Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
TETRAMERISATION OF ETHYLENE
Document Type and Number:
WIPO Patent Application WO/2014/181250
Kind Code:
A1
Abstract:
A process for the tetramerisation of ethylene includes contacting ethylene with a catalyst under ethylene oligomerisation conditions. The catalyst comprises a source of chromium, a ligating compound, and an activator. The ligating compound includes a phosphine that forms part of a cyclic structure.

Inventors:
MOKHADINYANA MOLISE STEPHEN (ZA)
MAUMELA MUNAKA CHRISTOPHER (ZA)
MOGOROSI MOSES MOKGOLELA (ZA)
OVERETT MATTHEW JAMES (ZA)
VAN DEN BERG JAN-ALBERT (ZA)
JANSE VAN RENSBURG WERNER (ZA)
BLANN KEVIN (ZA)
Application Number:
PCT/IB2014/061237
Publication Date:
November 13, 2014
Filing Date:
May 06, 2014
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SASOL TECH PTY LTD (ZA)
International Classes:
C07C11/02; C07C2/36; C07C11/107; C08F10/00
Domestic Patent References:
WO2004056479A12004-07-08
WO2008088178A12008-07-24
WO2002004119A12002-01-17
WO2004056479A12004-07-08
WO2004105648A12004-12-09
WO2007108832A22007-09-27
WO2009006979A22009-01-15
WO2008088178A12008-07-24
WO2009022770A12009-02-19
WO2002004119A12002-01-17
WO2004056477A12004-07-08
WO2012034101A22012-03-15
WO2008146215A12008-12-04
WO2007007272A22007-01-18
WO2010092554A12010-08-19
WO2007039851A22007-04-12
WO2011048527A12011-04-28
Foreign References:
US20080242811A12008-10-02
US20100008177A12010-01-14
US20080027188A12008-01-31
US20060247399A12006-11-02
US5491272A1996-02-13
US5750817A1998-05-12
US5856257A1999-01-05
US5910619A1999-06-08
US5919996A1999-07-06
Other References:
TOM E. STENNETT ET AL: "N , N -Diphospholylamines-A New Family of Ligands for Highly Active, Chromium-Based, Selective Ethene Oligomerisation Catalysts", CHEMCATCHEM, vol. 5, no. 10, 21 June 2013 (2013-06-21), pages 2946 - 2954, XP055128550, ISSN: 1867-3880, DOI: 10.1002/cctc.201300306
PIET W N M VAN LEEUWEN ET AL LEVASON BILL ET AL: "New processes for the selective production of 1-octene", COORDINATION CHEMISTRY REVIEWS, ELSEVIER SCIENCE, AMSTERDAM, NL, vol. 255, no. 13, 4 October 2010 (2010-10-04), pages 1499 - 1517, XP028201840, ISSN: 0010-8545, [retrieved on 20101016], DOI: 10.1016/J.CCR.2010.10.009
BLANN, CHEM. COMMUN., 2005, pages 620
OVERETT, CHEM COMMUN, 2005, pages 622
DYSON ET AL., INORGANICA CHIMICA ACTA, vol. 359, 2006, pages 2635 - 2643
MARKS, CHEM REV., vol. 100, 2000, pages 1391 - 1394
KLENK. J., HETEROCYCL. COMMUN., vol. 16, no. 4-6, 2010, pages 249 - 252
SYNTHESIS, vol. 24, 2007, pages 3863
Attorney, Agent or Firm:
SPOOR & FISHER et al. (0001 Pretoria, ZA)
Download PDF:
Claims:
1. A process for the tetramerisation of ethylene, the process including contacting ethylene with a catalyst under ethylene oligomerisation conditions, said catalyst comprising:

i) a source of chromium;

ii) a ligating compound of the formula

( 1)mAXY

wherein A is selected from the group consisting of nitrogen, phosphorus, and oxygen;

X is a linking group between A and Y;

m is independently 1 or 2;

R1 is a hydrogen, a hydrocarbyl group, an organoheteryl group or a heterohydrocarbyl group with each R1 being the same or being different where m is 2; and

Y is an optionally substituted group that can be represented as

such that P is a phosphorous atom and bonds to X; and

and U are Sinkers selected from the group comprising a covalent bond and an optionally substituted single atom bonded to both of the linked carbon or phosphorous atoms; and

iii) optionally a catalyst activator or combination of catalyst activators.

2. The process as claimed in claim 1 , wherein A is selected from the group consisting of nitrogen and phosphorous.

3. The process as claimed in claim 1 or claim 2, wherein R1 is a hydrocarbyl group, an organoheteryl group or a heterohydrocarbyl group.

4. The process as claimed in any one of the preceding claims, wherein R1 is an aromatic, including a heteroaromatic, group directly bonded to A.

5. The process as claimed in any one of the preceding claims, wherein R1 is an optionally substituted phenyl group. A process for the tetramerisation of ethylene, the process including contacting ethylene with a catalyst under ethylene oligomertsation conditions, said catalyst comprising: i) a source of chromium;

ii) a !igating compound of the formula

R1R2PXY

wherein P is a phosphorous atom;

X is a linking group between P and Y;

R1 and R2 are independently a hydrocarby! group, an organohetery! group or a heterohydrocarbyt group; and

Y is an optionally substituted group that can be represented as

such that P is a phosphorous atom which bonds to X; and L1 and L2 are linkers selected from the group comprising a covalent bond and an optionally substituted single atom bonded to both of the linked carbon or phosphorous atoms; and iii) optionally a catalyst activator or combination of catalyst activators.

7. The process as claimed in claim 6, wherein R and Rz are independently a hydrocarbyl group or a heterohydrocarbyl group.

8. The process as claimed in claim 6 or claim 7, wherein both R1 and R2 are aromatic, including heteroaromatic, groups directly bonded to P. 9. The process as claimed in any one of claims 6 to 8, wherein both R and R2 are optionally substituted phenyl groups.

10. The process as claimed in any one of the preceding claims, wherein U and L2 are selected from the group comprising a covalent bond, a heteroatom, a substituted heteroatom, -C(=0)-, -CR3R4-, where R3 and R4 are independently a hydrogen, a hydrocarbyl group, a heterohydrocarbyl group or an organoheteryl group.

11. The process as claimed in any one of the preceding claims, wherein U and L2 can be selected from the group comprising a covalent bond, -0-, -S-, - NRr, -P(=0)R3- , -P(=Se)R3-, -P(=S)R3- -SiR3R4-, -CR3R4-, -C(=0)- where R3 and R4 are independently a hydrogen, a hydrocarbyl group, a heterohydrocarbyl group or an organoheteryl group.

12. The process as claimed in any one of the preceding claims, wherein L-t and L2 are either a covalent bond or -0-.

13. The process as claimed in any one of the preceding claims, wherein both of Li and L2 are covalent bonds.

14. The process as claimed in any one of the preceding claims, wherein Y is optionally substituted at one or more of the aromatic ring positions with groups other than hydrogen including hydrocarbyi groups, heterohydrocarbyl or organoheteryl groups or halogen atom substituents.

15. A process according to any one of the preceding claims wherein X is a hydrocarbylene, -N(R5)-, -N(R5)-N(Re)-, =C(R7}-N(R5)-, -N(R5)-C(R7)(R6)-, N(R5)-X -N(R6) where Rs and R6 are independently a hydrocarbyi group, an organoheteryl group or a heterohydrocarbyl group, R7 and R8 are independently a hydrogen, a hydrocarbyi group, an organoheteryl group or a heterohydrocarbyl group, and X1 is a hydrocarbylene group.

Description:
TETRAMERISATION OF ETHYLENE TECHNICAL FIELD

The invention relates to a process for the tetramerisation of ethylene, the process including contacting ethylene with a catalyst under ethylene oligomerisation conditions, said catalyst comprising a source of chromium and novel ligating compounds.

BACKGROUND OF THE INVENTION It is known that chromium-based catalyst systems with diphosphine ligands catalyse the selective conversion of ethylene to 1-hexene and/or 1-octene depending on the reaction conditions and choice of ligand structure. In particular, the nature and position of any substituents on the aryl rings connected to the phosphines are crucial influences on the selectivity split between 1-hexene and 1-octene. Of particular interest to industry are catalysts for ethylene tetramerisation, as these catalysts are relatively rare. Octene is a valuable co- monomer for the production of high performance linear low density polyethylenes and elastomers, and few selective on-purpose routes to this chemical are known in industry. By comparison, catalysts for ethylene trimerisation are relatively common, and are used industrially by several companies. By tetramerisation it is meant that at least 30% 1-octene is produced in the process. Non-limiting examples of selective ethylene tetramerisation catalyst systems include the ubiquitous Cr / bts(phosphino)amine (i.e. 'ΡΝΡ') systems, particularly of the type (Ar )(Ar 2 )PN(R)P(Ar 3 )(Ar 4 ), where Ar to Ar 4 are aryl groups such as phenyl and R is a hydrocarbyl or a heterohydrocarbyl group, beginning with PNP !igands containing no substituents on the phenyl rings bonded to the P-atoms (e.g. as described in WO 2004/056479) and those with m or- p-methoxy groups on the phenyl rings (e.g. as described in WO 2004/056480). In addition to this, PNP systems containing o-fluoro groups on the phenyl rings are described in US 2008/0242811 and US 2010/008177, and PNP systems bearing pendant donor atoms on the nitrogen linker are described in WO 2007/088329. Multi-site PNP ligands are discussed in US 2008/0027188. in addition to the Cr/PNP systems, chromium systems bearing Ν,Ν-bidentate ligands (e.g. as described in US 2006/0247399) can be used. PNP ligands with alkyiamine or phosphinoamine groups bonded to one of the PNP phosphines (i.e. 'PNPNH' and 'ΡΝΡΝΡ' ligands) are described in WO 2009/006979. Finally, carbon bridged diphosphine (i.e. 'PCCP' ligands) are described in WO 2008/088178 and WO 2009/022770.

Related ethylene trimerisation catalysts with high selectivity for 1-hexene can be obtained by using PNP ligands with orf/ro-methoxy or orffto-alkyi substituents on the phenyl rings bonded to the P-atoms (e.g. as described in WO2002/04119, WO2004/056477 and WO2012 034101).

When carrying out a process for tetramerisation of ethylene, the aim is to choose a catalyst system and adjust process conditions in order to produce the maximum amount of -octene, as opposed to trimerisation processes where catalysts and process conditions are adjusted to produce the maximum amount of 1-hexene. 1-Hexene is also typically co-produced in a tetramerisation process. Consequently, new tetramerisation catalyst systems which increase catalyst selectivity to 1-octene while reducing selectivity to co-products are highiy desirable. Alternatively, new tetramerisation catalysts which produce similar amounts of 1-octene to catalysts known in the art, but which produce more 1-hexene (i.e. reduced C4 and C10+ oligomers) would also be desirable. In several investigations of structure-selectivity relationships for tetramerisation ligands, the effect of various patterns of orf/jo-substitution on the phenyl rings of the ligand (where Ar 1 - Ar 4 are optionally substituted phenyl groups and R is a hydrocarbyl group) has been studied. For example, the effect of orfrjo-alkyi groups (Blann et al, Chem. Commun. 2005, 620), offfto-methoxy groups (Overett et ail. Chem Commun 2005, 622) and ortho- fluorine groups (US 2010/008177) on selectivity has been reported. These off/io-substitutions may produce significant selectivity benefits in terms of reduced co-products (e.g. C10-C14 secondary products or reduced C6 cyc!ics). However, in ail cases the effect of orfrto-substitution is to reduce the 1- octene: 1-hexene ratio relative to the equivalent unsubstituted PHP ligand. Consequently, ligand motifs that act to increase the intrinsic 1-octene selectivity and which may be used in combination with a beneficial ortho- substitution motif on the same PNP ligand structure may be particularly beneficial.

The formation of a high molecular weight polymer co-product by the Cr-based ethylene tetramerisation catalyst may present a major technical challenge when commercialising an ethylene tetramerisation process. Polymer fouling of the reactor or downstream sections will reduce plant run time and necessitate shut- downs due to blockages and loss of reaction cooling due to coating of heat exchange surfaces. When running tetramerisation processes at reaction temperatures in the range of 40 to 80°C, as is taught in the art, most of the polymer co-product precipitates in the reactor, which can result in fouling of process equipment. To ensure process reliability and adequate run-times under such reaction conditions, it may be necessary to utilise expensive or energy- intensive process design features.

Running a tetramensation process at process conditions whereby the polymer co-product remains predominantly dissolved in the liquid reaction medium in the reactor (i.e. a solution phase process) would substantially reduce the possibility of reactor or downstream fouling. In addition, a further benefit of such a process might be that a cheaper or more energy-efficient process design could be used, due to the reduced likelihood of fouling process equipment.

A solution phase process couid be achieved by using higher reaction temperatures than typically taught in the art, specifically temperatures of above 80°C. However, the art teaches away from running at higher temperatures due to undesirabie effects including poor catalyst activity, increased polymer formation and increased selectivity towards 1-hexene. It is well known in the art of the invention that higher reaction temperatures shift the selectivity from 1- octene towards 1-hexene. New tetramensation catalysts have been developed that show improved performance at high temperatures, but these modifications reduce the octene:hexene ratio further. In this context, novel tetramensation catalyst structures that increase the intrinsic selectivity towards 1-octene are highly desirable.

SUMMARY OF THE INVENTION:

According to one aspect of the invention there is provided a process for the tetramensation of ethylene, the process including contacting ethylene with a catalyst under ethylene oiigomerisation conditions, said catalyst comprising: i) a source of chromium;

ii) a ligating compound of the formula

(R )mAXY

wherein A is selected from the group consisting of nitrogen, phosphorus, and oxygen;

X is a linking group between A and Y;

m is independently 1 or 2;

R 1 is a hydrogen, a hydrocarbyl group, an organoheteryl group or a heterohydrocarbyi group with each R 1 being the same or being different where m is 2; and

Y is an optionally substituted group that can be represented as

P is a phosphorous atom and bonds to X; and

L t and L 2 are linkers selected from the group comprising a covaient bond and an optionally substituted single atom bonded to both of the linked carbon or phosphorous atoms; and

iii) optionally a catalyst activator or combination of catalyst activators.

According to some embodtments of the invention, there is provided a process for the tetramerisation of ethylene, the process including contacting ethylene with a catalyst under ethylene oligomerisation conditions, said catalyst comprising:

i) a source of chromium;

ii) a ligating compound of the formula

R 1 R 2 PXY

wherein P is a phosphorous atom;

X is a linking group between P and Y;

R and R 2 are independently a hydrocarbyl group, an organoheteryi group or a hetero hydrocarbyl group; and

Y is an optionally substituted group that can be represented as

such that P is a phosphorous atom which bonds to X; and

Li and L 2 are linkers selected from the group comprising a covalent bond and an optionally substituted single atom bonded to both of the linked carbon or phosphorous atoms; and

iii) optionally a catalyst activator or combination of catalyst activators.

DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION

The invention relates to a process for the tetramerisation of ethylene, the process including contacting ethylene with a catalyst under ethylene oligomerisation conditions, said catalyst comprising a source of chromium, a ligating compound, which compound includes one phosphine that forms part of a cyclic structure, and an activator.

In the specification, the following definitions apply: A "hydrocarbyl group" as per lUPAC includes a univalent group formed by removing one hydrogen atom from a hydrocarbon;

A "heterohydrocarbyi group" as defined herein is a univalent group formed by removing one hydrogen atom from a carbon atom of a heterohydrocarbon, that is a hydrocarbon compound which includes at least one hetero atom (that is, not being H or C), and which group covalentiy bonds with one other moiety through the resultant free valency on that carbon atom; An "organoheteryi group" as per lUPAC includes univalent groups containing carbon, which are thus organic, but which have their free valence at an atom other than carbon;

A "hydrocarbylene group" as per lUPAC includes divalent groups formed by removing two hydrogen atoms from a hydrocarbon, the free valencies of which are not engaged in a double bond.

A "heterohydrocarbylene group" as defined herein is a divalent group formed by removing two hydrogen atoms from either one or two carbon atoms of an organic molecuie containing at least one heteroatom, the free valencies of which are not engaged in a double bond.

Chromium Source (i): Any source of chromium that allows the oligomerisation to proceed may be used. The source of chromium may be an inorganic salt, an organic salt, a coordination compound or an organometallic complex. In some embodiments the source of chromium is selected from the group consisting of chromium trichloride tris-tetrahydrofuran complex; (benzene)tricarbonyl chromium; chromium (HI) octanoate; chromium hexacarbonyl; chromium (III) acetyl acetonate; chromium (II!) naphthenate; chromium (ill) 2-ethyihexanoate; chromium (III) acetate, chromium (III) 2,2,6,6- tetramethylheptadionate; and chromium (III) chloride. In some embodiments it is chromium (III) acetylacetonate or chromium (III) 2-ethylhexanoate.

The chromium source may be introduced to the process as a coordination complex of the ligating compound. However, for reasons of cost and commercial operability, in some embodiments the ligating compound and chromium source are added as separate components to the process. Catalyst systems which give good catalyst performance only when an isolable chromium-iigand coordination complex is used therefore suffer a disadvantage to catalyst systems which can be prepared by mixing a chromium source and ligand in the process.

Ligating Compound (ii): Linking group X

X may be selected from the group consisting of an organic linking group such as a hydrocarbylene, heterohydrocarbylene; an inorganic linking group comprising either a single- or two-atom linker spacer; and a group comprising dimethylmethyiene, ethane-1 ,2-diyl, ethene-1 ,2-diyi, propane-1 ,2-diyl, propane-1 ,3-diyl, cyclopropane-1 ( 1-diyl, cyclopropane-1 ,2-diyl, butane-2,3~diyl, cyclobutane-1,2-diyl, cyciopentane-1 ,2-diyl, cyclohexane-1 ,2-diyl, cyclohexane- 1,1-diyl, 1 ,2-phenylene, naphthalene-1 ,8-diyi, phenanthrene-9, 10-diyl, phenanthrene-4,5-diyi, 9,10-anthracene-diyl, 1,2-catecholate, 1 ,2- diarylhydrazine-1 ,2-diyl (-N(Ar)-N(Ar)- where Ar is an ary! group), 1 ,2- dialky!hydrazine-1 ,2-diyt (-N(Alk)-N(Aik)- where Aik is an alkyl or a cycloalkyi group), 1-alkyl-2-arylhydrazine-1,2-diyl (-N(Alk)-N(Ar)- where Alk is an alkyi or a cycloalkyi group and Ar is an aryl group), -N(R')-X -N(R where R' and R" are independently alkyl, cycloalkyi or aryl groups and X 1 is a hydrocarbylene group, =C(R')-N(R")- or =C(R')-C(R")(R'")- where = denotes a double bond and R', R" and R'" are independently hydrogen, alkyi, cycloalkyi or aryl groups, - B(R 5 )-, -Si{R 5 ) 2 -, -P(R 5 )~ and -N(R S )- where R 5 is hydrogen, a hydrocarbyl group, an organohetery! group or a heterohydrocarbyl group. Preferably R s is a hydrocarbyl group or a heterohydrocarbyl group.

For the embodiment of the invention where the ligating compound is of the form (R 1 )mAXY, X may be bonded to A through either a single covalent bond or a double covalent bond, as required by the valence of the {R 1 )mA moiety. For the case where A is a nitrogen or phosphorous atom, X will be bound to A through a single covalent bond if m is equal to 2, and through a double covalent bond if m is equal to 1.

In some embodiments X consists of -N(R 6 )-, -N(R )-N(R 7 )-, -C(R 6 )(R 7 )-N(R 8 )-, =C(R 6 )-N(R 7 )-, or a hydrocarbylene, where R 6 , R 7 and R e are independently a hydrogen, a hydrocarbyl group, a heterohydrocarbyl group or an organoheteryl group. In some embodiments R 6 -R e may be an alkyl, cycloalkyi, substituted alkyl, substituted cycloalkyi, aryl, substituted aryl, aryloxy, substituted aryloxy, alkoxycarbonyl, carbonyloxy, aikoxy, aminocarbonyl, carbonylamino, dialky!amino, pyrolyl, silyl group or derivative thereof, and aryl substituted with any of these substituents. In some embodiments R 6 -R B may be an alkyl, cycloalkyi, substituted alkyl, substituted cycloalkyi, aryl, substituted aryl, dialkylamino, silyl group or derivative thereof, in some embodiments, R 6 -R 8 consist of hydrocarbyl groups, such as methyl, ethyl, propyl, allyl, isopropy!, cyclopropyl, butyl, tertiary-butyl, sec-butyl, cyclobutyl, pentyl, isopentyi, 1 ,2- dimethylpropy! (3-methyl-2-butyl), 1 ,2,2-trimethylpropyl (f?/S-3,3-dimethyl-2- butyl), 1-(1-methy[cyclopropyi)-eihyi, neopentyi, cyclopentyl, cyciohexyl, hexyi, cycloheptyi, cyc!o-octyl, decyi, cyclodecyl, 1 ,5-dimethylheptyl, 1-methylheptyl, 2-naphthytethyl, 1-naphthylmethyl, adamantylmethyl, 1-adamantyi, 2- adamantyl, 2-isopropyicyctohexyt, 2,6-dimethy!cyclohexyl, cyclododecyl, 2- methyicyciohexyi, 3-methytcyclohexyl, 4-methylcyclohexyl, 2-ethylcyclohexyi, 2-isopropylcyclohexyl, 2,6-dimethyl-cyciohexyi, exo-2-norbornanyl, (1 ,1 - bis(cyclohexyl)-4,4'-methylene), 1 ,6-hexylene, 1-naphthyl, 2-naphthyi, diphenylmethyl, 1 ,2-diphenyl-ethyi, phenyiethyl, 2-methylphenyl, 3- methylphenyi, 4-methylphenyl, 2,6-dtmethy!-phenyl, or a 1 ,2,3,4- tetrahydronaphthyl.

In a preferred embodiment X is a hydrocarbylene, -N(R 5 )-, -N(R 5 )-N(R 6 )-, =C(R 7 )-N(R 5 )- -N(R 5 )-C(R 7 )(R 8 )-, N(R 5 )-X -N(R 6 ) where R 5 and R 6 are independently a hydrocarbyl group, an organoheteryi group or a heterohydrocarbyl group, R 7 and R 8 are independently a hydrogen, a hydrocarbyl group, an organoheteryi group or a heterohydrocarbyi group, and X 1 is a hydrocarbylene group.

X, in some embodiments, is -N(R 9 )-, where R 9 is a hydrocarbyl group, a heterohydrocarbyi group or an organoheteryi group, in some embodiments R 9 is a hydrocarbyl group or a heterohydrocarbyi group. In some embodiments R 9 is an alky!, cycloalkyl or aryl group, in some preferred embodiments R 9 is an aikyl or cycloalkyl group. In some embodiments R 9 is an alkyl group of the form -CH 2 R 10 , where R 0 is hydrogen or an alkyl group or a cycioaikyl group. In some embodiments R 9 is methyl or a linear alkyl group.

Nature of the group (R 1 )mA, for the embodiment of the invention where the ligating compound is of the form (Ρ?)ηΑΧΥ For the embodiment of the invention where the !igating compound is of the form (R )mAXY, A is selected from the group consisting of nitrogen, phosphorus, and oxygen, in some embodiments, A is selected from the group consisting of nitrogen and phosphorous, in some embodiments, A is selected from the group consisting of nitrogen and phosphorous and is bonded to X through a single covalent bond, in which case m is equal to 2. in another embodiment, A is a nitrogen atom and is bonded to X through a double covalent bond, in which case m is equai to 1.

For the embodiment of the invention where the ligating compound is of the form (R 1 )mAX, R 1 is a hydrogen, a hydrocarby! group, an organoheteryl group or a heterohydrocarbyi group with each R being the same or being different where m is equal to 2. In some embodiments, R 1 is a hydrocarbyl, an organoheteryl group or a heterohydrocarbyi group. In some embodiments, R is a hydrocarbyl or heterohydrocarbyi group, in some embodiments, R 1 is an aromatic, including a heteroaromatic, group directly bonded to A. In some embodiments, R 1 is an optionally substituted phenyl group. In some embodiments, R 1 is selected from a group consisting of phenyl, 2-methyiphenyl, 2-fiuorophenyl, 2- methoxypheny!, 2-trifluoromethoxyphenyl, and 1-benzofuran-7-yl.

Nature of the groups R 1 and R 2 , for the embodiment of the invention where the ligating compound is of the form R 1 R Z PXY

R and R 2 are independently a hydrocarbyl, an organoheteryl group or a heterohydrocarbyi group, in some embodiments, R 1 and R 2 are independentfy hydrocarbyl or heterohydrocarbyi groups. In some embodiments, both R 1 and R 2 are aromatic, including heteroaromatic, groups directly bonded to P. In some embodiments, both R 1 and R 2 are optionally substituted phenyl groups. In some embodiments, R 1 and R 2 may independently be selected from a group consisting of phenyl, 2-methylphenyl, 2-fluorophenyi, 2-methoxyphenyl, 2- trifluoromethoxyphenyl, and 1-benzofuran-7-yl.

Nature of the group Y Y is an optionally substituted group that can be represented as

such that P is a phosphorous atom and bonds to X; and

U and L 2 are linkers selected from the group comprising a covalent bond and an optionally substituted single atom bonded to both of the linked carbon or phosphorous atoms.

In some embodiments, L, and L 2 may be selected from the group comprising a covalent bond, a heteroatom, a substituted heteroatom, -C(=0)-, -CR 3 R 4 ~, where R 3 and R 4 are independently a hydrogen, a hydrocarby! group, a heterohydrocarbyl group or an organoheteryl group.

In some embodiments, U and L 2 can be selected from the group comprising a covalent bond, -0-, -S-, -NR r , -P(=0)R 3 - , P<=Se)R 3 - P{=S)R 3 -, -SiR 3 R\ - CR 3 R 4 -, -C(=0}- where R 3 and R 4 are independently a hydrogen, a hydrocarby! group, a heterohydrocarbyl group or an organoheteryl group. in some embodiments, and L 2 can be selected from the group comprising a covalent bond, -0-, -S-, -NR 3 -, -SiR R 4 -, -CR 3 R 4 -, -C(=0)- where R 3 and R 4 are independently a hydrogen, a hydrocarby! group, a heterohydrocarbyl group or an organoheteryl group. In some embodiments, L- t and L 2 can be selected from the group comprising a covalent bond, -0-, -S-, -NR 3 -, where R 3 is a hydrogen, a hydrocarbyl group, a heterohydrocarbyl group or an organoheteryl group.

!n some embodiments, Li and L 2 are either a covalent bond or -0-. In some embodiments, at least one of Li and L 2 is a covalent bond.

In some embodiments, either U arid L 2 are covalent bonds; or U is -O- and L 2 is a covalent bond; or L, is a covalent bond and L 2 is -0-.

In some embodiments, both of U and L 2 are covalent bonds. In this case, Y (which is formally named dibenzophosphoi-5-yi or 5H-benzo[b]phosphoindole) has the following structure:

In some embodiments, L f is -O- and L 2 is a covalent bond. In this case, Y (which is formally named 9-oxa-10-phosphaphenanthren-10-yl or 6H- dibenzo[c.ej[1 ,2]oxaphosphirine) has the following structure:

In some embodiments, U is a covalent bond and L 2 is -0-, In this case, Y (which is formally named phenoxaphosphin-10-yi or 10H-phenoxaphosphine) has the following structure:

Y may optionally be substituted at one or more of the aromatic ring positions with groups other than hydrogen. In some embodiments, the substituents may be hydrocarbyl groups, heterohydrocarby! or organoheteryl groups or halogen atom substituents. In some embodiments, Y is not substituted, with all ring positions other than those bonded to P, and L 2 being bonded to hydrogen atoms. Other considerations

For the embodiment of the invention where the ligating compound is of the form R 1 R 2 PXY, R 1 and R 2 may independently be linked to each other, or to X, to form a cyclic structure.

For the embodiment of the invention where the ligating compound is of the form R 1 R 2 PXY, the ligating compound may also include multiple R 1 R 2 P 1 XY units. Non-limiting examples of such ligands include dendrimeric ligands as well as ligands where the individual units are coupled, for example via the linking group X.

It will be appreciated that a diphosphinoimine compound of the form R R 2 p 1 - P (=NR 9 )R 3 R 4 ('Ρ-Ρ=Ν') is a rearranged isomer of the diphosphinoamine compound R R 2 P N(R 9 )P 2 R 3 R 4 ('Ρ-Ν-Ρ') as shown by Dyson et al in Inorganica Chimica Acta 359 (2006) 2635-2643. Similarly, it may be possible that a ligating compound of the form R 1 R 2 PXY, where Y is defined as in the current invention and where X is -N(R 9 )-, exists in its isomeric 'Ρ-Ρ=Ν' form. Regardless of the structural formulation of the ligating compound in its pure and isolated form, its use will fall under the present invention if it exists in the 'P-N-P' form when used in a tetramerisation process.

In some embodiments the ligating compound may be one of:

(Dibenzophosphol-5-yf N(n-butyl)P(phenyi) 2 ; (Dibenzophosphol-5-yl N(n-butyl)P(2~methyiphenyl) 2 ; (Dibenzophosphol-5-yl N (i-propyl) P(phenyl) 2 ; (Dibenzophosphol-5-yl N(i-propyl)P(2-methylphenyi) 2 ; (Dibenzophosphol-5-yl N(i-propyl)P(2-methylpheny!){phenyi); (Dibenzophosphol-5-yl N(i-propyl)P(2-ethyiphenyl)(phenyl); (Dibenzophosphol-5-yl N(n-butyl) P( 1 -benzof uran-7-yl)(phenyl) ; (Dibenzophosphoi-5-yl N{n-butyl)P(1-benzofuran-7-yl) 2 ; (Dibenzophosphol-5-yl N(n-butyl)P(2-methoxyphenyi) 2 ; (Dibenzophosphol-5-yi N(n-butyl)P(2-methoxypheny!)(phenyl); (Dibenzophosphol-5-yi N(n-butyl)P(2-fluorophenyi) 2 ; (Dibenzophosphol-5-y! N(n-butyl)P(2-fluorophenyl)(phenyl); (Dibenzophosphol-5-yl N{i-propyl)P(2-fluorophenyl) 2 ; (Dibenzophosphol-5-yi N(i-propyt)P(2-fluorophenyl)(phenyl); (Dibenzophosphoi-5-y! N{Me)N(Me)P(phenyl) 2 ; (Dibenzophosphol-5-yl N(Me)N(Me)P(2-methylpheny!) 2 ;

(Dibenzophospho!-5-y! N{i-propyi)P(2-trifluoromethoxyphenyl) 2 ;

(Dibenzophosphol-5-yl N (i-propyl) P(2-trifl uoromethoxyphenyl)(phenyi) ; (Dibenzophosphol-5-yi N(Me)N{n-buty!)P(phenyi) 2 ;

(Dibenzophosphol-5-y N(n-butyl)N( e)P(phenyl) 2 ;

(Dibenzophosphol-5-yl -1 ,2-phenylene~P(pheny!) 2 ;

(Dibenzophosphol-5-yl -1,2-phenylene-P(2-fluoropheny!)(phenyl); (Dibenzophosphol-5-yl -1,2-phenylene-P(2-fluorophenyl) 2 ;

(Dibenzop osphol-5-yl -1,2-phenylene-P(2-methylphenyl) 2 ;

(Dibenzophosphol-5-yl CH 2 N(naphthy!)P(phenyf) 2 ;

(Dibenzophosphoi-5-yi N(naphthyt)CH 2 P(phenyf} 2 ;

(Dibenzophosphol-5-yS CH 2 N(naphthy[)P(2-fluorophenyl) 2 ;

(Dibenzophosphol-5-y! N(naphthyl)CH 2 P(2-methylphenyl) 2 ;

(Oibenzophosphol-5-yl N( e)CH 2 CH 2 CH 2 CH 2 N{Me)P(phenyi) 2 ;

(Dibenzophosphoi-5-yl N{Me)CH 2 CH 2 CH 2 CH 2 N( e)P(2-fluorophenyl) 2 ; (Dibenzophosphoi-5-yl N(H)C(benzy1)=N(2 t 6-dimethylphenyi);

(Dibenzophosphol-5-yi N(H)C(pheny!)~N(2,6-dimethylphenyi);

(Dibenzophosphol-5-yl N (H)C(i-propy I) = N (2 , 6-d imethylp heny I) ;

(Dibenzophosphol-5-yl N(methyl)C(benzyl)=N{2,6-dimethylpheny!); (Dibenzophosphol-5-yl N(H)C(benzyt)=N(phenyi);

(Dibenzophosphol-5-yl N(H)C{4-methyibenzyl)=N(2,6-dimethylphenyl); (Dibenzophosphol-5-yl)N(H)C(4-methyibenzyi)=N(phenyl);

(Phenoxaphosphin-10-yl)N(n-butyi)P(phenyl) 2 ;

(Phenoxaphosphin-10-yi)N(n-butyl)P(2-methylphenyl) 2 ;

(Phenoxaphosphin- 10-yl)N(i-propyi)P(p enyl) 2 ;

(Phenoxaphosphin-10-yl)N{i-propyi)P(2-methylphenyl) 2 ;

(Phenoxaphosphin-10-yl)N(i-propyl)P{2-methylphenyl)(phenyi);

(Phenoxaphosphin-10-yl)N(i-propyl)P(2-ethylphenyl)(phenyi );

(Phenoxaphosphin-10-yl)N(n-butyi)P(1-benzofuran-7-y!)(phe nyi);

(Phenoxaphosphin-10-yl)N(n-butyl)P(1-benzofuran-7-y!) 2 ;

(Phenoxaphosphin-10-yl)N(n-butyl)P(2-methoxyphenyl) 2 ;

(Phenoxaphosphin-10-yl)N(n-butyl)P(2-methoxyphenyl)(phenyl);

(Phenoxaphosphin-10-yl)N(n-buty!)P(2-fluorophenyl) 2 ;

(Phenoxaphosphin-10-yl)N(n-butyl)P(2-fluorophenyl)(phenyt);

(Phenoxaphosphin-10-y!)N(i-propyl)P(2-fluorophenyl) 2 ;

(Phenoxaphosphin-10-yl)N(i-propyl)P(2-fluorophenyl)(pheny i);

(Phenoxaphosphin-10-yl)N(Me)N(Me)P(phenyi) 2 ;

(Phenoxaphosphin-10-yi)N(Me)N(Me)P(2-methytphenyl) 2 ;

(Phenoxaphosphin-10-yl)N(Me)N(n-butyl)P(phenyi) 2 ;

(Phenoxaphosphin-10-yl)N(n-butyl)N(Me)P(phenyl) 2 ;

(Phenoxaphosphin-10-yl)-1 ,2-phenytene-P(phenyl) 2 ;

(Phenoxaphosphin-10-yl)-1 ,2-phenylene-P(2-fluorophenyl)(phenyl); (Phenoxaphosphin-10-y!)-1 ,2-phenylene-P(2-fluorophenyl) 2 ;

(Phenoxaphosphin-10-yl)-1 ,2-phenylene-P(2-methylphenyi) 2 ;

(Phenoxaphosphin-10-yl)CH 2 N(nap thyi)P(phenyl) 2 ;

(Phenoxaphosphin-10-yi)N(naphthyi)CH 2 P(phenyl) 2 ;

(Phenoxaphosphin-10-yl)CH 2 N(naphihyl)P(2-fluorophenyl) 2 ;

(Phenoxaphosphin-10-yl)N(naphthy!)CH 2 P(2-methyipheny!) 2 ;

(Phenoxaphosphin-10-y!)N(Me)CH 2 CH 2 CH 2 CH 2 N(Me)P(phenyl) 2 ;

(Phenoxaphosp in-10-yl)N(Me)CH 2 CH 2 CH 2 CH 2 N(Me)P(2-fluorophenyi) 2 ;

(9-oxa-10-phospha-phenanthren-10-yl)N(n-butyl)P(phenyl) 2 ;

(9-oxa-10-phospha-phenanthren-10-yl)N(n-butyl)P(2-methylp heny!) 2 ;

(9-oxa-10-phospha-phenanthren-10-yi)N(i-propyi)P{pheny[) 2 ;

{9-oxa-10-phospha-phenantbren-10-yt)N(i-propyl)P(2-methylphe nyl) 2 ;

(9-oxa-10-phospha-phenanthren-10-yl)N(i-propyl)P(2-methylphe nyi){phenyi);

(9-oxa-10-phospha-phenanthren-10-yl)N(i-propyl)P(2-ethyfp henyl)(phenyl); (9-oxa-10-phospha-phenanthren-10-yl)N(n-buty!)P(1-benzofuran -7-yl)(phenyl);

(9-oxa-10-phospha-phenanthren-10-y!)N{n-butyl)P(1-benzofu ran-7-yl) 2 ;

(9-oxa-10-phospha-phenarithren-10-yl)N{n-butyl)P(2-methoxyph eny!) 2 ;

(9-oxa-10-phospha-phenanthren-10-yl)N(n-butyl)P(2-methoxyphe nyl)(phenyl);

(9-0x3-10-phospha-phenanthren-10-yl)N(n-butyl)P(2-fluorop henyl) 2 ;

(9-oxa-10-phospha-phenanthren-10-yl)N(n-butyl)P(2-fluorop henyl)(phenyl);

(9-oxa-10-phospha-phenanihren-10-yl)N(i-propyl)P(2-f!uoro phenyl) 2 ; (9-oxa-10-phospha-phenanthren-10-yl)N(i-propyl)P(2-fluorophe nyl)(phenyl);

(9-0X3-10-phospha-phenanthren-10-y1)N( e)N(Me)P(phenyi) 2 ;

(9-oxa-10-phospha-phenanthren-10-yl)N(Me)N(Me)P(2-methylp henyl) 2 ;

(9-oxa- 10-phos pha-phenanthren- 10-y l)N (M e) N (n-buty I) P (pheny l) 2 ;

(9-oxa-10-phospha-phenanthren-10-yl)N(n-butyl)N( e)P(phenyl) 2 ;

(9-oxa-10-phospha-phenanthren-10-yl)-1,2-pheny]ene-P(phen yl) 2 ;

(9-oxa-10-phospha~phenanthren-10-yl)-1,2-phenylene-P(2- fluorophenyI)(phenyl);

(9-oxa-10-phospha-phenanthren-10-yl)-1,2-phenylene-P(2-fl uorophenyl) 2 ;

(9-oxa-10-phospha-phenanthren-10-y!)-1 2-pheny[ene-P(2-meihytphenyl) 2 ;

(9-oxa-10-p ospha-phenanthren-10-yi)CH 2 N(naphthyl)P(phenyl) 2 ;

(9-oxa-10-phospha-phenanthren-10-y!)N(naphthyl)CH 2 P(phenyi) 2 ;

(9-oxa-10-phospha-phenanthren-10-yi)CH 2 N(naphthyl)P(2-fluorophenyl) 2 ;

(9-oxa- 10-phospha-phenanthren-10-yi)N (naphthyl) CH 2 P (2-methyl pheny l) 2 ;

(9-oxa-10-phospha-phenanthren-10-yi)N(Me)CH 2 CH 2 CH 2 CH 2 N( e)P(phenyl) : and

(9-oxa-10-phospha-phenanthren-10-yl)N(Me)CH z CH 2 CH 2 CH 2 N( e)P(2- fluorophenyl) 2 .

Activator/ Additives (iii): The above process may include an activator to activate the catalyst. Such an activator is a compound that generates an active catalyst when the activator is combined with the catalyst. These activators may be the same or similar to those found to be useful for activating transition-metal-based olefin polymerisation catalysts, a review of which is provided by Marks [Chem Rev. 2000, 100, 1391-1394]. Mixtures of activators may also be used.

Suitable compounds include organoaiumtnum compounds, organoboron compounds and inorganic acids and salts, such as tetrafluoroboric acid etherate, silver tetrafluoroborate, sodium hexafluoroantimonate and the like. Suitable organoaluminum compounds include compounds of the formula AIR 3s where each R is independently Ci-C 12 alkyl, oxygen or halide, and compounds such as LiAIH 4 and the like. Examples include trimethyla!uminum (T A), trtethylaluminum (TEA), tri-isobutylaluminium (TiBA), tri-n-octy!aluminium, methylaluminium dichloride, ethy!aluminium dichloride, dimethylaluminium chloride, diethylaluminium chloride, ethylaluminiumsesquichloride, methy!aluminiumsesquichloride, and aluminoxanes. Aluminoxanes are well known in the art as typically oligomeric compounds which can be prepared by the controlled addition of water to an alkyla!uminium compound, for example trimethy!aluminium. Such compounds can be linear, cyclic, cages or mixtures thereof. Commercially available aluminoxanes are generally believed to be mixtures of linear and cyclic compounds. The cyclic aluminoxanes can be represented by the formula [R AIOj s and the linear aluminoxanes by the formula R 2 (R 13 AIO) s wherein s is a number from about 2 to 50, and wherein R 1 \ R Z , and R 3 represent hydrocarbyi groups, typically Ci to C e alkyi groups, for example methyl, ethyl or butyl groups. AlkySaluminoxanes especially methylaluminoxane (MAO) are particularly suitable. (MAO is also referred to as methalumoxane and methy!alumoxane in the literature). It will be recognized by those skilled in the art that commercially available alkylaluminoxanes may contain a proportion of trialkylalumtnium. For instance, commercial MAO usually contains approximately 10 wt % trimethylaluminium (TMA), and commercial "modified MAO" (or "M AO") contains both TMA and T!BA. Quantities of aikylaluminoxane are generally quoted herein on a molar basis of aluminium (and include such "free" trialkylaiuminium). The aikylaluminoxane and/or alkyialuminium may be added to the reaction media (i.e. ethylene and/or diluent and/or solvent) prior to the addition of the catalyst or at the same time as the catalyst is added. Such techniques are known in the art of oligomerization and are disclosed in more detail in for example, U.S. Pats. Nos. 5,491,272; 5,750,817; 5,856,257; 5,910,619; and 5,919,996 as well as WO 2008/146215 and WO 2007/007272.

In the preparation of the catalyst systems used in the present invention, the optimal quantity of activating compound to be employed is easily determined by simple testing, for example, by the preparation of small test samples which can be used to oligomertze small quantities of ethylene and thus to determine the activity of the produced catalyst. It is generally found for alkyialuminium and aluminoxane based activators or co-activators that a suitable quantity employed is 0.5 to 2000 moles of aluminium per mole of chromium.

Examples of suitable organoboron activator compounds are boroxines, NaBH 4 , trimethylboron, triethylboron, triphenylboron, dimethylphenylammoniumtetra(phenyi)borate, trityltetra(phenyl)borate, dimethylphenylammonium tetrakis(pentafluorophenyl)borate, trityl tetrakis(pentaf!uorophenyl)borate, tris(pentafluoropheny!) boron, sodium tetrakis[(bis-3,5-trifluoromethyi)phenyl]borate, dimethylphenylammonium tetrakis[(bis-3,5-trifluoromethyl)phenyl3borate, and trityl tetrakis[(bis-3,5- trifluoromethyi)phenyl]borate. Those skilled in the art will recognise that boron-containing activators are commonly used in combination with aluminium alkyl activators.

In some embodiments organoboron activators, as described in WO 2010/092554, include a cation and a non-coordinating anion of the general formula

wherein:

L* is an atom selected from the group consisting of N, S and

P;

the cation [(R)* L* - ] * is a Bronsted acid;

x is an integer 1 , 2 or 3;

each R is the same or different and each is a -H, hydrocarbyl group or a heterohydrocarbyl group;

provided that at least one of R comprises at least 6 carbon atoms and provided further that the total number of carbon atoms in (R) x collectively is greater than 12;

R 14 independently at each occurrence is selected from the group consisting of hydride, dialkylamido, ha!ide, afkoxide, aryloxide, hydrocarbyl, halosubstituted-hydrocarbyl radicals, halosubstituted-alkoxtde, halosubstituted-aryioxide and a haiosubstituted aromatic moiety with at least one halide substituent on the aromatic moiety.

Illustrative, but non-limiting examples of these organoboron activators include methyldi(octadecyl)ammonium tetrakis(pentafluorophenyl) borate and trioctyiammonium tetrakis(pentafluorophenyl) borate. The source of chromium and the organoboron activator may be combined in proportions to provide organoboron compound /chromium molar ratios from about 0.1 to 50 organoboron to 1 chromium, or from about 0.8 to 20 organoboron to 1 chromium, or from 1 to 10 organoboron to 1 chromium.

In some embodiments activators, as described in WO 2007/039851, include a cation and an anion component, and may be represented by the following formula:

(L~H) d+ (A d' ) where L is a neutral Lewis base; H is hydrogen; (L-H) d+ is a Bronsted acid; A d" is a non-coordinating anion having the charge d " ; and d is an integer from 1 to 3.

In these activator compounds, A d" can be a fluorinated aluminate group. Il!ustative but non-limiting examples of the anion component A d* are [AI{OC(CF 3 ) 3 } 4 ]-; [AI(OC e F s ) 4 r; [AI(C 6 F 4 0 2 ) 2 ]-; fAIF{OC(CF 3 ) 3 } 3 ]-;

[AI 2 F{OC(CF 3 ) 3 } 6 r; and [Ta(OC 6 F s ) 6 r.

The activator compound may optiona!iy be a solid material, or be supported on an insoluble solid material. For example, aluminoxanes such as MAO and borate activators may be supported on inorganic oxides such as alumina, silica, MgCI 2 or the like.

The process may further include the use of compounds that may act as a reducing or oxidising agent, such as sodium or zinc metal and the like, or an oxygen-containing compound, for example oxygen and the like. Additionally, hydrogen (H 2 ) and/or silanes and the like may be used in the catalytic cornposition or otherwise added to the process. The process may also include the use of a zinc species as an additive, as described in WO 2011/048527, which is herein incorporated by reference. Preferred zinc species would be dialkyl zinc reagents such as dimethylzinc or diethylzinc.

Catalyst preparation:

The chromium (i) and iigand (ii) may be present in any molar ratio which produces oligomer, and in some embodiments is between 100:1 and 1:100, or from 10:1 to 1:10, or from 3:1 to 1 :3. Generaliy the amounts of (i) and (ii) are approximately equal, i.e. a ratio of between 1.5:1 and 1:1.5.

The Iigand, chromium and activators of the catalyst system utilized in the present invention may be added together simultaneously or sequentially, in any order, and in the presence or absence of ethylene in any suitable solvent at any suitable concentration, so as to give an active catalyst. For example, the iigand, chromium, activators and ethylene may be contacted together simultaneously; or the Iigand, chromium and activators may be added together simultaneously or sequentially in any order and then contacted with ethylene; or chromium and the Iigand may be added together to form an isolable metal- ligand complex and then added to the activator and contacted with ethylene; or the Iigand, chromium and activators/co-activators may be added together to form an isolable metal-ligand complex and then contacted with ethylene. Any or all of the chromium source, ligating compound and activator components utilized in the present invention can be unsupported or supported on a support material, for example silica, alumina, MgCi 2 or zirconia, or on a polymer, for example polyethylene, polypropylene, polystyrene or poiy(aminostyrene). Diluent:

The process of the present invention may be carried out in the presence or absence of an added diluent, in some embodiments of the invention the diluents include oligomerisation products e.g. 1-octene and/ or 1-hexene, aliphatic and aromatic hydrocarbon solvents and halogenated-aromatic solvents such as chlorobenzene, dichlorobenzene, fluorobenzene and the like. In some embodiments the diluents are aliphatic hydrocarbon solvents including but not limited to Isopar™, iso-octane, cyclohexane, cyclopentane, methylcyclohexane, propane, isobutane, isopentane, neopentane, 2- methyipentane, or 3-methylpentane.

Alternatively the process can be conducted as a bulk process in which essentially neat reactant and/or product olefins serve as the dominant medium.

Process conditions:

The oligomerisation reaction may take place at any suitable temperature to allow oligomerisation to proceed. Suitable temperatures may be from 0°C to 200°C. Preferred temperatures are dependent on the process conditions utilized.

In one embodiment, the oligomerisation is conducted under slurry phase conditions, which is herein taken to mean that a substantia! portion of any polymer co-product is present in the solid phase, and not predominantly dissolved in the liquid reaction medium under the chosen reaction conditions. Suitable temperatures to achieve this range from 0°C to about 80°C. Such process conditions may be chosen for optimal catalyst activity and selectivity. in another embodiment, the oiigomerisation is conducted under solution phase conditions, which is herein taken to mean that any polymer co-product remains substantially dissolved in the liquid reaction medium under the chosen reaction conditions. Suitable temperatures to achieve this range from above 80°C to about 130°C. in some embodiments the temperature range is between 85°C and 130°C, whilst in other embodiments the temperature range is between 90°C and 110°C. Such process conditions may be chosen to reduce fouling of the reactor or other process equipment. Suitable reaction pressures are from atmospheric to 800 atmospheres (bar), or from 5 atmospheres to 100 atmospheres, or from 40 to 100 atmospheres, or from 60 to 100 atmospheres.

There exist a number of options for the tetramerisatton reactor including batch, semi-batch, and continuous operation. In some embodiments the process is a continuous process, in which case reactors utilizing both CSTR and plug flow behavior may be considered. There are different potential configurations as a subset of these two types of reactors. For example, CSTR type reactors include bubble columns, stirred tanks, loop reactors with single or two phases while plug flow reactors include fixed bed and homogeneous tubular types of varying residence times. As a further subset, reactors can be configured with different cooling options such as internal or external heat exchangers, interstage coolers, and cold feed heat removal amongst others. All configurations can be run in continuous or batch mode, and there is opportunity to configure the same reactor several times in series or use combinations of different reactor types and cooling techniques together to achieve the desired result.

For systems where tetramerisation takes place in the liquid phase, different mass transfer opportunities exist including jet loop mixing, bubble column sparging, tubular reactor multiple injections and pre-saturation of the feed material amongst others.

The reactor type selected may depend on factors such as heat removal, mechanical robustness with regard to fouling, residence time distributions, product composition effects as a result of secondary reactions and mechanical equipment cost implications. In a slurry phase process where polymer precipitates out of the reaction medium, the selection criteria of heat removal and mechanical robustness with regard to fouling may be expected to dominate and many reactor configurations may therefore be excluded. In a solution phase process, a wider range of reactor configurations may be considered and implemented to optimize factors such as residence time distributions, product composition effects as a result of secondary reactions and mechanical equipment cost implications. In particular, the use of reactors wherein reaction cooling is effected by means of heat exchangers in contact with the reaction medium may be practical in a solution phase process, whereas the susceptibility of such heat exchangers to fouling may rule out such options for a slurry-phase process.

EXA PLES:

The following abbreviations are used in the examples:

PCI chlorophosphine, i.e. R R PCI, where R 1 and R 2 are

hydrocarby! groups or heterohydrocarbyl groups

n-butyl normal butyl

n-hexyi normal hexyl

i-propyl iso-propyl

Et ethyl

NEt 3 Triethylamine

RT room temperature (in the order of 20 to 25 e C)

iPrMgBr.LiCI iso-propyl magnesium bromide lithium chloride

Ph phenyl

PNH phosphinoamine, e.g. Ar a PN(R)H, where Ar is an aryl, and R is a hydrocarbyl group

PNP bis phosphinoamine, e.g. Ar 2 PN(R)PAr 2 , where Ar is an aryl, and R is a hydrocarbyl group

Et 2 0 diethyl ether

DCM dichloromethane

THF tetrahydrofuran

DMF dimethylformamide

TMP 2,2,4-trimethylpentane

MMAO An a!uminoxane product General Experimental Conditions for Ligand Synthesis

All reactions were carried out under an argon atmosphere using a dual vacuum/nitrogen line and standard Schtenk techniques. Solvents were purified via an M-Braun solvent purification system. All reagents purchased from commercial suppliers were used without further purification. NMR spectra were recorded on a Varian 400 MHz spectrometer using CDCi 3 . PNP compounds below were prepared by modification of the procedure described in Synthesis, 2007, 24, 3863.

Preparation of 5-chlorodibenzophosphole

To a cooled (0 °C) solution of 2,2 -dibromobipheny! (4 g, 12.8 rnmol) in Et 2 0 {40 ml), n-butyl lithium (11.3 ml, 28.2 rnmol, 2.5 M solution in Et 2 0) was added drop-wise. After complete addition the cooling bath was removed and the yellow solution was stirred at room temperature for 1 h. The solution was then frozen with liquid nitrogen (-196 °C). Subsequently, PCI 3 (6.7 ml, 76.9 rnmol) was added and the reaction mixture allowed to warm to -110 °C. When the reaction mixture began to thaw, it was quickiy homogenized with swilling. The homogenous solution was allowed to warm to room temperature with stirring and a white precipitate formed. The reaction mixture was evaporated to dryness, and the residue re-dissotved in Et 2 0 and filtered through a ceiite bed to give the product. 31 P NMR (CDC) 3 ): δ 68.341 (br. s). Preparation of (2-methoxyphenyl)?phosphine chloride

1-Bromo-2-methoxybenzene (1.3 ml, 10.7 mmol) was added to a mixture of magnesium turnings (0.3 g, 12.8 mmol) in anhydrous THF (20 ml). A vigorous reaction ensued. Stirring was continued at room temperature until all the magnesium had dissolved. Once the reaction exotherm had dissipated, the reaction mixture was used for the next step.

The Grignard reagent (separated from excess Mg) was incrementally added to a solution of PCI 3 (0.4 ml, 5.3 mmol) in anhydrous THF (30 ml) at -78 °C. After addition was complete, the suspension was stirred at room temperature for a further 15 min after which the reaction was complete as judged by 31 P N R. The product was used in the next step without isolation. 31 P NMR (CDCI 3 ): 5 69.89 and 63.06 (2x s, corresponding to P-CI and P-Br).

Preparation of (2-fluorophenyl)?phosphine chloride

To a cooled (0 °C) solution of 1-bromo-2-fluorobenzene (2.5 ml, 22.9 mmol) in THF (20 ml), iPrMgBr.UCl (21 ml, 27.5 mmol, 1.3 solution THF) was added dropwise. After complete addition the cooling bath was removed and the grey solution was stirred at room temperature for 1 h. The solution was subsequently added dropwise to a chilled solution of PCI 3 (1 ml, 11.5 mmol) in THF (-78 °C) and the reaction allowed to stir for a period of 10 min. The homogenous solution was then allowed to warm to room temperature. The reaction mixture was evaporated to dryness, and the residue was re-dissolved in Et 2 0 and filtered through a celite bed to give the product, which was used in the next step without isolation. 31 P N R (CDCI 3 ): δ 60.29 (t. 1P, J = 65.97Hz).

Preparation of (2-methylphenyl)gphosphine chloride

1-Bromotoluene (1.3 mL, 10.7 mmol) was added to a mixture of magnesium turnings (0.3 g, 12.8 mmol) in anhydrous THF (20 ml). A vigorous reaction ensued. Once the reaction exotherm had dissipated, the reaction mixture was used for the next step.

The Grignard reagent (separated from excess Mg) was incrementally added to a solution of PCI 3 (0.4 mL, 5.3 mmol) in anhydrous THF (30 ml) at -78 °C. After addition was complete, the suspension was stirred at room temperature for a further 15 min after which the reaction was complete as judged by 31 P NMR. The product was used in the next step without isolation. 31 P NMR (CDCi 3 ): δ 73.1 (s)

Preparation of 7-bromobenzofuran

7-bromobenzofuran was prepared as described in Heterocycl. Commun., Vol. 16(4-6), pp. 249-252, 2010 by Klenk. J. et. al.

Preparation of 1-benzofuran-7-vi magnesium bromide

To magnesium turnings (450 mg, 18.8 mmol) in THF (5 mL) was added 1 iodine crystal and a few drops of 7-bromobenzofuran. A vigorous reaction ensued. The remaining 7-bromo-benzofuran (3.6 g, 18.4 mmoi) in THF (10 ml) was added dropwise. The reaction mixture was left to reflux by itself. Once the reaction exotherm had dissipated, the reaction mixture was heated under reflux for about 15 minutes to yield the required Grignard reagent.

Preparation of (1-benzofuran-7-yl)(phenyl)phosphine chloride

The Grignard reagent benzofuryl magnesium bromide (prepared as described above) (10.8 mmoi) was slowly added to a pre-cooled solution of PhPCI 2 (1.5 ml, 10.8 mmol) in anhydrous THF (20 mi) at RT. After addition was complete, the suspension was stirred at room temperature for a further 1 h after which the reaction was complete as judged by 31 P NMR. The product was used in the next step without isolation. 31 P NMR δ 79.4 (s), 67.0 (s).

Preparation of 10-chioro-9-oxa-10-phospha-phenanthrene

A mixture of PCI 3 (20 mL, 31.5 g, 0.23 moi) and 2-phenylpheno! (31.2 g, 0.18 mo!) was heated gradually to 150 °C over a period of 5 hour with continuous stirring. A slow sweep of nitrogen was maintained to facilitate the ready removal of evolved hydrogen chloride. The reaction mixture was cooled to 25 °C, followed by the addition of 0.20 g of anhydrous ZnCI 2 . The temperature of the reaction mixture was increased to 160 °C over a period of 3 hours and then cooled to 25 °C. The reaction mixture was extracted 3 times with 250 mL of diethyl ether and the solvent removed in vacuo to yield the pure product. 31 P NMR; δ (CDCi 3 ): 133.41 (s).

Preparation of 10-chlorophenoxaphosphine

To a solution of diphenyl ether (3 g, 17.6 mmoi) in THF (30 mL) was added a solution of rt-BuLi (15.5 mL, 38.7 mmol, 2.5 M in hexane) at -40 °C. The reaction mixture was allowed to warm to room temperature and stirred for 24 h. The reaction mixture was cooied to -78 °C and Et 2 NPCt 2 , (4.3 mL, 21.1 mmol) in THF (10 ml) slowly added. The reaction mixture was allowed to warm to room temperature and was stirred for another 3 h. The solvents were removed in vacuo and the yellow oil was dissolved in 50 mL of diethyl ether. Dry HCI in diethyl ether was added to the solution at room temperature and the reaction stirred under nitrogen flow for a further 15 min. The ammonium salt was removed by filtration on a celite pad. The solvent was removed in vacuo to leave the product as a yellow oil. 31 P NMR; δ (CDCI 3 ): 33.86 (s).

Preparation of (dibenzophosphol-5-vON(i-propyl)P(2-methylpr)envi)g

PNH formation: iso-Propylamine (0.52 mL, 6.0 mmol) and Et 3 N (0.83 mL, 6.0 mmol) were added to the crude 5-chlorodibenzophospho!e (1.1 g, 5.0 mmol) [prepared as described above] in diethyl ether (30 mi). The reaction mixture was stirred at room temperature until complete formation of the PNH intermediate as judged by 31 P NMR analysis. The volatiles were removed in vacuo. Ether (50 ml) was added and the resultant mixture filtered to give the ether solution of the desired PNH product in reasonable purity [(by 3 P NMR analysis]. The solvent was removed in vacuo to give the PNH compound, (dibenzophosphol-5-yl)N(i-propyl)H. 31 P NMR (CDCI 3 ): 5 33.39 (s). PNP formation: The PNH (dibenzophosphol-5-yi)N(i-propyl)H (0.58 g, 2.4 mmo!) was re-dissolved in DCM (10 mi). Et 3 N (0.68 ml, 4.9 mmol) was added, followed by incremental addition of (2-methylphenyl) 2 phosphinechloride (0.72 g, 2.9 mmol) [prepared as described above] at room temperature. After complete conversion of the PNH (judged b 31 P NMR analysis) to the PNP, the solvent was removed in vacuo from the post reaction mixture. Ether (100 ml) was added and the resultant mixture was filtered through a short activated alumina column. Filtration was repeated until a pure compound was obtained. The solvent was evaporated to give the desired PNP product. 31 P NMR (CDCI 3 ): δ 47.18 (s, br), 22.84 (s, br).

Preparation of (dibenzophos hol-5-yl)N(i-butyl)P(2-methylphenyl)p

PNH formation: (dibenzophospho!-5-yl)N(i-butyl)H was prepared as described above for (dibenzophosphol-5-yl)N(i-propyl)H except that iso-buty!amine was used instead of iso-propy!amine. 31 P NMR (CDCI 3 ): 37.21 (s).

PNP formation: The PNP compound was prepared from the reaction of (dibenzophosphol-5~yi)N(i-buty!)H (1.0 g, 3.9 mmol), Et 3 N (1.08 ml, 7.8 mmo!), and (2-methy!pheny!) 2 phosphine-chloride (1.2 g, 4.7 mmol) following the typical procedure described for the preparation of (dibenzophosphoi-S-yl)N(i- propyl)P(2-methylphenyl) 2 above. 31 P NMR (CDCI 3 ): δ 73.41 (s), 65.58 (s). Preparation of (dibenzophosphol-5- l)N(i-propyl)P(2-methoxyphenyl)g

PNH formation: (dibenzophosphoi-5~y!)N(i-propyl)H was prepared as described above. 31 P N R (CDCI 3 ): 33.39 (s).

PNP formation: The PNP compound was prepared from the reaction of (dibenzophosphol-5-yi)N(i-propyi)H (1.0 g, 3.9 mmol), Et 3 N (1.08 ml, 7.8 mmol) and (2-methoxypheny!) 2 phosphine chloride (1.3 g, 4.7 mmol) [prepared as described above] following the typical procedure described for the preparation of (dibenzophosphol-5-yl)N(i-propyl)P(2-methylphenyl) z above. 31 P NMR (CDCI 3 ): δ 48.052 (br. s), 17.19 (br. s).

Preparation of (dibenzophosphol-5- i)N(n-butyl)P(2-methoxyphenyi) ?

PNH formation: (dibenzophospho!-5-yl)N(n-butyl)H was prepared as described above for (dibenzophosphol-5-yl)N(i-propyi)H except that n-butylamine was used instead of iso-propylamine. 31 P NMR (CDCI 3 ): 37.2 (s).

PNP formation: The PNP compound was prepared from the reaction of (dibenzophosphol-5-yl)N(n-butyi)H (1.0 g, 3.9 mmol), Et 3 N (1.08 ml, 7.8 mmol), and (2-methoxyphenyi) 2 phosphine-chloride {1.3 g, 4.7 mmoi) [prepared as described above] following the typical procedure described for the preparation of (dibenzophosphol-5-yl)N(i-propyl)P(2-methyiphenyl) 2 above. 31 P N R (CDCIs): δ 53.8 (d, J = 142.00 Hz), 48.8 (d, J = 140.55 Hz).

Preparation of (dibenzophos hol-5-yl)N(i-propy! P(2-fluorophenyl);

PNH formation: (dibenzophosphol-5-yl)N{i-propyl)H was prepared as described above. 31 P NMR (CDC! 3 ): 33.39 (s).

PNP formation: The PNP compound was prepared from the reaction of (dibenzophosphol-5-yl)N(i-propyl)H (1.5 g, 7.0 mmol), Et 3 N (1.5 ml, 10.5 mmol), and (2-fluorophenyi) 2 phosphine chloride (2 g, 7.7 mmol) [prepared as described above] following the typical procedure described for the preparation of (dibenzophosphol-5-yl)N(i-propyl)P(2-methylphenyl) 2 above. 31 P NMR (CDC! 3 ): δ 49.64 (br s), 15.92 (br s).

Preparation of (dibenzophosphol-5-yl)N(n-butyl)P(1-benzofuran-7-yl)(phenvD

PNH formation: (dibenzophosphol-5-yi)N(n-butyl)H was prepared as described above for (dibenzophospho!-5-yl)N(i-propy!)H except that n-butylamine was used instead of iso-propylamine. 31 P NMR (CDCi 3 ): 37.2 (s). PNP formation: The PNP compound was prepared from the reaction of (dibenzophosphoi-5-yi)-N(n-buty!)H (1.5 g, 5.9 mmol), Et 3 N (1.1 ml, 8.3 mmol), and (1~benzofuran-7-yt)(phenyl)-phosphinechloride (1.8 g, 7.1 mmol) following the typical procedure described for the preparation of (dibenzophosphol-5- yl)N(i-propyl)P(2-methy!phenyi) 2 above. 3 P NMR (CDCI 3 ): δ 55.85 (d, J = 93.5 Hz), 53.92 (d, J = 94.2 Hz).

Preparation of (9-oxa-10-phosphaphenathren-10-yl)N(i-propyi)P(2- methoxyphenyl)?

PNH formation: iso-Propylamine (0.7 ml, 7.7 mmo!) and Et 3 N (1.1 mi, 7.7 mmol) were added to the crude 10-ch!oro-9-oxa-10-phosphaphenanthrene (1.5 g, 6.4 mmol) [prepared as described above] in diethyl ether (30 ml). The reaction mixture was stirred at room temperature until compiete formation of the PNH intermediate as judged by 3 P NMR analysis. The volatiles were removed in vacuo. Ether (50 ml) was added and the resultant mixture filtered to give the ether solution of the desired PNH product in reasonable purity [by 31 P NMR analysis]. The solvent was removed in vacuo to give the PNH compound, (10-oxa-9-phosphaphenathren-9~yl)N(i-propyl)H. 31 P NMR (CDCi 3 ): δ 75.20 (s).

PNP formation: The PNH (10-oxa-9-phosphaphenathren-9-yi)N(i-propyi)H (1.6 g, 6.4 mmol) was re-dissolved in DCM (10 ml). Et 3 N (1.1 ml, 7.7 mmol) was added, followed by incremental addition of (2-methoxyphenyl) 2 phosphine chloride (2.2 g, 7.7 mmol) [prepared as described above] at room temperature. After complete conversion of the PNH (judged by 31 P NMR analysis) to the PNP, the solvent was removed in vacuo from the post reaction mixture. Ether (100 ml) was added and the resultant mixture was filtered through a short activated alumina column. Filtration was repeated until a pure compound was obtained. The solvent was evaporated to give the desired PNP product. 31 P NMR (CDCl 3 ): δ 93.36 (s), 20.06 (s).

Preparation of (phenoxaphosphin-10-yl)N(n-butyl)P(phenyl) ?

PNH formation: n-Buty!amine (1.1 ml, 10.2 mmol) and Et 3 N (1.8 m!, 12.8 mmol) were added to the crude 10-chlorophenoxaphosphine (2 g, 8.5 mmol) [prepared as described above] in diethyl ether (30 ml). The reaction mixture was stirred at room temperature until complete formation of the PNH intermediate as judged by 3 P NMR analysis. The volatiles were removed in vacuo. Ether (50 ml) was added and the resultant mixture filtered to give the ether solution of the desired PNH product in reasonable purity [(by 31 P NMR analysis]. The solvent was removed in vacuo to give the PNH compound, (phenoxaphosphin-10-yl)N(n-buty!)H. 31 P NMR (CDCI 3 ): δ -3.44 (s).

PNP formation: The PNH (phenoxaphosphin-10-yi)N(n-butyi)H (1.5 g, 5.5 mmol) was re-dissolved in DCM (10 ml). Et 3 N (1.2 mi, 8.3 mmol) was added, followed by incremental addition of Ph 2 PCI (1.2 ml, 6.6 mmol) at room temperature. After complete conversion of the PNH (judged by 31 P NMR analysis) to the PNP, the solvent was removed in vacuo from the post reaction mixture. Ether (100 ml) was added and the resultant mixture was filtered through a short activated alumina column. Filtration was repeated until a pure compound was obtained. The solvent was evaporated to give the desired PNP product. 1 P NMR (CDCI 3 ): δ 76.32 (d, J = 30.5 Hz), 50.36 (d, J = 29.8 Hz).

Preparation of (phenoxaphos hin-10-yl)N(n-butvi)P(2-fluorophenyl) ?

PNH formation: {phenoxaphosphin-10-yl)N(n-butyi)H was prepared as described above. 31 P NMR (CDCi 3 ): δ -3.44 (s).

PNP formation: The PNP compound was prepared from the reaction of (phenoxaphosphin-10-yl)N(n-butyl)H (1.7 g, 6.4 mmo!), Et 3 N (1.2 ml, 8.3 mmol), and (2-fluorophenyi) 2 phosphine chloride (1.6 g, 6.4 mmol) [prepared as described above] following the typical procedure described for the preparation of (phenoxaphosphin-10-yl)N(n-butyl)P(phenyl) 2 above. 31 P NMR (CDCi 3 ): δ 44.09 (dt, J = 233.7 Hz and J = 46.5 Hz), 15.25 (d, J = 233.7 Hz).

Preparation of (phenyl);PN(n-butyl)P(phenyl)?

Ph 2 P" 2 This compound was prepared from the reaction of n-butylamine (1.0 g, 13.7 mmol), Et 3 N (5.54 g, 54.7 mmol), Ph 2 PCI (7.59 g, 41.0 mmo!), following a procedure described in Synthesis, 2007, 24, 3863. 31 P N R (CDCI 3 ): δ 62.5 (s).

Preparation of (phenyl)?PN(n-butyl)P(2-methoxyphenvi)£

PNH formation: An ethereal solution of n-butylamine (1.5 g, 20.1 mmoi) and Et 3 N (2.0 g, 20.1 mmol) at -0 °C was added to an ethereal solution of (2- methoxyphenyi) 2 PCI (5.6 g, 20.1 mmol) [prepared as described above], A white precipitate formed immediately. The reaction mixture was left to stir for 1hr followed by filtration of the precipitate and removal of the solvent in vacuo to give (2-methoxyphenyl) 2 PN(n-butyl)H. 3 P NMR (CDCI 3 ): δ 26.37 (s).

PNP formation: To a DC (3 ml) solution of (2-methoxyphenyl) 2 PN(n-butyl)H (2.4 g, 8.5 mmol)) and Et 3 N (1.4 ml, 10.2 mmoi) was added CIPPh 2 (1.58 g, 8.5 mmol). The reaction was left to stir overnight. The solvent was then removed in vacuo and the residue re-slurried in ether (100ml), followed by filtration of the solids and removal of the solvent in vacuo to give the desired PNP product. 31 P NMR; δ (CDCI 3 ): 57.74 (br s), 43.85 (d, J = 49.89 Hz). Preparation of (phenyl);PNn-propyl)P(2-methoxyphenyl)g

PNH formation: (2-methoxyphenyi) 2 PN(i-propy!)H was prepared as described above for (2-methoxyphenyl) 2 PN(n-butyl)H except that i-propyl amine was used instead of n-butyl amine. 31 P NMR (CDCI 3 ): δ 19.02 (s).

PNP formation: The PNP compound was prepared from the reaction of (2- methoxypheny!) 2 PN(i-propyi)H (1.5 g, 4.9 mmoi), Et 3 N (1.4 m!, 9.9 mmoi), and CIPPh 2 (0.9 mi ( 4.9 mmoi) folfowing the typical procedure described for preparation of (phenyl) 2 PN(n-butyl)P(2-methoxyphenyi) 2 above. 31 P NMR (CDCI 3 ): δ 54.66 (br s), 21.79 (br, s).

Preparation of (phenyl)?PN(i-propyl)P(2-fiuorophenvi) 2

PNH formation: An ethereal solution of iso-propyiamine (0.5 g, 8.46 mmo!) and Et 3 N (2.3 ml, 16.9 mmoi) at -0 °C was added to an ethereal solution of (2- fluorophenyl) 2 PCI (1.81g, 7.1 mmoi) [prepared as described above], A white precipitate formed immediately. The reaction mixture was left to stir for 1hr followed by filtration of the precipitate and removal of the solvent in vacuo to give (2-fluorophenyl) 2 PN(i-propyl)H. 31 P NMR (CDCI 3 ): δ 15.7 (t, J = 33,4 Hz). PNP formation: To a DCM (3 ml) solution of (2-fluorophenyl) 2 PN(i-propyl)H (0.8 g, 2.9 mmol) and Et 3 N (0.56g, 5.9 mmoi) was added CIPPh 2 (0.54 ml, 2.9 mmol). The reaction was left to stir overnight. The solvent was then removed in vacuo and the residue re-slurried in ether (100ml), followed by filtration of the solids and removal of the solvent in vacuo to give the desired PNP product. 31 P NMR (CDCI 3 ): δ 52.5 (br s), 22.6 (br s).

Preparation of fphenyl)7PN(n-butyi)P(2-fluorophenyl

PNH formation: (2-fluorophenyl) 2 PN(n-butyl)H was prepared as described above for (2-fluorophenyl) 2 PN{i-propyi)H except that n-butyl amine was used instead of iso-propyl amine.

PNP formation: The PNP compound was prepared from the reaction of (2- fluorophenyl) 2 PN(n-butyl)H (1.5 g, 4.8 mmol), Et 3 N (1.3 mi, 9.5 mmol), and CIPPh 2 (0.9 ml, 4.8 mmol) following the typical procedure described for preparation of (phenyl) 2 PN(i-propy!)P(2~f]uorophenyl) 2 above. 3 P NMR (CDCi 3 ): δ 63.2 (d, J = 41.6 Hz), 39.0 (m).

Preparation of (phenyl)?PN(i-propyl)P(2-methylphenyl)p

PNH formation: An ethereal solution of iso-propylamine (1.5 g, 25.4 mmol) and Et 3 N {2.0 g, 30.5 mmol) at ~0 °C was added to an ethereal solution of (2- methylphenyl) 2 PCI (6.3 g, 25.4 mmol) [prepared as described above]. A white precipitate formed immediately. The reaction mixture was left to stir for 1hr followed by filtration of the precipitate and removal of the solvent in vacuo to g ive (2-methy! phenyl) 2 P N (i-propyl) H .

PNP formation: To a DCM (3 ml) solution of (2-methylphenyl) z PN(i-propyi)H (2.4 g, 8.5 mmol) and Et 3 N (1.4 ml, 10.2 mmol) was added CIPPh 2 (1.58 g, 8.5 mmol). The reaction was left to stir overnight. The solvent was then removed in vacuo and the residue re-slurried in ether (100ml), followed by filtration of the solids and removal of the solvent in vacuo to give the desired PNP product. 31 P NMR (CDC! 3 ): δ 52.9 (s, br), 26.2 (s, br).

Preparation of (phenyl)gPN0-butyi)P(2-methviphenyl)?

PNH formation: (2-methyiphenyl) a PN(i- butyl) H was prepared as described above for (2-methyiphenyl) 2 PN(i-butyl)H, except that iso-butyl amine was used instead of iso-propyi amine. PNP formation: The PNP compound was prepared from the reaction of (2- metnylphenyl) PN(i-butyl)H (1.5 g, 4.7 mmoi), Et 3 N (0.9 mi, 6.6 mmol), and CIPPh 2 (0.9 ml, 4.7 mmol) following the typical procedure described for the preparation of (phenyl) 2 PN(i-propyl)P(2-methylpheny!) 2 above. 31 P NMR (CDCI 3 ): 6 62.5 (br s), 54.9 (br s).

Preparation of (phenyl)?PN(n-Hexyl)P(1-benzofuran-7-yl)(phenyl)

PNH formation: n-Hexyi amine (0.95 mL, 7.2 mmol) and Et 3 N (1.0 mL, 7.2 mmol) were added to the crude (1-benzofuran-7-yl)(phenyl)phosphine chloride (0.90 g, 3.6 mmol) [prepared as described above] in diethyl ether (30 ml). The reaction mixture was stirred at room temperature until complete formation of the PNH intermediate as judged by 3 P NMR analysis. The volatiles were removed in vacuo. Ether (50 ml) was added and the resultant mixture filtered to give the ether solution of the desired PNH product in reasonable purity [by 31 P NMR analysis]. The solvent was removed in vacuo to give the PNH compound, (1-benzofuran-7-yl)(phenyl)PN(n-Hex)H.

PNP formation: The PNH (1-benzofuran-7-yl)(phenyl)PN(n-Hex)H (0.80 g, 2.4 mmol) was re-dissolved in DCM (10 ml). Et 3 N (0.5 g, 4.9 mmol) was added, followed by incremental addition of Ph 2 PCI (1.1 g, 4.9 mmol) at room temperature. After complete conversion of the PNH (judged by 31 P NMR analysis) to the PNP, the solvent was removed from the post reaction mixture. Ether (100 ml) was added and the resultant mixture was filtered through a short activated alumina column. Filtration was repeated until a pure compound was obtained. The solvent was evaporated to give the desired PNP product. 3 P NMR (CDCI 3 ): δ 62.9 (d, J = 37.6 Hz), 50.5 (d, J = 37.6 Hz).

Example 1. Ethylene tetramerisation with (dibenzophosphol-5-yi)N(i- propyiFf2-methylphenvn» at 60 ° C and 45bar

A 600 ml stainless steel reactor was heated to 120°C for 30 minutes under vacuum, backfilled with N 2 and then cooled to 60 ° C. The reactor was charged with 2,2,4-trimethylpentane (T P) (100ml), and heated to 60 * C. Separately, M AO-3A (2.4 mmol Ai) was added to a mixture of Cr(acac) 3 (2.5pmol) and (dibenzophosphoi-5-yl)N(i-propyl)P(2-methylphenyl) 2 (2.5pmol) in cyclohexane (5ml). This mixture was then transferred to the reactor. The reactor was pressurised with ethylene (45 bar), and stirred (1300 r.p.m.) with a gas entraining stirrer. The temperature in the reactor increased to 62-65 ° C, at which point the reactor was cooled by means of an internal cooling coil to maintain a constant temperature of 60 ° C throughout the run. The reaction pressure was kept constant throughout the run by feeding ethylene on demand, and the consumption of ethylene was monitored via a flow meter. At the conclusion of the run after 34.3 minutes and 160g total ethylene uptake (including the ethylene required to pressurise the reactor), the reactor was rapidly cooied to 5 ° C, and depressurised. A weighed mass of nonane was added as an internal standard, and a small sample was taken for GC-FID analysis. The polymer by-product was collected by filtration, dried overnight and weighed. The selectivity and activity were then calculated from the GC data and polymer mass. The results are shown in Table 1.

Example 2 Ethylene tetramerisation with (dibenzophosphol-5-yl)N(i-butyl)P(2- methylphenyl ; at 60 ° C and 45 bar

The procedure of example 1 was followed, except that the ligand (dibenzophosphol-5-yi)N(i-butyl)P(2-methyiphenyi) 2 was used, and the reaction was terminated after 61 minutes and 160 g ethylene uptake. The results are shown in Table 1.

Example 3. Ethylene tetramerisation with (dibenzophosphol-5-vON(n-butyl)P(2- methoxyphenyD? at 60 ' C and 45 bar

The procedure of example 1 was followed, except that the !igand (dibenzophosphol-5-yl)N(n-butyl)P(2-methoxyphenyi) 2 was used, and the reaction was terminated after 58 minutes and 160 g ethylene uptake. The results are shown in Table 1.

Example 4. Ethylene tetramerisation with (dibenzophosphol-5-yl)N(i- propyl)P(2-methoxyphenyl)7 at 60 ' C and 45 bar

The procedure of example 1 was followed, except that the ligand (dibenzophosphol-5-yl)N(i-propyl)P(2-methoxypheny!) 2 was used, and the reaction was terminated after 67 minutes and 160 g ethylene uptake. The results are shown in Table 1.

Example 5. Ethylene tetramerisation with (dibenzophosphol-5-yi)N(n-butyl)P(2- methoxyphenyPg at 1Q0 ° C and 45 bar

The procedure of example 1 was followed, except that the ligand (dibenzophosphol-5-yl)N(n-butyl)P(2-methoxyphenyl) 2 was used, 200ml of TMP was used, the reaction temperature was maintained at 100°C and the reaction was terminated after 76 minutes and 150g ethylene uptake. The results are shown in Table 1.

Example 6. Ethylene tetramerisation with (dibenzophosphol-5-yl)N(i- propyl)P(2-fluorophenyt)7 at 100 ' C and 45 bar. The procedure of example 1 was followed, except the ligand (dibenzophosphoI-5-yl)N(i-propyl)P(2-fluorophenyl) 2 was used, 200ml of TMP was used, the reaction temperature was maintained at 100°C, and the reaction was terminated after 54 minutes and 150g ethylene uptake. The results are shown in Table 1.

Example 7. Ethylene tetramerisation with (dibenzophosphol-5-yl)N(n-butyi)P(1- benzofuran-7-ylHphenyl) at 100 ° C and 45 bar

The procedure of example 1 was followed, except that the ligand (dibenzophosphol-5-yl)N(n-butyl)P(1-benzofuran-7-yl)(phenyl) was used, 200ml of TMP was used, the reaction temperature was maintained at 100 ° C, and the reaction was terminated after 42 minutes and 150 g ethylene uptake. The results are shown in Table 1.

Example 8. Ethylene tetramerisation with (9-oxa-1Q-phosphaphenanthren-10- yl)N(i-propyl)P(2-methoxyphenyl)gat 60 ° C and 45 bar

The procedure of example 1 was followed, except that the ligand phosphaphenanthren-10-yl)N(i-propyl)P{2-methoxyphenyl) 2 was used, and the reaction was terminated after 77.4 minutes and 160 g ethylene uptake. The results are shown in Table 2.

Example 9. Ethylene tetramerisation with (phenoxaphosphin- O-yi)N(n- butvnPfphenyl ? at 60 ° C and 45 bar

The procedure of example 1 was followed, except that the ligand (phenoxaphosphin-10-yi)N(n-butyl)P(phenyl) 2 was used, and the reaction was terminated after 92 minutes and 150 g ethylene uptake. The results are shown in Table 3. Example 10. Ethylene tetramerisation with (phenoxaphosphin-IO-yi)N(n- butyl)P(2-fiuorophenvn ? at 60 ° C and 45 bar

The procedure of example 1 was followed, except that the tigand (phenoxaphosphin-10-yl)N(n-butyl)P(2-fluoropheny!) 2 was used, and the reaction was terminated after 24 minutes and 160 g ethylene uptake. The results are shown in Table 3.

Example 11. Ethylene tetramerisation with (phenoxaphosphin-IO-yl)N(n- butvnP(2-fluorophenyl½at 00 * C and 45 bar.

The procedure of example 1 was followed, except the ligand {phenoxaphosphin-10-y!)N(n-butyi)P(2-fluorophenyl) 2 was used, 200ml of TMP was used, the reaction temperature was maintained at 100°C, and the reaction was terminated after 25 minutes and 97g ethylene uptake. The results are shown in Table 3.

Comparative example 1. Ethylene tetramerisation with fphenyl)gPN(i- propyOP -methylphenvn? at 60 ° C and 45 bar

The procedure of example 1 was followed, except that the ligand (pheny!) 2 PN(i-propyl)P(2-methylphenyl) 2 was used, and the reaction was terminated after 18 minutes and 160 g ethylene uptake. The results are shown in Table 1.

Comparative example 2. Ethylene tetramerisation with (phenyl)?PN(i-butyl¾P(2- methy [phenyl); at 60 " C and 45 bar

The procedure of example 1 was followed, except that the ligand (phenyl) 2 PN(i-butyl)P(2-methylpheny!) 2 was used, and the reaction was terminated after 11 minutes and 160 g ethylene uptake. The results are shown in Table 1.

Comparative example 3. Ethylene tetramerisation with (phenyi)?PN(n- butyl)Pf2-methoxyphenyl) ? at SO ' C and 45 bar

The procedure of example 1 was followed, except that the ligand (phenyl) 2 PN(n-butyl)P(2-methoxyphenyl) 2 was used, and the reaction was terminated after 78 minutes and 160 g ethylene uptake. The results are shown in Table 1.

Comparative example 4. Ethylene tetramerisation with (phenyl)?PN(i- propyl)P(2-methoxyphenyl)p at 60 ° C and 45 bar

The procedure of example 1 was followed, except that the ligand (pheny!) 2 PN(i-propyl)P(2-methoxyphenyl) 2 was used, and the reaction was terminated after 60 minutes and 88 g ethylene uptake. The results are shown in Table 1.

Comparative example 5. Ethylene tetramerisation with (phenyl)?PN(n- butvDP(2-methoxyphenyl)-> at 100 ° C and 45 bar

The procedure of example 1 was followed, except the ligand (phenyl) 2 PN(n- butyl)P(2-methoxyphenyl) 2 was used, 200m! of T P was used, the reaction temperature was maintained at 100°C, and the reaction was terminated after 27.1 minutes and 153g ethylene uptake. The results are shown in Table 1.

Comparative example 6. Ethylene tetramerisation with (phenyi)?PN(i- propyl)P(2-fluorophenvn? at 100 ° C and 45 bar The procedure of example 1 was followed, except the !igand (phenyi) 2 PN(i- propyi)P(2-fluorophenyl) 2 was used, 200ml of TMP was used, the reaction temperature was maintained at 100°C, and the reaction was terminated after 15 minutes and 150g ethylene uptake. The results are shown in Table 1.

Comparative example 7. Ethylene tetramerisation with (phenvO;PN(n- butvnPf1-benzofuran-7-yl phenyl) at 100 ' C and 45 bar

The procedure of example 1 was followed, except the ligand (phenyl) 2 PN(n- butyl)P(1-benzofuran-7-yl)(phenyl) was used, 200ml of TMP was used, the reaction temperature was maintained at 100°C, and the reaction was terminated after 11 minutes and 150g ethylene uptake. The results are shown in Table 1.

Comparative example 8. Ethylene tetramerisation with (phenyl)?PN(n- butv!)P(phenyl) ? at 60 ' C and 45 bar

The procedure of example 1 was followed, except that the ligand (pheny!) 2 PN(n-butyl)P(2-pheny!) 2 was used, and the reaction was terminated after 46 minutes and 160 g ethylene uptake. The results are shown in Table 3.

Comparative example 9. Ethylene tetramerisation with (phenvD?PN(n-

The procedure of example 1 was followed, except that the ligand (phenyl) 2 PN{n-butyl)P(2-fluorophenylphenyl) 2 was used, and the reaction was terminated after 21.5 minutes and 160 g ethylene uptake. The results are shown in Table 3. Comparative example 10. Ethylene tetramerisation with (phenyi)?PN(n- butyl)P(2-fluorophenviphenyl) ? at 100 ° C and 45 bar

The procedure of example 1 was followed, except that ligand (phenyl) 2 PN(n- butyi)P(2-ftuorophenylphenyl) 2 was used, 200ml of TMP was used, the reaction temperature was maintained at 100°C, and the reaction was terminated after only 45 minutes and 200g ethylene uptake (including the ethylene required to pressurise the reactor). The results are shown in Table 3.

Table 1.

Examp Ligand Temp. Activit Liquid Product selectivity 1- Total

!e y octene : product

(°C), (wt % of oligomer products)

1 - selectivi Press, (x10 6

hexene ty (wt %) g/gCr/h

(bar) ratio

)

1- c 6 1- 1- ClQ- Polymer hexene cycltcs octene hexene 30 %

% + 1-

% % %

octene

%

(dibenzophosphoi-5-

1 yl)N(i-propy!)P(2- 60, 45 165 15.6 2.3 68.1 83.6 13.0 4.40 1.68

MePh) 2

Ph 2 PN(i-propyi)P{2- 60, 45

Com 1 2.70 35.9 1.4 54.8 90.9 7.4 1.52 1.1

ePh) 2

(dibenzophosphol-5-

2 60, 45 1.00 10.8 3.5 65.9 76.6 17.9 6.08 13.06 yi)N(i-butyl)P(2-MePh) 2

Comp Ph 2 PN{i-buty!)P{2-

60, 45 5.03 30.0 3.4 61.0 88.0 8.3 2.26 0.49 2 MePh) 2

(dibenzophosphoi-5-

3 yl)N(n~butyl)P(2- 60, 45 0.57 22.3 1.2 59.1 81.5 13.0 2.65 3.48

OMePh) 2

Ph 2 PN{n-buty!)P{2-

Comp 3 60, 45 0.73 41.8 2.1 40.4 82.3 12.6 0.96 1.65

OMePh) 2

(dibenzophospho!-5-

4 yl)PN(i-propy!)P(2- 60, 45 0.56 34.2 0.6 53.0 87.2 10.2 1.55 1.16

OMePh) 2

Ph 2 PN(i-propyl)P(2-

Comp 4 60, 45 0.31 53.5 1.0 31.5 85.0 12.6 0.59 7.90

OMePh) 2

(dibenzophosphol-5-

5 yl)PN(rt-butyl)P(2- 100, 45 0.63 59.5 1.2 31.9 91.4 6.2 0.54 1.00

OMePh) 2

Ph 2 PN{n-buiyi)P{2-

Comp 5 100, 45 1.72 75.1 0.8 15.6 90.8 6.7 0.21 0.71

OMePh) 2

(dibenzophosphot-5-

6 100, 45 0.88 26.5 2.7 56.3 82,7 12.9 2.13 5.1 y!)N(i-propyl)P(2-FPh) 2

Comp Ph 2 PN(i-propy!)P(2-

100, 45 3.72 47.1 1.1 33.8 81.0 17.1 0.72 1.41 6 FPh) 2

(di benzophosphol-5-

7 yl)N(n-buty!)P(1-benzo- 100, 45 1.11 43.9 1.9 44.9 88.8 7.4 1.02 1.51 furan-7-y I) (phenyl)

Comp (phenyi) 2 PN(n- hexy!)P(1-benzofuran- 100,45 2.29 56.0 3.0 33.3 89.3 6.7 0.59 0.63 7 7-y I) (phenyl)

Table 2.

Examp Ligand Temp. Activit Liquid Product selectivity 1- Total le y octene : product

( " C), (wt % of oligomer products)

1- selectivi Press, (x10 6

hexene ty (wt %) g/gCr/h

(bar) ratio

)

1- c 6 1- 1- C-io" Polymer hexene cyciics octene hexene 30 %

% + 1-

% % %

octene

%

(9-oxa- 10-p h os pha-

8 phenanthren-10-yi)N(i~ 60, 45 0.60 39.6 0.5 49.6 89.3 9.1 1.3 2.61 propyl)P(2-O ePh) 2

Comp Ph 2 PN(i-propyl)P(2-

60, 45

4 OMePh) 2 0.31 53.5 1.0 31.5 85.0 12.6 0.59 7.90

Table 3.

Examp Ligand Tem . Activit Liquid Product selectivity 1- Total le y octene product

( " C), (wt % of oligomer products)

1- setectivi Press, (x10 e

hexene ty (wt %) g/gCr/h

(bar) ratio

)

1- c 6 1- 1- Polymer hexene cyclics octene hexene 30 %

% + 1-

% % %

octene

% iphenoxaphosphin-10-

9 60, 45

yl)N(n-butyl)PPh 2 0.43 11.0 4.7 66.7 77.6 14.8 6.05 1.58

Comp

Ph 2 PN(n-butyl)PPh z 60, 45 1.23 6.7 9.2 60.8 67.5 19.3 9.07 1.69 8

10 (phenoxaphosphin-10- 60, 45 2.32 10.0 2.4 66.8 76.9 19.5 6.7 4.85

y!)N(n-butyl)P(2-FPh) 2

Comp Ph 2 PN{n-butyl)P(2-

60, 45 3.07 8.3 4.3 56.0 64.3 25.8 6.8 4.61 9 FPh) 2

(phenoxaphosphin-10-

11 100, 45 1.28 41.6 2.0 48.0 89.5 7.5 1.11 6.46 yl)N(n-butyt)P(2-FPh) 2

Comp Ph 2 PN(n-butyl)P(2-

100, 45 1.37 34.7 3.8 46.8 81.5 13.4 1.35 3.98 10 FPh) 2