the DC input is available with sufficient voltage magnitude.

[0038] Figure 9 illustrates a system 900, comprising a load or electronic equipment 910, a sensing block, 920, that senses variables such as voltage and current at the input of equipment, 910, a three-pole switch, 930, that selectively connects the input terminal, 922, of the load or equipment, 910, to a first AC input, 920, or to a DC input, 950, or to a second AC input, 932, that is generated from a DC-AC converter, 960, fed by the DC input, 950. A controller, 960, in conjunction with the sensing block, 920, determines the switch position. As an example, if the first AC input, 940, is sensed as being absent or out of a usable range, the switch position is moved to connect the load, 910, to the DC input, 950. As a continuation of this example, if the sensing block determines that the load is not compatible with a DC input through detection of an overcurrent or undervoltage or waveform abnormality at the input of the load, 910, after the aforementioned switchover, the controller moves the switch position such that the load, 910, is fed from the DC-AC converter, 960. The neutral terminal, 924, of the load can be directly connected to the three inputs as illustrated or connected through a three- position switch to further provide isolation between the three inputs. The controller provides commands and collects feedback from load, 910, sensing block, 920, switch, 930, DC-AC converter, 960, through communication channels 964, 966, 968 and 970 respectively. In addition, it optionally communicates with an external interface through communication channel 962. The controller, 960, can deactivate the DC-AC converter, 960, to improve system efficiency when the load, 910, is supplied from the first AC input, 940.

[0039] Figure 10 illustrates a system 1000, comprising a load or electronic equipment 1010, a sensing block, 1020, that senses variables such as voltage and current at the input of equipment, 1010, and a three-pole switch, 1030, at the terminal, 1022, that feeds the load or equipment, 1010. The three-pole switch, 1030, selectively connects the load input terminal, 1022, to three positions; the first of which, 1032, is connected to a first AC input, 1040; the second of which, 1034, is connected to a DC-AC converter,

1060, fed from a DC input, 1050; and the third of which, 1036, is connected to a DC-DC converter, 1080, fed from the DC input, 1050. The neutral terminal, 1024, of the load can be directly connected to the three inputs as illustrated or connected through a three- position switch to further provide isolation between the three inputs. The system further comprises a controller, 1060, which communicates with the load, 1010, the sensing block, 1020, the switch, 1030, the DC-AC converter, 1060, and the DC-DC converter, 1080, through the respective channels, 1064, 1066, 1068, 1070, and 1072. For instance, when an absence of proper input at the first AC terminal, 1032, is sensed, the controller changes the position of switch, 1030, such that the load is fed from the DC input through the DC- DC converter. As a continuation of this example, if the controller further determines that the load is not compatible with DC fed from position 1036 through the detection of overcurrent of other electrical abnormality, the controller can move the switch the position, 1034, such that the load is fed through DC-AC converter, 1060. The controller can further activate or deactivate converters 1060, and 1080 to reduce operating or standby power losses and improve system efficiency. In addition, the converter can communicate with an external interface through channel 1062. The DC-DC converter, 1080, and DC-AC converter, 1060, are used to step-up, step-down or process the DC input, 1050, and convert it to a level suitable for the load 1010.

[0040] Figure 11 illustrates a system 1100, comprising an electronic equipment

1110, a set of semiconductor switches, 1120 and 1122, an AC supply 1130, and a DC supply 1140, according to one embodiment of the present invention. The electronic equipment has an in-built power supply rectifier, 1116, that feeds DC internally to the loads within the equipment 1110. Terminal 1114 of the equipment, 1110, is directly connected to terminal 1134 of the AC input, 1130 and terminal 1144 of the DC input, 1140. Terminal 1134 can, for example, be the neutral of the AC input and terminal 1144 can, for example, be the negative of the DC input. A second terminal, 1112, of the equipment, 1110, is connected to semiconductor switches, 1120, and 1122, which connect terminal 1112 either to terminal 1132 of the AC supply or to terminal 1142 of the DC supply. An optional controller, 1150, senses, for example, the source voltages and controls the semiconductor switches to an appropriate state, for example, connecting the equipment to the DC supply if the AC supply voltage falls below a threshold level. Although, only one terminal 1112 has been shown as switched between the AC and DC inputs in this embodiment, multiple terminals such as 1112 and 1114 can be switched between the AC and DC inputs. Silicon controlled rectifiers have been shown in the illustration, however other semiconductor switches such as transistors can be used instead.

[0041] The foregoing description of exemplary embodiments of the invention has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. It will be recognized by those skilled in the art that many modifications and variations are possible without departing from the essential scope of the invention. It is, therefore, to be understood that the scope of the invention is not limited to the particular embodiments disclosed, and that the invention will include all embodiments falling within the scope of the claims appended hereto.

INDUSTRIAL APPLICABILITY

[0042] Various embodiments and aspects of the inventions can be used in applications such as consumer and industrial electronics for supplying power to equipment with increased efficiency and reliability.