Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
2-(3-ALKYLTHIOBENZOYL)CYCLOHEXANEDIONES AND THEIR USE AS HERBICIDES
Document Type and Number:
WIPO Patent Application WO/2011/012247
Kind Code:
A1
Abstract:
Described are 2-(3-alkylthiobenzoyl)cyclohexanediones of the general formula (I) as herbicides. X, Y, R1 to R8 in this formula (I) stand for radicals such as hydrogen or organic radicals such as alkyl and alkoxy.

Inventors:
AHRENS HARTMUT (DE)
VAN ALMSICK ANDREAS (DE)
DITTGEN JAN (DE)
ROSINGER CHRISTOPHER HUGH (DE)
HAEUSER-HAHN ISOLDE (DE)
LEHR STEFAN (DE)
FEUCHT DIETER (DE)
Application Number:
PCT/EP2010/004445
Publication Date:
February 03, 2011
Filing Date:
July 21, 2010
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BAYER CROPSCIENCE AG (DE)
AHRENS HARTMUT (DE)
VAN ALMSICK ANDREAS (DE)
DITTGEN JAN (DE)
ROSINGER CHRISTOPHER HUGH (DE)
HAEUSER-HAHN ISOLDE (DE)
LEHR STEFAN (DE)
FEUCHT DIETER (DE)
International Classes:
C07C317/24; A01N31/10; A01N31/16; A01N41/10; C07C323/22
Domestic Patent References:
WO2003014071A12003-02-20
WO2003084912A12003-10-16
WO1992011376A11992-07-09
WO1992014827A11992-09-03
WO1991019806A11991-12-26
WO1992000377A11992-01-09
WO1991013972A11991-09-19
Foreign References:
EP0338992A21989-10-25
US4780127A1988-10-25
EP0249150A11987-12-16
US4780127A1988-10-25
EP0338992A21989-10-25
EP0249150A11987-12-16
EP0137963A11985-04-24
EP0338992A21989-10-25
EP0221044A11987-05-06
EP0131624A11985-01-23
EP0242236A11987-10-21
EP0242246A11987-10-21
EP0257993A21988-03-02
US5013659A1991-05-07
EP0142924A21985-05-29
EP0193259A11986-09-03
Other References:
TETRAHEDRON LETTERS, vol. 49, no. 33, 1992, pages 7499 - 7502
J. HETEROCYCLIC CHEM., vol. 36, 1999, pages 1453
ANGEW. CHEM., vol. 117, 2005, pages 380 - 398
SYNTHESIS, vol. 10, 2006, pages 1578 - 1589
ORG. LETT., vol. 8, no. 4, 2006, pages 765 - 768
CHEMFILES, vol. 4, no. 1
CHRISTOU, TRENDS IN PLANT SCIENCE, vol. 1, 1996, pages 423 - 431
BRAUN ET AL., EMBO J., vol. 11, 1992, pages 3219 - 3227
WOLTER ET AL., PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 846 - 850
SONNEWALD ET AL., PLANT J., vol. 1, 1991, pages 95 - 106
WEED RESEARCH, vol. 26, 1986, pages 441 - 445
Attorney, Agent or Firm:
BAYER CROPSCIENCE AG (DE)
Download PDF:
Claims:
Patentansprüche:

1. 2-(3-Alkylthiobenzoyl)cyclohexandione der Formel (I) oder deren Salze

worin

R1 bedeutet (Ci-C6)-Alkyl, R^ bedeutet Hydroxy, SR 113J, M NDR1144DR1150,

R3 und R8 bedeuten unabhängig voneinander Wasserstoff oder (Ci-C4)-Alkyl, oder die Reste R3 und R8 bilden zusammen die Einheit Z1 die ein Sauerstoff- oder Schwefelatom oder ein bis vier Methylengruppen darstellt,

R4 und R7 bedeuten unabhängig voneinander Wasserstoff oder (CrC4)-Alkyl,

R5 und R6 bedeuten unabhängig voneinander Wasserstoff oder (C1-C4)-Alkyl oder bilden gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, eine

Carbonylgruppe,

X bedeutet OR9, OCOR9, OSO2R10,

R9 bedeutet Wasserstoff, (C1-C6)-Alkyl, (C2-C6)-Alkenyl, (C2-C6)-Alkinyl, (C3-C6)- Cycloalkyl, (C3-C6)-Cycloalkyl-(Ci-C6)-alkyl oder Phenyl-(Ci-C6)-alkyl, wobei die sechs letztgenannten Reste durch s Reste aus der Gruppe bestehend aus Halogen, OR11 und S(O)mR12 substituiert sind, R10 bedeutet (Ci-C6)-Alkyl, (C2-C6)-Alkenyl, (C2-C6)-Alkinyl, (C3-C6)-Cycloalkyl, (C3-C6)-Cycloalkyl-(Ci-C6)-alkyl oder Phenyl-(Ci-C6)-alkyl, wobei die sechs letztgenannten Reste durch s Reste aus der Gruppe bestehend aus Halogen, OR11 und S(O)mR12 substituiert sind,

R11 bedeutet Wasserstoff, (d-CeJ-Alkyl, (C2-C6)-Alkenyl oder (C2-C6)-Alkinyl,

R12 bedeutet (CrC6)-Alkyl, (C2-C6)-Alkenyl oder (C2-C6)-Alkinyl, R13 bedeutet (Ci-C4)-Alkyl, durch s Reste aus der Gruppe bestehend aus Nitro, Cyano, (d-C^-Alkyl, (Ci-C4)-Halogenalkyl, (CrC4)-Alkoxy oder (Ci-C4)- Halogenalkoxy substituiertes Phenyl oder partiell oder vollständig halogeniertes Phenyl, R14 bedeutet Wasserstoff, (C1-C4)-Alkyl oder (CrC4)-Alkoxy,

R15 bedeutet Wasserstoff oder (CrC4)-Alkyl,

oder

R14 und R15 bilden mit dem Stickstoffatom, an das sie gebunden sind, einen 5- oder 6-gliedrigen gesättigten, partiell gesättigten oder ungesättigten Ring,

der null, ein oder zwei weitere Heteroatome ausgewählt aus der Gruppe bestehend aus Sauerstoff, Schwefel und Stickstoff enthält,

der durch s Reste aus der Gruppe bestehend aus Cyano, Halogen, (Ci-C4)-Alkyl,

(CrC4)-Halogenalkyl, (Ci-C4)-Alkoxy und (Ci-C4)-Halogenalkoxy substituiert ist,

Y bedeutet (Ci-C6)-Halogenalkyl, m bedeutet 0, 1 oder 2,

n bedeutet 0, 1 oder 2,

s bedeutet 0,1,2 oder 3.

2. 2-(3-Alkylthiobenzoyl)cyclohexandione nach Anspruch 1 , worin R1 bedeutet Methyl, Ethyl, n-Propyl oder i-Propyl, R2 bedeutet Hydroxy,

R3 und R8 bedeuten unabhängig voneinander Wasserstoff oder (Ci-C4)-Alkyl, oder die Reste R3 und R8 bilden zusammen eine Methylen- oder Ethylengruppe, R4 und R7 bedeuten unabhängig voneinander Wasserstoff, Methyl oder Ethyl, R5 und R6 bedeuten unabhängig voneinander Wasserstoff, Methyl oder Ethyl,

X bedeutet OR9, OCOR9, OSO2R10,

R9 bedeutet Cyclopropylmethyl oder durch s Methoxy- oder Ethoxygruppen substituiertes (Ci-C6)-Alkyl,

R10 bedeutet durch s Methoxy- oder Ethoxygruppen substituiertes (CrC6)-Alkyl,

Y bedeutet (d-C3)-Halogenalkyl, n bedeutet O, 1 oder 2, s bedeutet 0, 1 , 2 oder 3.

3. 2-(3-Alkylthiobenzoyl)cyclohexandione nach Anspruch 1 oder 2, worin R1 bedeutet Methyl, Ethyl, n-Propyl oder i-Propyl, R2 bedeutet Hydroxy,

R3 und R8 bedeuten unabhängig voneinander Wasserstoff, Methyl oder Ethyl, oder die Reste R3 und R8 bilden zusammen eine Methylen- oder Ethylengruppe, R4 und R7 bedeuten unabhängig voneinander Wasserstoff, Methyl oder Ethyl, R5 und R6 bedeuten unabhängig voneinander Wasserstoff, Methyl oder Ethyl, X bedeutet OR9,

R9 bedeutet Cyclopropylmethyl oder durch s Methoxy- oder Ethoxygruppen substituiertes Methyl oder Ethyl,

Y bedeutet Trichlormethyl, Difluormethyl, Trifluormethyl, Pentafluorethyl oder Heptafluorisopropyl, n bedeutet 0, 1 oder 2, s bedeutet 0, 1 , 2 oder 3.

4. Herbizide Mittel, gekennzeichnet durch einen herbizid wirksamen Gehalt an mindestens einer Verbindung der Formel (I) gemäß einem der Ansprüche 1 bis 3.

5. Herbizide Mittel nach Anspruch 4 in Mischung mit Formulierungshilfsmitteln.

6. Verfahren zur Bekämpfung unerwünschter Pflanzen, dadurch

gekennzeichnet, daß man eine wirksame Menge mindestens einer Verbindung der Formel (I) gemäß einem der Ansprüche 1 bis 4 oder eines herbiziden Mittels nach Anspruch 4 oder 5 auf die Pflanzen oder auf den Ort des unerwünschten

Pflanzenwachstums appliziert. 7. Verwendung von Verbindungen der Formel (I) gemäß einem der Ansprüche 1 bis 3 oder von herbiziden Mitteln nach Anspruch 4 oder 5 zur Bekämpfung

unerwünschter Pflanzen.

8. Verwendung nach Anspruch 7, dadurch gekennzeichnet, daß die Verbindungen der Formel (I) zur Bekämpfung unerwünschter Pflanzen in Kulturen von Nutzpflanzen eingesetzt werden.

9. Verwendung nach Anspruch 8, dadurch gekennzeichnet, daß die

Nutzpflanzen transgene Nutzpflanzen sind.

10. Verbindungen der Formel (II)

worin X, Y, R1 und n wie in einem der Ansprüche 1 bis 3 definiert sind.

Description:
Beschreibung 2-(3-Alkylthiobenzoyl)cyclohexandione und ihre Verwendung als Herbizide

Die Erfindung betrifft das technische Gebiet der Herbizide, insbesondere das der Herbizide zur selektiven Bekämpfung von Unkräutern und Ungräsern in

Nutzpflanzenkulturen.

Aus verschiedenen Schriften ist bereits bekannt, daß bestimmte Benzoylcyclohexan- dione herbizide Eigenschaften besitzen. So werden in US 4,780,127, EP-A- 338 992, EP-A- 249 150 und EP-A-137963 Benzoylcyclohexandione beschrieben, die am Phenylring durch verschiedene Reste substituiert sind.

Die aus diesen Schriften bekannten Verbindungen zeigen jedoch häufig eine nicht ausreichende herbizide Wirksamkeit. Aufgabe der vorliegenden Erfindung ist daher die Bereitstellung von weiteren herbizid wirksamen Verbindungen mit - gegenüber den aus dem Stand der Technik bekannten Verbindungen - verbesserten

Eigenschaften.

Es wurde nun gefunden, daß Benzoylcyclohexandione, deren Phenylring in 2,- 3- und 4-Position durch ausgewählte Reste substituiert sind, als Herbizide besonders gut geeignet sind.

Ein Gegenstand der vorliegenden Erfindung sind 2-(3-Alkylthiobenzoyl)

cyclohexandione der Formel (I) oder deren Salze

(I),

worin

R 1 bedeutet (d-C 6 )-Alkyl, R 2 bedeutet Hydroxy, SR 13 , NR 14 R 15 ,

R 3 und R 8 bedeuten unabhängig voneinander Wasserstoff oder (Ci-C 4 )-Alkyl, oder die Reste R 3 und R 8 bilden zusammen die Einheit Z, die ein Sauerstoff- oder Schwefelatom oder ein bis vier Methylengruppen darstellt,

R 4 und R 7 bedeuten unabhängig voneinander Wasserstoff oder (Ci-C 4 )-Alkyl,

R 5 und R 6 bedeuten unabhängig voneinander Wasserstoff oder (CrC 4 )-Alkyl oder bilden gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, eine

Carbonylgruppe,

X bedeutet OR 9 , OCOR 9 , OSO 2 R 10 ,

R 9 bedeutet Wasserstoff, (Ci-C 6 )-Alkyl, (C 2 -C 6 )-Alkenyl, (C 2 -C 6 )-Alkinyl, (C 3 -C 6 )- Cycloalkyl, (C 3 -C 6 )-Cycloalkyl-(Ci-C 6 )-alkyl oder Phenyl-(Ci-C 6 )-alkyl, wobei die sechs letztgenannten Reste durch s Reste aus der Gruppe bestehend aus Halogen, OR 11 und S(O) m R 12 substituiert sind,

R 10 bedeutet (Ci-C 6 )-Alkyl, (C 2 -C 6 )-Alkenyl, (C 2 -C 6 )-Alkinyl, (C 3 -C 6 )-Cycloalkyl, (Cs-CeJ-Cycloalkyl-Cd-CeJ-alkyl oder Phenyl-(C r C 6 )-alkyl, wobei die sechs letztgenannten Reste durch s Reste aus der Gruppe bestehend aus Halogen, OR 11 und S(O) m R 12 substituiert sind,

R 11 bedeutet Wasserstoff, (Ci-C 6 )-Alkyl, (C 2 -C 6 )-Alkenyl oder (C 2 -C 6 )-Alkinyl,

R 12 bedeutet (Ci-C 6 )-Alkyl, (C 2 -C 6 )-Alkenyl oder (C 2 -C 6 )-Alkinyl, R 13 bedeutet (Ci-C 4 )-Alkyl, durch s Reste aus der Gruppe bestehend aus Nitro, Cyano, (d-C 4 )-Alkyl, (CrC 4 )-Halogenalkyl, (CrC 4 )-Alkoxy oder (Ci-C 4 )- Halogenalkoxy substituiertes Phenyl oder partiell oder vollständig halogeniertes Phenyl,

R 14 bedeutet Wasserstoff, (Ci-C 4 )-Alkyl oder (Ci-C 4 )-Alkoxy,

R 15 bedeutet Wasserstoff oder (Ci-C 4 )-Alkyl,

oder

R 14 und R 15 bilden mit dem Stickstoffatom, an das sie gebunden sind, einen 5- oder

6-gliedrigen gesättigten, partiell gesättigten oder ungesättigten Ring,

der null, ein oder zwei weitere Heteroatome ausgewählt aus der Gruppe bestehend aus Sauerstoff, Schwefel und Stickstoff enthält,

der durch s Reste aus der Gruppe bestehend aus Cyano, Halogen, (Ci-C 4 )-Alkyl, (Ci-C 4 )-Halogenalkyl, (Ci-C 4 J-AIkOXy und (C 1 -C 4 )-Halogenalkoxy substituiert ist,

Y bedeutet (Ci-C 6 )-Halogenalkyl, m bedeutet 0, 1 oder 2, n bedeutet 0, 1 oder 2, s bedeutet 0, 1 , 2 oder 3. In der Formel (I) und allen nachfolgenden Formeln können Alkylreste mit mehr als zwei Kohlenstoffatomen geradkettig oder verzweigt sein. Alkylreste bedeuten z.B. Methyl, Ethyl, n- oder i-Propyl, n-, i-, t- oder 2-Butyl, Pentyle, Hexyle, wie n-Hexyl, i-Hexyl und 1 ,3-Dimethylbutyl. Halogen steht für Fluor, Chlor, Brom oder lod. Ist eine Gruppe mehrfach durch Reste substituiert, so ist darunter zu verstehen, daß diese Gruppe durch ein oder mehrere gleiche oder verschiedene der genannten Reste substituiert ist. Die Verbindungen der allgemeinen Formel (I) können je nach Art und Verknüpfung der Substituenten als Stereoisomere vorliegen. Sind beispielsweise ein oder mehrere asymmetrisch substituierte Kohlenstoffatome vorhanden, so können Enantiomere und Diastereomere auftreten. Ebenso treten Stereoisomere auf, wenn n für 1 steht (Sulfoxide). Stereoisomere lassen sich aus den bei der Herstellung anfallenden Gemischen nach üblichen Trennmethoden, beispielsweise durch chromatographische Trennverfahren, erhalten. Ebenso können Stereoisomere durch Einsatz stereoselektiver Reaktionen unter Verwendung optisch aktiver Ausgangs- und/oder Hilfsstoffe selektiv hergestellt werden. Die Erfindung betrifft auch alle Stereoisomeren und deren Gemische, die von der allgemeinen Formel (I) umfasst, jedoch nicht spezifisch definiert sind.

Bevorzugt sind Verbindungen der allgemeinen Formel (I), worin

R 1 bedeutet Methyl, Ethyl, n-Propyl oder i-Propyl,

R 2 bedeutet Hydroxy,

R 3 und R 8 bedeuten unabhängig voneinander Wasserstoff oder (CrC 4 )-Alkyl, oder die Reste R 3 und R 8 bilden zusammen eine Methylen- oder Ethylengruppe,

R 4 und R 7 bedeuten unabhängig voneinander Wasserstoff, Methyl oder Ethyl,

R 5 und R 6 bedeuten unabhängig voneinander Wasserstoff, Methyl oder Ethyl,

X bedeutet OR 9 , OCOR 9 , OSO 2 R 10 ,

R 9 bedeutet Cyclopropylmethyl oder durch s Methoxy- oder Ethoxygruppen substituiertes (CrC 6 )-Alkyl,

R 10 bedeutet durch s Methoxy- oder Ethoxygruppen substituiertes (Ci-C 6 )-Alkyl, Y bedeutet (Ci-C 3 )-Halogenalkyl, n bedeutet O, 1 oder 2, s bedeutet 0, 1 , 2 oder 3.

Besonders bevorzugt sind Verbindungen der allgemeinen Formel (I), worin

R 1 bedeutet Methyl, Ethyl, n-Propyl oder i-Propyl,

R 2 bedeutet Hydroxy,

R 3 und R 8 bedeuten unabhängig voneinander Wasserstoff, Methyl oder Ethyl, oder die Reste R 3 und R 8 bilden zusammen eine Methylen- oder Ethylengruppe,

R 4 und R 7 bedeuten unabhängig voneinander Wasserstoff, Methyl oder Ethyl,

R 5 und R 6 bedeuten unabhängig voneinander Wasserstoff, Methyl oder Ethyl, X bedeutet OR 9 ,

R 9 bedeutet Cyclopropylmethyl oder durch s Methoxy- oder Ethoxygruppen substituiertes Methyl oder Ethyl, Y bedeutet Trichlormethyl, Difluormethyl, Trifluormethyl, Pentafluorethyl oder Heptafluorisopropyl, n bedeutet 0, 1 oder 2, s bedeutet 0, 1 , 2 oder 3. In allen nachfolgend genannten Formeln haben die Substituenten und Symbole, sofern nicht anders definiert, dieselbe Bedeutung wie unter Formel (I) beschrieben.

Erfindungsgemäße Verbindungen, worin R 2 für Hydroxy steht, können

beispielsweise nach der in Schema 1 angegebenen Methode durch Umsetzung einer Benzoesäure (II) zu einem Säurechlorid oder einem Ester (IM), anschließender basenkatalysierter Reaktion mit einem Cyclohexandion (IV) und nachfolgender Umlagerung in Anwesenheit einer Cyanid-Quelle hergestellt werden. Solche

Methoden sind dem Fachmann bekannt und beispielsweise in WO 03/084912 beschrieben. In Formel (III) steht L 1 für Chlor, Brom oder Alkoxy.

Schema 1

(II) (III) (IV)

(IV) (I)

Die Cyclohexandione der Formel (IV) sind bekannt und können beispielsweise gemäß den in EP 0 338 992 beschriebenen Methoden hergestellt werden.

Erfindungsgemäße Verbindungen, worin R 2 für einen anderen Rest als Hydroxy steht, können gemäß Schema 2 aus den erfindungsgemäßen Verbindungen, worin R für Hydroxy steht, durch Halogenierung und anschließenden

Austauschreaktionen hergestellt werden. Solche, dem Fachmann bekannte Reaktionen sind beispielsweise in WO 03/084912 beschrieben.

(I) worin R 2 = OH

(I) worin R 2 ungleich OH

Die Benzoesäuren (II) können beispielsweise gemäß Schema 3 durch dem Fachmann bekannte Reaktionen aus den Verbindungen (VI) hergestellt werden.

Schema 3

Beispielsweise können Verbindungen der Formel (VI), worin L 2 für einen ortho- dirigierenden Substituenten wie Fluor steht, mit Lithiumdiisopropylamid metalliert und dann mit einem Thiolierungsreagenz zu einer Verbindung der Formel (VII) umgesetzt werden. Durch eine weitere Metallierungreaktion mit beispielsweise n-Butyllithium und anschließender Carboxylierung gelangt man zu Benzoesäure (VIII). Solche Reaktionen sind beispielsweise aus Tetrahedron Letters 1992 (33), 49, S. 7499 - 7502; J. Heterocyclic Chem. 1999, 36, S. 1453 ff. und Angew. Chem. 2005, 117, 380 - 398) bekannt. Der Rest L 2 wird anschließend, gegebenenfalls nach Veresterung, gegen den Rest OR 9 ausgetauscht. Durch Reaktion der Verbindungen (X) oder (II) mit Oxidationsmitteln wie meta-Chlorperbenzoesäure wird die Thiogruppe zu einer Sulfinyl- oder Sulfonylgruppe oxidiert.

Ein Austausch der Gruppe L 2 gegen OR 9 kann gemäß Schema 4 auch auf der Stufe der Benzoylcyclohexandione vorgenommen werden.

(Xl) (I) worin R 2 = OH und X = OR 9

Der Thiorest in 3-Position kann gemäß Schema 5 auch via Metallierungsreaktionen aus Verbindungen (VI) eingeführt werden. Solche Reaktionen sind beispielsweise aus Synthesis 2006, 10, 1578 - 1589; Org. Lett. 8 (2006) 4, 765 - 768 und Angew. Chem. 2005, 117, 380 - 398 bekannt.

Schema 5

(VI) (VII) (II)

Gemäß Schema 6 können Verbindungen (II), worin X für Hydroxy steht, durch Acylierungsreaktionen in Verbindungen (II), worin X für OCOR 9 oder OSO 2 R 10 steht, überführt werden. Solche Reaktionen sind beispielsweise aus Houben-Weyl,

Methoden der Organischen Chemie, Georg Thieme Verlag Stuttgart, Bd. VIII, vierte Auflage 1952, S. 543 ff. sowie Bd. IX, vierte Auflage 1955, S. 388 f. bekannt. Schema 6

(II) worin X = OCOR 9 (II) worin X = OH (II) worin X = OSO 2 R 10

Der Alkylthiorest in 3-Position kann zum Sulfoxid oder Sulfon oxidiert werden. Hierfür bietet sich eine Anzahl an Oxidationssystemen an, beispielsweise Persäuren wie meta-Clorperbenzoesäure, die gegebenenfalls in situ erzeugt werden (zum Beispiel Peressigsäure im System Essigsäure/Wasserstoffperoxid/Natriumwolframat(VI)).

Solche Reaktionen sind beispielsweise aus Houben-Weyl, Methoden der

Organischen Chemie, Georg Thieme Verlag Stuttgart, Bd. E 11 , Erweiterungs- und Folgebände zur vierten Auflage 1985, S. 702 ff., S. 718 ff. sowie S. 1194 ff.bekannt. Diese Oxidationsreaktionen können auch auf der Stufe der Benzoylcyclohexandione oder der entsprechenden Enolester vorgenommen werden, siehe Schema 7.

(II) worin n = 0 (II) worin n = 1 , 2

(V) mit n = 0 (V) worin n = 1 , 2

(I) worin R 2 = OH und n = 0

Es kann von Vorteil sein, die Reihenfolge der in den vorstehenden Schemata beschriebenen Reaktionsschritte zu vertauschen oder auch untereinander zu kombinieren. Die Aufarbeitung der jeweiligen Reaktionsmischungen erfolgt in der Regel nach bekannten Verfahren, beispielsweise durch Kristallisation, wässrig- extraktive Aufarbeitung, durch chromatographische Methoden oder durch

Kombination dieser Methoden.

Die Verbindungen der Formel (II) sind neu und ebenfalls Gegenstand vorliegender Erfindung. Kollektionen aus Verbindungen der Formel (I) und/oder deren Salzen, die nach den oben genannten Reaktionen synthetisiert werden können, können auch in parallelisierter Weise hergestellt werden, wobei dies in manueller, teilweise automatisierter oder vollständig automatisierter Weise geschehen kann. Dabei ist es beispielsweise möglich, die Reaktionsdurchführung, die Aufarbeitung oder die Reinigung der Produkte bzw. Zwischenstufen zu automatisieren. Insgesamt wird hierunter eine Vorgehensweise verstanden, wie sie beispielsweise durch D. Tiebes in Combinatorial Chemistry - Synthesis, Analysis, Screening (Herausgeber Günther Jung), Verlag Wiley 1999, auf den Seiten 1 bis 34 beschrieben ist.

Zur parallelisierten Reaktionsdurchführung und Aufarbeitung können eine Reihe von im Handel erhältlichen Geräten verwendet werden, beispielsweise Calpyso- Reaktionsblöcke (Caylpso reaction blocks) der Firma Barnstead International, Dubuque, Iowa 52004-0797, USA oder Reaktionsstationen (reaction stations) der Firma Radleys, Shirehill, Saffron Waiden, Essex, CB 11 3AZ, England oder

MultiPROBE Automated Workstations der Firma Perkin Elmar, Waltham,

Massachusetts 02451 , USA. Für die parallelisierte Aufreinigung von Verbindungen der allgemeinen Formel (I) und deren Salzen beziehungsweise von bei der

Herstellung anfallenden Zwischenprodukten stehen unter anderem

Chromatographieapparaturen zur Verfügung, beispielsweise der Firma ISCO, Inc., 4700 Superior Street, Lincoln, NE 68504, USA.

Die aufgeführten Apparaturen führen zu einer modularen Vorgehensweise, bei der die einzelnen Arbeitsschritte automatisiert sind, zwischen den Arbeitsschritten jedoch manuelle Operationen durchgeführt werden müssen. Dies kann durch den Einsatz von teilweise oder vollständig integrierten Automationssystemen umgangen werden, bei denen die jeweiligen Automationsmodule beispielsweise durch Roboter bedient werden. Derartige Automationssysteme können zum Beispiel von der Firma Caliper, Hopkinton, MA 01748, USA bezogen werden. Die Durchführung einzelner oder mehrerer Syntheseschritte kann durch den Einsatz von Polymer-supported reagents/Scavanger-Harze unterstützt werden. In der Fachliteratur sind eine Reihe von Versuchsprotokollen beschrieben, beispielsweise in ChemFiles, Vol. 4, No. 1 , Polymer-Supported Scavengers and Reagents for Solution-Phase Synthesis (Sigma-Aldrich).

Neben den hier beschriebenen Methoden kann die Herstellung von Verbindungen der allgemeinen Formel (I) und deren Salzen vollständig oder partiell durch

Festphasen unterstützte Methoden erfolgen. Zu diesem Zweck werden einzelne Zwischenstufen oder alle Zwischenstufen der Synthese oder einer für die

entsprechende Vorgehensweise angepassten Synthese an ein Syntheseharz gebunden. Festphasen- unterstützte Synthesemethoden sind in der Fachliteratur hinreichend beschrieben, z.B. Barry A. Bunin in "The Combinatorial Index", Verlag Academic Press, 1998 und Combinatorial Chemistry - Synthesis, Analysis,

Screening (Herausgeber Günther Jung), Verlag Wiley, 1999. Die Verwendung von Festphasen- unterstützten Synthesemethoden erlaubt eine Reihe von

literaturbekannten Protokollen, die wiederum manuell oder automatisiert ausgeführt werden können. Die Reaktionen können beispielsweise mittels IRORI-Technologie in Mikroreaktoren (microreactors) der Firma Nexus Biosystems, 12140 Community Road, Poway, CA92064, USA durchgeführt werden.

Sowohl an fester als auch in flüssiger Phase kann die Durchführung einzelner oder mehrerer Syntheseschritte durch den Einsatz der Mikrowellen-Technologie unterstützt werden. In der Fachliteratur sind eine Reihe von Versuchsprotokollen beschrieben, beispielsweise in Microwaves in Organic and Medicinal Chemistry (Herausgeber C. O. Kappe und a. Stadler), Verlag Wiley, 2005.

Die Herstellung gemäß der hier beschriebenen Verfahren liefert Verbindungen der Formel (I) und deren Salze in Form von Substanzkollektionen, die Bibliotheken genannt werden. Gegenstand der vorliegenden Erfindung sind auch Bibliotheken, die mindestens zwei Verbindungen der Formel (I) und deren Salzen enthalten. Die erfindungsgemäßen Verbindungen der Formel (I) (und/oder deren Salze), im folgenden zusammen als„erfindungsgemäße Verbindungen" bezeichnet, weisen eine ausgezeichnete herbizide Wirksamkeit gegen ein breites Spektrum

wirtschaftlich wichtiger mono- und dikotyler annueller Schadpflanzen auf. Auch schwer bekämpfbare perennierende Schadpflanzen, die aus Rhizomen,

Wurzelstöcken oder anderen Dauerorganen austreiben, werden durch die Wirkstoffe gut erfaßt.

Gegenstand der vorliegenden Erfindung ist daher auch ein Verfahren zur

Bekämpfung von unerwünschten Pflanzen oder zur Wachstumsregulierung von Pflanzen, vorzugsweise in Pflanzenkulturen, worin eine oder mehrere

erfindungsgemäße Verbindung(en) auf die Pflanzen (z.B. Schadpflanzen wie mono- oder dikotyle Unkräuter oder unerwünschte Kulturpflanzen), das Saatgut (z.B.

Körner, Samen oder vegetative Vermehrungsorgane wie Knollen oder Sprossteile mit Knospen) oder die Fläche, auf der die Pflanzen wachsen (z.B. die Anbaufläche), ausgebracht werden. Dabei können die erfindungsgemäßen Verbindungen z.B. im Vorsaat- (ggf. auch durch Einarbeitung in den Boden), Vorauflauf- oder

Nachauf laufverfahren ausgebracht werden. Im einzelnen seien beispielhaft einige Vertreter der mono- und dikotylen Unkrautflora genannt, die durch die

erfindungsgemäßen Verbindungen kontrolliert werden können, ohne dass durch die Nennung eine Beschränkung auf bestimmte Arten erfolgen soll.

Monokotyle Schadpflanzen der Gattungen: Aegilops, Agropyron, Agrostis,

Alopecurus, Apera, Avena, Brachiaria, Bromus, Cenchrus, Commelina, Cynodon, Cyperus, Dactyloctenium, Digitaria, Echinochloa, Eleocharis, Eleusine, Eragrostis, Eriochloa, Festuca, Fimbristylis, Heteranthera, Imperata, Ischaemum, Leptochloa, Lolium, Monochoria, Panicum, Paspalum, Phalaris, Phleum, Poa, Rottboellia, Sagittaria, Scirpus, Setaria, Sorghum. Dikotyle Unkräuter der Gattungen: Abutilon, Amaranthus, Ambrosia, Anoda,

Anthemis, Aphanes, Artemisia, Atriplex, Bellis, Bidens, Capsella, Carduus, Cassia, Centaurea, Chenopodium, Cirsium, Convolvulus, Datura, Desmodium, Emex, Erysimum, Euphorbia, Galeopsis, Galinsoga, Galium, Hibiscus, Ipomoea, Kochia, Lamium, Lepidium, Lindernia, Matricaria, Mentha, Mercurialis, Mullugo, Myosotis, Papaver, Pharbitis, Plantago, Polygonum, Portulaca, Ranunculus, Raphanus, Rorippa, Rotala, Rumex, Salsola, Senecio, Sesbania, Sida, Sinapis, Solanum, Sonchus, Sphenoclea, Stellaria, Taraxacum, Thlaspi, Trifolium, Urtica, Veronica, Viola, Xanthium.

Werden die erfindungsgemäßen Verbindungen vor dem Keimen auf die

Erdoberfläche appliziert, so wird entweder das Auflaufen der Unkrautkeimlinge vollständig verhindert oder die Unkräuter wachsen bis zum Keimblattstadium heran, stellen jedoch dann ihr Wachstum ein und sterben schließlich nach Ablauf von drei bis vier Wochen vollkommen ab.

Bei Applikation der Wirkstoffe auf die grünen Pflanzenteile im Nachauflaufverfahren tritt nach der Behandlung Wachstumsstop ein und die Schadpflanzen bleiben in dem zum Applikationszeitpunkt vorhandenen Wachstumsstadium stehen oder sterben nach einer gewissen Zeit ganz ab, so dass auf diese Weise eine für die

Kulturpflanzen schädliche Unkrautkonkurrenz sehr früh und nachhaltig beseitigt wird.

Obgleich die erfindungsgemäßen Verbindungen eine ausgezeichnete herbizide Aktivität gegenüber mono- und dikotylen Unkräutern aufweisen, werden

Kulturpflanzen wirtschaftlich bedeutender Kulturen z.B. dikotyler Kulturen der

Gattungen Arachis, Beta, Brassica, Cucumis, Cucurbita, Helianthus, Daucus, Glycine, Gossypium, Ipomoea, Lactuca, Linum, Lycopersicon, Nicotiana, Phaseolus, Pisum, Solanum, Vicia, oder monokotyler Kulturen der Gattungen Allium, Ananas, Asparagus, Avena, Hordeum, Oryza, Panicum, Saccharum, Seeale, Sorghum,

Triticale, Triticum, Zea, insbesondere Zea und Triticum, abhängig von der Struktur der jeweiligen erfindungsgemäßen Verbindung und deren Aufwandmenge nur unwesentlich oder gar nicht geschädigt. Die vorliegenden Verbindungen eignen sich aus diesen Gründen sehr gut zur selektiven Bekämpfung von unerwünschtem

Pflanzenwuchs in Pflanzenkulturen wie landwirtschaftlichen Nutzpflanzungen oder Zierpflanzungen. Darüberhinaus weisen die erfindungsgemäßen Verbindungen (abhängig von ihrer jeweiligen Struktur und der ausgebrachten Aufwandmenge) hervorragende

wachstumsregulatorische Eigenschaften bei Kulturpflanzen auf. Sie greifen regulierend in den pflanzeneigenen Stoffwechsel ein und können damit zur gezielten Beeinflussung von Pflanzeninhaltsstoffen und zur Ernteerleichterung wie z.B. durch Auslösen von Desikkation und Wuchsstauchung eingesetzt werden. Desweiteren eignen sie sich auch zur generellen Steuerung und Hemmung von unerwünschtem vegetativen Wachstum, ohne dabei die Pflanzen abzutöten. Eine Hemmung des vegetativen Wachstums spielt bei vielen mono- und dikotylen Kulturen eine große Rolle, da beispielsweise die Lagerbildung hierdurch verringert oder völlig verhindert werden kann.

Aufgrund ihrer herbiziden und pflanzenwachstumsregulatorischen Eigenschaften können die Wirkstoffe auch zur Bekämpfung von Schadpflanzen in Kulturen von gentechnisch oder durch konventionelle Mutagenese veränderten Pflanzen eingesetzt werden. Die transgenen Pflanzen zeichnen sich in der Regel durch besondere vorteilhafte Eigenschaften aus, beispielsweise durch Resistenzen gegenüber bestimmten Pestiziden, vor allem bestimmten Herbiziden, Resistenzen gegenüber Pflanzenkrankheiten oder Erregern von Pflanzenkrankheiten wie bestimmten Insekten oder Mikroorganismen wie Pilzen, Bakterien oder Viren.

Andere besondere Eigenschaften betreffen z. B. das Erntegut hinsichtlich Menge, Qualität, Lagerfähigkeit, Zusammensetzung und spezieller Inhaltsstoffe. So sind transgene Pflanzen mit erhöhtem Stärkegehalt oder veränderter Qualität der Stärke oder solche mit anderer Fettsäurezusammensetzung des Ernteguts bekannt.

Bevorzugt bezüglich transgener Kulturen ist die Anwendung der erfindungsgemäßen Verbindungen in wirtschaftlich bedeutenden transgenen Kulturen von Nutz- und Zierpflanzen, z. B. von Getreide wie Weizen, Gerste, Roggen, Hafer, Hirse, Reis und Mais oder auch Kulturen von Zuckerrübe, Baumwolle, Soja, Raps, Kartoffel, Tomate, Erbse und anderen Gemüsesorten. Vorzugsweise können die erfindungsgemäßen Verbindungen als Herbizide in Nutzpflanzenkulturen eingesetzt werden, welche gegenüber den phytotoxischen Wirkungen der Herbizide resistent sind bzw. gentechnisch resistent gemacht worden sind.

Bevorzugt ist die Anwendung der erfindungsgemäßen Verbindungen oder deren Salze in wirtschaftlich bedeutenden transgenen Kulturen von Nutz-und Zierpflanzen, z. B. von Getreide wie Weizen, Gerste, Roggen, Hafer, Hirse, Reis, Maniok und Mais oder auch Kulturen von Zuckerrübe, Baumwolle, Soja, Raps, Kartoffel, Tomate, Erbse und anderen Gemüsesorten. Vorzugsweise können die erfindungsgemäßen Verbindungen als Herbizide in Nutzpflanzenkulturen eingesetzt werden, welche gegenüber den phytotoxischen Wirkungen der Herbizide resistent sind bzw.

gentechnisch resistent gemacht worden sind.

Herkömmliche Wege zur Herstellung neuer Pflanzen, die im Vergleich zu bisher vorkommenden Pflanzen modifizierte Eigenschaften aufweisen, bestehen

beispielsweise in klassischen Züchtungsverfahren und der Erzeugung von Mutanten. Alternativ können neue Pflanzen mit veränderten Eigenschaften mit Hilfe

gentechnischer Verfahren erzeugt werden (siehe z. B. EP-A-0221044, EP-A- 0131624). Beschrieben wurden beispielsweise in mehreren Fällen

gentechnische Veränderungen von Kulturpflanzen zwecks Modifikation der in den Pflanzen synthetisierten Stärke (z. B. WO 92/11376, WO 92/14827, WO 91/19806),

transgene Kulturpflanzen, welche gegen bestimmte Herbizide vom Typ

Glufosinate (vgl. z. B. EP-A-0242236, EP-A-242246) oder Glyphosate

(WO 92/00377) oder der Sulfonylharnstoffe (EP-A-0257993, US-A-5013659) resistent sind,

- transgene Kulturpflanzen, beispielsweise Baumwolle, mit der Fähigkeit

Bacillus thuringiensis-Toxine (Bt-Toxine) zu produzieren, welche die

Pflanzen gegen bestimmte Schädlinge resistent machen (EP-A-0142924, EP-A-0193259).

transgene Kulturpflanzen mit modifizierter Fettsäurezusammensetzung (WO 91/13972).

gentechnisch veränderte Kulturpflanzen mit neuen Inhalts- oder

Sekundärstoffen z. B. neuen Phytoalexinen, die eine erhöhte

Krankheitsresistenz verursachen (EPA 309862, EPA0464461) gentechnisch veränderte Pflanzen mit reduzierter Photorespiration, die höhere Erträge und höhere Stresstoleranz aufweisen (EPA 0305398).

Transgene Kulturpflanzen, die pharmazeutisch oder diagnostisch wichtige Proteine produzieren („molecular pharming")

- transgene Kulturpflanzen, die sich durch höhere Erträge oder bessere

Qualität auszeichnen

transgene Kulturpflanzen die sich durch eine Kombinationen z. B. der o. g. neuen Eigenschaften auszeichnen („gene stacking") Zahlreiche molekularbiologische Techniken, mit denen neue transgene Pflanzen mit veränderten Eigenschaften hergestellt werden können, sind im Prinzip bekannt; siehe z. B. I. Potrykus und G. Spangenberg (eds.) Gene Transfer to Plants, Springer Lab Manual (1995), Springer Verlag Berlin, Heidelberg, oder Christou, "Trends in Plant Science" 1 (1996) 423-431).

Für derartige gentechnische Manipulationen können Nucleinsäuremoleküle in Plasmide eingebracht werden, die eine Mutagenese oder eine Sequenzveränderung durch Rekombination von DNA-Sequenzen erlauben. Mit Hilfe von

Standardverfahren können z. B. Basenaustausche vorgenommen, Teilsequenzen entfernt oder natürliche oder synthetische Sequenzen hinzugefügt werden. Für die Verbindung der DNA-Fragmente untereinander können an die Fragmente Adaptoren oder Linker angesetzt werden, siehe z. B. Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2. Aufl. CoId Spring Harbor Laboratory Press, CoId Spring Harbor, NY; oder Winnacker "Gene und Klone", VCH Weinheim 2. Auflage 1996

Die Herstellung von Pflanzenzellen mit einer verringerten Aktivität eines

Genprodukts kann beispielsweise erzielt werden durch die Expression mindestens einer entsprechenden antisense-RNA, einer sense-RNA zur Erzielung eines

Cosuppressionseffektes oder die Expression mindestens eines entsprechend konstruierten Ribozyms, das spezifisch Transkripte des obengenannten

Genprodukts spaltet. Hierzu können zum einen DNA-Moleküle verwendet werden, die die gesamte codierende Sequenz eines Genprodukts einschließlich eventuell vorhandener flankierender Sequenzen umfassen, als auch DNA-Moleküle, die nur Teile der codierenden Sequenz umfassen, wobei diese Teile lang genug sein müssen, um in den Zellen einen antisense-Effekt zu bewirken. Möglich ist auch die Verwendung von DNA-Sequenzen, die einen hohen Grad an Homologie zu den codiereden Sequenzen eines Genprodukts aufweisen, aber nicht vollkommen identisch sind.

Bei der Expression von Nucleinsäuremolekülen in Pflanzen kann das synthetisierte Protein in jedem beliebigen Kompartiment der pflanzlichen Zelle lokalisiert sein. Um aber die Lokalisation in einem bestimmten Kompartiment zu erreichen, kann z. B. die codierende Region mit DNA-Sequenzen verknüpft werden, die die Lokalisierung in einem bestimmten Kompartiment gewährleisten. Derartige Sequenzen sind dem Fachmann bekannt (siehe beispielsweise Braun et al., EMBO J. 11 (1992), 3219- 3227; Wolter et al., Proc. Natl. Acad. Sei. USA 85 (1988), 846-850; Sonnewald et al., Plant J. 1 (1991), 95-106). Die Expression der Nukleinsäuremoleküle kann auch in den Organellen der Pflanzenzellen stattfinden.

Die transgenen Pflanzenzellen können nach bekannten Techniken zu ganzen Pflanzen regeneriert werden. Bei den transgenen Pflanzen kann es sich prinzipiell um Pflanzen jeder beliebigen Pflanzenspezies handeln, d.h., sowohl monokotyle als auch dikotyle Pflanzen.

So sind transgene Pflanzen erhältlich, die veränderte Eigenschaften durch

Überexpression, Suppression oder Inhibierung homologer (= natürlicher) Gene oder Gensequenzen oder Expression heterologer (= fremder) Gene oder Gensequenzen aufweisen.

Vorzugsweise können die erfindungsgemäßen Verbindungen in transgenen Kulturen eingesetzt werden, welche gegen Wuchsstoffe, wie z. B. Dicamba oder gegen Herbizide, die essentielle Pflanzenenzyme, z. B. Acetolactatsynthasen (ALS), EPSP Synthasen, Glutaminsynthasen (GS) oder Hydroxyphenylpyruvat Dioxygenasen (HPPD) hemmen, respektive gegen Herbizide aus der Gruppe der Sulfonylharnstoffe, der Glyphosate, Glufosinate oder Benzoylisoxazole und analogen Wirkstoffe, resistent sind.

Bei der Anwendung der erfindungsgemäßen Wirkstoffe in transgenen Kulturen treten neben den in anderen Kulturen zu beobachtenden Wirkungen gegenüber

Schadpflanzen oftmals Wirkungen auf, die für die Applikation in der jeweiligen transgenen Kultur spezifisch sind, beispielsweise ein verändertes oder speziell erweitertes Unkrautspektrum, das bekämpft werden kann, veränderte

Aufwandmengen, die für die Applikation eingesetzt werden können, vorzugsweise gute Kombinierbarkeit mit den Herbiziden, gegenüber denen die transgene Kultur resistent ist, sowie Beeinflussung von Wuchs und Ertrag der transgenen

Kulturpflanzen.

Gegenstand der Erfindung ist deshalb auch die Verwendung der

erfindungsgemäßen Verbindungen als Herbizide zur Bekämpfung von

Schadpflanzen in transgenen Kulturpflanzen.

Die erfindungsgemäßen Verbindungen können in Form von Spritzpulvern, emulgierbaren Konzentraten, versprühbaren Lösungen, Stäubemitteln oder

Granulaten in den üblichen Zubereitungen angewendet werden. Gegenstand der Erfindung sind deshalb auch herbizide und pflanzenwachstumsregulierende Mittel, welche die erfindungsgemäßen Verbindungen enthalten.

Die erfindungsgemäßen Verbindungen können auf verschiedene Art formuliert werden, je nachdem welche biologischen und/oder chemisch-physikalischen

Parameter vorgegeben sind. Als Formulierungsmöglichkeiten kommen

beispielsweise in Frage: Spritzpulver (WP), wasserlösliche Pulver (SP),

wasserlösliche Konzentrate, emulgierbare Konzentrate (EC), Emulsionen (EW), wie Öl-in-Wasser- und Wasser-in-ÖI-Emulsionen, versprühbare Lösungen,

Suspensionskonzentrate (SC), Dispersionen auf Öl- oder Wasserbasis, ölmischbare Lösungen, Kapselsuspensionen (CS), Stäubemittel (DP), Beizmittel, Granulate für die Streu- und Bodenapplikation, Granulate (GR) in Form von Mikro-, Sprüh-, Aufzugs- und Adsorptionsgranulaten, wasserdispergierbare Granulate (WG), wasserlösliche Granulate (SG), ULV-Formulierungen, Mikrokapseln und Wachse. Diese einzelnen Formulierungstypen sind im Prinzip bekannt und werden

beispielsweise beschrieben in: Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hanser Verlag München, 4. Aufl. 1986; Wade van Valkenburg, "Pesticide Formulations", Marcel Dekker, N.Y., 1973; K. Martens, "Spray Drying" Handbook, 3rd Ed. 1979, G. Goodwin Ltd. London.

Die notwendigen Formulierungshilfsmittel wie Inertmaterialien, Tenside,

Lösungsmittel und weitere Zusatzstoffe sind ebenfalls bekannt und werden

beispielsweise beschrieben in: Watkins, "Handbook of Insecticide Dust Diluents and Carriers", 2nd Ed., Darland Books, Caldwell N.J., H.v. Olphen, "Introduction to Clay Colloid Chemistry"; 2nd Ed., J. Wiley & Sons, N.Y.; C. Marsden, "Solvente Guide"; 2nd Ed., Interscience, N.Y. 1963; McCutcheon's "Detergents and Emulsifiers

Annual", MC Publ. Corp., Ridgewood N.J.; Sisley and Wood, "Encyclopedia of Surface Active Agents", Chem. Publ. Co. Inc., N.Y. 1964; Schönfeldt,

"Grenzflächenaktive Äthylenoxidaddukte", Wiss. Verlagsgesell., Stuttgart 1976;

Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hanser Verlag München, 4. Aufl. 1986. Auf der Basis dieser Formulierungen lassen sich auch Kombinationen mit anderen Pestizid wirksamen Stoffen, wie z.B. Insektiziden, Akariziden, Herbiziden,

Fungiziden, sowie mit Safenern, Düngemitteln und/oder Wachstumsregulatoren herstellen, z.B. in Form einer Fertigformulierung oder als Tankmix. Spritzpulver sind in Wasser gleichmäßig dispergierbare Präparate, die neben dem Wirkstoff außer einem Verdünnungs- oder Inertstoff noch Tenside ionischer und/oder nichtionischer Art (Netzmittel, Dispergiermittel), z.B. polyoxyethylierte Alkylphenole, polyoxethylierte Fettalkohole, polyoxethylierte Fettamine,

Fettalkoholpolyglykolethersulfate, Alkansulfonate, Alkylbenzolsulfonate,

ligninsulfonsaures Natrium, 2,2'-dinaphthylmethan-6,6'-disulfonsaures Natrium, dibutylnaphthalin-sulfonsaures Natrium oder auch oleoylmethyltaurinsaures Natrium enthalten. Zur Herstellung der Spritzpulver werden die herbiziden Wirkstoffe beispielsweise in üblichen Apparaturen wie Hammermühlen, Gebläsemühlen und Luftstrahlmühlen feingemahlen und gleichzeitig oder anschließend mit den

Formulierungshilfsmitteln vermischt. Emulgierbare Konzentrate werden durch Auflösen des Wirkstoffes in einem organischen Lösungsmittel z.B. Butanol, Cyclohexanon, Dimethylformamid, XyIoI oder auch höhersiedenden Aromaten oder Kohlenwasserstoffen oder Mischungen der organischen Lösungsmittel unter Zusatz von einem oder mehreren Tensiden ionischer und/oder nichtionischer Art (Emulgatoren) hergestellt. Als Emulgatoren können beispielsweise verwendet werden: Alkylarylsulfonsaure Calzium-Salze wie Ca-Dodecylbenzolsulfonat oder nichtionische Emulgatoren wie

Fettsäurepolyglykolester, Alkylarylpolyglykolether, Fettalkoholpolyglykolether, Propylenoxid-Ethylenoxid-Kondensationsprodukte, Alkylpolyether, Sorbitanester wie z.B. Sorbitanfettsäureester oder Polyoxethylensorbitanester wie z.B.

Polyoxyethylensorbitanfettsäureester.

Stäubemittel erhält man durch Vermählen des Wirkstoffes mit fein verteilten festen Stoffen, z.B. Talkum, natürlichen Tonen, wie Kaolin, Bentonit und Pyrophyllit, oder Diatomeenerde.

Suspensionskonzentrate können auf Wasser- oder Ölbasis sein. Sie können beispielsweise durch Naß-Vermahlung mittels handelsüblicher Perlmühlen und gegebenenfalls Zusatz von Tensiden, wie sie z.B. oben bei den anderen

Formulierungstypen bereits aufgeführt sind, hergestellt werden.

Emulsionen, z.B. ÖI-in-Wasser-Emulsionen (EW), lassen sich beispielsweise mittels Rührern, Kolloidmühlen und/oder statischen Mischern unter Verwendung von wäßrigen organischen Lösungsmitteln und gegebenenfalls Tensiden, wie sie z.B. oben bei den anderen Formulierungstypen bereits aufgeführt sind, herstellen.

Granulate können entweder durch Verdüsen des Wirkstoffes auf adsorptionsfähiges, granuliertes Inertmaterial hergestellt werden oder durch Aufbringen von Wirkstoffkonzentraten mittels Klebemitteln, z.B. Polyvinylalkohol, polyacrylsaurem Natrium oder auch Mineralölen, auf die Oberfläche von Trägerstoffen wie Sand, Kaolinite oder von granuliertem Inertmaterial. Auch können geeignete Wirkstoffe in der für die Herstellung von Düngemittelgranulaten üblichen Weise - gewünschtenfalls in Mischung mit Düngemitteln - granuliert werden.

Wasserdispergierbare Granulate werden in der Regel nach den üblichen Verfahren wie Sprühtrocknung, Wirbelbett-Granulierung, Teller-Granulierung, Mischung mit Hochgeschwindigkeitsmischern und Extrusion ohne festes Inertmaterial hergestellt.

Zur Herstellung von Teller-, Fließbett-, Extruder- und Sprühgranulate siehe z.B.

Verfahren in "Spray-Drying Handbook" 3rd ed. 1979, G. Goodwin Ltd., London; J.E. Browning, "Agglomeration", Chemical and Engineering 1967, Seiten 147 ff; "Perry's Chemical Engineer's Handbook", 5th Ed., McGraw-Hill, New York 1973, S. 8-57.

Für weitere Einzelheiten zur Formulierung von Pflanzenschutzmitteln siehe z.B. G. C. Klingman, "Weed Control as a Science", John Wiley and Sons, Inc., New York, 1961 , Seiten 81-96 und J. D. Freyer, S.A. Evans, "Weed Control Handbook", 5th Ed., Blackwell Scientific Publications, Oxford, 1968, Seiten 101-103.

Die agrochemischen Zubereitungen enthalten in der Regel 0.1 bis 99 Gew.-%, insbesondere 0.1 bis 95 Gew.-%, erfindungsgemäße Verbindungen.

In Spritzpulvern beträgt die Wirkstoffkonzentration z.B. etwa 10 bis 90 Gew.-%, der Rest zu 100 Gew.-% besteht aus üblichen Formulierungsbestandteilen. Bei emulgierbaren Konzentraten kann die Wirkstoffkonzentration etwa 1 bis 90, vorzugsweise 5 bis 80 Gew.-% betragen. Staubförmige Formulierungen enthalten 1 bis 30 Gew.-% Wirkstoff, vorzugsweise meistens 5 bis 20 Gew.-% an Wirkstoff, versprühbare Lösungen enthalten etwa 0.05 bis 80, vorzugsweise 2 bis 50 Gew.-% Wirkstoff. Bei wasserdispergierbaren Granulaten hängt der Wirkstoffgehalt zum Teil davon ab, ob die wirksame Verbindung flüssig oder fest vorliegt und welche

Granulierhilfsmittel, Füllstoffe usw. verwendet werden. Bei den in Wasser

dispergierbaren Granulaten liegt der Gehalt an Wirkstoff beispielsweise zwischen 1 und 95 Gew.-%, vorzugsweise zwischen 10 und 80 Gew.-%.

Daneben enthalten die genannten Wirkstofformulierungen gegebenenfalls die jeweils üblichen Haft-, Netz-, Dispergier-, Emulgier-, Penetrations-, Konservierungs-, Frostschutz- und Lösungsmittel, Füll-, Träger- und Farbstoffe, Entschäumer,

Verdunstungshemmer und den pH-Wert und die Viskosität beeinflussende Mittel.

Auf der Basis dieser Formulierungen lassen sich auch Kombinationen mit anderen Pestizid wirksamen Stoffen, wie z.B. Insektiziden, Akariziden, Herbiziden,

Fungiziden, sowie mit Safenern, Düngemitteln und/oder Wachstumsregulatoren herstellen, z.B. in Form einer Fertigformulierung oder als Tankmix.

Als Kombinationspartner für die erfindungsgemäßen Verbindungen in

Mischungsformulierungen oder im Tank-Mix sind beispielsweise bekannte

Wirkstoffe, die auf einer Inhibition von beispielsweise Acetolactat-Synthase, Acetyl- CoA-Carboxylase, Cellulose-Synthase, Enolpyruvylshikimat-3-phosphat-Synthase, Glutamin-Synthetase, p-Hydroxyphenylpyruvat-Dioxygenase, Phytoendesaturase, Photosystem I, Photosystem II, Protoporphyrinogen-Oxidase beruhen, einsetzbar, wie sie z.B. aus Weed Research 26 (1986) 441-445 oder "The Pesticide Manual", 14th edition, The British Crop Protection Council and the Royal Soc. of Chemistry, 2003 und dort zitierter Literatur beschrieben sind. Als bekannte Herbizide oder Pflanzenwachstumsregulatoren, die mit den erfindungsgemäßen Verbindungen kombiniert werden können, sind z.B. folgende Wirkstoffe zu nennen (die

Verbindungen sind entweder mit dem "common name" nach der International Organization for Standardization (ISO) oder mit dem chemischen Namen oder mit der Codenummer bezeichnet) und umfassen stets sämtliche Anwendungsformen wie Säuren, Salze, Ester und Isomere wie Stereoisomere und optische Isomere. Dabei sind beispielhaft eine und zum Teil auch mehrere Anwendungsformen genannt:

Acetochlor, Acibenzolar, Acibenzolar-S-methyl, Acifluorfen, Acifluorfen-sodium, Aclonifen, Alachlor, Allidochlor, Alloxydim, Alloxydim-sodium, Ametryn,

Amicarbazone, Amidochlor, Amidosulfuron, Aminocyclopyrachlor, Aminopyralid, Amitrole, Ammoniumsulfamat, Ancymidol, Anilofos, Asulam, Atrazine, Azafenidin, Azimsulfuron, Aziprotryn, BAH-043, BAS-140H, BAS-693H, BAS-714H, BAS-762H, BAS-776H, BAS-800H, Beflubutamid, Benazolin, Benazolin-ethyl, Bencarbazone, Benfluralin, Benfuresate, Bensulide, Bensulfuron-methyl, Bentazone, Benzfendizone, Benzobicyclon, Benzofenap, Benzofluor, Benzoylprop, Bicyclopyrone, Bifenox,

Bilanafos, Bilanafos-natrium, Bispyribac, Bispyribac-natrium, Bromacil, Bromobutide, Bromofenoxim, Bromoxynil, Bromuron, Buminafos, Busoxinone, Butachlor,

Butafenacil, Butamifos, Butenachlor, Butralin, Butroxydim, Butylate, Cafenstrole, Carbetamide, Carfentrazone, Carfentrazone-ethyl, Chlomethoxyfen, Chloramben, Chlorazifop, Chlorazifop-butyl, Chlorbromuron, Chlorbufam, Chlorfenac, Chlorfenac- natrium, Chlorfenprop, Chlorflurenol, Chlorflurenol-methyl, Chloridazon, Chlorimuron, Chlorimuron-ethyl, Chlormequat-chlorid, Chlornitrofen, Chlorophthalim, Chlorthal- dimethyl, Chlorotoluron, Chlorsulfuron, Cinidon, Cinidon-ethyl, Cinmethylin,

Cinosulfuron, Clethodim, Clodinafop Clodinafop-propargyl, Clofencet, Clomazone, Clomeprop, Cloprop, Clopyralid, Cloransulam, Cloransulam-methyl, Cumyluron, Cyanamide, Cyanazine, Cyclanilide, Cycloate, Cyclosulfamuron, Cycloxydim, Cycluron, Cyhalofop, Cyhalofop-butyl, Cyperquat, Cyprazine, Cyprazole, 2,4-D, 2,4- DB, Daimuron/Dymron, Dalapon, Daminozide, Dazomet, n-Decanol, Desmedipham, Desmetryn, Detosyl-Pyrazolate (DTP), Diallate, Dicamba, Dichlobenil, Dichlorprop, Dichlorprop-P, Diclofop, Diclofop-methyl, Diclofop-P-methyl, Diclosulam, Diethatyl, Diethatyl-ethyl, Difenoxuron, Difenzoquat, Diflufenican, Diflufenzopyr, Diflufenzopyr- natrium, Dimefuron, Dikegulac-sodium, Dimefuron, Dimepiperate, Dimethachlor, Dimethametryn, Dimethenamid, Dimethenamid-P, Dimethipin, Dimetrasulfuron, Dinitramine, Dinoseb, Dinoterb, Diphenamid, Dipropetryn, Diquat, Diquat-dibromide, Dithiopyr, Diuron, DNOC, Eglinazine-ethyl, Endothal, EPTC, Esprocarb, Ethalfluralin, Ethametsulfuron-methyl, Ethephon, Ethidimuron, Ethiozin, Ethofumesate, Ethoxyfen, Ethoxyfen-ethyl, Ethoxysulfuron, Etobenzanid, F-5331 , d.h. N-[2-Chlor-4-fluor-5-[4- (3fluorpropyl)-4,5-dihydro-5-oxo-1H-tetrazol-1-yl]-phenyl]-e thansulfonamid,

Fenoprop, Fenoxaprop, Fenoxaprop-P, Fenoxaprop-ethyl, Fenoxaprop-P-ethyl, Fenoxasulfone, Fentrazamide, Fenuron, Flamprop, Flamprop-M-isopropyl,

Flamprop-M-methyl, Flazasulfuron, Florasulam, Fluazifop, Fluazifop-P, Fluazifop- butyl, Fluazifop-P-butyl, Fluazolate, Flucarbazone, Flucarbazone-sodium, Flucetosulfuron, Fluchloralin, Flufenacet (Thiafluamide), Flufenpyr, Flufenpyr-ethyl, Flumetralin, Flumetsulam, Flumiclorac, Flumiclorac-pentyl, Flumioxazin,

Flumipropyn, Fluometuron, Fluorodifen, Fluoroglycofen, Fluoroglycofen-ethyl, Flupoxam, Flupropacil, Flupropanate, Flupyrsulfuron, Flupyrsulfuron-methyl-sodium, Flurenol, Flurenol-butyl, Fluridone, Flurochloridone, Fluroxypyr, Fluroxypyr-meptyl, Flurprimidol, Flurtamone, Fluthiacet, Fluthiacet-methyl, Fluthiamide, Fomesafen, Foramsulfuron, Forchlorfenuron, Fosamine, Furyloxyfen, Gibberellinsäure,

Glufosinate, L-Glufosinate, L-Glufosinate-ammonium, Glufosinate-ammonium, Glyphosate, Glyphosate-isopropylammonium, H-9201 , Halosafen, Halosulfuron, Halosulfuron-methyl, Haloxyfop, Haloxyfop-P, Haloxyfop-ethoxyethyl, Haloxyfop-P- ethoxyethyl, Haloxyfop-methyl, Haloxyfop-P-methyl, Hexazinone, HNPC-9908, HOK- 201 , HW-02, Imazamethabenz, Imazamethabenz-methyl, Imazamox, Imazapic, Imazapyr, Imazaquin, Imazethapyr, Imazosulfuron, Inabenfide, Indanofan,

Indaziflam, Indolessigsäure (IAA), 4-lndol-3-ylbuttersäure (IBA), lodosulfuron, lodosulfuron-methyl-natrium, loxynil, Ipfencarbazone.lsocarbamid, Isopropalin, Isoproturon, Isouron, Isoxaben, Isoxachlortole, Isoxaflutole, Isoxapyrifop, IDH-100, KUH-043, KUH-071 , Karbutilate, Ketospiradox, Lactofen, Lenacil, Linuron,

Maleinsäurehydrazid, MCPA, MCPB, MCPB-methyl, -ethyl und -natrium, Mecoprop, Mecoprop-natrium, Mecoprop-butotyl, Mecoprop-P-butotyl, Mecoprop-P- dimethylammonium, Mecoprop-P-2-ethylhexyl, Mecoprop-P-kalium, Mefenacet, Mefluidide, Mepiquat-chlorid, Mesosulfuron, Mesosulfuron-methyl, Mesotrione, Methabenzthiazuron, Metam, Metamifop, Metamitron, Metazachlor, Metazosulfuron, Methazole, Methiozolin, Methoxyphenone, Methyldymron, 1-Methylcyclopropen, Methylisothiocyanat, Metobenzuron, Metobenzuron, Metobromuron, Metolachlor, S- Metolachlor, Metosulam, Metoxuron, Metribuzin, Metsulfuron, Metsulfuron-methyl, Molinate, Monalide, Monocarbamide, Monocarbamide-dihydrogensulfat,

Monolinuron, Monosulfuron, Monuron, MT 128, MT-5950, d. h. N-[3-Chlor-4-(1- methylethyl)-phenyl]-2-methylpentanamid, NGGC-011 , Naproanilide, Napropamide, Naptalam, NC-310, d.h. 4-(2,4-dichlorobenzoyl)-1-methyl-5-benzyloxypyrazole, Neburon, Nicosulfuron, Nipyraclofen, Nitralin, Nitrofen, Nitrophenolat-natrium

(Isomerengemisch), Nitrofluorfen, Nonansäure, Norflurazon, Orbencarb,

Orthosulfamuron, Oryzalin, Oxadiargyl, Oxadiazon, Oxasulfuron, Oxaziclomefone, Oxyfluorfen, Paclobutrazol, Paraquat, Paraquat-dichlorid, Pelargonsäure (Nonansäure), Pendimethalin, Pendralin, Penoxsulam, Pentanochlor, Pentoxazone, Perfluidone, Pethoxamid, Phenisopham, Phenmedipham, Phenmedipham-ethyl, Picloram, Picolinafen, Pinoxaden, Piperophos, Pirifenop, Pirifenop-butyl, Pretilachlor, Primisulfuron, Primisulfuron-methyl, Probenazole, Profluazol, Procyazine,

Prodiamine, Prifluraline, Profoxydim, Prohexadione, Prohexadione-calcium,

Prohydrojasmone, Prometon, Prometryn, Propachlor, Propanil, Propaquizafop, Propazine, Propham, Propisochlor, Propoxycarbazone, Propoxycarbazone-natrium, Propyrisulfuron, Propyzamide, Prosulfalin, Prosulfocarb, Prosulfuron, Prynachlor, Pyraclonil, Pyraflufen, Pyraflufen-ethyl, Pyrasulfotole, Pyrazolynate (Pyrazolate), Pyrazosulfuron-ethyl, Pyrazoxyfen, Pyribambenz, Pyribambenz-isopropyl,

Pyribenzoxim, Pyributicarb, Pyridafol, Pyridate, Pyriftalid, Pyriminobac, Pyriminobac- methyl, Pyrimisulfan, Pyrithiobac, Pyrithiobac-natrium, Pyroxasulfone, Pyroxsulam, Quinclorac, Quinmerac, Quinoclamine, Quizalofop, Quizalofop-ethyl, Quizalofop-P, Quizalofop-P-ethyl, Quizalofop-P-tefuryl, Rimsulfuron, Saflufenacil, Secbumeton, Sethoxydim, Siduron, Simazine, Simetryn, SN-106279, Sulcotrione, Sulfallate

(CDEC), Sulfentrazone, Sulfometuron, Sulfometuron-methyl, Sulfosate (Glyphosate- trimesium), Sulfosulfuron, SYN-523, SYP-249, SYP-298, SYP-300, Tebutam, Tebuthiuron, Tecnazene, Tefuryltrione, Tembotrione, Tepraloxydim, Terbacil, Terbucarb, Terbuchlor, Terbumeton, Terbuthylazine, Terbutryn, TH-547,

Thenylchlor, Thiafluamide, Thiazafluron, Thiazopyr, Thidiazimin, Thidiazuron, Thiencarbazone, Thiencarbazone-methyl, Thifensulfuron, Thifensulfuron-methyl, Thiobencarb, Tiocarbazil, Topramezone, Tralkoxydim, Triallate, Triasulfuron,

Triaziflam, Thazofenamide, Tribenuron, Tribenuron-methyl, Trichloressigsäure (TCA), Triclopyr, Tridiphane, Trietazine, Trifloxysulfuron, Trifloxysulfuron-natrium, Trifluralin, Triflusulfuron, Triflusulfuron-methyl, Trimeturon, Trinexapac, Trinexapac- ethyl, Tritosulfuron, Tsitodef, Uniconazole, Uniconazole-P, Vernolate, ZJ-0166, ZJ- 0270, ZJ-0543, ZJ-0862 sowie die folgenden Verbindungen

Zur Anwendung werden die in handelsüblicher Form vorliegenden Formulierungen gegebenenfalls in üblicher weise verdünnt z.B. bei Spritzpulvern, emulgierbaren Konzentraten, Dispersionen und wasserdispergierbaren Granulaten mittels Wasser. Staubförmige Zubereitungen, Boden- bzw. Streugranulate sowie versprühbare Lösungen werden vor der Anwendung üblicherweise nicht mehr mit weiteren inerten Stoffen verdünnt. Mit den äußeren Bedingungen wie Temperatur, Feuchtigkeit, der Art des

verwendeten Herbizids, u.a. variiert die erforderliche Aufwandmenge der

Verbindungen der Formel (I). Sie kann innerhalb weiter Grenzen schwanken, z.B. zwischen 0,001 und 1 ,0 kg/ha oder mehr Aktivsubstanz, vorzugsweise liegt sie jedoch zwischen 0,005 und 750 g/ha.

Die nachstehenden Beispiele erläutern die Erfindung. A. Chemische Beispiele

2-(2-Methoxy-3-methylsulfinyl-4-(trifluormethyl)benzoyl)cycl ohexan-1 ,3-dion

(Tabellenbeispiel Nr. 1-17)

Schritt 1 : Synthese von 1-Fluor-2-methylthio-3-(trifluormethyl)benzol

Unter Inertgasatmosphäre wurden zu einer auf 0 0 C gekühlten Lösung von 7.77 ml (55 mmol) Diisopropylamin in 100 ml wasserfreiem THF 32.8 ml (1.6M in Hexan, 52.5 mmol) n-Butyllithium getropft und die Lösung wurde nach 10 Minuten Rühren auf -78 0 C abgekühlt. Bei dieser Temperatur wurden 8.21 g (50 mmol) 3- Fluorbenzotrifluorid zugegeben und die Reaktionsmischung wurde 1 h bei dieser Temperatur gerührt. Anschließend wurden 4.21 ml (55 mmol) Dimethyldisulfid zugetropft. Die Reaktionsmischung erwärmte sich innerhalb von ca. 3 h auf

Raumtemperatur (RT), danach wurde sie erneut auf 0 0 C gekühlt. Bei dieser

Temperatur wurden 10 ml Wasser tropfenweise zugegeben und die

Reaktionsmischung wurde auf ca. 1/4 ihres Volumens eingeengt. Der Rückstand wurde in Wasser und Dichlormethan aufgenommen, die Phasen wurden getrennt und die organische Phase wurde nacheinander mit Wasser, 10proz. Salzsäure, Wasser, gesättigter wässriger NaHCO 3 -Lösung, Wasser und gesättigter wässriger NaCI -Lösung gewaschen und über Natriumsulfat getrocknet und filtriert. Das Lösungsmittel wurde abgetrennt und der Rückstand wurde im Vakuum rektifiziert. Es wurden 8 g 1-Fluor-2-methylthio-3-(trifluormethyl)benzol mit einem Siedepunkt von 68 0 C bei 6 mm Hg erhalten.

Schritt 2: Synthese von 2-Fluor-3-methylthio-4-(trifluormethyl)benzoesäure

Unter Inertgasatmosphäre wurden zu einer auf -78 0 C gekühlten Lösung von 7.98 g (38 mmol) 1-Fluor-2-methylthio-3-(trifluormethyl)benzol in 60 ml wasserfreiem THF 27.5 ml (1.6M in Hexan, 44 mmol) n-Butyllithium getropft, wobei die Temperatur der Reaktionsmischung -65 0 C nicht übersteigen sollte. Das Gemisch rührte 3 h bei -78 °C und anschließend wurde bei dieser Temperatur ein Kohlendioxid-Strom in der Weise eingeleitet, dass die Temperatur der Reaktionsmischung -45 0 C nicht überschritt. Schließlich wurde die Mischung auf RT erwärmt und danach erneut auf 0 0 C abgekühlt. Zur Aufarbeitung wurde bei dieser Temperatur so lange Wasser tropfenweise zugegeben, bis sich der gebildete Niederschlag auflöste. Es wurde Diethylether zugegeben und die organische Phase wurde dreimal mit Wasser extrahiert. Die vereinigten wässrigen Phasen wurden mit 10proz. Salzsäure angesäuert. Die wässrige Phase wurde mehrfach mit Dichlormethan extrahiert, die vereinigten organischen Phase wurden mit gesättigter wässriger NaCI-Lösung gewaschen, über Natriumsulfat getrocknet und das Filtrat wurde schließlich vom Lösungsmittel befreit. Das so erhaltene Rohprodukt wurde aus Benzin (80-110 °C)/Essigsäureethylester umkristallisiert. Es wurden 6.8 g 2-Fluor-3-methylthio-4- (trifluormethyl)benzoesäure erhalten.

Schritt 3: Synthese von 2-Fluor-3-methylthio-4-(trifluormethyl)benzoesäuremethyl- ester

20.0 g (78.7 mmol) 2-Fluor-3-methylthio-4-(trifluormethyl)benzoesäure wurden in 200 ml Methanol mit 5 ml konzentrierter Schwefelsäure versetzt und das Gemisch wurde so lange unter Rückfluss erhitzt, bis eine HPLC-Analyse vollständigen Umsatz zeigte. Das Gemisch wurde abgekühlt und das Lösungsmittel wurde entfernt. Der Rückstand wurde in Wasser aufgenommen und das Gemisch wurde zweimal mit Essigsäureethylester extrahiert. Die vereinigten organischen Phasen wurden einmal mit gesättigter wässriger NaHCO 3 -Lösung gewaschen. Schließlich wurde die organische Phase getrocknet und das Filtrat wurde eingeengt. Es wurden 20.5 g 2- Fluor-3-methylthio-4-(trifluormethyl)benzoesäuremethylester erhalten.

Schritt 4: Synthese von 2-Methoxy-3-methylthio-4-(trifluormethyl)benzoesäureme- thylester

Eine Mischung aus 19.9 g (74.2 mmol) 2-Fluor-3-methylthio-4-

(trifluormethyl)benzoesäuremethylester und 40.1 g (30 Gew.-%, 223 mmol)

Natriummethylat wurde in 250 ml Methanol 6 h unter Rückfluss erhitzt. Zur

Aufarbeitung wurde das Gemisch am Rotationsverdampfer eingeengt, der

Rückstand wurde in Wasser aufgenommen und das Gemisch wurde mit

Dichlormethan extrahiert. Die organische Phase wurde getrocknet und das Filtrat wurde vom Lösungsmittel befreit. Als Rückstand wurden 15.9 g 2-Methoxy-3- methylthio-4-(trifluormethyl)benzoesäuremethylester gewonnen. Die wässrige Phase aus der extraktiven Aufarbeitung wurde mit verdünnter Salzsäure angesäuert und mit Essigsäureethylester extrahiert. Die organische Phase wurde getrocknet und das Filtrat wurde vom Lösungsmittel befreit. Als Rückstand wurden zusätzlich 3.80 g 2- Methoxy-3-methylthio-4-(trifluormethyl)benzoesäuremethylest er gewonnen.

Schritt 5: Synthese von 2-Methoxy-3-methylthio-4-(trifluormethyl)benzoesäure

(Tabellenbeispiel Nr. 12-13)

16.0 g (57.1 mmol) 2-Methoxy-3-methylthio-4-(trifluormethyl)benzoesäuremethyl- ester wurden in 160 ml Methanol mit 16 ml 20proz. wässriger Natronlauge versetzt und 4 h bei RT gerührt. Zur Aufarbeitung wurde das Gemisch vom Lösungsmittel befreit und der Rückstand wurde in wenig Wasser aufgenommen. Das Gemisch wurde im Eisbad abgekühlt und anschließend mit verdünnter Salzsäure angesäuert. Das Gemisch wurde 5 Min. bei RT gerührt und anschließend wurde der Inhalt filtriert. Es wurden 15.3 g 2-Methoxy-3-methylthio-4-(trifluormethyl)benzoesäure gewonnen.

Schritt 6: Synthese von 3-(2-Methoxy-3-methylthio-4-(trifluormethyl)benzoyloxy)- cyclohex-2-enon

200 mg (78 Gew.-% Reinheit, 0.59 mmol) 2-Methoxy-3-methylthio-4-(trifluormethyl)- benzoesäure wurden in 20 ml Dichlormethan nacheinander mit 133 mg (1.05 mmol) Oxalsäuredichlorid und drei Tropfen N,N-Dimethylformamid versetzt. Nach dem Ende der Gasabspaltung wurde das Gemisch noch 10 min. unter Rückfluss erhitzt. Anschließend wurde der Inhalt auf RT abgekühlt und vom Lösungsmittel befreit. Der Rückstand wurde in 20 ml trockenem Dichlormethan mit 93 mg (0.83 mmol)

1 ,3-Cyclohexandion versetzt, anschließend wurden 152 mg (1.50 mmol)

Triethylamin tropfenweise zugegeben. Das Gemisch wurde 16 h bei RT gerührt. Zur Aufarbeitung wurde der Inhalt mit 3 ml 1 M Salzsäure versetzt. Nach der

Phasentrennung wurde die organische Phase vom Lösungsmittel befreit. Der

Rückstand wurde chromatographisch gereinigt, wobei 100 mg 3-(2-Methoxy-3- methylthio-4-(trifluormethyl)benzoyloxy)cyclohex-2-enon isoliert wurden.

Schritt 7: Synthese von 3-(2-Methoxy-3-methylsulfinyl-4-(trifluormethyl)benzoyloxy)- cyclohex-2-enon 100 mg (0.28 mmol) 3-(2-Methoxy-3-methylthio-4-(trifluormethyl)benzoyloxy)- cyclohex-2-enon wurden in 10 ml Dichlormethan mit 68 mg (70 Gew.-%, 0.28 mmol) meta-Chlorperbenzoesäure versetzt. Das Gemisch wurde 1 h bei RT gerührt. Zur Aufarbeitung wurden 3 ml 10proz. wässrige Natriumhydrogensulfit-Lösung gegeben. Nach dem Nachweis der Abwesenheit von Peroxiden wurde die organische Phase zweimal mit je 5 ml gesättigter wässriger NaHCO 3 -Lösung gewaschen. Nach der Phasentrennung wurde das Lösungsmittel entfernt. Es wurden 90 mg

3-(2-Methoxy-3-methylsulfinyl-4-(trifluormethyl)benzoylox y)cyclohex-2-enon isoliert. Schritt 8: Synthese von 2-(2-Methoxy-3-methylsulfinyl-4-(trifluormethyl)benzoyl)- cyclohexan-1 ,3-dion (Tabellenbeispiel Nr. 1-17)

90 mg (0.24 mmol) 3-(2-Methoxy-3-methylsulfinyl-4-(trifluormethyl)benzoyloxy)- cyclohex-2-enon wurden in 15 ml Acetonitril nacheinander mit 48 mg (0.48 mmol) Triethylamin sowie acht Tropfen Trimethylsilylcyanid versetzt. Das Gemisch wurde 16 h bei RT gerührt. Zur Aufarbeitung wurde das Lösungsmittel abgetrennt. Der

Rückstand wurde in 15 ml Dichlormethan aufgenommen und mit 3 ml 1 N Salzsäure versetzt. Nach der Phasentrennung wurde das Lösungsmittel abgetrennt und der Rückstand wurde chromatographisch gereinigt, wobei 49.9 mg 2-(2-Methoxy-3- methylsulfinyl-4-(trifluormethyl)benzoyl)cyclohexan-1 ,3-dion gewonnen wurden.

Die in nachfolgenden Tabellen aufgeführten Beispiele wurden analog oben genannten Methoden hergestellt beziehungsweise sind analog oben genannten Methoden erhältlich. Diese Verbindungen sind ganz besonders bevorzugt. Die verwendeten Abkürzungen bedeuten:

Et = Ethyl Me = Methyl Pr = Propyl Ph = Phenyl Tabelle 1 : Erfindungsgemäße Verbindungen der allgemeinen Formel (I), worin R 2 für Hydroxy und R 3 bis R 8 für jeweils Wasserstoff stehen.

Tabelle 2: Erfindungsgemäße Verbindungen der allgemeinen Formel (I), worin R 2 für Hydroxy, R 3 bis R 6 für jeweils Wasserstoff und R 7 sowie R 8 für jeweils Methyl stehen.

Tabelle 3: Erfindungsgemäße Verbindungen der allgemeinen Formel (I), worin R 2 für Hydroxy, R 3 , R 4 , R 7 und R 8 für jeweils Wasserstoff und R 5 sowie R 6 für jeweils Methyl stehen.

Tabelle 4: Erfindungsgemäße Verbindungen der allgemeinen Formel (I), worin R 2 für Hydroxy, R 3 , R 4 , R 5 , R 7 und R 8 für jeweils Wasserstoff sowie R 6 für Methyl stehen.

Tabelle 5: Erfindungsgemäße Verbindungen der allgemeinen Formel (I), worin R 2 für Hydroxy, R 4 , R 5 , R 6 und R 7 für jeweils Wasserstoff sowie R 3 und R 8 gemeinsam für eine Ethylengruppe stehen

Tabelle 6: Erfindungsgemäße Verbindungen der allgemeinen Formel (I), worin R 2 für Phenylthio und R 3 bis R 8 jeweils für Wasserstoff stehen

Tabelle 7: Erfindungsgemäße Verbindungen der allgemeinen Formel (I) 1 worin R 2 für Phenylthio, R 3 und R 4 für jeweils Methyl sowie R 5 bis R 8 jeweils für Wasserstoff stehen.

Tabelle 8: Erfindungsgemäße Verbindungen der allgemeinen Formel (I), worin R 2 für Phenylthio, R 3 , R 4 , R 7 und R 8 für jeweils Wasserstoff sowie R 5 und R 6 für jeweils Methyl stehen.

Tabelle 9: Erfindungsgemäße Verbindungen der allgemeinen Formel (I), worin R 2 für Phenylthio, R 3 bis R 6 für jeweils Wasserstoff sowie R 7 und R 8 für jeweils Methyl stehen.

Tabelle 10: Erfindungsgemäße Verbindungen der allgemeinen Formel (I), worin R 2 für Phenylthio, R 3 , R 4 , R 5 , R 7 und R 8 für jeweils Wasserstoff sowie R 6 für Methyl stehen.

Tabelle 11 : Erfindungsgemäße Verbindungen der allgemeinen Formel (I), worin R für Phenylthio, R 4 , R 5 , R 6 und R 7 für jeweils Wasserstoff sowie R 3 und R 8 gemeinsam für eine Ethylengruppe stehen

Tabelle 12: Erfindungsgemäße Verbindungen der allgemeinen Formel (II)

B. Formulierungsbeispiele a) Ein Stäubemittel wird erhalten, indem man 10 Gew. -Teile einer Verbindung der Formel (I) und/oder deren Salze und 90 Gew.-Teile Talkum als Inertstoff mischt und in einer Schlagmühle zerkleinert. b) Ein in Wasser leicht dispergierbares, benetzbares Pulver wird erhalten, indem man 25 Gewichtsteile einer Verbindung der Formel (I) und/oder deren Salze, 64 Gew.-Teile kaolinhaltigen Quarz als Inertstoff, 10 Gewichtsteile

ligninsulfonsaures Kalium und 1 Gew.-Teil oleoylmethyltaurinsaures Natrium als Netz- und Dispergiermittel mischt und in einer Stiftmühle mahlt. c) Ein in Wasser leicht dispergierbares Dispersionskonzentrat wird erhalten, indem man 20 Gew.-Teile einer Verbindung der Formel (I) und/oder deren Salze mit 6 Gew.-Teilen Alkylphenolpolyglykolether (©Triton X 207), 3 Gew. -Teilen Isotridecanolpolyglykolether (8 EO) und 71 Gew.-Teilen paraffinischem Mineralöl (Siedebereich z.B. ca. 255 bis über 277 C) mischt und in einer Reibkugelmühle auf eine Feinheit von unter 5 Mikron vermahlt. d) Ein emulgierbares Konzentrat wird erhalten aus 15 Gew.-Teilen einer

Verbindung der Formel (I) und/oder deren Salze, 75 Gew.-Teilen

Cyclohexanon als Lösungsmittel und 10 Gew.-Teilen oxethyliertes

Nonylphenol als Emulgator. e) Ein in Wasser dispergierbares Granulat wird erhalten indem man 75 Gew. -Teile einer Verbindung der Formel (I) und/oder deren Salze, 10 Gew.-Teile ligninsulfonsaures Calcium,

5 Gew.-Teile Natriumlaurylsulfat,

3 Gew.-Teile Polyvinylalkohol und

7 Gew.-Teile Kaolin

mischt, auf einer Stiftmühle mahlt und das Pulver in einem Wirbelbett durch Aufsprühen von Wasser als Granulierflüssigkeit granuliert. f) Ein in Wasser dispergierbares Granulat wird auch erhalten, indem man

25 Gew.-Teile einer Verbindung der Formel (I) und/oder deren Salze,

5 Gew.-Teile 2,2'-dinaphthylmethan-6,6'-disulfonsaures Natrium

2 Gew.-Teile oleoylmethyltaurinsaures Natrium,

1 Gew.-Teil Polyvinylalkohol,

17 Gew.-Teile Calciumcarbonat und

50 Gew.-Teile Wasser

auf einer Kolloidmühle homogenisiert und vorzerkleinert, anschließend auf einer Perlmühle mahlt und die so erhaltene Suspension in einem Sprühturm mittels einer Einstoffdüse zerstäubt und trocknet.

C. Biologische Beispiele

1. Herbizide Wirkung gegen Schadpflanzen im Vorauflauf

Samen von mono- bzw. dikotylen Unkraut- bzw. Kulturpflanzen werden in

Holzfasertöpfen in sandiger Lehmerde ausgelegt und mit Erde abgedeckt. Die in Form von benetzbaren Pulvern (WP) oder als Emulsionskonzentrate (EC) formulierten erfindungsgemäßen Verbindungen werden dann als wäßrige

Suspension bzw. Emulsion mit einer Wasseraufwandmenge von umgerechnet 600 bis 800 l/ha unter Zusatz von 0,2% Netzmittel auf die Oberfläche der Abdeckerde appliziert. Nach der Behandlung werden die Töpfe im Gewächshaus aufgestellt und unter guten Wachstumsbedingungen für die Testpflanzen gehalten. Die visuelle

Bonitur der Schäden an den Versuchspflanzen erfolgt nach einer Versuchszeit von 3 Wochen im Vergleich zu unbehandelten Kontrollen (herbizide Wirkung in Prozent (%): 100% Wirkung = Pflanzen sind abgestorben, 0 % Wirkung = wie Kontrollpflanzen). Dabei zeigen beispielsweise die Verbindungen Nr. 1-21 , 5-17 sowie 5-21 bei einer Aufwandmenge von 80 g/ha jeweils eine mindestens 90 %-ige Wirkung gegen Abutilon theophrasti und Veronica persica. Die Verbindungen Nr. 2-21 sowie 2-17 zeigen bei einer Aufwandmenge von 80 g/ha jeweils eine

mindestens 90 %-ige Wirkung gegen Alopecurus myosuroides, Amaranthus retroflexus und Veronica persica.

2. Herbizide Wirkung gegen Schadpflanzen im Nachauflauf

Samen von mono- bzw. dikotylen Unkraut- bzw. Kulturpflanzen werden in

Holzfasertöpfen in sandigem Lehmboden ausgelegt, mit Erde abgedeckt und im Gewächshaus unter guten Wachstumsbedingungen angezogen. 2 bis 3 Wochen nach der Aussaat werden die Versuchspflanzen im Einblattstadium behandelt. Die in Form von benetzbaren Pulvern (WP) oder als Emulsionskonzentrate (EC)

formulierten erfindungsgemäßen Verbindungen werden dann als wäßrige

Suspension bzw. Emulsion mit einer Wasseraufwandmenge von umgerechnet 600 bis 800 l/ha unter Zusatz von 0,2% Netzmittel auf die grünen Pflanzenteile gesprüht. Nach ca. 3 Wochen Standzeit der Versuchspflanzen im Gewächshaus unter optimalen Wachstumsbedingungen wird die Wirkung der Präparate visuell im

Vergleich zu unbehandelten Kontrollen bonitiert (herbizide Wirkung in Prozent (%): 100% Wirkung = Pflanzen sind abgestorben, 0 % Wirkung = wie Kontrollpflanzen). Dabei zeigen beispielsweise die Verbindungen Nr. 3-17, 5-21 sowie 2-17 bei einer Aufwandmenge von 80 g/ha jeweils eine mindestens 90 %-ige Wirkung gegen Avena fatua, Matricaria inodora und Viola tricolor. Die Verbindungen Nr. 1-13, 1-17, 1-21

sowie 2-21 zeigen bei einer Aufwandmenge von 80 g/ha jeweils eine mindestens 90 %-ige Wirkung gegen Echinochloa crus galli, Pharbitis purpureum und Stellaria media.