Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
WIRELESS DEVICE GROUPING MECHANISMS AND NEWTORK CONFIGURATION FOR FALSE PAGING REDUCTION
Document Type and Number:
WIPO Patent Application WO/2021/162617
Kind Code:
A1
Abstract:
A wireless device, UE, in a communication network can receive a paging configuration indicating a paging occasion, PO, from a network node. The UE can further receive a downlink control information, DCI, on a physical downlink control channel, PDCCH, during the PO. The UE can further determine whether to receive data on a physical downlink shared channel, PDSCH, associated with the PDCCH based on the DCI and/or the paging configurations.

Inventors:
NADER ALI (SE)
MALEKI SINA (SE)
REIAL ANDRES (SE)
Application Number:
PCT/SE2021/050110
Publication Date:
August 19, 2021
Filing Date:
February 11, 2021
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ERICSSON TELEFON AB L M (SE)
International Classes:
H04W68/02; H04W52/02
Domestic Patent References:
WO2019063867A12019-04-04
WO2021018531A12021-02-04
Other References:
ERICSSON: "False alarms with Paging", vol. RAN WG2, no. Reno, USA; 20190513 - 20190517, 3 May 2019 (2019-05-03), XP051710916, Retrieved from the Internet [retrieved on 20190503]
HUAWEI ET AL: "Discussion on paging enhancement for UE power saving", vol. RAN WG2, no. Reno, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), XP051730353, Retrieved from the Internet [retrieved on 20190513]
Attorney, Agent or Firm:
BOU FAICAL, Roger (SE)
Download PDF:
Claims:
CLAIMS

What is Claimed is:

1. A method of operating a wireless device, UE, in a communication network, the method comprising: receiving (720) a paging configuration indicating a paging occasion, PO, from a network node; receiving (730) a downlink control information, DCI, on a physical downlink control channel, PDCCH, during the PO; and determining (740) whether to receive data on a physical downlink shared channel, PDSCH, associated with the PDCCH based on the DCI and/or the paging configurations.

2. The method of Claim 1, wherein the paging configuration comprises an indication of a group that the UE has been assigned, wherein determining whether to receive data on the PDSCH associated with the PDCCH based on the DCI and the paging configurations comprises: determining whether the DCI comprises one or more indicator bits indicating the group that the UE has been assigned, responsive to determining that the DCI comprises the one or more indicator bits indicating the group that the UE has been assigned, determining to receive the data on the PDSCH associated with the PDCCH, and responsive to determining that the DCI does not comprise the one or more indicator bits indicating the group that the UE has been assigned, determining to remain in a reduced power state during a time window associated with the PDSCH.

3. The method of Claims 1-2, wherein determining whether to receive the data on the PDSCH associated with the PDCCH based on the DCI and the paging configurations comprises: determining (810) that the network node will retransmit the data during a later PDSCH; determining (820) that power consumption will be reduced by receiving the data on the later PDSCH rather than the PDSCH associated with the PDCCH; and responsive to determining that the network node will retransmit the data during a later PDSCH and determining that power consumption will be reduced by receiving the data on the later PDSCH rather than the PDSCH associated with the PDCCH, remaining (840) in a reduced power state during a time interval associated with the PDSCH.

4. The method of any of Claims 1-3, further comprising: recording (750) paging statistics including one or more of how often the UE is falsely paged, in what areas the UE is falsely paged, at what times the UE is falsely paged; and transmitting (760) the paging statistics to the network node.

5. The method of any of Claims 2-4, further comprising: transmitting (710) a first message to the network node indicating the UE supports group paging, wherein receiving the paging configurations comprises receiving a second message from the network node indicating a paging group that the UE is assigned.

6. The method of Claim 5, wherein the first message further includes information associated with the UE, the information comprising at least one of primary tasks performed by the UE, capabilities of the UE, a type of the UE, and a preferred minimum scheduling offset.

7. A method of operating a wireless device, UE, in a communication network, the method comprising: recording (750) paging statistics including one or more of how often the UE is falsely paged, in what areas the UE is falsely paged, at what times the UE is falsely paged; and transmitting (760) the paging statistics to the network node.

8. The method of Claim 7, further comprising any of the operations of Claims 1-6.

9. A method of operating a wireless device, UE, in a communication network, the method comprising: determining (810) that a downlink control information, DCI, on a physical downlink control channel, PDCCH, during a paging occasion, PO, indicates data associated with the UE is available for being received on a physical downlink shared channel, PDSCH, associated with the PDCCH; determining (820) that the network node will retransmit the data during a later PDSCH; determining (830) that power consumption will be reduced by receiving the data on the later PDSCH rather than the PDSCH associated with the PDCCH; and responsive to determining that the network node will retransmit the data during a later PDSCH and determining that power consumption will be reduced by receiving the data on the later PDSCH rather than the PDSCH associated with the PDCCH, remaining (840) in a reduced power state during a time window associated with the PDSCH.

10. The method of Claim 9, further comprising the operations of any of Claims 1-8.

11. A method of operating a network node in a communication network, the method comprising: assigning (610) a wireless device, UE, operating in the communication network to a group associated with a paging occasion, PO, in a discontinuous reception, DRX, cycle based on information associated with the UE; communicating (620) paging configurations to the UE, the paging configurations based on the group.

12. The method of Claim 11, wherein assigning the UE to the group comprises assigning the UE to the group based on one or more of a subscription associated with the UE, a UE identity associated with the UE, a UE type associated with the UE, a UE sub-subtype associated with the UE, capabilities of the UE, and a version of the UE.

13. The method of any of Claims 11-12, wherein assigning the UE to the group is performed dynamically based on a frequency of pages associated with the UE.

14. The method of any of Claims 11-13, wherein communicating the paging configurations to the UE comprises, responsive to assigning the UE to the group, transmitting paging configurations based on the group to the UE via a dedicated or broadcast signal.

15. The method of any of Claims 11-14, wherein the paging configurations comprises one or more of a number of frames, frame offset, number of POs associated with the frames, a position of the POs associated with the frame, and a minimum scheduling offset.

16. The method of any of Claims 11-15, wherein the paging configurations comprises an indication of the group, the method further comprising: determining (630) there is data to be communicated to the UE; responsive to determining that there is data to be communicated to the UE, transmitting (640) downlink control information, DCI, on a physical downlink control channel, PDCCH, during the PO, the DCI including a set of one or more indicator bits indicating the group.

17. The method of any of Claims 11-16, further comprising: receiving (650) paging statistics from the UE, the paging statistics including one or more of how often the UE is falsely paged, in what areas the UE is falsely paged, at what times the UE is falsely paged; and reassigning (660) the UE to another group associated with another PO in the DRX cycle based on the paging statistics.

18. The method of any of Claims 11-17, wherein assigning the UE to the group associated with the PO in the DRX cycle comprises: determining a UE identity that will be associated with a group associated with the PO; and assigning the UE identity to the UE based on the information associated with the UE.

19. A wireless device (300) comprising: processing circuitry (303); and memory (305) coupled with the processing circuitry, wherein the memory includes instructions that when executed by the processing circuitry cause the wireless device to perform operations comprising any of the operations of Claims 1-10.

20. A network node (400, 500) comprising: processing circuitry (403, 503); and memory (405, 505) coupled with the processing circuitry, wherein the memory includes instructions that when executed by the processing circuitry cause the wireless device to perform operations comprising any of the operations of Claims 11-18.

21. A wireless device (300) adapted to perform operations, the operations comprising any of the operations of Claims 1-10.

22. A network node (400, 500) adapted to perform operations, the operations comprising any of the operations of Claims 11-18.

23. A computer program comprising program code to be executed by processing circuitry (303) of a wireless device (300), whereby execution of the program code causes the wireless device to perform operations comprising any of the operations of Claims 1-10.

24. A computer program comprising program code to be executed by processing circuitry (403, 503) of a network node (400, 500), whereby execution of the program code causes the network node to perform operations comprising any of the operations of Claims 11-18.

25. A computer program product comprising a non-transitory storage medium (305) including program code to be executed by processing circuitry (303) of a wireless device (300), whereby execution of the program code causes the wireless device to perform operations comprising any of the operations of Claims 1-10.

26. A computer program product comprising a non-transitory storage medium (405, 505) including program code to be executed by processing circuitry (403, 503) of a network node (400, 500), whereby execution of the program code causes the network node to perform operations comprising any of the operations of Claims 11-18.

Description:
WIRELESS DEVICE GROUPING MECHANISMS AND NEWTORK CONFIGURATION FOR FALSE PAGING REDUCTION

TECHNICAL FIELD

[0001] The present disclosure relates generally to communications, and more particularly to communication methods and related devices and nodes supporting wireless communications.

BACKGROUND

[0002] A 5 th Generation (“5G”)/new radio (“NR”) wireless device/user equipment (“UE”) in RRC IDLE and RRC INACTIVE states operates in a discontinuous reception (“DRX”) mode enabling it to save power. During this mode, the UE occasionally wakes up according to a network (“NW”)-configured scheme and listens to a paging channel. In case the NW is interested in reaching the UE, it pages the UE at these configured occasions whereby the UE establishes a connection to the NW. The NW initially tries to page the UE in last known locations (e.g., cell(s)), but in case the UE does not respond to the paging, the NW can expand the paging area and repeats the paging message (e.g., pages the UE in more cells).

[0003] The paging message from the NW can be either initiated by the Core NW (“CN”) or the base station (“gNB”) itself. More specifically, the CN-Initiated paging is used to reach the UEs in RRC IDLE state, whereas the gNB-Initiated paging (aka radio access node (“RAN”) paging) is used to reach UEs in RRC INACTIVE state.

[0004] The paging message from the NW is carried out via a physical downlink control channel (“PDCCH”)/physical downlink shared channel (“PDSCH”) combo similar to other scheduled data in the downlink (“DL”). When the NW has DL data for a UE, it transmits on the PDCCH, a Downlink Control Information (“DCI”) container with details about where and how the UE can find data in a PDSCH. Various formats of DCI exist in the 3 rd Generation Partnership Project (“3GPP”) specifications; for the paging message a DCI format 1 0 is used for which the generated Cyclic Redundancy Check (“CRC”) bits of the DCI are scrambled with a specific value called P-RNTI (0XFFFE).

[0005] The NW may configure a certain amount of paging occasions (“Pos”) per DRX cycle (e.g. a cycle of 1.28 seconds). In current specifications, up to 4 POs per frame can be configured by the NW. This information is broadcast over the air in system information. When a UE registers in the NW, it gets assigned a UE identity called 5G-S-TMSI. This identity is used by the UE and NW in a formula specified by 3 GPP to derive in which of the configured occasions (in which frame and which PO associated to the frame) the UE will listen for a potential paging message. It shall be noted that several UEs could be listening for a potential paging message at the very same occasion. In case the UEs detect a paging DCI (e.g., DCI 1 0 with P-RNTI-scrambled CRC), they have to look in the payload of PDSCH to see whether their identity is present and if the paging message was intended for them. The payload of the PDSCH might carry up to 32 identities; e.g., up to 32 UEs may be paged at the very same occasion. Even though a UE’s 5G-S-TMSI ID is used in the formulas for deriving the occasion, the identity that the UE looks for inside the PDSCH may be of other type. In case the UE is in RRC IDLE state it looks for its 5G-S-TMSI (e.g., looks for CN-Initiated paging message), whereas in case the UE is in RRC INACTIVE state, it has to look both for 5G-S-TMSI, and the RAN-assigned I-RNTI identity. For example, a UE in RRC INACTIVE state may be either paged by the CN or the RAN and hence needs to look for both assigned identities.

[0006] The timing between the paging related PDCCH and the PDSCH reception (aka K0 value) is configured in the TDRA table for Initial BWP (pdsch-TimeDomainAllocationList provided in pdsch-ConfigCommon) and broadcast to UEs.

[0007] For Release 17, an NR UE type with lower capabilities will likely be introduced since it is supported and proposed by many companies. The intention is to have an MTC version of NR, for example Reduced capability NR device (RedCap), which is mid-end, filling the gap between eMBB NR and NB-IoT/LTE-M. E.g., to provide more efficient in-band operation with URLLC in industrial use cases.

SUMMARY

[0008] In some embodiments, a method of operating a network node in a communication network is provided. The method includes assigning a wireless device, UE, operating in the communication network to a group associated with a paging occasion, PO, in a discontinuous reception, DRX, cycle based on information associated with the UE. The method further includes communicating paging configurations to the UE, the paging configurations based on the group. [0009] In other embodiments, a method of operating a wireless device, UE, in a communication network is provided. The method includes receiving a paging configuration indicating a paging occasion, PO, from a network node. The method further includes receiving a downlink control information, DCI, on a physical downlink control channel, PDCCH, during the PO. The method further includes determining whether to receive data on a physical downlink shared channel, PDSCH, associated with the PDCCH based on the DCI and/or the paging configurations.

[0010] In other embodiments, a method of operating a wireless device, UE, in a communication network is provided. The method includes recording paging statistics including one or more of how often the UE is falsely paged, in what areas the UE is falsely paged, at what times the UE is falsely paged. The method further includes transmitting the paging statistics to the network node.

[0011] In other embodiments, a method of operating a wireless device, UE, in a communication network is provided. The method includes determining that a downlink control information, DCI, on a physical downlink control channel, PDCCH, during a paging occasion, PO, indicates data associated with the UE is available for being received on a physical downlink shared channel, PDSCH, associated with the PDCCH. The method further includes determining that the network node will retransmit the data during a later PDSCH. The method further includes determining that power consumption will be reduced by receiving the data on the later PDSCH rather than the PDSCH associated with the PDCCH. The method further includes, responsive to determining that the network node will retransmit the data during a later PDSCH and determining that power consumption will be reduced by receiving the data on the later PDSCH rather than the PDSCH associated with the PDCCH, remaining in a reduced power state during a time window associated with the PDSCH.

[0012] Various embodiments described herein disclose grouping criteria and mechanisms that minimizes unnecessary decoding of PDSCH related to paging and thereby improves UE power consumption.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] The accompanying drawings, which are included to provide a further understanding of the disclosure and are incorporated in and constitute a part of this application, illustrate certain non-limiting embodiments of inventive concepts. In the drawings: [0014] FIG. 1 is a schematic diagram illustrating an example of a communication network with UEs switching between a DRX mode to save power while receiving pages;

[0015] FIG. 2 is a schematic diagram illustrating an example of grouping UEs to reduce false paging according to some embodiments of inventive concepts;

[0016] FIG. 3 is a block diagram illustrating a wireless device UE according to some embodiments of inventive concepts;

[0017] FIG. 4 is a block diagram illustrating a radio access network RAN node (e.g., a base station eNB/gNB) according to some embodiments of inventive concepts;

[0018] FIG. 5 is a block diagram illustrating a core network CN node (e.g., an AMF node, an SMF node, etc.) according to some embodiments of inventive concepts;

[0019] FIG. 6 is a flow chart illustrating operations of a network node according to some embodiments of inventive concepts;

[0020] FIGS. 7-8 is a flow chart illustrating operations of a UE according to some embodiments of inventive concepts;

[0021] FIG. 9 is a block diagram of a wireless network in accordance with some embodiments;

[0022] FIG. 10 is a block diagram of a user equipment in accordance with some embodiments

[0023] FIG. 11 is a block diagram of a virtualization environment in accordance with some embodiments;

[0024] FIG. 12 is a block diagram of a telecommunication network connected via an intermediate network to a host computer in accordance with some embodiments;

[0025] FIG. 13 is a block diagram of a host computer communicating via a base station with a user equipment over a partially wireless connection in accordance with some embodiments;

[0026] FIG. 14 is a block diagram of methods implemented in a communication system including a host computer, a base station and a user equipment in accordance with some embodiments;

[0027] FIG. 15 is a block diagram of methods implemented in a communication system including a host computer, a base station and a user equipment in accordance with some embodiments; [0028] FIG. 16 is a block diagram of methods implemented in a communication system including a host computer, a base station and a user equipment in accordance with some embodiments; and

[0029] FIG. 17 is a block diagram of methods implemented in a communication system including a host computer, a base station and a user equipment in accordance with some embodiments.

DETAILED DESCRIPTION

[0030] Inventive concepts will now be described more fully hereinafter with reference to the accompanying drawings, in which examples of embodiments of inventive concepts are shown. Inventive concepts may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of present inventive concepts to those skilled in the art. It should also be noted that these embodiments are not mutually exclusive. Components from one embodiment may be tacitly assumed to be present/used in another embodiment.

[0031] The following description presents various embodiments of the disclosed subject matter. These embodiments are presented as teaching examples and are not to be construed as limiting the scope of the disclosed subject matter. For example, certain details of the described embodiments may be modified, omitted, or expanded upon without departing from the scope of the described subject matter.

[0032] FIG. 1 indicates that several UEs can be assigned to the same paging occasion (“PO”). As a result, when there is a paging message for any of the UEs listening to the same PO, all those UEs will have to decode the contents of the PDSCH to see whether the paging message was aimed for them. The case in which a UE decodes the PDSCH but does not find its identity (e.g., decoded PDSCH in vain) can be referred to as false paging. FIG. 1 further illustrates an example of false paging. Three UEs (A, B, and C) are assigned to the PO associated with slot 2, UEs A and C are paged, and UE B wakes up unnecessarily and decodes the PDSCH. UE B can be considered to have been falsely paged.

[0033] False paging can affect a UE’s power consumption, for example, due to radio-on time for receiving PDCCH/PDSCH, but also as a result of baseband processing capacity for PDSCH decoding which is an aspect for Reduced Capability (RedCap) type of devices. The more UEs that are present in a network and assigned to the same PO, the more power may be wasted.

[0034] A grouping indication can be provided where a UE, upon P-RNTI PDCCH detection, can determine whether it belongs to the subgroup being paged, where group indicator is provided in DCI contents. A specific PO instance can correspond to certain groups. Grouping criteria can be determined to form the subgroups to optimize UE power consumption or other relevant metrics. In some examples, grouping may separate Inactive UE from Idle UE paging.

In additional or alternative examples, an indicator indicates whether the paging message is a result of expanded paging in other cells than a last known cell. In additional or alternative examples, grouping by the NW can be based on the UEs’ paging history records (UEs often paged are in same group). In additional or alternative embodiments, grouping can be based on whether paging scheduling is cross-slot (PDCCH and PDSCH in different slots) or same-slot. In additional or alternative embodiments, grouping is based on pursuing even distribution of UEs in subgroups. However, these mechanisms may not address all use cases with false paging reduction potential. Therefore, there is a need for further techniques that can help reduce the false paging scenario and unnecessary UE power consumption.

[0035] Various embodiments described herein disclose grouping criteria and mechanisms that minimizes unnecessary decoding of PDSCH related to paging and thereby improves UE power consumption. In some embodiments, as illustrated in FIG. 2 UEs can be grouped to reduce false paging, for example, NW grouping criteria in DCI, configuration, and grouping indication; where grouping can be based on the UE belonging to e.g. eMBB, RedCap, or other category, RedCap UE sub-types/categories, operator-specific in (multi-operator shared networks), sub-groups of UEs of a broadcast/multi-cast function (e.g. Police, firefighter, etc.). In additional or alternative embodiments, the number of bits to be used in the DCI for grouping, and associated grouping criteria are configurable (e.g. an operator can dynamically configure the UEs such that x bits of DCI shall be used for a certain grouping criteria). In additional or alternative embodiments, NW configuration of group-specific parameters included in “PCCH-Config” (number of frames, frame offset, number of POs, PO locations) and “Time Domain Allocation List” (K0 values specific to paging and groups). In additional or alternative embodiments, the NW assigns UEs to various groups based on tailored assignment/reassignment of UE identity. In additional or alternative embodiments, the UE exploits grouping information. For example, if the NW has not configured cross-slot, the UE can adopt cross-slot behavior based on historical paging/false paging frequency knowledge. In additional or alternative embodiments, a UE can measure and report false paging statistics to the NW (e.g. via Minimization of Drive Test (MDT) framework).

[0036] FIG. 3 is a block diagram illustrating elements of a communication device UE 300 (also referred to as a mobile terminal, a mobile communication terminal, a wireless device, a wireless communication device, a wireless terminal, mobile device, a wireless communication terminal, user equipment, UE, a user equipment node/terminal/device, etc.) configured to provide wireless communication according to embodiments of inventive concepts. (Communication device 300 may be provided, for example, as discussed below with respect to wireless device 4110 of FIG. 9.) As shown, communication device UE may include an antenna 307 (e.g., corresponding to antenna 4111 of FIG. 9), and transceiver circuitry 301 (also referred to as a transceiver, e.g., corresponding to interface 4114 of FIG. 9) including a transmitter and a receiver configured to provide uplink and downlink radio communications with a base station(s) (e.g., corresponding to network node 4160 of FIG. 9, also referred to as a RAN node) of a radio access network. Communication device UE may also include processing circuitry 303 (also referred to as a processor, e.g., corresponding to processing circuitry 4120 of FIG. 9) coupled to the transceiver circuitry, and memory circuitry 305 (also referred to as memory, e.g., corresponding to device readable medium 4130 of FIG. 9) coupled to the processing circuitry. The memory circuitry 305 may include computer readable program code that when executed by the processing circuitry 303 causes the processing circuitry to perform operations according to embodiments disclosed herein. According to other embodiments, processing circuitry 303 may be defined to include memory so that separate memory circuitry is not required. Communication device UE may also include an interface (such as a user interface) coupled with processing circuitry 303, and/or communication device UE may be incorporated in a vehicle.

[0037] As discussed herein, operations of communication device UE may be performed by processing circuitry 303 and/or transceiver circuitry 301. For example, processing circuitry 303 may control transceiver circuitry 301 to transmit communications through transceiver circuitry 301 over a radio interface to a radio access network node (also referred to as a base station) and/or to receive communications through transceiver circuitry 301 from a RAN node over a radio interface. Moreover, modules may be stored in memory circuitry 305, and these modules may provide instructions so that when instructions of a module are executed by processing circuitry 303, processing circuitry 303 performs respective operations (e.g., operations discussed below with respect to Example Embodiments relating to wireless communication devices).

[0038] FIG. 4 is a block diagram illustrating elements of a radio access network RAN node 400 (also referred to as a network node, base station, eNodeB/eNB, gNodeB/gNB, etc.) of a Radio Access Network (RAN) configured to provide cellular communication according to embodiments of inventive concepts. (RAN node 400 may be provided, for example, as discussed below with respect to network node 4160 of FIG. 9.) As shown, the RAN node may include transceiver circuitry 401 (also referred to as a transceiver, e.g., corresponding to portions of interface 4190 of FIG. 9) including a transmitter and a receiver configured to provide uplink and downlink radio communications with mobile terminals. The RAN node may include network interface circuitry 407 (also referred to as a network interface, e.g., corresponding to portions of interface 4190 of FIG. 9) configured to provide communications with other nodes (e.g., with other base stations) of the RAN and/or core network CN. The network node may also include processing circuitry 403 (also referred to as a processor, e.g., corresponding to processing circuitry 4170) coupled to the transceiver circuitry, and memory circuitry 405 (also referred to as memory, e.g., corresponding to device readable medium 4180 of FIG. 9) coupled to the processing circuitry. The memory circuitry 405 may include computer readable program code that when executed by the processing circuitry 403 causes the processing circuitry to perform operations according to embodiments disclosed herein. According to other embodiments, processing circuitry 403 may be defined to include memory so that a separate memory circuitry is not required.

[0039] As discussed herein, operations of the RAN node may be performed by processing circuitry 403, network interface 407, and/or transceiver 401. For example, processing circuitry 403 may control transceiver 401 to transmit downlink communications through transceiver 401 over a radio interface to one or more mobile terminals UEs and/or to receive uplink communications through transceiver 401 from one or more mobile terminals UEs over a radio interface. Similarly, processing circuitry 403 may control network interface 407 to transmit communications through network interface 407 to one or more other network nodes and/or to receive communications through network interface from one or more other network nodes. Moreover, modules may be stored in memory 405, and these modules may provide instructions so that when instructions of a module are executed by processing circuitry 403, processing circuitry 403 performs respective operations (e.g., operations discussed below with respect to Example Embodiments relating to RAN nodes).

[0040] According to some other embodiments, a network node may be implemented as a core network CN node without a transceiver. In such embodiments, transmission to a wireless communication device UE may be initiated by the network node so that transmission to the wireless communication device UE is provided through a network node including a transceiver (e.g., through a base station or RAN node). According to embodiments where the network node is a RAN node including a transceiver, initiating transmission may include transmitting through the transceiver.

[0041] FIG. 5 is a block diagram illustrating elements of a core network CN node (e.g., an SMF node, an AMF node, etc.) of a communication network configured to provide cellular communication according to embodiments of inventive concepts. As shown, the CN node may include network interface circuitry 507 (also referred to as a network interface) configured to provide communications with other nodes of the core network and/or the radio access network RAN. The CN node may also include a processing circuitry 503 (also referred to as a processor) coupled to the network interface circuitry, and memory circuitry 505 (also referred to as memory) coupled to the processing circuitry. The memory circuitry 505 may include computer readable program code that when executed by the processing circuitry 503 causes the processing circuitry to perform operations according to embodiments disclosed herein. According to other embodiments, processing circuitry 503 may be defined to include memory so that a separate memory circuitry is not required.

[0042] As discussed herein, operations of the CN node may be performed by processing circuitry 503 and/or network interface circuitry 507. For example, processing circuitry 503 may control network interface circuitry 507 to transmit communications through network interface circuitry 507 to one or more other network nodes and/or to receive communications through network interface circuitry from one or more other network nodes. Moreover, modules may be stored in memory 505, and these modules may provide instructions so that when instructions of a module are executed by processing circuitry 503, processing circuitry 503 performs respective operations (e.g., operations discussed below with respect to Example Embodiments relating to core network nodes).

[0043] Various embodiments described herein address the issue of false paging by providing additional indications to a UE at PDCCH decoding time that indicates whether the detection of a P-RNTI PDCCH should be interpreted as signal for PDSCH reception for paging message reception. In some embodiments, if the UE determines that it does not belong to a subgroup indicated in the paging DCI, it will not proceed with PDSCH reception and can save energy. Indicators of various type are introduced in the content of the DCI relevant for paging. Through provision of such indicators/information bits, UEs can reduce a risk of being falsely paged. Examples of the content of these indicators is outlined below in various embodiments that may be combined with each other. In additional or alternative embodiments, new configurations are introduced allowing the NW to specifically configure the various groups with the number of paging occasions (number of frames and POs), position of the occasions (frame of PO offsets), and scheduling characteristics of the occasions (PDCCH-PDSCH time relations).

[0044] There are UE-ID based formulas that divide the UEs among different frames and POs configured in the NW broadcast PCCH-Config (broadcast in SIB1). These formulas can distribute the UEs evenly among the frames and POs of the configuration with the assumption that UE IDs are randomly/evenly distributed among the UEs. The PO may be the only dimension where some idle UEs are triggered to decode PDSCH and not others - all UEs detecting a P-RNTI PDCCH in a given PO will proceed to decode the associated PDSCH, whereas UEs in other POs are not affected.

[0045] In some embodiments, in the context of paging, it is proposed that the NW, instead of a random distribution of UEs among POs, chooses to group UEs (or a subset of UEs) based on specific criteria. By the term subset of UEs being assigned to groups, it is meant that the NW might choose to let a certain population of the UEs in the NW be randomly distributed among POs as per existing methods, whereas another set of UEs specifically follows a newly introduced paging grouping procedure. In some examples, the NW groups the UEs dynamically and communicates the grouping to the UEs via dedicated/broadcast configuration. In additional or alternative examples, the NW statically/implicitly assigns UEs to a group based on one/combination of subscription, UE Identity, UE type (e.g. eMBB or Reduced Capability device), UE sub-subtype (e.g. various types of Reduced Capability devices), UE capability (based on SW/HW capability of the device), UE version (e.g. UEs of 3GPP Rel-17). The NW can decide whether to dynamically turn on/off the paging grouping feature/procedure in the NW whereby the UEs in the NW are informed about the feature availability via dedicated/broadcast configuration.

[0046] In additional or alternative embodiments, the UEs of the various groups are assigned to specific frames and POs each separately configured by specific characteristics. The characteristics includes one or more of the following parameters: number of frames, frame offset, number of POs associated with the frames, and specific position of the POs associated with the frames; all of which can be configured individually and updated dynamically in case the NW desires to update them (e.g. based on traffic load, time of day, or any other means some of which outlined below). This can, for example, be enabled by introduction of group-specific PDCCH- Cfg (PDCCH-Cfg is an existing 3GPP structure which is common to all UEs in the cell) containing the said parameters. For example, assume that two groups (say Gl, and G2) are configured by the NW, and the NW paging frame configuration for both Gl, and G2 is “ every - other frame”, and “frame offset” set to 1 for G2. Such an example leads to the UEs belonging to Gl are paged in even numbered frames whereas UEs of G2 in odd numbered frames not contributing to false paging among each other’s groups. In other examples, a similar exercise can be done on PO level residing in the frames.

[0047] In additional or alternative embodiments, further characteristics of the configuration include the PDCCH-PDSCH timing relations, called minimum scheduling offset.

In some examples, these timing relations are configured via a TDRA table provided in broadcast SIB1 (K0 list in pdsch-TimeDomainAllocationList of pdsch-ConfigCommon) and applicable to all Idle/Inactive related activity; e.g. affecting System Information reception, paging, and Random-Access procedure, etc. In some embodiments, it is proposed that this configuration is separately provided for paging and furthermore in one aspect provided per paging-related group and/or per PO, or per UE. This way UEs can benefit from having PDSCH available as fast as possible for System Information and Random-Access related procedures (e.g., K0=0 included in the table), whereas for paging, the UEs (or certain group of UEs) are configured with K0>0 with ability to enjoy power saving schemes associated with cross-slot scheduling (only receive PDCCH and turn off receiver, turn on again to receive PDSCH only processed PDCCH indicated paging for the group). Different ranges of K0>0 may be applicable to different types/groups of UEs, for example, less capable UEs might benefit from a longer distance between PDCCH and PDSCH. In some examples, for some group of UEs that are often paged and/or need to be reached immediately (e.g. URLLC type of devices, or UEs in RRC INACTIVE state) a configuration with K0=0 is suitable. Regarding the provision of a TDRA table to each group, or PO, or UE, either this can be done through a specific RRC Idle/Inactive mode TDRA table with RRC signaling in connected mode, or through RRC release command before the UE enters RRC Idle/Inactive, or with SI update using SIBn, where n>l.

[0048] In additional or alternative embodiments, the configurations outlined above may further be separate for different operators sharing the same equipment. For example, in a multi operator CN (MOCN) multi-operator RAN (MORAN) NW, the NW may configure separate paging capacity for subscribers of various operators within the NW. Hence, the configuration structures described above PDCCH-Config, TDRA tables, and DRX cycles can further be extended per operator (e.g. a list of the said configuration structures).

[0049] In additional or alternative embodiments, the NW may configure UEs to gather statistics for how often and in which areas and times they are falsely paged. Such statistics can be reported based through a framework such as MDT (Minimization of Drive Test). Based on this input the NW can distribute UEs among various groups or alternately reconfigure the paging configuration characteristics described earlier.

[0050] In additional or alternative embodiments, 3GPP formulas are used from which UEs are assigned to different PO potentially with different characteristics outlined in previous section. However, the input to the formulas (e.g., the UE Identity) is tailored and assigned to the UEs by the NW so that different UEs of interest get assigned to specific POs. The NW (e.g. the Core NW itself or based on input received from Radio NW), chooses the UE ID values so that the PO location determined using the present PO mapping formulas will be the PO designated for the relevant UE group. (As an extension, the PO formulas may also be modified for later- release UEs to provide additional PO allocation flexibility.) It is possible for the NW to re assign the UE to another identity in case it becomes desirable for the NW to assign to UE to another paging group either for the sake of simple distribution or for the sake of assigning the UE to a PO with specific and more suitable configuration (e.g. with cross-slot). As such, the group indication is somewhat implicit (e.g.,. not indicated per paging occasion). [0051] In additional or alternative embodiments, potentially combined with the implicit one above, a set of indicator bits (e.g., one or more indicator bits) in DCI may be used for indicating which subgroup(s) are targeted with the current paging message. For example, a bitfield can be configured in DCI format 1-0 scrambled with P-RNTI, and the bit field includes a bit combination referring to a specific group. In one aspect these number of indicator bits/code points are NW configurable. For example, the NW may configure which of the bits in the PDCCH DCI are to be used for grouping indication. Furthermore, the NW may explicitly, via configuration, assign a UE to look for a specific bit/code point in a specific position within the paging DCI. In additional or alternative examples, the UE might, based on certain criteria applicable to it, know which of the configured bits/code points it shall look for in the DCI.

When there is a paging DCI in a PO, the NW indicates via the aforementioned code points which of the subgroups that need to wake up and decode the PDSCH. In additional or alternative embodiments, the NW may configure the meaning (e.g., relevant group(s)), for each of the code points. For example, the NW may configure 8 specific groups via 3 bits in DCI, configure different multicast-capable devices/applications/subscribers to belong to various of these groups (potentially some UEs belonging to several groups), and also reserve a code point or alternately an indicator in case the NW wants all UEs listening to the PO shall wake up and decode the PDSCH; e.g. “lxxx” meaning that all should wake up, or reserving a specific value e.g. 000, or even not include any grouping bits for waking up all and 001 meaning UEs of group 1 should wake up, 010 for UEs of group 2, etc. In additional or alternative embodiments, in case the NW would like all the UEs within a PO to wake up, it does not send any bit combination within the paging group bitfield. The configuration of bits and combinations can be done from RRC signaling or SI update. In addition to grouping based on a specific bitmap in a configured specific bitfield for paging groups, the indication maybe also to an invalid index, e.g., indication to an invalid (reserved) MCS index.

[0052] In additional or alternative embodiments, multiple UE grouping criteria and multiple group indication bit sets may be used in a paging DCI. For example, a paging DCI may include two separate group indication bitmaps, one indicating mobility status and UE category.

A UE may also have group memberships allocated both in terms of its mobility status and its type/category. The UE will then demodulate and decode PDSCH if both group indication bitmaps indicate its group. Another UE may have only one group membership; it will then ignore the group indication bitmap in the DCI for the aspect where it has no assignment.

[0053] In additional or alternative embodiments, the group indication bit set in the paging DCI may further contain a separate override indicator indicating either explicitly or implicitly based on given situation (e.g. sunning service) that all UEs monitoring the PO, regardless of their group membership, should decode the associated PDSCH. Just for the sake of example, it might be so that the grouping bits are temporarily needed for a higher priority purpose (say public warning system) and therefore when such service is ongoing the UEs implicitly know that they have to wake up regardless of grouping info. If the override takes place (be it implicit or explicit), the UE monitoring the DCI may ignore any group indication bits in the DCI even if it associated with a group (e.g., mapped to the group or assigned to the group automatically), and receive data on the PDSCH (e.g., by sampling and decoding the PDSCH). If the override bit is not set, the UE with a group membership inspects group indication bits in the DCI and if the group it is assigned to is indicated, it decodes the PDSCH.

[0054] In additional or alternative embodiments, each UE is assigned to only one group at a time, while in another embodiment, the NW can assign the UE to different groups at the same time, e.g., a UE may belong to the groups mobile and RedCap at the same time, or only to one of them.

[0055] In additional or alternative embodiments, if the NW would like to change the UE group, in one approach, this can be done through SI update in the RRC Idle/Inactive, or in another approach, first page the UE, wake up, and then reconfigure through RRC signaling.

[0056] In some embodiments, UEs receive a paging configuration from the NW, where the configuration includes association with one or more groups of UEs. In additional or alternative embodiments, the paging configuration is transmitted prior to a need for paging due to pending data. In additional or alternative embodiments, the paging configuration includes a paging transmission, which is transmitted once there is a need for actual paging due to pending data. The configuration is further associated to one or more POs, and/or a bitmap in a bitfield in DCI format 1-0.

[0057] In additional or alternative embodiments, the UE monitors the paging DCI in the group specific PO, if paged, then it reads the PDSCH. [0058] In additional or alternative embodiments, if the paging DCI includes the bitmap (or any other indication methods mentioned above) to the group that the UE belongs to, the UE wakes up and read the paging PDSCH.

[0059] In additional or alternative embodiments, if the minimum scheduling offset k0>0, the UE may adopt any suitable sleeping scheme (e.g micro-sleep) until till PDSCH by turning off the RF parts of the receiver.

[0060] In additional or alternative embodiments, the UE may exploit knowledge about NW behavior with respect to paging, and/or paging grouping such that it is beneficial from UE power savings perspective irrespective of NW provided configurations.

[0061] The UE may despite TDRA tables including K0=0 (or any short K0 value not allowing the specific UE to adopt a sleep state between the PDCCH and PDSCH operations) choose to operate in a cross-slot manner (as if the K0 value was high enough for the UE to allow for a sleep state in-between the PDCCH-PDSCH operations). In one aspect, the UE might learn the paging strategy of the gNB with respect to paging repetition by e.g. not answering to a paging message and observe the behavior to see in case and how many times the NW repeats the paging message in case of no response from the UE side. Such paging message may be self- induced by the UE with the purpose of learning the behavior. Alternately, the NW behavior can be retrieved from an external application, node, or another UE. In case the paging message is repeated in case of missed paging, the UE takes the risk of operating in cross-slot manner and in case it notes that there was a PDCCH indicating that the UE should have taken the in-slot PDSCH, the UE changes behavior in the upcoming PO(s) until successfully paged. I one aspect the UE may correlate this behavior with potential paging grouping indicators inside the DCI. For example, the UE may operate in cross-slot manner despite configurations unless it sees that certain groups are being paged. The UE may have collected knowledge that typically, when a certain group of UEs are being paged, it is highly likely that it will become paged soon after and therefore change behavior to in-slot again minimizing the risk of lost paging message.

Conversely, the UE might learn that when some groups are paged (e.g. a mission critical multicast group), it will typically not be paged and operate in cross-slot in the meantime. Alternately the UE has learnt that it is typically paged during certain hours and/or with a certain inter-arrival time between the paging messages and outside of those occasions operates in cross slot manner. [0062] In additional or alternative embodiments, the UE indicates to the NW that it can support group paging. The capability signaling may further indicate that the UE may use group paging for power savings. The capability may further indicate other information, for example, the UE main tasks, or capabilities, or use cases and so on. In some examples, the UE may indicate ‘power saving desired’, ‘eMBB’, ‘RedCap’, ‘MC/BC’, ‘Police’, ‘expected paging rate’, etc. (not verbatim expressions but exemplifying input that would be relevant for paging configuration), or a combination of them.

[0063] In additional or alternative embodiments, the UE may provide more information either in shape of direct/indirect assistance information, or capability (indirect as in derived/understood by the NW from another source such as UE type, UE capability, Connected mode minimum K0 value indications, etc.) to help the NW in configuring a preferred paging group. E.g., the UE may mention the preferred configuration is ‘RedCap’ and K0>n, where n>0.

[0064] The NW receives the UE capability, and may decide to configure the UE based on the group paging concepts discussed in this invention. For example, the NW may receive capability of RedCap and power saving from one UE, and then decide to assign the UE to the RedCap group, and further configure a TDRA table for the UE excluding K0=0.

[0065] Operations of a network node will now be discussed with reference to the flow chart of FIG. 6 according to some embodiments of inventive concepts. For example, modules may be stored in memory 405 of FIG. 4, and these modules may provide instructions so that when the instructions of a module are executed by respective RAN node processing circuitry 403, processing circuitry 403 performs respective operations of the flow chart. Although FIG. 6 is described in reference to RAN node 400 (implemented using the structure of FIG. 4) other implementations are possible, for example, FIG. 6 can be described in reference to CN node 500.

[0066] FIG. 6 illustrates an example of a process performed by a network node.

[0067] At block 610, processing circuitry 403 assigns a UE to a group associated with a PO in a DRX cycle based on information associated with the UE. In some embodiments, assigning the UE to the group includes assigning the UE to the group based on one or more of a subscription associated with the UE, a UE identity associated with the UE, a UE type associated with the UE, a UE sub-subtype associated with the UE, capabilities of the UE, and a version of the UE. In additional or alternative embodiments, assigning the UE to the group is performed dynamically based on a frequency of pages associated with the UE. [0068] In some embodiments, assigning the UE to the group associated with the PO in the DRX cycle includes determining a UE identity that will be mapped/assigned to a group associated with the PO; and assigning the UE identity to the UE based on the information associated with the UE.

[0069] At block 620, processing circuitry 403 communicates, via transceiver 407, paging configurations to the UE. In some embodiments, communicating the paging configurations to the UE includes, responsive to assigning the UE to the group, transmitting paging configurations based on the group to the UE via a dedicated or broadcast signal. In additional or alternative embodiments, paging configurations include one or more of a number of frames, frame offset, number of POs associated with the frames, a position of the POs associated with the frame, and a minimum scheduling offset.

[0070] At block 630, processing circuitry 403 determines there is data to be communicated to the UE.

[0071] At block 640, processing circuitry 403 transmits, via transceiver 407, DCI on a PDCCH during the PO. In some embodiments, the DCI includes a set of one or more indicator bits indicating the group.

[0072] At block 650, processing circuitry 403 receives, via transceiver 407, paging statistics from the UE. In some embodiments, the paging statistics include one or more of how often the UE is falsely paged, in what areas the UE is falsely paged, at what times the UE is falsely paged; and

[0073] At block 660, processing circuitry 403 reassigns the UE to another group associated with another PO in the DRX cycle based on the paging statistics.

[0074] Various operations from the flow chart of FIG. 6 may be optional with respect to some embodiments of network nodes and related methods. Regarding methods of example embodiment 1 (set forth below), for example, operations of blocks 630, 640, 650, and 660 of FIG. 6 may be optional.

[0075] Operations of the communication device 300 (implemented using the structure of the block diagram of FIG. 3) will now be discussed with reference to the flow chart of FIGS. 7-8 according to some embodiments of inventive concepts. For example, modules may be stored in memory 305 of FIG. 3, and these modules may provide instructions so that when the instructions of a module are executed by respective communication device processing circuitry 303, processing circuitry 303 performs respective operations of the flow charts.

[0076] FIG. 7 illustrates an example of a process for a UE to receive pages based on paging configurations.

[0077] At block 710, processing circuitry 303 transmits, via transceiver 710, a message to a network node indicating the UE supports group paging. In some embodiments, the message includes additional information associated with the UE including primary tasks performed by the UE, capabilities of the UE, a type of the UE, and a preferred minimum scheduling offset.

[0078] At block 720, processing circuitry 303 receives, via transceiver 710, a paging configuration indicating a PO. In some embodiments, the paging configuration further includes an indication of a group that the UE has been assigned.

[0079] At block 730, processing circuitry 303 receives, via transceiver 710, a DCI on a PDCCH during the PO.

[0080] At block 740, processing circuitry 303 determines whether to receive data on a PDSCH associated with the PDCCH based on the DCI and/or the paging configuration. In some examples, the PDSCH is associated with the PDCCH based on the PDSCH being scheduled by the PDCCH. In additional or alternative examples, the PDSCH is associated with the PDCCH based on the PDSCH being configured by the PDCCH. In additional or alternative examples, the PDSCH is associated with the PDCCH based on a minimum scheduling offset indicating a timing of the PDSCH relative to the PDCCH.

[0081] In some embodiments, determining whether to receive data on the PDSCH associated with the PDCCH based on the DCI and the paging configurations includes determining whether the DCI includes one or more indicator bits indicating the group that the UE has been assigned. In some examples, responsive to determining that the DCI includes indicator bits indicating the group that the UE has been assigned, determining to receive the data on the PDSCH associated with the PDCCH. In additional or alternative examples, responsive to determining that the DCI does not include indicator bits indicating the group that the UE has been assigned, determining to remain in a reduced power state during a time window (e.g., a time slot) associated with the PDSCH.

[0082] In additional or alternative embodiments, determining whether to receive the data on the PDSCH associated with the PDCCH based on the DCI and the paging configurations includes determining that the network node will retransmit the data during a later PDSCH; determining that power consumption will be reduced by receiving the data on the later PDSCH rather than the PDSCH associated with the PDCCH; and responsive to determining that the network node will retransmit the data during a later PDSCH and determining that power consumption will be reduced by receiving the data on the later PDSCH rather than the PDSCH associated with the PDCCH, remaining in a reduced power state during a time interval associated with the PDSCH.

[0083] At block 750, processing circuitry 303 records paging statistics. In some embodiments, the paging statistics include one or more of how often the UE is falsely paged, in what areas the UE is falsely page, and at what times the UE is falsely paged.

[0084] At block 760, processing circuitry 303 transmits, via transceiver 710, the paging statistics to the network node. In some embodiments, in response to transmitting the paging statistics, the UE receives a new UE identity or a new group associated with a PO that will reduce false paging.

[0085] FIG. 8 illustrates an example of a paging process for a UE that includes determining whether to skip a PDSCH.

[0086] At block 810, processing circuitry 303 determines that a DCI on a PDCCH during a PO indicates data associated with the UE is available for being received on a PDSCH.

[0087] At block 820, processing circuitry 303 determines that the network node will retransmit the data during a later PDSCH.

[0088] At block 830, processing circuitry 303 determines that power consumption will be reduced by receiving the data on the later PDSCH.

[0089] At block 840, processing circuitry 303 determines whether to receive data on a PDSCH associated with the PDCCH based on the DCI and/or the paging configuration. In some embodiments, the processing circuitry 303 determines whether to receive the data in response to determining that the network node will retransmit the data during a later PDSCH and determining that power consumption will be reduced by receiving the data on the later PDSCH rather than the PDSCH associated with the PDCCH.

[0090] Various operations from the flow chart of FIGS. 7-8 may be optional with respect to some embodiments of communication devices and related methods. Regarding methods of example embodiment 16 (set forth below), for example, operations of blocks 710, 750, and 760 of FIG. 7 and blocks 810, 820, 830, and 840 of FIG. 8 may be optional. Regarding methods of example embodiment 30 (set forth below), for example, operations of blocks 710, 720, 730, and 740 of FIG. 7 and blocks 810, 820, 830, and 840 of FIG. 8 may be optional. Regarding methods of example embodiment 39 (set forth below), for example, operations of blocks 710, 720, 730, 740, 750, and 760 of FIG. 7 may be optional.

[0091] Example embodiments are discussed below.

[0092] Embodiment 1. A method of operating a network node in a communication network, the method comprising: assigning (610) a wireless device, UE, operating in the communication network to a group associated with a paging occasion, PO, in a discontinuous reception, DRX, cycle based on information associated with the UE; communicating (620) paging configurations to the UE, the paging configurations based on the group.

[0093] Embodiment 2. The method of Embodiment 1, wherein assigning the UE to the group comprises assigning the UE to the group based on one or more of a subscription associated with the UE, a UE identity associated with the UE, a UE type associated with the UE, a UE sub-subtype associated with the UE, capabilities of the UE, and a version of the UE.

[0094] Embodiment 3. The method of any of Embodiments 1-2, wherein assigning the UE to the group is performed dynamically based on a frequency of pages associated with the UE.

[0095] Embodiment 4. The method of any of Embodiments 1-3, wherein communicating the paging configurations to the UE comprises, responsive to assigning the UE to the group, transmitting paging configurations based on the group to the UE via a dedicated or broadcast signal. [0096] Embodiment 5. The method of any of Embodiments 1-4, wherein the paging configurations comprises one or more of a number of frames, frame offset, number of POs associated with the frames, a position of the POs associated with the frame, and a minimum scheduling offset.

[0097] Embodiment 6. The method of any of Embodiments 1-5, wherein the paging configurations comprises an indication of the group, the method further comprising: determining (630) there is data to be communicated to the UE; responsive to determining that there is data to be communicated to the UE, transmitting (640) downlink control information, DCI, on a physical downlink control channel, PDCCH, during the PO, the DCI including a set of indicator bits indicating the group.

[0098] Embodiment 7. The method of any of Embodiments 1-6, further comprising: receiving (650) paging statistics from the UE, the paging statistics including one or more of how often the UE is falsely paged, in what areas the UE is falsely paged, at what times the UE is falsely paged; and reassigning (660) the UE to another group associated with another PO in the DRX cycle based on the paging statistics.

[0099] Embodiment 8. The method of any of Embodiments 1-7, wherein assigning the UE to the group associated with the PO in the DRX cycle comprises: determining a UE identity that will be assigned to a group associated with the PO; and assigning the UE identity to the UE based on the information associated with the UE.

[0100] Embodiment 9. A network node (400, 500) comprising: processing circuitry (403, 503); and memory (405, 505) coupled with the processing circuitry, wherein the memory includes instructions that when executed by the processing circuitry cause the wireless device to perform operations, the operations comprising: assigning (610) a wireless device, UE, operating in the communication network to a group associated with a paging occasion, PO, in a discontinuous reception, DRX, cycle based on information associated with the wireless device; communicating (620) paging configurations to the UE, the paging configurations based on the group.

[0101] Embodiment 10. The network node of Embodiment 8, the operations further comprising any of Embodiments 2-8.

[0102] Embodiment 11. A network node (400, 500) adapted to perform operations, the operations comprising: assigning (610) a wireless device, UE, operating in the communication network to a group associated with a paging occasion, PO, in a discontinuous reception, DRX, cycle based on information associated with the wireless device; communicating (620) paging configurations to the UE, the paging configurations based on the group.

[0103] Embodiment 12. The network node of Embodiment 11, the operations further comprising any of Embodiments 2-8.

[0104] Embodiment 13. A computer program comprising program code to be executed by processing circuitry (403, 503) of a network node (400, 500), whereby execution of the program code causes the network node to perform operations, the operations comprising: assigning (610) a wireless device, UE, operating in the communication network to a group associated with a paging occasion, PO, in a discontinuous reception, DRX, cycle based on information associated with the wireless device; communicating (620) paging configurations to the UE, the paging configurations based on the group.

[0105] Embodiment 14. The computer program of Embodiment 13, the operations further comprising any of Embodiments 2-8. [0106] Embodiment 15. A computer program product comprising a non-transitory storage medium (405, 505) including program code to be executed by processing circuitry (403, 503) of a network node (400, 500), whereby execution of the program code causes the network node to perform operations, the operations comprising: assigning (610) a wireless device, UE, operating in the communication network to a group associated with a paging occasion, PO, in a discontinuous reception, DRX, cycle based on information associated with the wireless device; communicating (620) paging configurations to the UE, the paging configurations based on the group.

[0107] Embodiment 16. The computer program product of Embodiment 15, the operations further comprising any of Embodiments 2-8.

[0108] Embodiment 17. A method of operating a wireless device, UE, in a communication network, the method comprising: receiving (720) a paging configuration indicating a paging occasion, PO, from a network node; receiving (730) a downlink control information, DCI, on a physical downlink control channel, PDCCH, during the PO; and determining (740) whether to receive data on a physical downlink shared channel, PDSCH, associated with the PDCCH based on the DCI and/or the paging configurations.

[0109] Embodiment 18. The method of Embodiment 17, wherein the paging configuration comprises an indication of a group that the UE has been assigned, wherein determining whether to receive data on the PDSCH associated with the PDCCH based on the DCI and the paging configurations comprises: determining whether the DCI comprises indicator bits indicating the group that the UE has been assigned, responsive to determining that the DCI comprises indicator bits indicating the group that the UE has been assigned, determining to receive the data on the PDSCH associated with the PDCCH, and responsive to determining that the DCI does not comprise indicator bits indicating the group that the UE has been assigned, determining to remain in a reduced power state during a time slot associated with the PDSCH.

[0110] Embodiment 19. The method of Embodiments 17, wherein determining whether to receive the data on the PDSCH associated with the PDCCH based on the DCI and the paging configurations comprises: determining that the network node will retransmit the data during a later PDSCH; determining that power consumption will be reduced by receiving the data on the later PDSCH rather than the PDSCH associated with the PDCCH; and responsive to determining that the network node will retransmit the data during a later PDSCH and determining that power consumption will be reduced by receiving the data on the later PDSCH rather than the PDSCH associated with the PDCCH, remaining in a reduced power state during a time interval associated with the PDSCH.

[0111] Embodiment 20. The method of any of Embodiments 17-19, further comprising: recording (750) paging statistics including one or more of how often the UE is falsely paged, in what areas the UE is falsely paged, at what times the UE is falsely paged; and transmitting (760) the paging statistics to the network node.

[0112] Embodiment 21. The method of any of Embodiments 17-20, further comprising: transmitting (710) a first message to the network node indicating the UE supports group paging, wherein receiving the paging configurations comprises receiving a second message from the network node indicating a paging group that the UE is assigned. [0113] Embodiment 22. The method of Embodiment 21, wherein the first message further includes information associated with the UE, the information comprising at least one of primary tasks performed by the UE, capabilities of the UE, a type of the UE, and a preferred minimum scheduling offset.

[0114] Embodiment 23. A wireless device (300) comprising: processing circuitry (303); and memory (305) coupled with the processing circuitry, wherein the memory includes instructions that when executed by the processing circuitry cause the wireless device to perform operations, the operations comprising: receiving (720) paging configurations from a network node; receiving (730) a downlink control information, DCI, on a physical downlink control channel, PDCCH, during a paging occasion, PO, indicated in the paging configurations; and determining (740) whether to receive data on a physical downlink shared channel, PDSCH, associated with the PDCCH based on the DCI and the paging configurations.

[0115] Embodiment 24. The wireless device of Embodiment 23, the operations further comprising any of Embodiments 18-22.

[0116] Embodiment 25. A wireless device (300) adapted to perform operations, the operations comprising: receiving (720) paging configurations from a network node; receiving (730) a downlink control information, DCI, on a physical downlink control channel, PDCCH, during a paging occasion, PO, indicated in the paging configurations; and determining (740) whether to receive data on a physical downlink shared channel, PDSCH, associated with the PDCCH based on the DCI and the paging configurations.

[0117] Embodiment 26. The wireless device of Embodiment 25, the operations further comprising any of Embodiments 18-22. [0118] Embodiment 27. A computer program comprising program code to be executed by processing circuitry (303) of a wireless device (300), whereby execution of the program code causes the wireless device to perform operations, the operations comprising: receiving (720) paging configurations from a network node; receiving (730) a downlink control information, DCI, on a physical downlink control channel, PDCCH, during a paging occasion, PO, indicated in the paging configurations; and determining (740) whether to receive data on a physical downlink shared channel, PDSCH, associated with the PDCCH based on the DCI and the paging configurations.

[0119] Embodiment 28. The computer program of Embodiment 27, the operations further comprising any of Embodiments 18-22.

[0120] Embodiment 29. A computer program product comprising a non-transitory storage medium (305) including program code to be executed by processing circuitry (303) of a wireless device (300), whereby execution of the program code causes the wireless device to perform operations, the operations comprising: receiving (720) paging configurations from a network node; receiving (730) a downlink control information, DCI, on a physical downlink control channel, PDCCH, during a paging occasion, PO, indicated in the paging configurations; and determining (740) whether to receive data on a physical downlink shared channel, PDSCH, associated with the PDCCH based on the DCI and the paging configurations.

[0121] Embodiment 30. The computer program product of Embodiment 29, the operations further comprising any of Embodiments 18-22

[0122] Embodiment 31. A method of operating a wireless device, UE, in a communication network, the method comprising: recording (750) paging statistics including one or more of how often the UE is falsely paged, in what areas the UE is falsely paged, at what times the UE is falsely paged; and transmitting (760) the paging statistics to the network node. [0123] Embodiment 32. The method of Embodiment 31, further comprising any of the operations of Embodiments 17-22.

[0124] Embodiment 33. A wireless device (300) comprising: processing circuitry (303); and memory (305) coupled with the processing circuitry, wherein the memory includes instructions that when executed by the processing circuitry cause the wireless device to perform operations, the operations comprising: recording (750) paging statistics including one or more of how often the UE is falsely paged, in what areas the UE is falsely paged, at what times the UE is falsely paged; and transmitting (760) the paging statistics to the network node.

[0125] Embodiment 34. The wireless device of Embodiment 33, the operations further comprising any of Embodiments 17-22.

[0126] Embodiment 35. A wireless device (300) adapted to perform operations, the operations comprising: recording (750) paging statistics including one or more of how often the UE is falsely paged, in what areas the UE is falsely paged, at what times the UE is falsely paged; and transmitting (760) the paging statistics to the network node.

[0127] Embodiment 36. The wireless device of Embodiment 35, the operations further comprising any of Embodiments 17-22.

[0128] Embodiment 37. A computer program comprising program code to be executed by processing circuitry (303) of a wireless device (300), whereby execution of the program code causes the wireless device to perform operations, the operations comprising: recording (750) paging statistics including one or more of how often the UE is falsely paged, in what areas the UE is falsely paged, at what times the UE is falsely paged; and transmitting (760) the paging statistics to the network node. [0129] Embodiment 38. The computer program of Embodiment 37, the operations further comprising any of Embodiments 17-22.

[0130] Embodiment 39. A computer program product comprising a non-transitory storage medium (305) including program code to be executed by processing circuitry (303) of a wireless device (300), whereby execution of the program code causes the wireless device to perform operations, the operations comprising: recording (750) paging statistics including one or more of how often the UE is falsely paged, in what areas the UE is falsely paged, at what times the UE is falsely paged; and transmitting (760) the paging statistics to the network node.

[0131] Embodiment 40. The computer program product of Embodiment 39, the operations further comprising any of Embodiments 17-22.

[0132] Embodiment 41. A method of operating a wireless device, UE, in a communication network, the method comprising: determining (810) that a downlink control information, DCI, on a physical downlink control channel, PDCCH, during a paging occasion, PO, indicates data associated with the UE is available for being received on a physical downlink shared channel, PDSCH, associated with the PDCCH; determining (820) that the network node will retransmit the data during a later PDSCH; determining (830) that power consumption will be reduced by receiving the data on the later PDSCH rather than the PDSCH associated with the PDCCH; and responsive to determining that the network node will retransmit the data during a later PDSCH and determining that power consumption will be reduced by receiving the data on the later PDSCH rather than the PDSCH associated with the PDCCH, remaining (840) in a reduced power state during a time slot associated with the PDSCH.

[0133] Embodiment 42. The method of Embodiment 41, further comprising the operations of any of Embodiments 17-22. [0134] Embodiment 43. A wireless device (300) comprising: processing circuitry (303); and memory (305) coupled with the processing circuitry, wherein the memory includes instructions that when executed by the processing circuitry cause the wireless device to perform operations, the operations comprising: determining (810) that a downlink control information, DCI, on a physical downlink control channel, PDCCH, during a paging occasion, PO, indicates data associated with the UE is available for being received on a physical downlink shared channel, PDSCH, associated with the PDCCH; determining (820) that the network node will retransmit the data during a later

PDSCH; determining (830) that power consumption will be reduced by receiving the data on the later PDSCH rather than the PDSCH associated with the PDCCH; and responsive to determining that the network node will retransmit the data during a later PDSCH and determining that power consumption will be reduced by receiving the data on the later PDSCH rather than the PDSCH associated with the PDCCH, remaining (840) in a reduced power state during a time slot associated with the PDSCH.

[0135] Embodiment 44. The wireless device of Embodiment 43, the operations further comprising any of Embodiments 17-22.

[0136] Embodiment 45. A wireless device (300) adapted to perform operations, the operations comprising: determining (810) that a downlink control information, DCI, on a physical downlink control channel, PDCCH, during a paging occasion, PO, indicates data associated with the UE is available for being received on a physical downlink shared channel, PDSCH, associated with the PDCCH; determining (820) that the network node will retransmit the data during a later PDSCH; determining (830) that power consumption will be reduced by receiving the data on the later PDSCH rather than the PDSCH associated with the PDCCH; and responsive to determining that the network node will retransmit the data during a later PDSCH and determining that power consumption will be reduced by receiving the data on the later PDSCH rather than the PDSCH associated with the PDCCH, remaining (840) in a reduced power state during a time slot associated with the PDSCH.

[0137] Embodiment 46. The wireless device of Embodiment 45, the operations further comprising any of Embodiments 17-22.

[0138] Embodiment 47. A computer program comprising program code to be executed by processing circuitry (303) of a wireless device (300), whereby execution of the program code causes the wireless device to perform operations, the operations comprising: determining (810) that a downlink control information, DCI, on a physical downlink control channel, PDCCH, during a paging occasion, PO, indicates data associated with the UE is available for being received on a physical downlink shared channel, PDSCH, associated with the PDCCH; determining (820) that the network node will retransmit the data during a later PDSCH; determining (830) that power consumption will be reduced by receiving the data on the later PDSCH rather than the PDSCH associated with the PDCCH; and responsive to determining that the network node will retransmit the data during a later PDSCH and determining that power consumption will be reduced by receiving the data on the later PDSCH rather than the PDSCH associated with the PDCCH, remaining (840) in a reduced power state during a time slot associated with the PDSCH.

[0139] Embodiment 48. The computer program of Embodiment 47, the operations further comprising any of Embodiments 17-22.

[0140] Embodiment 49. A computer program product comprising a non-transitory storage medium (305) including program code to be executed by processing circuitry (303) of a wireless device (300), whereby execution of the program code causes the wireless device to perform operations, the operations comprising: determining (810) that a downlink control information, DCI, on a physical downlink control channel, PDCCH, during a paging occasion, PO, indicates data associated with the UE is available for being received on a physical downlink shared channel, PDSCH, associated with the PDCCH; determining (820) that the network node will retransmit the data during a later PDSCH; determining (830) that power consumption will be reduced by receiving the data on the later PDSCH rather than the PDSCH associated with the PDCCH; and responsive to determining that the network node will retransmit the data during a later PDSCH and determining that power consumption will be reduced by receiving the data on the later PDSCH rather than the PDSCH associated with the PDCCH, remaining (840) in a reduced power state during a time slot associated with the PDSCH.

[0141] Embodiment 50. The computer program product of Embodiment 49, the operations further comprising any of Embodiments 17-22.

[0142] Additional explanation is provided below.

[0143] Generally, all terms used herein are to be interpreted according to their ordinary meaning in the relevant technical field, unless a different meaning is clearly given and/or is implied from the context in which it is used. All references to a/an/the element, apparatus, component, means, step, etc. are to be interpreted openly as referring to at least one instance of the element, apparatus, component, means, step, etc., unless explicitly stated otherwise. The steps of any methods disclosed herein do not have to be performed in the exact order disclosed, unless a step is explicitly described as following or preceding another step and/or where it is implicit that a step must follow or precede another step. Any feature of any of the embodiments disclosed herein may be applied to any other embodiment, wherever appropriate. Likewise, any advantage of any of the embodiments may apply to any other embodiments, and vice versa.

Other objectives, features and advantages of the enclosed embodiments will be apparent from the following description.

[0144] Some of the embodiments contemplated herein will now be described more fully with reference to the accompanying drawings. Other embodiments, however, are contained within the scope of the subject matter disclosed herein, the disclosed subject matter should not be construed as limited to only the embodiments set forth herein; rather, these embodiments are provided by way of example to convey the scope of the subject matter to those skilled in the art.

[0145] FIG. 9 illustrates a wireless network in accordance with some embodiments.

[0146] Although the subject matter described herein may be implemented in any appropriate type of system using any suitable components, the embodiments disclosed herein are described in relation to a wireless network, such as the example wireless network illustrated in FIG. 9. For simplicity, the wireless network of FIG. 9 only depicts network 4106, network nodes 4160 and 4160b, and WDs 4110, 4110b, and 4110c (also referred to as mobile terminals). In practice, a wireless network may further include any additional elements suitable to support communication between wireless devices or between a wireless device and another communication device, such as a landline telephone, a service provider, or any other network node or end device. Of the illustrated components, network node 4160 and wireless device (WD) 4110 are depicted with additional detail. The wireless network may provide communication and other types of services to one or more wireless devices to facilitate the wireless devices’ access to and/or use of the services provided by, or via, the wireless network.

[0147] The wireless network may comprise and/or interface with any type of communication, telecommunication, data, cellular, and/or radio network or other similar type of system. In some embodiments, the wireless network may be configured to operate according to specific standards or other types of predefined rules or procedures. Thus, particular embodiments of the wireless network may implement communication standards, such as Global System for Mobile Communications (GSM), Universal Mobile Telecommunications System (UMTS), Long Term Evolution (LTE), and/or other suitable 2G, 3G, 4G, or 5G standards; wireless local area network (WLAN) standards, such as the IEEE 802.11 standards; and/or any other appropriate wireless communication standard, such as the Worldwide Interoperability for Microwave Access (WiMax), Bluetooth, Z-Wave and/or ZigBee standards.

[0148] Network 4106 may comprise one or more backhaul networks, core networks, IP networks, public switched telephone networks (PSTNs), packet data networks, optical networks, wide-area networks (WANs), local area networks (LANs), wireless local area networks (WLANs), wired networks, wireless networks, metropolitan area networks, and other networks to enable communication between devices. [0149] Network node 4160 and WD 4110 comprise various components described in more detail below. These components work together in order to provide network node and/or wireless device functionality, such as providing wireless connections in a wireless network. In different embodiments, the wireless network may comprise any number of wired or wireless networks, network nodes, base stations, controllers, wireless devices, relay stations, and/or any other components or systems that may facilitate or participate in the communication of data and/or signals whether via wired or wireless connections.

[0150] As used herein, network node refers to equipment capable, configured, arranged and/or operable to communicate directly or indirectly with a wireless device and/or with other network nodes or equipment in the wireless network to enable and/or provide wireless access to the wireless device and/or to perform other functions (e.g., administration) in the wireless network. Examples of network nodes include, but are not limited to, access points (APs) (e.g., radio access points), base stations (BSs) (e.g., radio base stations, Node Bs, evolved Node Bs (eNBs) and NR NodeBs (gNBs)). Base stations may be categorized based on the amount of coverage they provide (or, stated differently, their transmit power level) and may then also be referred to as femto base stations, pico base stations, micro base stations, or macro base stations. A base station may be a relay node or a relay donor node controlling a relay. A network node may also include one or more (or all) parts of a distributed radio base station such as centralized digital units and/or remote radio units (RRUs), sometimes referred to as Remote Radio Heads (RRHs). Such remote radio units may or may not be integrated with an antenna as an antenna integrated radio. Parts of a distributed radio base station may also be referred to as nodes in a distributed antenna system (DAS). Yet further examples of network nodes include multi standard radio (MSR) equipment such as MSR BSs, network controllers such as radio network controllers (RNCs) or base station controllers (BSCs), base transceiver stations (BTSs), transmission points, transmission nodes, multi-cell/multicast coordination entities (MCEs), core network nodes (e.g., MSCs, MMEs), O&M nodes, OSS nodes, SON nodes, positioning nodes (e.g., E-SMLCs), and/or MDTs. As another example, a network node may be a virtual network node as described in more detail below. More generally, however, network nodes may represent any suitable device (or group of devices) capable, configured, arranged, and/or operable to enable and/or provide a wireless device with access to the wireless network or to provide some service to a wireless device that has accessed the wireless network. [0151] In FIG. 9, network node 4160 includes processing circuitry 4170, device readable medium 4180, interface 4190, auxiliary equipment 4184, power source 4186, power circuitry 4187, and antenna 4162. Although network node 4160 illustrated in the example wireless network of FIG. 9 may represent a device that includes the illustrated combination of hardware components, other embodiments may comprise network nodes with different combinations of components. It is to be understood that a network node comprises any suitable combination of hardware and/or software needed to perform the tasks, features, functions and methods disclosed herein. Moreover, while the components of network node 4160 are depicted as single boxes located within a larger box, or nested within multiple boxes, in practice, a network node may comprise multiple different physical components that make up a single illustrated component (e.g., device readable medium 4180 may comprise multiple separate hard drives as well as multiple RAM modules).

[0152] Similarly, network node 4160 may be composed of multiple physically separate components (e.g., a NodeB component and a RNC component, or a BTS component and a BSC component, etc.), which may each have their own respective components. In certain scenarios in which network node 4160 comprises multiple separate components (e.g., BTS and BSC components), one or more of the separate components may be shared among several network nodes. For example, a single RNC may control multiple NodeB’ s. In such a scenario, each unique NodeB and RNC pair, may in some instances be considered a single separate network node. In some embodiments, network node 4160 may be configured to support multiple radio access technologies (RATs). In such embodiments, some components may be duplicated (e.g., separate device readable medium 4180 for the different RATs) and some components may be reused (e.g., the same antenna 4162 may be shared by the RATs). Network node 4160 may also include multiple sets of the various illustrated components for different wireless technologies integrated into network node 4160, such as, for example, GSM, WCDMA, LTE, NR, WiFi, or Bluetooth wireless technologies. These wireless technologies may be integrated into the same or different chip or set of chips and other components within network node 4160.

[0153] Processing circuitry 4170 is configured to perform any determining, calculating, or similar operations (e.g., certain obtaining operations) described herein as being provided by a network node. These operations performed by processing circuitry 4170 may include processing information obtained by processing circuitry 4170 by, for example, converting the obtained information into other information, comparing the obtained information or converted information to information stored in the network node, and/or performing one or more operations based on the obtained information or converted information, and as a result of said processing making a determination.

[0154] Processing circuitry 4170 may comprise a combination of one or more of a microprocessor, controller, microcontroller, central processing unit, digital signal processor, application-specific integrated circuit, field programmable gate array, or any other suitable computing device, resource, or combination of hardware, software and/or encoded logic operable to provide, either alone or in conjunction with other network node 4160 components, such as device readable medium 4180, network node 4160 functionality. For example, processing circuitry 4170 may execute instructions stored in device readable medium 4180 or in memory within processing circuitry 4170. Such functionality may include providing any of the various wireless features, functions, or benefits discussed herein. In some embodiments, processing circuitry 4170 may include a system on a chip (SOC).

[0155] In some embodiments, processing circuitry 4170 may include one or more of radio frequency (RF) transceiver circuitry 4172 and baseband processing circuitry 4174. In some embodiments, radio frequency (RF) transceiver circuitry 4172 and baseband processing circuitry 4174 may be on separate chips (or sets of chips), boards, or units, such as radio units and digital units. In alternative embodiments, part or all of RF transceiver circuitry 4172 and baseband processing circuitry 4174 may be on the same chip or set of chips, boards, or units

[0156] In certain embodiments, some or all of the functionality described herein as being provided by a network node, base station, eNB or other such network device may be performed by processing circuitry 4170 executing instructions stored on device readable medium 4180 or memory within processing circuitry 4170. In alternative embodiments, some or all of the functionality may be provided by processing circuitry 4170 without executing instructions stored on a separate or discrete device readable medium, such as in a hard-wired manner. In any of those embodiments, whether executing instructions stored on a device readable storage medium or not, processing circuitry 4170 can be configured to perform the described functionality. The benefits provided by such functionality are not limited to processing circuitry 4170 alone or to other components of network node 4160, but are enjoyed by network node 4160 as a whole, and/or by end users and the wireless network generally. [0157] Device readable medium 4180 may comprise any form of volatile or non-volatile computer readable memory including, without limitation, persistent storage, solid-state memory, remotely mounted memory, magnetic media, optical media, random access memory (RAM), read-only memory (ROM), mass storage media (for example, a hard disk), removable storage media (for example, a flash drive, a Compact Disk (CD) or a Digital Video Disk (DVD)), and/or any other volatile or non-volatile, non-transitory device readable and/or computer-executable memory devices that store information, data, and/or instructions that may be used by processing circuitry 4170. Device readable medium 4180 may store any suitable instructions, data or information, including a computer program, software, an application including one or more of logic, rules, code, tables, etc. and/or other instructions capable of being executed by processing circuitry 4170 and, utilized by network node 4160. Device readable medium 4180 may be used to store any calculations made by processing circuitry 4170 and/or any data received via interface 4190. In some embodiments, processing circuitry 4170 and device readable medium 4180 may be considered to be integrated.

[0158] Interface 4190 is used in the wired or wireless communication of signalling and/or data between network node 4160, network 4106, and/or WDs 4110. As illustrated, interface 4190 comprises port(s)/terminal(s) 4194 to send and receive data, for example to and from network 4106 over a wired connection. Interface 4190 also includes radio front end circuitry 4192 that may be coupled to, or in certain embodiments a part of, antenna 4162. Radio front end circuitry 4192 comprises filters 4198 and amplifiers 4196. Radio front end circuitry 4192 may be connected to antenna 4162 and processing circuitry 4170. Radio front end circuitry may be configured to condition signals communicated between antenna 4162 and processing circuitry 4170. Radio front end circuitry 4192 may receive digital data that is to be sent out to other network nodes or WDs via a wireless connection. Radio front end circuitry 4192 may convert the digital data into a radio signal having the appropriate channel and bandwidth parameters using a combination of filters 4198 and/or amplifiers 4196. The radio signal may then be transmitted via antenna 4162. Similarly, when receiving data, antenna 4162 may collect radio signals which are then converted into digital data by radio front end circuitry 4192. The digital data may be passed to processing circuitry 4170. In other embodiments, the interface may comprise different components and/or different combinations of components. [0159] In certain alternative embodiments, network node 4160 may not include separate radio front end circuitry 4192, instead, processing circuitry 4170 may comprise radio front end circuitry and may be connected to antenna 4162 without separate radio front end circuitry 4192. Similarly, in some embodiments, all or some of RF transceiver circuitry 4172 may be considered a part of interface 4190. In still other embodiments, interface 4190 may include one or more ports or terminals 4194, radio front end circuitry 4192, and RF transceiver circuitry 4172, as part of a radio unit (not shown), and interface 4190 may communicate with baseband processing circuitry 4174, which is part of a digital unit (not shown).

[0160] Antenna 4162 may include one or more antennas, or antenna arrays, configured to send and/or receive wireless signals. Antenna 4162 may be coupled to radio front end circuitry 4192 and may be any type of antenna capable of transmitting and receiving data and/or signals wirelessly. In some embodiments, antenna 4162 may comprise one or more omni-directional, sector or panel antennas operable to transmit/receive radio signals between, for example, 2 GHz and 66 GHz. An omni-directional antenna may be used to transmit/receive radio signals in any direction, a sector antenna may be used to transmit/receive radio signals from devices within a particular area, and a panel antenna may be a line of sight antenna used to transmit/receive radio signals in a relatively straight line. In some instances, the use of more than one antenna may be referred to as MIMO. In certain embodiments, antenna 4162 may be separate from network node 4160 and may be connectable to network node 4160 through an interface or port.

[0161] Antenna 4162, interface 4190, and/or processing circuitry 4170 may be configured to perform any receiving operations and/or certain obtaining operations described herein as being performed by a network node. Any information, data and/or signals may be received from a wireless device, another network node and/or any other network equipment. Similarly, antenna 4162, interface 4190, and/or processing circuitry 4170 may be configured to perform any transmitting operations described herein as being performed by a network node.

Any information, data and/or signals may be transmitted to a wireless device, another network node and/or any other network equipment.

[0162] Power circuitry 4187 may comprise, or be coupled to, power management circuitry and is configured to supply the components of network node 4160 with power for performing the functionality described herein. Power circuitry 4187 may receive power from power source 4186. Power source 4186 and/or power circuitry 4187 may be configured to provide power to the various components of network node 4160 in a form suitable for the respective components (e.g., at a voltage and current level needed for each respective component). Power source 4186 may either be included in, or external to, power circuitry 4187 and/or network node 4160. For example, network node 4160 may be connectable to an external power source (e.g., an electricity outlet) via an input circuitry or interface such as an electrical cable, whereby the external power source supplies power to power circuitry 4187. As a further example, power source 4186 may comprise a source of power in the form of a battery or battery pack which is connected to, or integrated in, power circuitry 4187. The battery may provide backup power should the external power source fail. Other types of power sources, such as photovoltaic devices, may also be used.

[0163] Alternative embodiments of network node 4160 may include additional components beyond those shown in FIG. 9 that may be responsible for providing certain aspects of the network node’s functionality, including any of the functionality described herein and/or any functionality necessary to support the subject matter described herein. For example, network node 4160 may include user interface equipment to allow input of information into network node 4160 and to allow output of information from network node 4160. This may allow a user to perform diagnostic, maintenance, repair, and other administrative functions for network node 4160.

[0164] As used herein, wireless device (WD) refers to a device capable, configured, arranged and/or operable to communicate wirelessly with network nodes and/or other wireless devices. Unless otherwise noted, the term WD may be used interchangeably herein with user equipment (UE). Communicating wirelessly may involve transmitting and/or receiving wireless signals using electromagnetic waves, radio waves, infrared waves, and/or other types of signals suitable for conveying information through air. In some embodiments, a WD may be configured to transmit and/or receive information without direct human interaction. For instance, a WD may be designed to transmit information to a network on a predetermined schedule, when triggered by an internal or external event, or in response to requests from the network. Examples of a WD include, but are not limited to, a smart phone, a mobile phone, a cell phone, a voice over IP (VoIP) phone, a wireless local loop phone, a desktop computer, a personal digital assistant (PDA), a wireless cameras, a gaming console or device, a music storage device, a playback appliance, a wearable terminal device, a wireless endpoint, a mobile station, a tablet, a laptop, a laptop-embedded equipment (LEE), a laptop-mounted equipment (LME), a smart device, a wireless customer-premise equipment (CPE) a vehicle-mounted wireless terminal device, etc. A WD may support device-to-device (D2D) communication, for example by implementing a 3 GPP standard for sidelink communication, vehicle-to-vehicle (V2V), vehicle- to-infrastructure (V2I), vehicle-to-everything (V2X) and may in this case be referred to as a D2D communication device. As yet another specific example, in an Internet of Things (IoT) scenario, a WD may represent a machine or other device that performs monitoring and/or measurements, and transmits the results of such monitoring and/or measurements to another WD and/or a network node. The WD may in this case be a machine-to-machine (M2M) device, which may in a 3GPP context be referred to as an MTC device. As one particular example, the WD may be a UE implementing the 3 GPP narrow band internet of things (NB-IoT) standard. Particular examples of such machines or devices are sensors, metering devices such as power meters, industrial machinery, or home or personal appliances (e.g. refrigerators, televisions, etc.) personal wearables (e.g., watches, fitness trackers, etc.). In other scenarios, a WD may represent a vehicle or other equipment that is capable of monitoring and/or reporting on its operational status or other functions associated with its operation. A WD as described above may represent the endpoint of a wireless connection, in which case the device may be referred to as a wireless terminal. Furthermore, a WD as described above may be mobile, in which case it may also be referred to as a mobile device or a mobile terminal.

[0165] As illustrated, wireless device 4110 includes antenna 4111, interface 4114, processing circuitry 4120, device readable medium 4130, user interface equipment 4132, auxiliary equipment 4134, power source 4136 and power circuitry 4137. WD 4110 may include multiple sets of one or more of the illustrated components for different wireless technologies supported by WD 4110, such as, for example, GSM, WCDMA, LTE, NR, WiFi, WiMAX, or Bluetooth wireless technologies, just to mention a few. These wireless technologies may be integrated into the same or different chips or set of chips as other components within WD 4110.

[0166] Antenna 4111 may include one or more antennas or antenna arrays, configured to send and/or receive wireless signals, and is connected to interface 4114. In certain alternative embodiments, antenna 4111 may be separate from WD 4110 and be connectable to WD 4110 through an interface or port. Antenna 4111, interface 4114, and/or processing circuitry 4120 may be configured to perform any receiving or transmitting operations described herein as being performed by a WD. Any information, data and/or signals may be received from a network node and/or another WD. In some embodiments, radio front end circuitry and/or antenna 4111 may be considered an interface.

[0167] As illustrated, interface 4114 comprises radio front end circuitry 4112 and antenna 4111. Radio front end circuitry 4112 comprise one or more filters 4118 and amplifiers 4116. Radio front end circuitry 4112 is connected to antenna 4111 and processing circuitry 4120, and is configured to condition signals communicated between antenna 4111 and processing circuitry 4120. Radio front end circuitry 4112 may be coupled to or a part of antenna

4111. In some embodiments, WD 4110 may not include separate radio front end circuitry 4112; rather, processing circuitry 4120 may comprise radio front end circuitry and may be connected to antenna 4111. Similarly, in some embodiments, some or all of RF transceiver circuitry 4122 may be considered a part of interface 4114. Radio front end circuitry 4112 may receive digital data that is to be sent out to other network nodes or WDs via a wireless connection. Radio front end circuitry 4112 may convert the digital data into a radio signal having the appropriate channel and bandwidth parameters using a combination of filters 4118 and/or amplifiers 4116. The radio signal may then be transmitted via antenna 4111. Similarly, when receiving data, antenna 4111 may collect radio signals which are then converted into digital data by radio front end circuitry

4112. The digital data may be passed to processing circuitry 4120. In other embodiments, the interface may comprise different components and/or different combinations of components.

[0168] Processing circuitry 4120 may comprise a combination of one or more of a microprocessor, controller, microcontroller, central processing unit, digital signal processor, application-specific integrated circuit, field programmable gate array, or any other suitable computing device, resource, or combination of hardware, software, and/or encoded logic operable to provide, either alone or in conjunction with other WD 4110 components, such as device readable medium 4130, WD 4110 functionality. Such functionality may include providing any of the various wireless features or benefits discussed herein. For example, processing circuitry 4120 may execute instructions stored in device readable medium 4130 or in memory within processing circuitry 4120 to provide the functionality disclosed herein.

[0169] As illustrated, processing circuitry 4120 includes one or more of RF transceiver circuitry 4122, baseband processing circuitry 4124, and application processing circuitry 4126. In other embodiments, the processing circuitry may comprise different components and/or different combinations of components. In certain embodiments processing circuitry 4120 of WD 4110 may comprise a SOC. In some embodiments, RF transceiver circuitry 4122, baseband processing circuitry 4124, and application processing circuitry 4126 may be on separate chips or sets of chips. In alternative embodiments, part or all of baseband processing circuitry 4124 and application processing circuitry 4126 may be combined into one chip or set of chips, and RF transceiver circuitry 4122 may be on a separate chip or set of chips. In still alternative embodiments, part or all of RF transceiver circuitry 4122 and baseband processing circuitry 4124 may be on the same chip or set of chips, and application processing circuitry 4126 may be on a separate chip or set of chips. In yet other alternative embodiments, part or all of RF transceiver circuitry 4122, baseband processing circuitry 4124, and application processing circuitry 4126 may be combined in the same chip or set of chips. In some embodiments, RF transceiver circuitry 4122 may be a part of interface 4114. RF transceiver circuitry 4122 may condition RF signals for processing circuitry 4120.

[0170] In certain embodiments, some or all of the functionality described herein as being performed by a WD may be provided by processing circuitry 4120 executing instructions stored on device readable medium 4130, which in certain embodiments may be a computer-readable storage medium. In alternative embodiments, some or all of the functionality may be provided by processing circuitry 4120 without executing instructions stored on a separate or discrete device readable storage medium, such as in a hard-wired manner. In any of those particular embodiments, whether executing instructions stored on a device readable storage medium or not, processing circuitry 4120 can be configured to perform the described functionality. The benefits provided by such functionality are not limited to processing circuitry 4120 alone or to other components of WD 4110, but are enjoyed by WD 4110 as a whole, and/or by end users and the wireless network generally.

[0171] Processing circuitry 4120 may be configured to perform any determining, calculating, or similar operations (e.g., certain obtaining operations) described herein as being performed by a WD. These operations, as performed by processing circuitry 4120, may include processing information obtained by processing circuitry 4120 by, for example, converting the obtained information into other information, comparing the obtained information or converted information to information stored by WD 4110, and/or performing one or more operations based on the obtained information or converted information, and as a result of said processing making a determination.

[0172] Device readable medium 4130 may be operable to store a computer program, software, an application including one or more of logic, rules, code, tables, etc. and/or other instructions capable of being executed by processing circuitry 4120. Device readable medium 4130 may include computer memory (e.g., Random Access Memory (RAM) or Read Only Memory (ROM)), mass storage media (e.g., a hard disk), removable storage media (e.g., a Compact Disk (CD) or a Digital Video Disk (DVD)), and/or any other volatile or non-volatile, non-transitory device readable and/or computer executable memory devices that store information, data, and/or instructions that may be used by processing circuitry 4120. In some embodiments, processing circuitry 4120 and device readable medium 4130 may be considered to be integrated.

[0173] User interface equipment 4132 may provide components that allow for a human user to interact with WD 4110. Such interaction may be of many forms, such as visual, audial, tactile, etc. User interface equipment 4132 may be operable to produce output to the user and to allow the user to provide input to WD 4110. The type of interaction may vary depending on the type of user interface equipment 4132 installed in WD 4110. For example, if WD 4110 is a smart phone, the interaction may be via a touch screen; if WD 4110 is a smart meter, the interaction may be through a screen that provides usage (e.g., the number of gallons used) or a speaker that provides an audible alert (e.g., if smoke is detected). User interface equipment 4132 may include input interfaces, devices and circuits, and output interfaces, devices and circuits. User interface equipment 4132 is configured to allow input of information into WD 4110, and is connected to processing circuitry 4120 to allow processing circuitry 4120 to process the input information. User interface equipment 4132 may include, for example, a microphone, a proximity or other sensor, keys/buttons, a touch display, one or more cameras, a USB port, or other input circuitry. User interface equipment 4132 is also configured to allow output of information from WD 4110, and to allow processing circuitry 4120 to output information from WD 4110. User interface equipment 4132 may include, for example, a speaker, a display, vibrating circuitry, a USB port, a headphone interface, or other output circuitry. Using one or more input and output interfaces, devices, and circuits, of user interface equipment 4132, WD 4110 may communicate with end users and/or the wireless network, and allow them to benefit from the functionality described herein.

[0174] Auxiliary equipment 4134 is operable to provide more specific functionality which may not be generally performed by WDs. This may comprise specialized sensors for doing measurements for various purposes, interfaces for additional types of communication such as wired communications etc. The inclusion and type of components of auxiliary equipment 4134 may vary depending on the embodiment and/or scenario.

[0175] Power source 4136 may, in some embodiments, be in the form of a battery or battery pack. Other types of power sources, such as an external power source (e.g., an electricity outlet), photovoltaic devices or power cells, may also be used. WD 4110 may further comprise power circuitry 4137 for delivering power from power source 4136 to the various parts of WD 4110 which need power from power source 4136 to carry out any functionality described or indicated herein. Power circuitry 4137 may in certain embodiments comprise power management circuitry. Power circuitry 4137 may additionally or alternatively be operable to receive power from an external power source; in which case WD 4110 may be connectable to the external power source (such as an electricity outlet) via input circuitry or an interface such as an electrical power cable. Power circuitry 4137 may also in certain embodiments be operable to deliver power from an external power source to power source 4136. This may be, for example, for the charging of power source 4136. Power circuitry 4137 may perform any formatting, converting, or other modification to the power from power source 4136 to make the power suitable for the respective components of WD 4110 to which power is supplied.

[0176] FIG. 10 illustrates a user Equipment in accordance with some embodiments.

[0177] FIG. 10 illustrates one embodiment of a UE in accordance with various aspects described herein. As used herein, a user equipment or UE may not necessarily have a user in the sense of a human user who owns and/or operates the relevant device. Instead, a UE may represent a device that is intended for sale to, or operation by, a human user but which may not, or which may not initially, be associated with a specific human user (e.g., a smart sprinkler controller). Alternatively, a UE may represent a device that is not intended for sale to, or operation by, an end user but which may be associated with or operated for the benefit of a user (e.g., a smart power meter). UE 42200 may be any UE identified by the 3rd Generation Partnership Project (3GPP), including aNB-IoT UE, a machine type communication (MTC) UE, and/or an enhanced MTC (eMTC) UE. UE 4200, as illustrated in FIG. 10, is one example of a WD configured for communication in accordance with one or more communication standards promulgated by the 3rd Generation Partnership Project (3GPP), such as 3GPP’s GSM, UMTS, LTE, and/or 5G standards. As mentioned previously, the term WD and UE may be used interchangeable. Accordingly, although FIG. 10 is a UE, the components discussed herein are equally applicable to a WD, and vice-versa.

[0178] In FIG. 10, UE 4200 includes processing circuitry 4201 that is operatively coupled to input/output interface 4205, radio frequency (RF) interface 4209, network connection interface 4211, memory 4215 including random access memory (RAM) 4217, read-only memory (ROM) 4219, and storage medium 4221 or the like, communication subsystem 4231, power source 4213, and/or any other component, or any combination thereof. Storage medium 4221 includes operating system 4223, application program 4225, and data 4227. In other embodiments, storage medium 4221 may include other similar types of information. Certain UEs may utilize all of the components shown in FIG. 10, or only a subset of the components.

The level of integration between the components may vary from one UE to another UE. Further, certain UEs may contain multiple instances of a component, such as multiple processors, memories, transceivers, transmitters, receivers, etc.

[0179] In FIG. 10, processing circuitry 4201 may be configured to process computer instructions and data. Processing circuitry 4201 may be configured to implement any sequential state machine operative to execute machine instructions stored as machine-readable computer programs in the memory, such as one or more hardware-implemented state machines (e.g., in discrete logic, FPGA, ASIC, etc.); programmable logic together with appropriate firmware; one or more stored program, general-purpose processors, such as a microprocessor or Digital Signal Processor (DSP), together with appropriate software; or any combination of the above. For example, the processing circuitry 4201 may include two central processing units (CPUs). Data may be information in a form suitable for use by a computer.

[0180] In the depicted embodiment, input/output interface 4205 may be configured to provide a communication interface to an input device, output device, or input and output device. UE 4200 may be configured to use an output device via input/output interface 4205. An output device may use the same type of interface port as an input device. For example, a USB port may be used to provide input to and output from UE 4200. The output device may be a speaker, a sound card, a video card, a display, a monitor, a printer, an actuator, an emitter, a smartcard, another output device, or any combination thereof. UE 4200 may be configured to use an input device via input/output interface 4205 to allow a user to capture information into UE 4200. The input device may include a touch-sensitive or presence-sensitive display, a camera (e.g., a digital camera, a digital video camera, a web camera, etc.), a microphone, a sensor, a mouse, a trackball, a directional pad, a trackpad, a scroll wheel, a smartcard, and the like. The presence-sensitive display may include a capacitive or resistive touch sensor to sense input from a user. A sensor may be, for instance, an accelerometer, a gyroscope, a tilt sensor, a force sensor, a magnetometer, an optical sensor, a proximity sensor, another like sensor, or any combination thereof. For example, the input device may be an accelerometer, a magnetometer, a digital camera, a microphone, and an optical sensor.

[0181] In FIG. 10, RF interface 4209 may be configured to provide a communication interface to RF components such as a transmitter, a receiver, and an antenna. Network connection interface 4211 may be configured to provide a communication interface to network 4243a. Network 4243a may encompass wired and/or wireless networks such as a local-area network (LAN), a wide-area network (WAN), a computer network, a wireless network, a telecommunications network, another like network or any combination thereof. For example, network 4243a may comprise a Wi-Fi network. Network connection interface 4211 may be configured to include a receiver and a transmitter interface used to communicate with one or more other devices over a communication network according to one or more communication protocols, such as Ethernet, TCP/IP, SONET, ATM, or the like. Network connection interface 4211 may implement receiver and transmitter functionality appropriate to the communication network links (e.g., optical, electrical, and the like). The transmitter and receiver functions may share circuit components, software or firmware, or alternatively may be implemented separately.

[0182] RAM 4217 may be configured to interface via bus 4202 to processing circuitry 4201 to provide storage or caching of data or computer instructions during the execution of software programs such as the operating system, application programs, and device drivers. ROM 4219 may be configured to provide computer instructions or data to processing circuitry 4201. For example, ROM 4219 may be configured to store invariant low-level system code or data for basic system functions such as basic input and output (I/O), startup, or reception of keystrokes from a keyboard that are stored in a non-volatile memory. Storage medium 4221 may be configured to include memory such as RAM, ROM, programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically erasable programmable read only memory (EEPROM), magnetic disks, optical disks, floppy disks, hard disks, removable cartridges, or flash drives. In one example, storage medium 4221 may be configured to include operating system 4223, application program 4225 such as a web browser application, a widget or gadget engine or another application, and data file 4227. Storage medium 4221 may store, for use by UE 4200, any of a variety of various operating systems or combinations of operating systems.

[0183] Storage medium 4221 may be configured to include a number of physical drive units, such as redundant array of independent disks (RAID), floppy disk drive, flash memory, USB flash drive, external hard disk drive, thumb drive, pen drive, key drive, high-density digital versatile disc (HD-DVD) optical disc drive, internal hard disk drive, Blu-Ray optical disc drive, holographic digital data storage (HDDS) optical disc drive, external mini-dual in-line memory module (DIMM), synchronous dynamic random access memory (SDRAM), external micro- DIMM SDRAM, smartcard memory such as a subscriber identity module or a removable user identity (SIM/RUIM) module, other memory, or any combination thereof. Storage medium 4221 may allow UE 4200 to access computer-executable instructions, application programs or the like, stored on transitory or non-transitory memory media, to off-load data, or to upload data. An article of manufacture, such as one utilizing a communication system may be tangibly embodied in storage medium 4221, which may comprise a device readable medium.

[0184] In FIG. 10, processing circuitry 4201 may be configured to communicate with network 4243b using communication subsystem 4231. Network 4243a and network 4243b may be the same network or networks or different network or networks. Communication subsystem 4231 may be configured to include one or more transceivers used to communicate with network 4243b. For example, communication subsystem 4231 may be configured to include one or more transceivers used to communicate with one or more remote transceivers of another device capable of wireless communication such as another WD, UE, or base station of a radio access network (RAN) according to one or more communication protocols, such as IEEE 802.11, CDMA, WCDMA, GSM, LTE, UTRAN, WiMax, or the like. Each transceiver may include transmitter 4233 and/or receiver 4235 to implement transmitter or receiver functionality, respectively, appropriate to the RAN links (e.g., frequency allocations and the like). Further, transmitter 4233 and receiver 4235 of each transceiver may share circuit components, software or firmware, or alternatively may be implemented separately.

[0185] In the illustrated embodiment, the communication functions of communication subsystem 4231 may include data communication, voice communication, multimedia communication, short-range communications such as Bluetooth, near-field communication, location-based communication such as the use of the global positioning system (GPS) to determine a location, another like communication function, or any combination thereof. For example, communication subsystem 4231 may include cellular communication, Wi-Fi communication, Bluetooth communication, and GPS communication. Network 4243b may encompass wired and/or wireless networks such as a local-area network (LAN), a wide-area network (WAN), a computer network, a wireless network, a telecommunications network, another like network or any combination thereof. For example, network 4243b may be a cellular network, a Wi-Fi network, and/or a near-field network. Power source 4213 may be configured to provide alternating current (AC) or direct current (DC) power to components of UE 4200.

[0186] The features, benefits and/or functions described herein may be implemented in one of the components of UE 4200 or partitioned across multiple components of UE 4200. Further, the features, benefits, and/or functions described herein may be implemented in any combination of hardware, software or firmware. In one example, communication subsystem 4231 may be configured to include any of the components described herein. Further, processing circuitry 4201 may be configured to communicate with any of such components over bus 4202.

In another example, any of such components may be represented by program instructions stored in memory that when executed by processing circuitry 4201 perform the corresponding functions described herein. In another example, the functionality of any of such components may be partitioned between processing circuitry 4201 and communication subsystem 4231. In another example, the non-computationally intensive functions of any of such components may be implemented in software or firmware and the computationally intensive functions may be implemented in hardware.

[0187] FIG. 11 illustrates a virtualization environment in accordance with some embodiments.

[0188] FIG. 11 is a schematic block diagram illustrating a virtualization environment 4300 in which functions implemented by some embodiments may be virtualized. In the present context, virtualizing means creating virtual versions of apparatuses or devices which may include virtualizing hardware platforms, storage devices and networking resources. As used herein, virtualization can be applied to a node (e.g., a virtualized base station or a virtualized radio access node) or to a device (e.g., a UE, a wireless device or any other type of communication device) or components thereof and relates to an implementation in which at least a portion of the functionality is implemented as one or more virtual components (e.g., via one or more applications, components, functions, virtual machines or containers executing on one or more physical processing nodes in one or more networks).

[0189] In some embodiments, some or all of the functions described herein may be implemented as virtual components executed by one or more virtual machines implemented in one or more virtual environments 4300 hosted by one or more of hardware nodes 4330. Further, in embodiments in which the virtual node is not a radio access node or does not require radio connectivity (e.g., a core network node), then the network node may be entirely virtualized.

[0190] The functions may be implemented by one or more applications 4320 (which may alternatively be called software instances, virtual appliances, network functions, virtual nodes, virtual network functions, etc.) operative to implement some of the features, functions, and/or benefits of some of the embodiments disclosed herein. Applications 4320 are run in virtualization environment 4300 which provides hardware 4330 comprising processing circuitry 4360 and memory 4390. Memory 4390 contains instructions 4395 executable by processing circuitry 4360 whereby application 4320 is operative to provide one or more of the features, benefits, and/or functions disclosed herein.

[0191] Virtualization environment 4300, comprises general-purpose or special-purpose network hardware devices 4330 comprising a set of one or more processors or processing circuitry 4360, which may be commercial off-the-shelf (COTS) processors, dedicated Application Specific Integrated Circuits (ASICs), or any other type of processing circuitry including digital or analog hardware components or special purpose processors. Each hardware device may comprise memory 4390-1 which may be non-persistent memory for temporarily storing instructions 4395 or software executed by processing circuitry 4360. Each hardware device may comprise one or more network interface controllers (NICs) 4370, also known as network interface cards, which include physical network interface 4380. Each hardware device may also include non-transitory, persistent, machine-readable storage media 4390-2 having stored therein software 4395 and/or instructions executable by processing circuitry 4360.

Software 4395 may include any type of software including software for instantiating one or more virtualization layers 4350 (also referred to as hypervisors), software to execute virtual machines 4340 as well as software allowing it to execute functions, features and/or benefits described in relation with some embodiments described herein.

[0192] Virtual machines 4340 comprise virtual processing, virtual memory, virtual networking or interface and virtual storage, and may be run by a corresponding virtualization layer 4350 or hypervisor. Different embodiments of the instance of virtual appliance 4320 may be implemented on one or more of virtual machines 4340, and the implementations may be made in different ways.

[0193] During operation, processing circuitry 4360 executes software 4395 to instantiate the hypervisor or virtualization layer 4350, which may sometimes be referred to as a virtual machine monitor (VMM). Virtualization layer 4350 may present a virtual operating platform that appears like networking hardware to virtual machine 4340.

[0194] As shown in FIG. 11, hardware 4330 may be a standalone network node with generic or specific components. Hardware 4330 may comprise antenna 43225 and may implement some functions via virtualization. Alternatively, hardware 4330 may be part of a larger cluster of hardware (e.g. such as in a data center or customer premise equipment (CPE)) where many hardware nodes work together and are managed via management and orchestration (MANO) 43100, which, among others, oversees lifecycle management of applications 4320.

[0195] Virtualization of the hardware is in some contexts referred to as network function virtualization (NFV). NFV may be used to consolidate many network equipment types onto industry standard high volume server hardware, physical switches, and physical storage, which can be located in data centers, and customer premise equipment.

[0196] In the context of NFV, virtual machine 4340 may be a software implementation of a physical machine that runs programs as if they were executing on a physical, non-virtualized machine. Each of virtual machines 4340, and that part of hardware 4330 that executes that virtual machine, be it hardware dedicated to that virtual machine and/or hardware shared by that virtual machine with others of the virtual machines 4340, forms a separate virtual network elements (VNE). [0197] Still in the context of NFV, Virtual Network Function (VNF) is responsible for handling specific network functions that run in one or more virtual machines 4340 on top of hardware networking infrastructure 4330 and corresponds to application 4320 in FIG. 11.

[0198] In some embodiments, one or more radio units 43200 that each include one or more transmitters 43220 and one or more receivers 43210 may be coupled to one or more antennas 43225. Radio units 43200 may communicate directly with hardware nodes 4330 via one or more appropriate network interfaces and may be used in combination with the virtual components to provide a virtual node with radio capabilities, such as a radio access node or a base station.

[0199] In some embodiments, some signalling can be effected with the use of control system 43230 which may alternatively be used for communication between the hardware nodes 4330 and radio units 43200.

[0200] FIG. 12 illustrates a telecommunication network connected via an intermediate network to a host computer in accordance with some embodiments.

[0201] With reference to FIG. 12, in accordance with an embodiment, a communication system includes telecommunication network 4410, such as a 3 GPP -type cellular network, which comprises access network 4411, such as a radio access network, and core network 4414. Access network 4411 comprises a plurality of base stations 4412a, 4412b, 4412c, such as NBs, eNBs, gNBs or other types of wireless access points, each defining a corresponding coverage area 4413a, 4413b, 4413c. Each base station 4412a, 4412b, 4412c is connectable to core network 4414 over a wired or wireless connection 4415. A first UE 4491 located in coverage area 4413c is configured to wirelessly connect to, or be paged by, the corresponding base station 4412c. A second UE 4492 in coverage area 4413a is wirelessly connectable to the corresponding base station 4412a. While a plurality of UEs 4491, 4492 are illustrated in this example, the disclosed embodiments are equally applicable to a situation where a sole UE is in the coverage area or where a sole UE is connecting to the corresponding base station 4412.

[0202] Telecommunication network 4410 is itself connected to host computer 4430, which may be embodied in the hardware and/or software of a standalone server, a cloud- implemented server, a distributed server or as processing resources in a server farm. Host computer 4430 may be under the ownership or control of a service provider, or may be operated by the service provider or on behalf of the service provider. Connections 4421 and 4422 between telecommunication network 4410 and host computer 4430 may extend directly from core network 4414 to host computer 4430 or may go via an optional intermediate network 4420. Intermediate network 4420 may be one of, or a combination of more than one of, a public, private or hosted network; intermediate network 4420, if any, may be a backbone network or the Internet; in particular, intermediate network 4420 may comprise two or more sub-networks (not shown).

[0203] The communication system of FIG. 12 as a whole enables connectivity between the connected UEs 4491, 4492 and host computer 4430. The connectivity may be described as an over-the-top (OTT) connection 4450. Host computer 4430 and the connected UEs 4491, 4492 are configured to communicate data and/or signaling via OTT connection 4450, using access network 4411, core network 4414, any intermediate network 4420 and possible further infrastructure (not shown) as intermediaries. OTT connection 4450 may be transparent in the sense that the participating communication devices through which OTT connection 4450 passes are unaware of routing of uplink and downlink communications. For example, base station 4412 may not or need not be informed about the past routing of an incoming downlink communication with data originating from host computer 4430 to be forwarded (e.g., handed over) to a connected UE 4491. Similarly, base station 4412 need not be aware of the future routing of an outgoing uplink communication originating from the UE 4491 towards the host computer 4430.

[0204] FIG. 13 illustrates a host computer communicating via a base station with a user equipment over a partially wireless connection in accordance with some embodiments.

[0205] Example implementations, in accordance with an embodiment, of the UE, base station and host computer discussed in the preceding paragraphs will now be described with reference to FIG. 13. In communication system 4500, host computer 4510 comprises hardware 4515 including communication interface 4516 configured to set up and maintain a wired or wireless connection with an interface of a different communication device of communication system 4500. Host computer 4510 further comprises processing circuitry 4518, which may have storage and/or processing capabilities. In particular, processing circuitry 4518 may comprise one or more programmable processors, application-specific integrated circuits, field programmable gate arrays or combinations of these (not shown) adapted to execute instructions. Host computer 4510 further comprises software 4511, which is stored in or accessible by host computer 4510 and executable by processing circuitry 4518. Software 4511 includes host application 4512. Host application 4512 may be operable to provide a service to a remote user, such as UE 4530 connecting via OTT connection 4550 terminating at UE 4530 and host computer 4510. In providing the service to the remote user, host application 4512 may provide user data which is transmitted using OTT connection 4550.

[0206] Communication system 4500 further includes base station 4520 provided in a telecommunication system and comprising hardware 4525 enabling it to communicate with host computer 4510 and with UE 4530. Hardware 4525 may include communication interface 4526 for setting up and maintaining a wired or wireless connection with an interface of a different communication device of communication system 4500, as well as radio interface 4527 for setting up and maintaining at least wireless connection 4570 with UE 4530 located in a coverage area (not shown in FIG. 13) served by base station 4520. Communication interface 4526 may be configured to facilitate connection 4560 to host computer 4510. Connection 4560 may be direct or it may pass through a core network (not shown in FIG. 13) of the telecommunication system and/or through one or more intermediate networks outside the telecommunication system. In the embodiment shown, hardware 4525 of base station 4520 further includes processing circuitry 4528, which may comprise one or more programmable processors, application-specific integrated circuits, field programmable gate arrays or combinations of these (not shown) adapted to execute instructions. Base station 4520 further has software 4521 stored internally or accessible via an external connection.

[0207] Communication system 4500 further includes UE 4530 already referred to. Its hardware 4535 may include radio interface 4537 configured to set up and maintain wireless connection 4570 with a base station serving a coverage area in which UE 4530 is currently located. Hardware 4535 of UE 4530 further includes processing circuitry 4538, which may comprise one or more programmable processors, application-specific integrated circuits, field programmable gate arrays or combinations of these (not shown) adapted to execute instructions. UE 4530 further comprises software 4531, which is stored in or accessible by UE 4530 and executable by processing circuitry 4538. Software 4531 includes client application 4532. Client application 4532 may be operable to provide a service to a human or non-human user via UE 4530, with the support of host computer 4510. In host computer 4510, an executing host application 4512 may communicate with the executing client application 4532 via OTT connection 4550 terminating at UE 4530 and host computer 4510. In providing the service to the user, client application 4532 may receive request data from host application 4512 and provide user data in response to the request data. OTT connection 4550 may transfer both the request data and the user data. Client application 4532 may interact with the user to generate the user data that it provides.

[0208] It is noted that host computer 4510, base station 4520 and UE 4530 illustrated in FIG. 13 may be similar or identical to host computer 4430, one of base stations 4412a, 4412b, 4412c and one of UEs 4491, 4492 of FIG. 12, respectively. This is to say, the inner workings of these entities may be as shown in FIG. 13 and independently, the surrounding network topology may be that of FIG. 12.

[0209] In FIG. 13, OTT connection 4550 has been drawn abstractly to illustrate the communication between host computer 4510 and UE 4530 via base station 4520, without explicit reference to any intermediary devices and the precise routing of messages via these devices. Network infrastructure may determine the routing, which it may be configured to hide from UE 4530 or from the service provider operating host computer 4510, or both. While OTT connection 4550 is active, the network infrastructure may further take decisions by which it dynamically changes the routing (e.g., on the basis of load balancing consideration or reconfiguration of the network).

[0210] Wireless connection 4570 between UE 4530 and base station 4520 is in accordance with the teachings of the embodiments described throughout this disclosure. One or more of the various embodiments may improve the performance of OTT services provided to UE

4530 using OTT connection 4550, in which wireless connection 4570 forms the last segment. More precisely, the teachings of these embodiments may improve the random access speed and/or reduce random access failure rates and thereby provide benefits such as faster and/or more reliable random access.

[0211] A measurement procedure may be provided for the purpose of monitoring data rate, latency and other factors on which the one or more embodiments improve. There may further be an optional network functionality for reconfiguring OTT connection 4550 between host computer 4510 and UE 4530, in response to variations in the measurement results. The measurement procedure and/or the network functionality for reconfiguring OTT connection 4550 may be implemented in software 4511 and hardware 4515 of host computer 4510 or in software

4531 and hardware 4535 of UE 4530, or both. In embodiments, sensors (not shown) may be deployed in or in association with communication devices through which OTT connection 4550 passes; the sensors may participate in the measurement procedure by supplying values of the monitored quantities exemplified above, or supplying values of other physical quantities from which software 4511, 4531 may compute or estimate the monitored quantities. The reconfiguring of OTT connection 4550 may include message format, retransmission settings, preferred routing etc.; the reconfiguring need not affect base station 4520, and it may be unknown or imperceptible to base station 4520. Such procedures and functionalities may be known and practiced in the art. In certain embodiments, measurements may involve proprietary UE signaling facilitating host computer 4510’s measurements of throughput, propagation times, latency and the like. The measurements may be implemented in that software 4511 and 4531 causes messages to be transmitted, in particular empty or ‘dummy’ messages, using OTT connection 4550 while it monitors propagation times, errors etc.

[0212] FIG. 14 illustrates methods implemented in a communication system including a host computer, a base station and a user equipment in accordance with some embodiments

[0213] FIG. 14 is a flowchart illustrating a method implemented in a communication system, in accordance with one embodiment. The communication system includes a host computer, a base station and a UE which may be those described with reference to FIGS. 12-13. For simplicity of the present disclosure, only drawing references to FIG. 14 will be included in this section. In step 4610, the host computer provides user data. In substep 4611 (which may be optional) of step 4610, the host computer provides the user data by executing a host application. In step 4620, the host computer initiates a transmission carrying the user data to the UE. In step 4630 (which may be optional), the base station transmits to the UE the user data which was carried in the transmission that the host computer initiated, in accordance with the teachings of the embodiments described throughout this disclosure. In step 4640 (which may also be optional), the UE executes a client application associated with the host application executed by the host computer.

[0214] FIG. 15 illustrates methods implemented in a communication system including a host computer, a base station and a user equipment in accordance with some embodiments.

[0215] FIG. 15 is a flowchart illustrating a method implemented in a communication system, in accordance with one embodiment. The communication system includes a host computer, a base station and a UE which may be those described with reference to FIGS. 12-13. For simplicity of the present disclosure, only drawing references to FIG. 15 will be included in this section. In step 4710 of the method, the host computer provides user data. In an optional substep (not shown) the host computer provides the user data by executing a host application. In step 4720, the host computer initiates a transmission carrying the user data to the UE. The transmission may pass via the base station, in accordance with the teachings of the embodiments described throughout this disclosure. In step 4730 (which may be optional), the UE receives the user data carried in the transmission.

[0216] FIG. 16 illustrates methods implemented in a communication system including a host computer, a base station and a user equipment in accordance with some embodiments

[0217] FIG. 16 is a flowchart illustrating a method implemented in a communication system, in accordance with one embodiment. The communication system includes a host computer, a base station and a UE which may be those described with reference to FIGS. 12-13. For simplicity of the present disclosure, only drawing references to FIG. 16 will be included in this section. In step 4810 (which may be optional), the UE receives input data provided by the host computer. Additionally or alternatively, in step 4820, the UE provides user data. In substep 4821 (which may be optional) of step 4820, the UE provides the user data by executing a client application. In substep 4811 (which may be optional) of step 4810, the UE executes a client application which provides the user data in reaction to the received input data provided by the host computer. In providing the user data, the executed client application may further consider user input received from the user. Regardless of the specific manner in which the user data was provided, the UE initiates, in substep 4830 (which may be optional), transmission of the user data to the host computer. In step 4840 of the method, the host computer receives the user data transmitted from the UE, in accordance with the teachings of the embodiments described throughout this disclosure.

[0218] FIG. 17 illustrates methods implemented in a communication system including a host computer, a base station and a user equipment in accordance with some embodiments

[0219] FIG. 17 is a flowchart illustrating a method implemented in a communication system, in accordance with one embodiment. The communication system includes a host computer, a base station and a UE which may be those described with reference to FIGS. 12-13. For simplicity of the present disclosure, only drawing references to FIG. 17 will be included in this section. In step 4910 (which may be optional), in accordance with the teachings of the embodiments described throughout this disclosure, the base station receives user data from the UE. In step 4920 (which may be optional), the base station initiates transmission of the received user data to the host computer. In step 4930 (which may be optional), the host computer receives the user data carried in the transmission initiated by the base station.

[0220] Any appropriate steps, methods, features, functions, or benefits disclosed herein may be performed through one or more functional units or modules of one or more virtual apparatuses. Each virtual apparatus may comprise a number of these functional units. These functional units may be implemented via processing circuitry, which may include one or more microprocessor or microcontrollers, as well as other digital hardware, which may include digital signal processors (DSPs), special-purpose digital logic, and the like. The processing circuitry may be configured to execute program code stored in memory, which may include one or several types of memory such as read-only memory (ROM), random-access memory (RAM), cache memory, flash memory devices, optical storage devices, etc. Program code stored in memory includes program instructions for executing one or more telecommunications and/or data communications protocols as well as instructions for carrying out one or more of the techniques described herein. In some implementations, the processing circuitry may be used to cause the respective functional unit to perform corresponding functions according one or more embodiments of the present disclosure.

[0221] The term unit may have conventional meaning in the field of electronics, electrical devices and/or electronic devices and may include, for example, electrical and/or electronic circuitry, devices, modules, processors, memories, logic solid state and/or discrete devices, computer programs or instructions for carrying out respective tasks, procedures, computations, outputs, and/or displaying functions, and so on, as such as those that are described herein.

[0222] ABBREVIATIONS

[0223] At least some of the following abbreviations may be used in this disclosure. If there is an inconsistency between abbreviations, preference should be given to how it is used above. If listed multiple times below, the first listing should be preferred over any subsequent listing(s). lx RTT CDMA2000 lx Radio Transmission Technology 3 GPP 3rd Generation Partnership Project 5G 5th Generation

ABS Almost Blank Subframe

ARQ Automatic Repeat Request

AWGN Additive White Gaussian Noise

BCCH Broadcast Control Channel

BCH Broadcast Channel

CA Carrier Aggregation

CC Carrier Component

CCCH SDU Common Control Channel SDU

CDMA Code Division Multiplexing Access

CGI Cell Global Identifier

CIR Channel Impulse Response

CP Cyclic Prefix

CPICH Common Pilot Channel

CPICH Ec/No CPICH Received energy per chip divided by the power density in the band

CQI Channel Quality information

C-RNTI Cell RNTI

CSI Channel State Information

DCCH Dedicated Control Channel

DL Downlink

DM Demodulation

DMRS Demodulation Reference Signal

DRX Discontinuous Reception

DTX Discontinuous Transmission

DTCH Dedicated Traffic Channel

DUT Device Under Test

E-CID Enhanced Cell-ID (positioning method)

E-SMLC Evolved-Serving Mobile Location Centre

ECGI Evolved CGI eNB E-UTRAN NodeB ePDCCH enhanced Physical Downlink Control Channel

E-SMLC evolved Serving Mobile Location Center

E-UTRA Evolved UTRA

E-UTRAN Evolved UTRAN

FDD Frequency Division Duplex

FFS For Further Study

GERAN GSM EDGE Radio Access Network gNB Base station in NR

GNSS Global Navigation Satellite System

GSM Global System for Mobile communication

HARQ Hybrid Automatic Repeat Request

HO Handover

HSPA High Speed Packet Access

HRPD High Rate Packet Data

LOS Line of Sight

LPP LTE Positioning Protocol

LTE Long-Term Evolution

MAC Medium Access Control

MBMS Multimedia Broadcast Multicast Services

MBSFN Multimedia Broadcast multicast service Single Frequency Network

MBSFN ABS MBSFN Almost Blank Subframe

MDT Minimization of Drive Tests

MIB Master Information Block

MME Mobility Management Entity

MSC Mobile Switching Center

NPDCCH Narrowband Physical Downlink Control Channel

NR New Radio

OCNG OFDM A Channel Noise Generator

OFDM Orthogonal Frequency Division Multiplexing

OFDMA Orthogonal Frequency Division Multiple Access

OSS Operations Support System OTDOA Observed Time Difference of Arrival

O&M Operation and Maintenance

PBCH Physical Broadcast Channel

P-CCPCH Primary Common Control Physical Channel

PCell Primary Cell

PCFICH Physical Control Format Indicator Channel

PDCCH Physical Downlink Control Channel

PDP Profile Delay Profile

PDSCH Physical Downlink Shared Channel

PGW Packet Gateway

PHICH Physical Hybrid-ARQ Indicator Channel

PLMN Public Land Mobile Network

PMI Precoder Matrix Indicator

PRACH Physical Random Access Channel

PRS Positioning Reference Signal

PSS Primary Synchronization Signal

PUCCH Physical Uplink Control Channel

PUSCH Physical Uplink Shared Channel

RACH Random Access Channel

QAM Quadrature Amplitude Modulation

RAN Radio Access Network

RAT Radio Access Technology

RLM Radio Link Management

RNC Radio Network Controller

RNTI Radio Network Temporary Identifier

RRC Radio Resource Control

RRM Radio Resource Management

RS Reference Signal

RSCP Received Signal Code Power

RSRP Reference Symbol Received Power OR Reference Signal Received Power RSRQ Reference Signal Received Quality OR

Reference Symbol Received Quality

RSSI Received Signal Strength Indicator

RSTD Reference Signal Time Difference

SCH Synchronization Channel

SCell Secondary Cell

SDU Service Data Unit

SFN System Frame Number

SGW Serving Gateway

SI System Information

SIB System Information Block

SNR Signal to Noise Ratio

SON Self Optimized Network ss Synchronization Signal sss Secondary Synchronization Signal

TDD Time Division Duplex

TDOA Time Difference of Arrival

TOA Time of Arrival

TSS Tertiary Synchronization Signal

TTI Transmission Time Interval

UE User Equipment

UL Uplink

UMTS Universal Mobile Telecommunication System

USIM Universal Subscriber Identity Module

UTDOA Uplink Time Difference of Arrival

UTRA Universal Terrestrial Radio Access

UTRAN Universal Terrestrial Radio Access Network

WCDMA Wide CDMA

WLAN Wide Local Area Network

[0224] Further definitions and embodiments are discussed below. [0225] In the above-description of various embodiments of present inventive concepts, it is to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of present inventive concepts. Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which present inventive concepts belong. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of this specification and the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.

[0226] When an element is referred to as being "connected", "coupled", "responsive", or variants thereof to another element, it can be directly connected, coupled, or responsive to the other element or intervening elements may be present. In contrast, when an element is referred to as being "directly connected", "directly coupled", "directly responsive", or variants thereof to another element, there are no intervening elements present. Like numbers refer to like elements throughout. Furthermore, "coupled", "connected", "responsive", or variants thereof as used herein may include wirelessly coupled, connected, or responsive. As used herein, the singular forms "a", "an" and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise. Well-known functions or constructions may not be described in detail for brevity and/or clarity. The term "and/or" (abbreviated “/”) includes any and all combinations of one or more of the associated listed items.

[0227] It will be understood that although the terms first, second, third, etc. may be used herein to describe various elements/operations, these elements/operations should not be limited by these terms. These terms are only used to distinguish one element/operation from another element/operation. Thus a first element/operation in some embodiments could be termed a second element/operation in other embodiments without departing from the teachings of present inventive concepts. The same reference numerals or the same reference designators denote the same or similar elements throughout the specification.

[0228] As used herein, the terms "comprise", "comprising", "comprises", "include", "including", "includes", "have", "has", "having", or variants thereof are open-ended, and include one or more stated features, integers, elements, steps, components or functions but does not preclude the presence or addition of one or more other features, integers, elements, steps, components, functions or groups thereof. Furthermore, as used herein, the common abbreviation "e.g.", which derives from the Latin phrase "exempli gratia," may be used to introduce or specify a general example or examples of a previously mentioned item, and is not intended to be limiting of such item. The common abbreviation "i.e.", which derives from the Latin phrase "id est," may be used to specify a particular item from a more general recitation.

[0229] Example embodiments are described herein with reference to block diagrams and/or flowchart illustrations of computer-implemented methods, apparatus (systems and/or devices) and/or computer program products. It is understood that a block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations, can be implemented by computer program instructions that are performed by one or more computer circuits. These computer program instructions may be provided to a processor circuit of a general purpose computer circuit, special purpose computer circuit, and/or other programmable data processing circuit to produce a machine, such that the instructions, which execute via the processor of the computer and/or other programmable data processing apparatus, transform and control transistors, values stored in memory locations, and other hardware components within such circuitry to implement the functions/acts specified in the block diagrams and/or flowchart block or blocks, and thereby create means (functionality) and/or structure for implementing the functions/acts specified in the block diagrams and/or flowchart block(s).

[0230] These computer program instructions may also be stored in a tangible computer- readable medium that can direct a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable medium produce an article of manufacture including instructions which implement the functions/acts specified in the block diagrams and/or flowchart block or blocks. Accordingly, embodiments of present inventive concepts may be embodied in hardware and/or in software (including firmware, resident software, micro-code, etc.) that runs on a processor such as a digital signal processor, which may collectively be referred to as "circuitry," "a module" or variants thereof.

[0231] It should also be noted that in some alternate implementations, the functions/acts noted in the blocks may occur out of the order noted in the flowcharts. For example, two blocks shown in succession may in fact be executed substantially concurrently or the blocks may sometimes be executed in the reverse order, depending upon the functionality/acts involved. Moreover, the functionality of a given block of the flowcharts and/or block diagrams may be separated into multiple blocks and/or the functionality of two or more blocks of the flowcharts and/or block diagrams may be at least partially integrated. Finally, other blocks may be added/inserted between the blocks that are illustrated, and/or blocks/operations may be omitted without departing from the scope of inventive concepts. Moreover, although some of the diagrams include arrows on communication paths to show a primary direction of communication, it is to be understood that communication may occur in the opposite direction to the depicted arrows.

[0232] Many variations and modifications can be made to the embodiments without substantially departing from the principles of the present inventive concepts. All such variations and modifications are intended to be included herein within the scope of present inventive concepts. Accordingly, the above disclosed subject matter is to be considered illustrative, and not restrictive, and the examples of embodiments are intended to cover all such modifications, enhancements, and other embodiments, which fall within the spirit and scope of present inventive concepts. Thus, to the maximum extent allowed by law, the scope of present inventive concepts are to be determined by the broadest permissible interpretation of the present disclosure including the examples of embodiments and their equivalents, and shall not be restricted or limited by the foregoing detailed description.