Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
TORQUE-LIMITED BRAKING OF A ROBOT MANIPULATOR
Document Type and Number:
WIPO Patent Application WO/2021/074262
Kind Code:
A1
Abstract:
The invention relates to a robot manipulator (1), wherein a braking device (7) arranged on at least one of the joints (5) of the manipulator is activated by a control unit (7) in order to generate such a residual torque that a maximum torque is not exceeded at the joint (5), and the residual torque is determined on the basis of sensor determination and/or estimation of the torque currently present at the joint (5), wherein the estimation is based on a measure, multiplied by a first predefined factor, of a gravitational influence acting on the at least one of the joints (5), or is based on a dynamic model of the robot manipulator (1), said dynamic model having the gravitational influence, wherein the control unit (3) determines the gravitational influence on the basis of a joint angle vector with joint angles between the at least one of the joints (5) and a distal end of the robot manipulator (1).

Inventors:
SPENNINGER, Andreas (Karlsfeld, DE)
FORSSILOW, Dmitrij (München, DE)
Application Number:
EP2020/078981
Publication Date:
April 22, 2021
Filing Date:
October 15, 2020
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
FRANKA EMIKA GMBH (München, DE)
International Classes:
B25J9/16
Attorney, Agent or Firm:
RÖSLER, Frank (Bodenseestr. 18, München, DE)
Download PDF:
Claims:
Patentansprüche

1. Robotermanipulator (1) mit einer Vielzahl von durch Gelenke miteinander verbundenen Gliedern und mit einer Steuereinheit (3), wobei zumindest eines der

Gelenke (5) eine Bremseinrichtung (7) aufweist und die Steuereinheit (3) dazu ausgeführt ist, die Bremseinrichtung (7) zum Erzeugen eines solchen Restmoments anzusteuern, dass ein vorgegebenes maximal zulässiges Moment an dem zumindest einen der Gelenke (5) nicht überschritten wird, und das Restmoment auf Basis einer sensorischen Ermittlung und/oder einer Schätzung eines aktuell an dem zumindest einen der Gelenke (5) auftretenden Moments zu ermitteln, wobei die Schätzung auf

- einem mit einem ersten vorgegebenen Faktor multiplizierten Maß für einen an dem zumindest einen der Gelenke (5) wirkenden Schwerkrafteinfluss, oder auf - einem den Schwerkrafteinfluss aufweisenden dynamischen Modell des

Robotermanipulators (1) basiert, wobei die Steuereinheit (3) dazu ausgeführt ist, den Schwerkrafteinfluss auf Basis einer bekannten Masseverteilung des Robotermanipulators (1) und eines Gelenkwinkelvektors mit Gelenkwinkeln zwischen dem zumindest einen der Gelenke (5) und einem distalen Ende des Robotermanipulators (1) zu ermitteln.

2. Robotermanipulator (1) nach Anspruch 1, wobei die Steuereinheit (3) dazu ausgeführt ist, den Gelenkwinkelvektor aus einer jeweiligen Aktuatorposition eines jeweiligen an einem jeweiligen Gelenk (5) angeordneten Aktuators zwischen dem zumindest einen der Gelenke (5) und einem distalen Ende (9) des Robotermanipulators (1) zu ermitteln.

3. Robotermanipulator (1) nach einem der Ansprüche 1 bis 2, wobei das dynamische Modell des Robotermanipulators (1) eine mit einer zweiten zeitlichen Ableitung des Gelenkwinkelvektors multiplizierte und von dem Gelenkwinkelvektor abhängige Massematrix und eine von dem Gelenkwinkelvektor und von der ersten zeitlichen Ableitung des Gelenkwinkelvektors abhängige Coriolismatrix und einen vom Gelenkwinkelvektor abhängigen Term für den Schwerkrafteinfluss aufweist.

4. Robotermanipulator (1) nach einem der Ansprüche 1 bis 2, wobei das dynamische Modell des Robotermanipulators (1) ein konstantes Maß für die mit der zweiten zeitlichen Ableitung des Gelenkwinkelvektors multiplizierte und von dem Gelenkwinkelvektor abhängige Massematrix aufweist und eine von dem Gelenkwinkelvektor und von der ersten zeitlichen Ableitung des Gelenkwinkelvektors abhängige Coriolismatrix und einen vom Gelenkwinkelvektor abhängigen Term für den Schwerkrafteinfluss aufweist.

5. Robotermanipulator (1) nach einem der Ansprüche 1 bis 2, wobei das dynamische Modell des Robotermanipulators (1) eine von dem Gelenkwinkelvektor und von der ersten zeitlichen Ableitung des Gelenkwinkelvektors abhängige Coriolismatrix und einen vom Gelenkwinkelvektor abhängigen Term für den Schwerkrafteinfluss aufweist, wobei die Summe aus der Coriolismatrix und dem Term für den Schwerkrafteinfluss mit einem zweiten vorgegebenen Faktor multipliziert ist.

6. Robotermanipulator (1) nach einem der vorhergehenden Ansprüche, wobei der Robotermanipulator (1) an dem zumindest einen der Gelenke (5) einen Drehmomentsensor (11) aufweist, wobei der Drehmomentsensor (11) zum Ausführen der sensorischen Ermittlung ausgeführt ist.

7. Robotermanipulator (1) nach einem der vorhergehenden Ansprüche, wobei die Steuereinheit (3) dazu ausgeführt ist, die Bremseinrichtung (7) zum Erzeugen des Restmoments mittels eines Saturierungselements mit variablen Schranken anzusteuern, wobei die variablen Schranken von dem vorgegeben maximal zulässigen Moment an dem zumindest einen der Gelenke (5) und von der sensorischen Ermittlung und/oder der Schätzung des aktuell an dem zumindest einen der Gelenke (5) auftretenden Moments abhängig sind.

8. Robotermanipulator (1) nach einem der vorhergehenden Ansprüche, wobei ein jeweiliges der Gelenke (5) eine jeweilige Steuereinheit (3) aufweist, und die jeweilige Steuereinheit (3) am jeweiligen der Gelenke (5) angeordnet ist und zum Ansteuern nur der jeweiligen am jeweiligen Gelenk (5) angeordneten Bremseinrichtung (7) ausgeführt ist.

9. Robotermanipulator (1) nach einem der vorhergehenden Ansprüche, wobei die Bremseinrichtung (7) ein elektrischer Motor zum Bewegen oder Abbremsen von an dem zumindest einen der Gelenke (5) angeordneten Gliedern relativ zueinander ist.

10. Verfahren zum Ansteuern einer Bremseinheit (7) eines Robotermanipulators (1) mit einer Vielzahl von durch Gelenken miteinander verbundenen Gliedern durch eine Steuereinheit (3), wobei zumindest eines der Gelenke (5) die Bremseinrichtung (7) aufweist, wobei die Bremseinrichtung (7) zum Erzeugen eines solchen Restmoments durch die Steuereinheit (3) angesteuert wird, dass ein vorgegebenes maximal zulässiges Moment an dem zumindest einen der Gelenke (5) nicht überschritten wird, wobei das Restmoment auf Basis einer sensorischen Ermittlung und/oder einer Schätzung des aktuell an dem zumindest einen der Gelenke (5) auftretenden Moments von der Steuereinheit (7) ermittelt wird, wobei die Schätzung auf - einem mit einem ersten vorgegebenen Faktor multiplizierten Maß für einen an dem zumindest einen der Gelenke (5) wirkenden Schwerkrafteinfluss, oder auf - einem den Schwerkrafteinfluss aufweisenden dynamischen Modell des Robotermanipulators (1) basiert, wobei der Schwerkrafteinfluss von der Steuereinheit (3) auf Basis eines

Gelenkwinkelvektors mit Gelenkwinkeln zwischen dem zumindest einen der Gelenke (5) und einem distalen Ende des Robotermanipulators (1) ermittelt wird.

Description:
Drehmomentbegrenztes Bremsen eines Robotermanipulators Die Erfindung betrifft einen Robotermanipulator mit einer Vielzahl von durch Gelenke miteinander verbundenen Gliedern, mit einer Steuereinheit, und insbesondere mit einer Bremseinheit, sowie ein Verfahren zum Ansteuern einer Bremseinheit eines Robotermanipulators mit einer Vielzahl von durch Gelenken miteinander verbundenen Gliedern durch eine ebensolche Steuereinheit.

Aufgabe der Erfindung ist es, die Bewegung eines Robotermanipulators so zu verzögern, dass ein maximales Bremsmoment an einem Gelenk des Robotermanipulators nicht überschritten wird. Die Erfindung ergibt sich aus den Merkmalen der unabhängigen Ansprüche. Vorteilhafte Weiterbildungen und Ausgestaltungen sind Gegenstand der abhängigen Ansprüche.

Ein erster Aspekt der Erfindung betrifft einen Robotermanipulator mit einer Vielzahl von durch Gelenke miteinander verbundenen Gliedern und mit einer Steuereinheit, wobei zumindest eines der Gelenke eine Bremseinrichtung aufweist und die Steuereinheit dazu ausgeführt ist, die Bremseinrichtung zum Erzeugen eines solchen Restmoments anzusteuern, dass ein vorgegebenes maximal zulässiges Moment an dem zumindest einen der Gelenke nicht überschritten wird, und das Restmoment auf Basis einer sensorischen Ermittlung und/oder einer Schätzung eines aktuell an dem zumindest einen der Gelenke auftretenden Moments zu ermitteln, wobei die Schätzung auf

- einem mit einem ersten vorgegebenen Faktor multiplizierten Maß für einen an dem zumindest einen der Gelenke wirkenden Schwerkrafteinfluss, oder auf

- einem den Schwerkrafteinfluss aufweisenden dynamischen Modell des Robotermanipulators basiert, wobei die Steuereinheit dazu ausgeführt ist, den Schwerkrafteinfluss auf Basis einer bekannten Masseverteilung des Robotermanipulators und auf Basis eines Gelenkwinkelvektors mit Gelenkwinkeln zwischen dem zumindest einen der Gelenke und einem distalen Ende des Robotermanipulators zu ermitteln. Die Komponenten des Robotermanipulators, insbesondere die Glieder und die Komponenten an den Gelenken, unterliegen durch ihre Masse dem Einfluss des Schwerefelds der Erde. Insbesondere diejenigen Komponenten, die vor und damit in Richtung des distalen Endes ab dem zumindest einen Gelenk angeordnet sind, wirken damit mit einer Kraft und/oder einem Moment auf das zumindest eine Gelenk. Nimmt dieses zumindest eine Gelenk nicht diese Kraft und/oder dieses Moment auf, so würden diese Komponenten in Richtung der Erde herunterfallen. Zusätzlich zu diesem statischen Schwerkrafteinfluss kann bei einer Bewegung des Robotermanipulators eine weitere Komponente zu der auf das zumindest eine Gelenk wirkenden Kraft und/oder dem wirkenden Moment hinzukommen, verursacht durch die Trägheit der Masse aller Komponenten ab dem zumindest einen Gelenk, welche für eine Coriolis-Beschleunigung bzw. Zentrifugal-Beschleunigung verantwortlich ist.

Es wird das aktuell wirkende Moment an dem zumindest einen Gelenk ermittelt. Dies erfolgt entweder durch sensorische Ermittlung, das heißt, dass insbesondere ein Drehmomentsensor das aktuell wirkende Moment erfasst, insbesondere durch Erfassen einer Dehnung an einem elastischen Material, dessen E-Modul bekannt ist. Alternativ (oder in Kombination) dazu erfolgt die Ermittlung des aktuell wirkenden Moments an dem zumindest einen Gelenk durch Schätzung. Die Schätzung erfolgt bevorzugt durch Multiplikation eines Maßes für einen an dem zumindest einen der Gelenke wirkenden Schwerkrafteinfluss mit einem ersten vorgegebenen Faktor:

Wobei hierin beschreiben: j : Die Schätzung des aktuell auf das zumindest eine Gelenk wirkenden Moments; q: Den aktuellen Gelenkwinkelvektor zumindest mit Gelenkwinkeln zwischen dem zumindest einen der Gelenke und dem distalen Ende des Robotermanipulators; : Den Schwerkrafteinfluss in Abhängigkeit des aktuellen Gelenkwinkelvektors; Den ersten vorgegebenen Faktor, bevorzugt gewählt als 140% ;

Die Schätzung erfolgt alternativ bevorzugt mittels eines den Schwerkrafteinfluss aufweisenden dynamischen Modells des Robotermanipulators. Dies wird in den weiteren sich anschließenden Ausführungsformen näher erläutert.

Die Steuereinheit ist bevorzugt am Roboter selbst angeordnet, alternativ bevorzugt mit diesem lediglich datentechnisch verbunden. Das Moment, das von der Bremseinrichtung zu erzeugen ist, ist im Allgemeinen als relative Stellgröße zu sehen, sodass das Restmoment einerseits als absoluter Wert ein Bremsmoment einer mechanischen Bremse sein kann, oder andererseits kann der Wert des Restmoments auf eine von der Steuereinheit erzeugte Stellgröße für einen elektrischen Motor des zumindest einen Gelenks addiert werden, sodass das Restmoment nur einen Teilbetrag der absoluten Stellgröße des Motors des zumindest einen Gelenks ausmacht. Im letzteren Fall entspricht die Bremseinheit einem Motor des zumindest einen Gelenks, das heißt sie stimmt mit einem Antrieb des zumindest einen Gelenks überein, da ein Antrieb sowohl zum Erzeugen eines positiven, beschleunigenden, Moments als auch zu einem negativen, verzögernden, Moment verwendet werden kann. Weiterhin bevorzugt kann das Restmoment durch eine Saturierung realisiert sein, um die Stellgröße für den Motor des zumindest einen Gelenks zu begrenzen. Die Differenz zwischen dem maximal zulässigen Moment und dem aktuellen Moment an dem zumindest einem Gelenk stellt insbesondere eine obere Schranke für das Restmoment dar. Bevorzugt ist die Steuereinheit dazu ausgeführt, das Restmoment in Höhe dieser Differenz zu bestimmen. Vorteilhaft wird dadurch das höchstmögliche Restmoment, ohne das vorgegebene maximal zulässige Moment an dem zumindest einen Gelenk zu übersteigen, verwendet.

Es ist eine vorteilhafte Wirkung der Erfindung, dass die Sicherheit beim Betrieb eines Robotermanipulators insbesondere dadurch erhöht wird, dass ein erzeugtes Bremsmoment an zumindest einem Glied des Robotermanipulators mit einer vorgegebenen Grenze so abgeglichen wird, dass das erzeugte Bremsmoment die vorgegebene Grenze nicht übersteigt.

Gemäß einer vorteilhaften Ausführungsform ist die Steuereinheit dazu ausgeführt, den Gelenkwinkelvektor aus einer jeweiligen Aktuatorposition eines jeweiligen an einem jeweiligen Gelenk angeordneten Aktuators zwischen dem zumindest einen der Gelenke und einem distalen Ende des Robotermanipulators zu ermitteln.

Gemäß dieser Ausführungsform wird die Schätzung für das aktuell anliegende Moment durch Multiplikation eines Maßes für einen an dem zumindest einen der Gelenke wirkenden Schwerkrafteinfluss mit dem ersten vorgegebenen Faktor durch: oder im Falle eines Getriebes mit dem Übersetzungsverhältnis n durch: =g{ n- e)-f 1 ermittelt, worin angeben: g: Einen Vektor von Aktuatorpositionen, insbesondere von Motoren an denjenigen Gelenken, deren Gelenkwinkel ^ im obigen Fall ermittelt werden; und Den Schwerkrafteinfluss in Abhängigkeit des aktuellen Vektors der

Aktuatorpositionen;

Gemäß einer weiteren vorteilhaften Ausführungsform ist die Steuereinheit dazu ausgeführt, den Schwerkrafteinfluss auf Basis einer Masseverteilung des Robotermanipulators zu ermitteln. Bevorzugt umfasst die Masseverteilung des Robotermanipulators auch eine Relativposition eines Schwerpunkts einer Last am Robotermanipulator relativ zum Robotermanipulator.

Gemäß einer weiteren vorteilhaften Ausführungsform weist das dynamische Modell des Robotermanipulators eine mit einer zweiten zeitlichen Ableitung des Gelenkwinkelvektors multiplizierte und von dem Gelenkwinkelvektor abhängige Massematrix und eine von dem Gelenkwinkelvektor und von der ersten zeitlichen Ableitung des Gelenkwinkelvektors abhängige Coriolismatrix und einen vom Gelenkwinkelvektor abhängigen Term für den Schwerkrafteinfluss auf. Bevorzugt wird die Schätzung insoweit ermittelt durch:

T =M{q)q + C{q, q)+g {q)

Hierin beschreiben: j : Die Schätzung des aktuell auf das zumindest eine Gelenk wirkenden Moments; q: Den aktuellen Gelenkwinkelvektor zumindest mit Gelenkwinkeln zwischen dem zumindest einen der Gelenke und dem distalen Ende des Robotermanipulators;

: Eine aktuelle Massenmatrix von Komponenten des Robotermanipulators in

Abhängigkeit des aktuellen Gelenkwinkelvektors; gj : Eine aktuelle Coriolismatrix von Komponenten des Robotermanipulators in

Abhängigkeit des aktuellen Gelenkwinkelvektors und seiner ersten zeitlichen Ableitung; : Den Schwerkrafteinfluss in Abhängigkeit des aktuellen Gelenkwinkelvektors;

Gemäß einer weiteren vorteilhaften Ausführungsform weist das dynamische Modell des Robotermanipulators ein konstantes Maß für die mit der zweiten zeitlichen Ableitung des Gelenkwinkelvektors multiplizierte und von dem Gelenkwinkelvektor abhängige Massenmatrix und eine von dem Gelenkwinkelvektor und von der ersten zeitlichen Ableitung des Gelenkwinkelvektors abhängige Coriolismatrix und einen vom Gelenkwinkelvektor abhängigen Term für den Schwerkrafteinfluss auf. Bevorzugt wird die Schätzung in Adaption der vorhergehenden Ausführungsform ermittelt durch: t j =B + C{ q, q)+g{q)

Hierin beschreibt: ß : eine vorgegebene obere Schranke für den Term M[q)q · wie °^ en beschrieben. Die weiteren Größen dieser Gleichung werden wie in der vorhergehenden Ausführungsform beschrieben verwendet.

Gemäß einer weiteren vorteilhaften Ausführungsform weist das dynamische Modell des Robotermanipulators eine von dem Gelenkwinkelvektor und von der ersten zeitlichen Ableitung des Gelenkwinkelvektors abhängige Coriolismatrix und einen vom Gelenkwinkelvektor abhängigen Term für den Schwerkrafteinfluss auf, wobei die Summe aus der Coriolismatrix und dem Term für den Schwerkrafteinfluss mit einem zweiten vorgegebenen Faktor multipliziert ist. Bevorzugt wird die Schätzung in Adaption der vor der vorhergehenden genannten Ausführungsform ermittelt durch:

Hierin beschreibt: f : den zweiten vorgegebenen Faktor; die weiteren Größen dieser Gleichung werden wie in der vor der vorhergehenden Ausführungsform beschrieben verwendet.

Gemäß einer weiteren vorteilhaften Ausführungsform ist der erste vorgegebene Faktor und/oder der zweite vorgegebene Faktor derart, dass das begrenzte Bremsmoment einen vorgegebenen Auslegungsfall nicht übersteigt. Bevorzugt wird für den ersten Faktor und/oder den zweiten Faktor jeweils ein heuristischer Faktor verwendet, der bei der Auslegung zur Dimensionierung von Komponenten des Robotermanipulators insbesondere an dem zumindest einen Gelenk verwendet wurde. Vorteilhaft wird so dasjenige maximal zulässige Moment, welches aus der Auslegungsphase des Robotermanipulators stammt, nicht überschritten.

Gemäß einer weiteren vorteilhaften Ausführungsform weist der Robotermanipulator an dem zumindest einen der Gelenke einen Drehmomentsensor auf, wobei der Drehmomentsensor zum Ausführen der sensorischen Ermittlung ausgeführt ist. Der Drehmomentsensor ist insbesondere zum direkten Erfassen einer Dehnung oder einer Verschiebung ausgeführt, die von einer Kraft oder einem Moment herrührt, welche auf ein elastisches Material mit bekanntem Spannungs- Dehnungsverhältnis wirkt. Bevorzugt wird ein speichenförmiger Drehmomentsensor verwendet.

Gemäß einer weiteren vorteilhaften Ausführungsform ist die Steuereinheit dazu ausgeführt, die Bremseinrichtung zum Erzeugen des Restmoments mittels eines Saturierungselements mit variablen Schranken anzusteuern, wobei die variablen Schranken von dem vorgegeben maximal zulässigen Moment an dem zumindest einen der Gelenke und von der sensorischen Ermittlung und/oder der Schätzung des aktuell an dem zumindest einen der Gelenke auftretenden Moments abhängig ist.

Gemäß einer weiteren vorteilhaften Ausführungsform weist ein jeweiliges der Gelenke eine jeweilige Steuereinheit auf, wobei die jeweilige Steuereinheit am jeweiligen der Gelenke angeordnet ist und zum Ansteuern nur der jeweiligen am jeweiligen Gelenk angeordneten Bremseinrichtung ausgeführt ist. Gemäß dieser Ausführungsform ist die Steuereinheit an einem jeweiligen Gelenk mit einer jeweiligen Bremse angeordnet. Vorteilhaft muss nicht der sogenannte "Master" des Robotermanipulators die erfindungsgemäße Aufgabe übernehmen, sondern das jeweilige Rechenmodul an einem jeweiligen Gelenk ist für die jeweilige Bremseinrichtung des jeweiligen Gelenks zuständig.

Gemäß einer weiteren vorteilhaften Ausführungsform ist die Steuereinheit eine zentrale Steuereinheit des Robotermanipulators, die für alle Gelenke mit einer Bremseinrichtung zum Ausführen der erfindungsgemäßen Aufgabe verwendet wird.

Gemäß einer weiteren vorteilhaften Ausführungsform ist die Bremseinrichtung ein elektrischer Motor zum Bewegen oder Abbremsen von an dem zumindest einen der Gelenke angeordneten Gliedern relativ zueinander. Diese Ausführungsform entspricht dem Fall, dass ein Antrieb des Robotermanipulators sowohl zum positiven Beschleunigen als auch zum negativen Verzögern von zumindest zwei durch ein Gelenk miteinander verbundenen Glieder dient. Vorteilhaft ist gemäß dieser Ausführungsform keine weitere separate, insbesondere mechanische, Bremsvorrichtung notwendig.

Ein weiterer Aspekt der Erfindung betrifft ein Verfahren zum Ansteuern einer Bremseinheit eines Robotermanipulators mit einer Vielzahl von durch Gelenken miteinander verbundenen Gliedern durch eine Steuereinheit, wobei zumindest eines der Gelenke eine solche Bremseinrichtung aufweist, wobei die Bremseinrichtung zum Erzeugen eines derartigen Restmoments durch die Steuereinheit angesteuert wird, dass ein vorgegebenes maximal zulässiges Moment an dem zumindest einen der Gelenke nicht überschritten wird, wobei das Restmoment auf Basis einer sensorischen Ermittlung und/oder einer Schätzung des aktuell an dem zumindest einen der Gelenke auftretenden Moments von der Steuereinheit ermittelt wird, wobei die Schätzung auf

- einem mit einem ersten vorgegebenen Faktor multiplizierten Maß für einen an dem zumindest einen der Gelenke wirkenden Schwerkrafteinfluss, oder auf

- einem den Schwerkrafteinfluss aufweisenden dynamischen Modell des Robotermanipulators basiert, wobei der Schwerkrafteinfluss von der Steuereinheit auf Basis eines Gelenkwinkelvektors mit Gelenkwinkeln zwischen dem zumindest einen der Gelenke und einem distalen Ende des Robotermanipulators ermittelt wird.

Vorteile und bevorzugte Weiterbildungen des vorgeschlagenen Verfahrens ergeben sich durch eine analoge und sinngemäße Übertragung der im Zusammenhang mit dem vorgeschlagenen Robotermanipulator vorstehend gemachten Ausführungen.

Weitere Vorteile, Merkmale und Einzelheiten ergeben sich aus der nachfolgenden Beschreibung, in der - gegebenenfalls unter Bezug auf die Zeichnung - zumindest ein Ausführungsbeispiel im Einzelnen beschrieben ist. Gleiche, ähnliche und/oder funktionsgleiche Teile sind mit gleichen Bezugszeichen versehen.

Es zeigen:

Fig. 1 einen Robotermanipulator gemäß einem Ausführungsbeispiel der Erfindung, und

Fig. 2 einen Robotermanipulator gemäß einem weiteren Ausführungsbeispiel der Erfindung.

Die Darstellungen in den Figuren sind schematisch und nicht maßstäblich.

Fig. 1 zeigt einen Robotermanipulator 1 mit einer Vielzahl von durch Gelenken miteinander verbundenen Gliedern. Der Robotermanipulator 1 weist eine zentrale Steuereinheit 3 auf, wobei an jedem der Gelenke 5 eine jeweilige Bremseinrichtung 7 angeordnet ist. Die jeweilige Bremseinrichtung 7 ist hierbei ein jeweiliger elektrischer Motor (Antrieb) zum Bewegen oder Abbremsen von an dem jeweiligen der Gelenke 5 angeordneten Glieder relativ zueinander. Der Einfachheit halber sind in der Fig. 1 nur zwei beispielhafte Gelenke 5 gezeigt. Die Steuereinheit 3 dient zum Erzeugen eines solchen jeweiligen Restmoments für die jeweilige Bremseinrichtung 7, dass ein jeweiliges vorgegebenes maximal zulässiges Moment an dem jeweiligen Gelenk 5 nicht überschritten wird. Für jedes der Gelenke 5 wird hierbei ein bestimmtes maximal zulässiges Moment vorgegeben. Das Restmoment wird hierbei auf Basis des maximal zulässigen Moments an dem jeweiligen Gelenk und auf Basis einer Schätzung des aktuell an dem zumindest einen der Gelenke 5 auftretenden Moments ermittelt, wobei die Schätzung auf einem den Schwerkrafteinfluss aufweisenden dynamischen Modell des Robotermanipulators 1 basiert. Die Steuereinheit 3 ermittelt dabei den Schwerkrafteinfluss auf Basis eines Gelenkwinkelvektors mit Gelenkwinkeln zwischen dem zumindest einen der Gelenke 5 und einem distalen Ende 9 des Robotermanipulators 1. Das dynamische Modell des Robotermanipulators 1 weist eine mit einer zweiten zeitlichen Ableitung des Gelenkwinkelvektors multiplizierte und von dem Gelenkwinkelvektor abhängige Massematrix und eine von dem Gelenkwinkelvektor und von der ersten zeitlichen Ableitung des Gelenkwinkelvektors abhängige Coriolismatrix und einen vom Gelenkwinkelvektor abhängigen Term für den Schwerkrafteinfluss auf und lautet:

T =M{q)q + C{q, q)+g {q)

Hierin beschreiben: : Die Schätzung des aktuell auf das zumindest eine Gelenk wirkenden Moments;; q: Den aktuellen Gelenkwinkelvektor mit Gelenkwinkeln zwischen dem zumindest einen der Gelenke und dem distalen Ende 9 des Robotermanipulators;

: Eine aktuelle Massenmatrix von Komponenten des Robotermanipulators in

Abhängigkeit des aktuellen Gelenkwinkelvektors; gj : Eine aktuelle Coriolismatrix von Komponenten des Robotermanipulators in

Abhängigkeit des aktuellen Gelenkwinkelvektors und seiner ersten zeitlichen Ableitung; : Den Schwerkrafteinfluss in Abhängigkeit des aktuellen Gelenkwinkelvektors;

Fig. 2 zeigt einen Robotermanipulator 1 , wiederum mit einer Vielzahl von durch Gelenken 5 miteinander verbundenen Gliedern. Der Robotermanipulator 1 weist an jedem der Gelenke 5 eine Bremseinheit 7 mit einer jeweiligen Steuereinheit 3 auf. Die jeweilige Bremseinrichtung 7 ist hierbei ein jeweiliger elektrischer Motor (Antrieb) zum Bewegen oder Abbremsen von an dem jeweiligen der Gelenke 5 angeordneten Glieder relativ zueinander. Der Einfachheit halber sind in der Fig. 1 nur zwei beispielhafte Gelenke 5 gezeigt. Die jeweilige Steuereinheit 3 dient zum Erzeugen eines solchen jeweiligen Restmoments für die jeweilige Bremseinrichtung 7, dass ein jeweiliges vorgegebenes maximal zulässiges Moment an dem jeweiligen Gelenk 5 nicht überschritten wird. Für jedes der Gelenke 5 wird hierbei ein bestimmtes maximal zulässiges Moment vorgegeben. Das jeweilige Restmoment wird auf Basis des maximal zulässigen Moments an dem jeweiligen Gelenk und auf Basis einer sensorischen Ermittlung des am jeweiligen der Gelenke 5 aktuell anliegenden Moments ermittelt. Zu diesem Zweck weist jedes der Gelenke 5 einen jeweiligen Drehmomentsensor 11 auf.

Obwohl die Erfindung im Detail durch bevorzugte Ausführungsbeispiele näher illustriert und erläutert wurde, so ist die Erfindung nicht durch die offenbarten Beispiele eingeschränkt und andere Variationen können vom Fachmann hieraus abgeleitet werden, ohne den Schutzumfang der Erfindung zu verlassen. Es ist daher klar, dass eine Vielzahl von Variationsmöglichkeiten existiert. Es ist ebenfalls klar, dass beispielhaft genannte Ausführungsformen wirklich nur Beispiele darstellen, die nicht in irgendeiner Weise als Begrenzung etwa des Schutzbereichs, der Anwendungsmöglichkeiten oder der Konfiguration der Erfindung aufzufassen sind. Vielmehr versetzen die vorhergehende

Beschreibung und die Figurenbeschreibung den Fachmann in die Lage, die beispielhaften Ausführungsformen konkret umzusetzen, wobei der Fachmann in Kenntnis des offenbarten Erfindungsgedankens vielfältige Änderungen, beispielsweise hinsichtlich der Funktion oder der Anordnung einzelner, in einer beispielhaften Ausführungsform genannter Elemente, vornehmen kann, ohne den Schutzbereich zu verlassen, der durch die Ansprüche und deren rechtliche Entsprechungen, wie etwa weitergehende Erläuterungen in der Beschreibung, definiert wird.

Bezugszeichenliste

I Robotermanipulator 3 Steuereinheit

5 das zumindest eine der Gelenke

7 Bremseinrichtung

9 distales Ende des Robotermanipulators

II Drehmomentsensor