Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
THROTTLE DEVICE FOR AN INTERNAL COMBUSTION ENGINE
Document Type and Number:
WIPO Patent Application WO/1996/035047
Kind Code:
A1
Abstract:
Electronic engine control systems have several individual components on the inlet manifold, some of which are relatively far apart. Therefore relatively long electric lines and a relatively large number of plug connectors are needed to connect the individual components electrically to the electronic control unit. The proposal is for a preassembled throttle device (1) which comprises at least one rotatably fitted throttle component (2) in a throttle valve stub (9) and an idling adjuster (5) in a housing (9, 30, 40) having a by-pass channel (21) taken around the throttle component (2) and alterable by the idling adjuster (5) in which a regenerating valve (4) can supply fuel which can be controlled by an electronic control unit (3) also fitted in the housing (9, 30, 40). The throttle device of the invention is especially intended for mixture-compressing, spark-ignition internal combustion engines.

Inventors:
SCHLAGMUELLER WALTER (DE)
SCHELLENBERG GERHARD (DE)
WIESA THOMAS (DE)
LITZINGER ROLF (DE)
LAUE HARALD (DE)
ROTTLER JUERGEN (DE)
SCHIMITZEK RALPH (DE)
JAUERNIG PETER (DE)
Application Number:
PCT/DE1996/000394
Publication Date:
November 07, 1996
Filing Date:
March 06, 1996
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BOSCH GMBH ROBERT (DE)
SCHLAGMUELLER WALTER (DE)
SCHELLENBERG GERHARD (DE)
WIESA THOMAS (DE)
LITZINGER ROLF (DE)
LAUE HARALD (DE)
ROTTLER JUERGEN (DE)
SCHIMITZEK RALPH (DE)
JAUERNIG PETER (DE)
International Classes:
F02D9/10; F02D9/02; F02D11/10; F02D35/00; F02M69/32; (IPC1-7): F02D9/10
Foreign References:
GB2245932A1992-01-15
DE4112981A11992-10-22
DE8715061U11989-03-09
EP0317813A21989-05-31
EP0596392A11994-05-11
DE4032321A11991-04-25
Other References:
"Ansaugeinheiten für Ottomotoren", MOTORTECHNISCHE ZEITSCHRIFT, vol. 54, no. 11, 1 November 1993 (1993-11-01), STUTTGART, XP000400294
Download PDF:
Claims:
Patentansprüche
1. Drosselvorrichtung für eine Brennkraftmaschine, mit einem Gehäuse, wenigstens einem in einem Drosselklappenstutzen des Gehäuses drehbar untergebrachten Drosselorgan und einen um das Drosselorgan herumgeführten Bypasskanal, dessen Querschnitt von einem Leerlaufsteller veränderbar ist, dadurch gekennzeichnet, daß das Drosselorgan (2) und der Leerlaufsteller (5) in dem Gehäuse (9, 30, 40) untergebracht sind und weiterhin in dem Gehäuse (9, 30, 40) ein elektronisches Steuergerät (3) und ein Regenerierventil (4) angeordnet ist.
2. Drosselvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß weiterhin ein am Bypasskanal (21) angeordneter Temperatursensor (16) zur Temperaturmessung im Bypasskanal (21) vorgesehen ist.
3. Drosselvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß weiterhin ein am Bypasskanal (21) angeordneter Drucksensor (17) zur Druckmessung im Bypasskanal (21) vorgesehen ist.
4. Drosselvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß zur Ermittlung der Winkellage des Drosselorgans (2) ein Drehwinkelgeber (7) vorgesehen ist.
5. Drosselvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß das Regenerierventil (4) derart am Bypasskanal (21) angeordnet ist, daß es den Brennstoff stromabwärts des Leerlaufstellers (5) in den Bypasskanal (21) einleitet.
6. Drosselvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Temperatursensor (16) stromabwärts des Leerlaufstellers (5) im Bypasskanal (21) angeordnet ist.
7. Drosselvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Temperatursensor (16) stromabwärts des Regenerierventils (4) im Bypasskanal (21) angeordnet ist.
8. DrosselVorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß das elektronische Steuergerät (3) in einem ersten kastenförmig ausgebildeten Gehäuseteil (30) des Gehäuses (9) untergebracht ist.
9. Drosselvorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Drosselvorrichtung (1) einen zweiten kastenförmig ausgebildeten Gehäuseteil (40) aufweist, der den Bypasskanal (21) der Drosselvorrichtung (1) zumindest teilweise bildet.
10. Drosselvorrichtung nach Anspruch 8 und 9, dadurch gekennzeichnet, daß das elektronische Steuergerät (3) Kontaktleisten (39) besitzt, die mit korrespondierenden Kontaktleisten (45) eines im zweiten kastenförmig ausgebildeten Gehäuseteil (40) untergebrachten Aggregatemoduls (41) eine elektrische Verbindung herstellen.
Description:
Drosselvorrichtung für eine Brennkraf maschine

Stand der Technik

Die Erfindung geht aus von einer Drosselvorrichtung für eine Brennkraftmaschine nach der Gattung des Anspruchs 1. Es ist bereits eine Drosselvorrichtung bekannt (MTZ, Motortechnische Zeitschrift 54 (1993), Heft 11, Seite 601), die als vormontierbare Einheit ausgebildet ist. Die Drosse vorrichtung besitzt ein Drosselorgan in Form einer Drosselklappe, das in einem Drosselklappenstutzen drehbar untergebracht ist. Weiterhin weist die DrosselVorrichtung einen Bypasskanal auf, dessen Querschnitt von einem

Leerlaufsteller zum Zwecke der Leerlaufregelung veränderbar ist. Außerdem ist stromaufwärts der Drosselklappe ein Temperatursensor vorgesehen, welcher die Temperatur der im Drosselklappenstutzen strömenden Luft mißt. Die Drosselvorrichtung ist an einem Luftverteiler angebracht, der im Bereich eines Zylinderkopfes der Brennkraftmaschine vorgesehen ist, um die von der Drosselklappe zugemessene Luft über einzelne Saugrohre zu einzelnen Brennräumen der Brennkraftmaschine zu verteilen. Im Luftverteiler ist ein Drucksensor untergebracht, der den Luftdruck im Luftverteiler mißt.

Moderne Motorsteuerungssysteme benötigen eine Vielzahl von Informationen über wichtige Betriebsgrößen der Brennkraftmaschine, die von Sensoren bereitgestellt und zur Auswertung einem elektronischen Steuergerät in Form elektrischer Signale zugeführt werden. Das elektronische

Steuergerät berechnet anhand der Sensorsignale entsprechende Ansteuersignale für die Stellglieder der Motorsteuerung, wie zum Beispiel für die Zündung oder für die Gemischaufbereitung. Eine wichtige Größe stellt dabei die von der Brennkraftmaschine angesaugte Luftmasse dar. Es ist bekannt, diese zum.Beispiel aus der Drehstellung der Drosselklappe und der zugehörigen Drehzahl der Brennkraftmaschine zu ermitteln. Diese Methode ist jedoch relativ ungenau, so daß Luftmassenmesser eingesetzt werden, die stromaufwärts der Drosselklappe mittels eines beheizten temperaturabhängigen Meßelements in Form eines Hitzdrahtes oder eines Heißfilms die Luftmasse im Drosselklappenstutzen bestimmen. Derartige Luftmassenmesser sind jedoch verhältnismäßig teuer.

Eine weitere Möglichkeit, um mit relativ hoher Genauigkeit die von der Brennkraftmaschine angesaugte Luftmasse zu bestimmen, besteht darin, diese indirekt aus der Dichte der Luft im Drosselklappenstutzen und aus dem zugehörigen Hubvolumen der einzelnen Kolben der Brennkraftmaschine zu ermitteln. Die Dichte der angesaugten Luft läßt sich aus den Zustandsgrδßen Temperatur und Druck der Luft berechnen, wofür im eingangs genannten Stand der Technik ein Temperatursensor und ein Drucksensor vorgesehen ist. Im Leerlaufbereich der Brennkraftmaschine herrscht jedoch eine relativ geringe Strömungsgeschwindigkeit im Drosselklappenstutzen, so daß sich die angesaugte Luft verhältnismäßig lang im Drosselklappenstutzen und dem s.ich beispielsweise einschließenden Luftverteiler befindet. Dabei kann sich die Luft an den warmen Wänden des

Drosselklappenstutzens und des Luftverteilers erwärmen, wodurch sich die Temperatur der Luft erhöht und sich die Luftmasse ändert, was jedoch vom Temperatursensor und vom Drucksensor nur mit zeitlicher Verzögerung erfaßt wird, so daß sich insbesondere in der kritischen Leerlaufphase der Brennkraftmaschine Meßungenauigkeiten ergeben können.

Neben der Erfassung der von der Brennkraftmaschine angesaugten Luftmasse übernimmt ein Motorsteuerungssystem auch die Steuerung eines Regenerierventils, das Teil eines Brennstoffverdunstungs-Rückhaltesystems eines Brennstofftanks der Brennkraftmaschine ist. Bei einem derartigen Brennstoffverdunstungs-Rückhaltesystem werden die Brennstoffdämpfe des Brennstofftanks zunächst in einem Adsorptionsfilter zwischengespeichert und anschließend bei bestimmten Betriebszuständen der Brennkraftmaschine mittels des Regenerierventils in den Drosselklappenstutzen eingeleitet. Hierzu benötigt das Motorsteuerungssystem unter anderem auch Informationen über die aktuelle Drehlage der Drosselklappe, wofür ein Drehwinkelgeber zum Beispiel in Form eines Präzisionspotentiometers an einer Drosselklappenwelle der Drosselklappe vorgesehen ist.

Das elektronische Steuergerät, das Regenerierventil, der Leerlaufsteller, der Temperatursensor und der Drucksensor sind bisher in einzelnen Gehäusen relativ weit voneinander entfernt untergebracht. Das elektronische Steuergerät befindet sich üblicherweise im Motorinnenraum oder im Fahrgastraum eines Kraftfahrzeugs. Der Leerlaufsteller, das Regenerierventil, der Temperatursensor und der Drucksensor sind im Bereich des Drosselklappenstutzens vorgesehen, so daß zur Verbindung insbesondere mit dem elektronischen Steuergerät eine Vielzahl elektrischer Verbindungsleitungen und Steckverbindungen erforderlich sind. Die Anbringung der einzelnen Komponenten und der Verbindungsleitungen sowie

deren Überprüfung ist jedoch insbesondere bei der Montage in Massenherstellung aufwendig.

Vorteile der Erfindung

Die erfindungsgemäße Drosselvorrichtung für eine Brennkraftmaschine mit den kennzeichnenden Merkmalen des Anspruchs 1 hat demgegenüber den Vorteil, daß ein kompaktes Bauteil geschaffen wird, das kostengünstig herstellbar und das insbesondere als vorgefertigte und vorgeprüfte

Baueinheit in einfacher Art und Weise am Kraftfahrzeug anbaubar ist. Vorteilhafterweise ergibt sich durch den Wegfall der sonst üblichen Einzelgehäuse sowie deren elektrischen Verbindungsleitungen und Steckverbindungen eine weitere Kostenersparnis und eine vereinfachte Montage in der Massenherstellung. Außerdem ist durch die reduzierte Anzahl elektrischer Verbindungsleitungen und Steckverbindungen die Betriebssicherheit und Zuverlässigkeit der DrosselVorrichtung erhöht. Die Unterbringung eines Regenerierventils in einem um die Drosselklappe herumgeführten Bypasskanal ermöglicht eine besonders kompakte Ausbildung der erfindungsgemäßen Drosselvorrichtung.

Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Anspruch 1 angegebenen Drosselvorrichtung möglich.

Die zusätzliche Anordnung eines Temperatursensors und beispielsweise eines Drucksensors im Bypasskanal hat den Vorteil, daß insbesondere während der kritischen Leerlaufphase der Brennkraftmaschine eine präzise Bestimmung der im Drosselklappenstutzen strömenden Luftmasse möglich ist.

Zeichnung

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 eine schematisch vereinfachte Funktionsdarstellung einer erfindungsgemäßen Drosselvorrichtung, Figur 2 eine Explosionsdarstellung der erfindungsgemäßen Drosselvorrichtung, Figur 3 eine Seitenansicht der erfindungsgemäßen Drosselvorrichtung, Figur 4 eine

Schnittdarstellung der erfindungsgemäßen Drosselvorrichtung entlang einer Linie IV-IV in Figur 3, Figur 5 eine Schnittdarstellung der erfindungsgemäßen Drosselvorrichtung entlang einer Linie V-V in Figur 3.

Beschreibung des Ausführungsbeispiels

In den Figuren 1 bis 5 ist eine mit 1 gekennzeichnete Drosselvorrichtung dargestellt, die als funktionale Einheit Teil eines Motorsteuerungssystems einer nicht näher dargestellten Brennkraftmaschine ist. Die Drosselvorrichtung 1 umfaßt im wesentlichen ein Drosselorgan 2, ein elektronisches Steuergerät 3, ein Regenerierventil 4 und einen Leerlaufsteller 5 und ist insbesondere für gemischverdichtende, fremdgezündete Brennkraftmaschinen vorgesehen.

Das Regenerierventil 4 ist Teil eines nicht näher dargestellten Brennstoffverdunstungs-Rückhaltesystems eines Brennstofftanks der Brennkraftmaschine, dessen Aufbau und Funktion so ist, wie es zum Beispiel der Bosch Technischen Unterrichtung, Motormanagement Motronic, zweite Ausgabe, August 1993, auf Seite 48 und 49 entnehmbar ist. Die Offenbarung der oben genannten Schrift soll Bestandteil der vorliegenden Anmeldung sein.

Die Drosselvorrichtung 1 besitzt ein Gehäuse, das zum Beispiel aus Kunststoff in Kunststoffspritzgußtechnik hergestellt ist. Wie in der Figur 2 dargestellt ist, hat die Drosselvorrichtung 1 beziehungsweise das Gehäuse eine rohrförmige, längliche Gestalt, die im wesentlichen von einem Drosselklappenstutzen 9 gebildet wird. Der Drosselklappenstutzen 9 besitzt an einem der Brennkraftmaschine zugewandten Endbereich einen Flanschteil 11, der zur Befestigung zum Beispiel an einem nicht näher dargestellten Luftverteiler dient. Das Drosselorgan 2 ist im Drosselklappenstutzen 9 drehbar untergebracht und hat beispielsweise die Form einer in Figur 2 gestrichelt dargestellten Drosselklappe 2. Im Innern des Drosselklappenstutzens 9 strömt ein gasförmiges Medium, insbesondere die von der Brennkraftmaschine angesaugte Luft, welche zum Beispiel über einen nicht näher dargestellten Luftfilter in den Drosselklappenstutzen 9 einströmt. In Figur 1 strömt die Luft im Drosselklappenstutzen 9 von links nach rechts und in den Figuren 2 und 3 von oben nach unten. Die Strömungsrichtung der Luft ist durch entsprechende Pfeile 12 in den Figuren 1, 2 und 3 gekennzeichnet.

Die Motorleistung der Brennkraftmaschine wird bekanntermaßen durch Drehen der Drosselklappe 2 im Drosselklappenstutzen 9 gesteuert, so daß mehr oder weniger Luft an der

Drosselklappe 2 vorbeiströmt. Die gedrosselte Luft strömt vom Drosselklappenstutzen 9 zum Beispiel in den Luftverteiler, der die Luft über einzelne Saugrohre zu den einzelnen Brennräumen der Brennkraftmaschine verteilt. Ein stromaufwärts eines Einlaßventils der Brennkraftmaschine im Saugrohr vorgesehenes Brennstoffeinspritzventil mischt der Luft Brennstoff zu, um ein zündfähiges Brennstoff-Luft- Gemisch im Brennraum zu erhalten. Zum Drehen der Drosselklappe 2 ist beispielsweise eine nicht näher dargestellte Betätigungsvorrichtung vorgesehen, die zum

Beispiel die Form einer Seilscheibe hat. Die Seilscheibe ist drehfest an einer Drosselklappenwelle 6 der Drosselklappe 2 angebracht, um mittels eines zu einem Gaspedal geführten Seilzugs gedreht zu werden.

Wie in der Figur 1 gezeigt ist, besitzt die Drosselvorrichtung 1 einen Bypasskanal 21, der eine im Drosselklappenstutzen 9 stromaufwärts der Drosselklappe 2 gelegene Entnahmeδffnung 22 mit einer stromabwärts der Drosselklappe 2 gelegenen Abgabeδffnung 23 verbindet, so daß ein Teil der im Drosselklappenstutzen 9 strömenden Luft im Bypasskanal 21 um die Drosselklappe 2 herum strömt. Die Strömungsrichtung der im Bypasskanal 21 strömenden Luft ist in den Figuren 1, 4 und 5 durch entsprechende Pfeile 24 gekennzeichnet.

Das elektronische Steuergerät 3 des Motorsteuerungssystems benötigt eine Vielzahl von Informationen über wichtige Betriebsgrößen der Brennkraftmaschine, welche von Sensoren bereitgestellt und dem elektronischen Steuergerät 3 zur Auswertung zugeführt werden. Eine wichtige Betriebsgröße stellt die von der Brennkraftmaschine angesaugte Luftmasse dar. Die Luftmasse kann bekanntermaßen aus der Dichte und dem Volumen der Luft berechnet werden. Das Volumen der Luft ist durch das Hubvolumen der einzelnen Kolben der

Brennkraftmaschine vorgegeben. Die Dichte der Luft läßt sich aus den Zustandsgrößen Temperatur und Druck der Luft, beispielsweise mit Hilfe der allgemeinen Gasgleichung für ideale Gase, berechnen. Mit dem Hubvolumen der einzelnen Kolben der Brennkraftmaschine und der Dichte der Luft stehen dann alle Größen für das elektronische Steuergerät 3 zur Verfügung, um die Masse der im Drosselklappenstutzen 9 strömenden Luft zu berechnen. Die Ermittlung der Dichte der Luft erfolgt mittels eines Temperatursensors 16 und eines Drucksensors 17. Wie in der Figur 1 dargestellt ist, ist der

Temperatursensor 16 im Bypasskanal 21 angeordnet, um die Temperatur der im Bypasskanal 21 strömenden Luft zu messen. Der Drucksensor 17 kann zur Druckmessung ebenfalls im Bypasskanal 21 angeordnet sein, um dort den Druck der strömenden Luft zu messen. Es ist aber auch möglich, diesen an beliebiger Stelle, zum Beispiel am Drosselklappenstutzen 9 anzuordnen, um dort den Druck der strömenden Luft zu messen.

Die Messung der Temperatur im Bypasskanal 21 mittels des

Temperatursensors 16 hat den Vorteil, daß sich insbesondere bei geringen Luftdurchsätzen im Drosselklappenstutzen 9 eine verbesserte Meßgenauigkeit gegenüber einer Temperaturmessung im Drosselklappenstutzen 9 einstellt. Diese ist zum einen darauf zurückzuführen, daß vom Öffnen und Schließen der Einlaßventile ausgehende Pulsationen der Strömung nur in abgeschwächter Form bis zur Meßstelle des Temperatursensors 16 im Bypasskanal 21 vordringen können, um das Meßergebnis zu beeinträchtigen. Zum anderen ist im Leerlaufbereich der Brennkraftmaschine aufgrund der Drosselwirkung der

Drosselklappe 2 ein Druckunterschied an der Drosselklappe 2 vorhanden, der zu einer Erhöhung der

Strömungsgeschwindigkeit der Luft im Bypasskanal 21 führt. Durch die im Leerlaufbereich vergrößerte Strömungsgeschwindigkeit der Luft im Bypasskanal 21 können Temperaturänderungen der angesaugten Luft, zum Beispiel aufgrund einer Erwärmung des Drosselklappenstutzens 9, rasch erfaßt werden, ' so daß sich insbesondere während der kritischen Leerlaufphase der Brennkraftmaschine eine hohe Meßgenauigkeit einstellt.

Wie in der Figur 2, einer Explosionsdarstellung und in der Figur 3, einer Seitenansicht der Drosselvorrichtung 1, dargestellt ist, ist das elektronische Steuergerät 3 in einem ersten kastenförmig ausgebildeten Gehäuseteil 30 der

DrosselVorrichtung 1 untergebracht. Der erste Gehäuseteil 30 ist vom Drosselklappenstutzen 9 radial wegführend offen und hat einen ersten Gehäuserand 31. Hauptbestandteil des elektronischen Steuergeräts 3 ist ein in Figur 4, einer Schnittdarstellung entlang einer Linie IV-IV in Figur 3, dargestelltes Substrat 32, auf dem eine Vielzahl elektrischer Bauteile, beispielsweise in Hybridbauweise aufgebracht sind. Das Substrat 32 ist zum Beispiel in Kunststoff eingebunden, so daß sich ein abgedichtetes, kompaktes Steuergerätemodul 35 ergibt. Das Steuergerätemodul 35 verfügt weiterhin über eine ebenfalls in den Kunststoff eingebundene Metallplatte 36, die mehrere Öffnungen besitzt, um die Metallplatte 36 beziehungsweise das Steuergerätemodul 35 beispielsweise mittels nicht dargestellter Schrauben an den ersten kastenförmigen Gehäuseteil 30 anzuschrauben. Dabei sitzt das Steuergerätemodul 35 auf dem ersten Gehäuserand 31 und verschließt den ersten Gehäuseteil 30. Die Metallplatte 36 ist im eingebauten Zustand einer kreisförmigen Innenwandung 26 des Drosselklappenstutzens 9 zugewandt und nahe zu dieser angeordnet, um über die Metallplatte 36 einen guten Wärmekontakt zur im Drosselklappenstutzen 9 strömenden Luft herzustellen, damit die beim Betrieb des elektronischen Steuergeräts 3 entstehende Wärme von der im Drosselklappenstutzen 9 strömenden Luft abgeführt werden kann. Wie in der Figur 2 näher gezeigt ist, besitzt das elektronische Steuergerät 3 zur Kontaktierung und zur Stromversorgung zum Beispiel zwei Steckerleisten 37, die von einer Außenfläche 44 des Steuergerätemoduls 35 abstehen und auf welche Stecker aufgesteckt werden können. Weiterhin verfügt das

Steuergerätemodul 35 aus einer Seitenfläche 38 herausragende Kontaktfahnen 39, die zumindest teilweise in den Kunststoff des Steuergerätemoduls 35 eingebunden sind. Die Kontaktfahnen 39 sind über nicht näher dargestellte

elektrische Verbindungen mit den elektrischen Bauteilen des Substrats 32 elektrisch verbunden.

Wie in Figur 3 dargestellt ist, ist quer zum ersten kastenförmig ausgebildeten Gehäuseteil 30 ein zweiter kastenförmig ausgebildeter Gehäuseteil 40 vorgesehen, so daß sich beispielsweise ein rechtwinkliges Eck ergibt. Der zweite kastenförmig ausgebildete Gehäuseteil 40 bildet zumindest teilweise den Bypasskanal 21. Der zweite Gehäuseteil 40 ist ebenfalls vom Drosselklappenstutzen 9 radial fortführend offen und hat einen zweiten Gehäuserand 34. Der Bypasskanal 21 wird von einem den zweiten kastenförmig ausgebildeten Gehäuseteil 40 überdeckenden Aggregatemodul 41 nach außen abgeschlossen. Das Aggregatmodul 41 hat eine plattenförmige Gestalt und ist zum Beispiel aus Kunststoff hergestellt. Das Aggregatmodul 41 besitzt mehrere Ausnehmungen, um das Regenerierventil 4, den Leerlaufsteller 5 und den Drucksensor 17 zum Beispiel mittels Schnappverbindungen aufzunehmen und zu halten. Das Aggregatmodul 41 dient weiterhin zur Halterung eines Drehwinkelgebers 7, der zum Beispiel in Form eines Präzisionspotentiometers ausgebildet ist. Der Drehwinkelgeber 7 ist drehfest mit der sich in den zweiten Gehäuseteil 40 erstreckenden Drosselklappenwelle 6 der Drosselklappe 2 verbunden, um entsprechend der Drehstellung der Drosselklappe 2 einen bestimmten Widerstandswert anzunehmen, so daß entsprechende elektrische Signale dem elektronischen Steuergerät 3 zugeführt werden können. Der Aufbau von Drehwinkelgebern 7 ist dem Fachmann bekannt und kann zum Beispiel der DE-OS 42 11 616 entnommen werden.

Das Aggregatmodul 41 besitzt weiterhin zum Beispiel in den Kunststoff des Aggregatmoduls 41 eingebundene elektrische Leitungen 47, 48, 49, 50, 51, um eine elektrische Verbindung der Bauteile 4, 5, 7, 16, 17 des Aggregatmoduls 41 mit dem

elektronischen Steuergerät 3 herzustellen. Wie in der Figur 3 dargestellt ist, ist das Regenerierventil 4 über die elektrischen Leitungen 47, der Leerlaufsteller 5 über die elektrischen Leitungen 48, der Temperatursensor 16 über die elektrischen Leitungen 49, der Drucksensor 17 über die elektrischen Leitungen 50 und der Drehwinkelgeber 7 über die elektrischen Leitungen 51 mit Kontaktfahnen 45 am Aggregatmodul 41 elektrisch verbunden. Die Kontaktfahnen 45 stehen von einer Seitenfläche 41 des Aggregatmoduls 41 ab und haben eine abgewinkelte Form. Im eingebauten Zustand des Aggregatmoduls 41 verläuft ein Endbereich der Kontaktfahnen 45 des Aggregatmoduls 41 parallel und diese berührend zu den Kontaktfahnen 39 des Steuergerätemoduls 5, um zum Beispiel mittels Laserlδten einen elektrischen Kontakt herzustellen.

Zum Einbau des Aggregatmoduls 41 sind beispielsweise mehrere Schrauben 54 vorgesehen, die in im zweiten kastenförmigen Gehäuseteil 40 vorgesehene Gewindeaufnahmen 55 einschraubbar sind. Ein zwischen dem Aggregatmodul 41 und dem zweiten Gehäuserand 34 des zweiten Gehäuseteils 40 vorgesehenes erstes Abdichtrahmenteil 57 dichtet dabei das Aggregatmodul 41 gegenüber dem zweiten kastenförmigen Gehäuseteil 40 ab. Ein auf das Aggregatmodul 41 aufsetzbarer Verschlußdeckel 58 und ein zwischen dem Verschlußdeckel 58 und dem Aggregatmodul 41 vorgesehenes zweites Abdichtrahmenteil 59 dichtet das Aggregatmodul 41 nach außen ab, damit kein Wasser, Schmutzstoffe und dergleichen die Bauteile 4, 5, 7, 16, 17 am Aggregatmodul 41 beschädigen kann. Der Verschlußdeckel 58 verfügt noch über eine Ausstülpung 64, welche im aufgesetzten Zustand des Verschlußdeckels 58 ebenfalls die mit den Kontaktfahnen 45 gekoppelten Kontaktfahnen 39 des Steuergerätemoduls 35 umschließt und diese abdichtet. Der Verschlußdeckel 58 ist beispielsweise mittels einer Schnappverbindung oder dergleichen am zweiten Gehäuseteil 40 gehalten.

Das Regenerierventil 4 wird in bekannter Weise vom elektronischen Steuergerät 3 getaktet angesteuert, um bei bestimmten Betriebszuständen, insbesondere im Leerlauf der Brennkraftmaschine, Brennstoffdampf stromabwärts der Drosselklappe 2 in den Bypasskanal 21 einzuleiten, der danach vom Bypasskanal 21 in den Drosselklappenstutzen 9 weiterströmt. Das Regenerierventil 4 ist elektromagnetisch betätigbar ausgebildet und hat einen Aufbau, der beispielsweise der DE-OS 40 23 044 entnehmbar ist und daher im folgenden nicht näher beschrieben wird.

Der Leerlaufsteller 5 ist ebenfalls elektromagnetisch betätigbar zum Beispiel als elektrischer Drehsteller ausgebildet und vom elektronischen Steuergerät 3 ansteuerbar. Der Leerlaufsteller 5 wird im wesentlichen von einem Rotor 60 und einem Stator 61 gebildet. Wie der Figur 5 näher dargestellt ist, ist mit dem Rotor 60 beispielsweise ein Permanentmagnet 63 fest verbunden, der mit dem Rotor 60 auf einer feststehenden Achse drehbar im Stator 61 gelagert ist. Der Endbereich des Rotors 60 hat zum Beispiel die Form eines rohrsegmentfδrmigen Schiebers 62, um nach dem Drehschieber-Prinzip durch Ändern der Winkelposition des Schiebers 62 einen Öffnungsquerschnitt 65 des Bypasskanals 21 zu vergrößern oder zu verkleinern, wodurch sich der Luftdurchsatz im Bypasskanal 21 einstellen läßt. Der Stator 61 besteht im wesentlichen aus einer Spule 61, die im bestromten Zustand ein magnetisches Feld erzeugt, mit dessen Wirkung auf den Permanentmagneten 63 der Rotor 60 mit dem Schieber 62 gedreht werden kann. Die Bestromung wird vom elektronischen Steuergerät 3 beispielsweise mit Hilfe der elektrischen Signale des Drehwinkelgebers 7 vorgenommen, um nahezu unabhängig von der Belastung der Brennkraftmaschine eine geforderte Leerlaufdrehzahl der Brennkraftmaschine konstant zu halten. Der Aufbau von Leerlaufstellern ist dem

Fachmann bekannt und kann zum Beispiel der DE-OS 42 26 548 entnommen werden.

Die Unterbringung der Bauteile 4, 5, 7, 16 und 17 des Aggregatmoduls 41 im zweiten kastenförmigen Gehäuseteil 40 und die Gestaltung des Bypasskanals 21 erfolgt derart, daß in Strömungsrichtung 24 der im Bypasskanal 21 strömenden Luft zuerst der Leerlaufsteller 5, dann das Regenerierventil 4, dann der Temperatursensor 16 und zuletzt der Drucksensor 17 folgt. Die in Strömungsrichtung 24 der im Bypasskanal 21 vorgesehene Abfolge von Leerlaufsteller 5, Regenerierventil 4, Temperatursensor 16 und Drucksensor 17 ist aber auch vertauschbar. So ist es beispielsweise auch möglich, das Regenerierventil 4 stromabwärts des Temperatursensors 16 und des Leerlaufstellers 5 vorzusehen. Der Drucksensor 17 kann auch an beliebiger Stelle im Bypasskanal 21 oder am Drosselklappenstutzen 9 selbst untergebracht werden. Wie in der Figur 4, einer Schnittdarstellung entlang einer Linie IV-IV in Figur 3, dargestellt ist, kann der Drucksensor 17 beispielsweise auch auf gleicher Ebene mit dem

Regenerierventil 4 stromabwärts von diesem im Bypasskanal 21 untergebracht werden.

Der im Ausführungsbeispiel in Figur 4 im Schnitt dargestellte Drucksensor 17 mißt nicht unmittelbar den Druck im Bypasskanal 21, sondern verfügt beispielsweise über einen Schlauchanschluß 69, um über eine Schlauchverbindung den Druck der im Drosselklappenstutzen 9 strömenden Luft stromabwärts der Drosselklappe 2 zu messen. Der Drucksensor 17 besitzt hierzu beispielsweise eine Membran 70, die sich bei einem Druckunterschied mehr oder weniger verform . Die Verformung der Membran 70 kann durch zum Beispiel in Dickschichttechnik auf die Membran 70 aufgebrachte Dehnwiderstände erfaßt werden, die der Verformung entsprechende elektrische Signale liefern, welche dann vom

elektronischen Steuergerät 3 ausgewertet werden, um den Druck zu bestimmen. Es ist aber auch möglich, Drucksensoren anderen Aufbaus zu verwenden. Der Aufbau von Drucksensoren ist dem Fachmann bekannt und kann zum Beispiel der DE-OS 41 11 149 entnommen werden.

Als Temperatursensor 16 ist ein temperaturabhängiger Widerstand vorgesehen, der zum Beispiel als NTC- oder PTC- Widerstand 71 ausgebildet ist. Wie in der Figur 2 dargestellt ist, besitzt der Widerstand 71 beispielsweise eine zylindrische Form. Es ist aber auch möglich, einen temperaturabhängigen Widerstand in Form eines Drahtes, eines Films oder einer Folie zu verwenden. Der in Figur 2 gezeigte Widerstand 71 ist an einer dem Drosselklappenstutzen 9 zugewandten Stirnfläche 74 des Aggregatmoduls 41 mit Abstand zu dieser angebracht und zum Beispiel mittels von der Stirnfläche 74 abstehender Halterungen 72, beispielsweise durch Löten seiner Anschlußdrähte 75 an den Halterungen 72 gehalten. Es ist aber auch möglich, anders gestaltete Temperatursensoren zu verwenden. Zum Beispiel können auch Temperatursensoren eingesetzt werden, die steckbar in das Aggregatmodul 41 eingeführt werden können und mit einem temperaturabhängigen, teilweise in den Bypasskanal 21 hineinragenden Sensorteil die Temperatur der im Bypasskanal 21 strömenden Luft messen. Derartige Temperatursensoren sind dem Fachmann zum Beispiel aus der DE-OS 30 44 419 bekannt.