Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ADHESION INHIBITION OF MOULDS
Document Type and Number:
WIPO Patent Application WO/2003/051126
Kind Code:
A1
Abstract:
The invention relates to the use of monoterpenes, sesquiterpenes and/or diterpenes in addition to derivatives thereof for reducing the adhesivness of fungi on surfaces. The invention also relates to filter materials, adhesion, building material, auxiliary building materials, textiles, fur, paper, skins or leather, and also washing agents, cleaning agents, rinsing agents, handwashing agents, agents for handwashing dishes, dishwasher agents, and agents for building materials, auxiliary building materials, textiles, fur, paper, skins or leather containing monoterpenes, sesquiterpenes and/or diterpenes or derivatives thereof.

Inventors:
BOCKMUEHL DIRK (DE)
BREVES ROLAND (DE)
WEIDE MIRKO (DE)
HOEHNE HEIDE-MARIE (DE)
HEINZEL MICHAEL (DE)
Application Number:
PCT/EP2002/014322
Publication Date:
June 26, 2003
Filing Date:
December 16, 2002
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
HENKEL KGAA (DE)
BOCKMUEHL DIRK (DE)
BREVES ROLAND (DE)
WEIDE MIRKO (DE)
HOEHNE HEIDE-MARIE (DE)
HEINZEL MICHAEL (DE)
International Classes:
A01N27/00; A01N31/02; A01N31/08; A01N35/06; A01N37/06; A61P31/10; A01N37/10; A01N49/00; A01N61/00; A01N63/34; A01N65/06; A01N65/10; A01N65/22; A01N65/28; A01N65/44; A01N65/48; A01P3/00; A61K31/045; C09J11/06; C09J201/00; C09K3/10; C11B9/00; C11D3/18; C11D3/20; C11D3/50; C12N1/14; D06M13/144; C12R1/645; (IPC1-7): A01N65/00; A01N49/00; A01N35/06; A01N31/08; A01N27/00
Domestic Patent References:
WO2000027981A12000-05-18
WO2001024769A12001-04-12
WO1999009824A11999-03-04
Foreign References:
EP1059032A12000-12-13
DE19523320A11997-01-02
Other References:
V. G. DE BILLERBECK, C. G. ROQUES, J.-M. BESSIÈRE, J.-L. FONVIEILLE & R. DARGENT: "Effects of Cymbopogon nardus (L.) W. Watson essential oil on the growth and morphogenesis of Aspergillus niger.", CAN. J. MICROBIOL., vol. 47, 2001, pages 9 - 17, XP009008006
T. BELAICHE, A. EL HALOUAT & A. TANTAOUI-ELARAKI: "Etude d'influence des terpenes sur la sporulation d'Aspergillus", IND. ALIMENT. AGRICOL., vol. 116, 1999, pages 27 - 29, XP009007965
DATABASE WPI Section Ch Week 197837, Derwent World Patents Index; Class A60, AN 1978-66181A, XP002235743
Download PDF:
Claims:
Patentansprüche :
1. Verwendung von Monoterpenen, Sesquiterpenen und/oder Diterpenen sowie deren Derivaten zur Verminderung der Anhaftung von Schimmelpilzen an Oberflächen.
2. Verwendung nach Anspruch 1, dadurch gekennzeichnet, dass die Monoterpene, Sesquiterpene und/oder Diterpene oder deren Derivate ausgewählt sind unter Geraniol, Nerol, Linalool, Thujon, Farnesol, Farnesolsäure, aFarnesen, ßFarnesen, Nerolidol, Bisabolen, Sesquiphellandren, Zingiberen, Cadinen, ArylTumeron, Tumeron, Xanthorrhizol, Vulgaren, ßSelinen und Geranylgeraniol, insbesondere unter Farnesol und Farnesolsäure, besonders bevorzugt Farnesol.
3. Verwendung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Schimmelpilze ausgewählt sind aus den Klassen Ascomycota, Basidiomycota, Zygomycota und Deuteromycota, vorzugsweise unter allen Spezies der Gattungen Aspergillus, Penicillium, Cladosporium und Mucor.
4. Verwendung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Anhaftung von Schimmelpilzen vermindert wird, die ausgewählt sind unter allen Species der Gattung Aspergillus, ganz besonders bevorzugt unter Aspergillus aculeatus, Aspergillus albus, Aspergillus alliaceus, Aspergillus asperescens, Aspergillus awamori, Aspergillus candidus, Aspergillus carbonarius, Aspergillus carneus, Aspergillus chevalieri, Aspergillus chevalier var. intermedius, Aspergillus clavatus, Aspergillus ficuum, Aspergillus flavipes, Aspergillus flavus, Aspergillus foetidus, Aspergillus fumigatus, Aspergillus giganteus, Aspergillus humicola, Aspergillus intermedius, Aspergillus japonicus, Aspergillus nidulans, Aspergillus niger, Aspergillus niveus, Aspergillus ochraceus, Aspergillus oryzae, Aspergillus ostianus, Aspergillus parasiticus, Aspergillus parasiticus var. globosus, Aspergillus penicillioides, Aspergillus phoenicis, Aspergillus rugulosus, Aspergillus sclerotiorum, Aspergillus sojae var. gymnosardae, Aspergillus sydowi, Aspergillus tamarii, Aspergillus terreus, Aspergillus terricola, Aspergillus toxicarius, Aspergillus unguis, Aspergillus ustus, Aspergillus versicolor, Aspergillus vitricolae und Aspergillus wentii.
5. Verwendung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Monoterpene, Sesquiterpene und/oder Diterpene oder deren Derivate in nicht fungizid oder fungistatisch wirkenden Endkonzentrationen eingesetzt werden.
6. Verwendung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Monoterpene, Sesquiterpene und/oder Diterpene oder deren Derivate zu 0,000001 bis 3 Gew. % eingesetzt werden.
7. Verwendung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Monoterpene, Sesquiterpene und/oder Diterpene in Zubereitungen eingesetzt werden, die ausgewählt sind unter Waschmitteln, Reinigungsmitteln, Nachspülmitteln, Handwaschmitteln Handgeschirrspülmitteln, Maschinengeschirrspülmitteln, und Mitteln zur Ausrüstung von Verpackungen, Filtermedien, Klebstoffen, Baustoffen, Bauhilfsstoffen, Textilien, Pelzen, Papier, Fellen oder Leder.
8. Verwendung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Anhaftung von Schimmelpilzen in oder auf Textilien, Keramiken, Metallen, Filtermedien, Baustoffen, Bauhilfsstoffen, Pelzen, Papier, Fellen, Leder und/oder Kunststoffen vermindert wird.
9. Waschmittel, Reinigungsmittel, Nachspülmittel, Handwaschmittel, Handgeschirrspülmitteln, Maschinengeschirrspülmittel, und Mittel zur Ausrüstung von Verpackungen, Filtermedien, Baustoffen, Bauhilfsstoffen, Textilien, Pelzen, Papier, Fellen oder Leder, enthaltend Monoterpene, Sesquiterpene und/oder Diterpene oder deren Derivate.
10. Verpackungen, Filtermedien, Baustoffe, Bauhilfsstoffe, Textilien, Pelze, Papier, Felle oder Leder, ausgerüstet mit einem Mittel gemäß Anspruch 9.
11. Waschund/oder Reinigungsmittel, enthaltend 0,000001 bis 3 Gew.% Monoterpene, Sesquiterpene und/oder Diterpene oder deren Derivate.
12. Waschund/oder Reinigungsmittel nach Anspruch 11, dadurch gekennzeichnet, dass es sich um flüssige oder feste Waschmittel handelt.
13. Waschund/oder Reinigungsmittel nach Anspruch 11, dadurch gekennzeichnet, dass es sich um ein Reinigungsmittel für harte Oberflächen handelt.
14. Klebstoff, enthaltend 0,000001 bis 3 Gew. % Monoterpene, Sesquiterpene und/oder Diterpene oder deren Derivate.
15. Klebstoff nach Anspruch 14, dadurch gekennzeichnet, dass es sich um einen Klebstoff auf Wasserbasis handelt.
16. Klebstoff nach Anspruch 14 oder 15, dadurch gekennzeichnet, dass es sich um einen Klebstoff zur Befestigung von Tapeten und ähnlichen Wandbelagsstoffen handelt.
17. Dichtungsmasse, enthaltend 0,000001 bis 3 Gew. % Monoterpene, Sesquiterpene und/oder Diterpene oder deren Derivate.
18. Dichtungsmasse gemäß Anspruch 17, dadurch gekennzeichnet, dass es sich um eine Fugendichtmasse handelt.
Description:
Adhäsionshemmung von Schimmelpilzen Die Erfindung betrifft die Verwendung von Monoterpenen, Sesquiterpenen und/oder Diterpenen sowie deren Derivaten zur Verminderung der Anhaftung von Pilzen an Oberflächen und Monoterpene, Sesquiterpene und/oder Diterpene oder deren Derivate enthaltende Filtermedien, Klebstoffe, Baustoffe, Bauhilfsstoffe, Textilien, Pelze, Papier, Felle oder Leder, aber auch Waschmittel, Reinigungsmittel, Nachspülmittel, Handwaschmittel, Handgeschirrspülmittel, Maschinengeschirrspülmittel, und Mittel zur Ausrüstung von Baustoffen, Bauhilfsstoffen, Textilien, Pelzen, Papier, Fellen oder Leder.

Im Haushalt finden sich Schimmelpilze an verschiedensten Stellen, bspw. in der Küche oder in feuchten Räumen, wie z. B. im Badezimmer. Schimmelpilze verursachen erhebliche Probleme dadurch, dass die von ihnen in die Raumluft abgegebenen Sporen häufig allergieerzeugend sind. Eine Bekämpfung solcher Pilze mit bioziden Wirkstoffen geht mit einem erhöhten Risiko der Resistenzbildung einher, so dass nach einiger Zeit neue antimikrobielle Substanzen gefunden werden müssen, die gegen diese resistent gewordenen Mikroorganismen wirken. Biozide sind außerdem ökologisch und toxikologisch nicht immer unbedenklich.

Daher wurden bisher antimikrobielle Substanzen eingesetzt, die entweder das Wachstum der Pilze hemmen (Fungistatika) oder diese abtöten (Fungizide).

Häufig werden dazu nicht-selektive antimikrobielle Substanzen eingesetzt, die sowohl gegen Bakterien als auch gegen Pilze wirken. Nachteilig ist daran, dass solche z. B. in Wasch-und Reinigungsmitteln verwendeten Biozide oder Biostatika die Abwässer belasten und somit auch die mikrobiellen Klärstufen in den Kläranlagen in ihrer Funktion beeinträchtigen.

Die Aufgabe der Erfindung ist daher, gezielt Schimmelpilze von Oberflächen zu entfernen bzw. von diesen fernzuhalten, ohne diese Oberflächen oder die Abwässer mit fungiziden und/oder fungistatischen Wirkstoffen zu belasten.

Diese Aufgabe wird gelöst durch die Verwendung von Monoterpenen, Sesquiterpenen und/oder Diterpenen zur Verminderung der Anhaftung von Schimmelpilzen an Oberflächen.

Überraschenderweise wurde gefunden, daß der Einsatz von Monoterpenen, Sesquiterpenen und/oder Diterpenen oder deren Derivaten auf oder in durch Pilze befallenen Materialien die Anhaftung der Schimmelpilze vermindern bzw. im wesentlichen verhindern konnte, ohne jedoch die Schimmelpilze abzutöten.

Unter Verminderung der Anhaftung ist eine signifikante Reduktion der Zahl der anhaftenden Schimmelpilzzellen zu verstehen. Dabei wird die Anhaftung idealerweise vollständig verhindert. Bevorzugt wird die Anhaftung von Schimmelpilzzellen vermindert oder im wesentlichen ganz verhindert.

Ein Vorteil der Erfindung ist es, dass diese Stoffe bereits im Vergleich mit Fungiziden oder Fungistatika in geringen Endkonzentrationen wirksam sind und daher kaum Nebenwirkungen zu befürchten und/oder zu beobachten sind.

Darüber hinaus kann die Verminderung der Anhaftung durch den verringerten Kontakt des menschlichen Körpers, insbesondere der Atemwege, mit den Schimmelpilzzellen bzw. deren Sporen, auch zu einer Verminderung des allergieauslösenden Potentials führen.

Nach einer besonderen Ausführungsform sind die Monoterpene, Sesquiterpene und/oder Diterpene oder deren Derivate ausgewählt unter Alkoholen, wie zum Beispiel Farnesol und deren Ethern, Säuren, wie zum Beispiel Farnesolsäure, sowie deren Estern und anderen funktionelle Gruppen tragenden Monoterpene, Sesqui-bzw. Diterpenen. Geeignet sind dabei sowohl die trans-als auch die cis- Isomere. Ebenfalls darunter fällt a-Farnesen (3,7, 11-Trimethyl-1, 3,6, 10- Dodekatetraen) sowie ß-Farnesen (7, 11-Dimethyl-3-Methylen-1, 6, 10-Dodekatrien) und Nerolidol (3,7, 11-Trimethyl-1, 6, 10-Dodekatrien-3-ol) sowie Bisabolen, Sesquiphellandren, Zingiberen, Cadinen, Aryl-Tumeron, Tumeron, Xanthorrhizol, Vulgaren und ß-Selinen. Als Monoterpene sind beispielsweise a-bzw. ß-Ocimen, Linalool, Linalylacetat, Carene, Terpineole, Nerol, Nerolsäure, Geraniol, Geraniumsäure, a-bzw. ß-Phellandren und/oder Thujon, insbesondere Geraniol, Linalool und/oder Thujon bevorzugt geeignet. Als Beispiel für die Diterpene sei hier Geranylgeraniol (3,7, 11, 15-Tetramethyl-2, 6, 10, 14-Hexadekatetraen-1-ol) sowie seine Isomere und Derivate genannt. Es können ebenfalls bevorzugt Pflanzenextrakte eingesetzt werden, die Mono-, Sesqui-und/oder Diterpene enthalten (beispielsweise Geraniumöl, Rosenöl, Orangenblütenöl, Lavendelöl, Jasminöl, Basilikumöl, Citronellöl, Zypressenöl, Zedernblätteröl, Korianderöl, Rosenholzöl, Pimentöl, Ingweröl oder Nelkenöl).

Gemäß einer besonderen Ausführungsform werden die Monoterpene, Sesquiterpene und/oder Diterpene in solchen Endkonzentrationen eingesetzt, dass sie nicht fungizid (pilzabtötend) oder fungistatisch (pilzwachstumshemmend) wirken. Ein besonderer Vorteil dieser Ausführungsform ist es, dass das Risiko einer Resistenzbildung gegenüber den verwendeten Stoffen relativ gering ist, da die Schimmelpilze weder abgetötet noch ihr Wachstum gehemmt werden. Die minimalen Konzentrationen, bei denen noch keine Hemmung des Wachstums vorliegt, sowie die minimalen Hemmkonzentrationen selbst können in dem Fachmann bekannter Weise einfach bestimmt werden.

Gemäß einer weiteren besonderen Ausführungsform sind die Monoterpene, Sesquiterpene und/oder Diterpene zu 0,000001 bis 3 Gew.-% enthalten. Ein besonderer Vorteil dieser Ausführungsform ist es, dass nur geringe Konzentrationen dieser Stoffe vorhanden sein müssen, damit die Anhaftung der Schimmelpilze an Oberflächen vermindert bzw. im wesentlichen ganz verhindert wird. Bevorzugt sind die Stoffe zu 0,00001 bis 1 Gew. -% und insbesondere zu<BR> 0,0001 bis 0,5 Gew. -% enthalten. Besonders bevorzugt sind Bereiche zwischen<BR> 0,0001 und 0,1 Gew. -%.

Die Konzentrationen, die im Endprodukt zum gewünschten Ergebnis führen, sind bedeutend geringer als die angegebenen, da für viele Produkte Verdünnungen berücksichtigt werden müssen. Für Waschmittel muss beispielsweise mit einem Verdünnungsfaktor (Verhältnis Waschmittelkonzentrat : Wasser) von 1 : 20 bis zu 1 : 200 gerechnet werden. Häufig liegt das Verdünnungsverhältnis für Waschmittel zwischen 1 : 60 und 1 : 100, beispielsweise 1 : 80. Für Farnesol wären beispielsweise Konzentrationen von 0,01 bis 5 Gew. -%, insbesondere von 0,1 bis 1,5 Gew. -% geeignet. In der fertigen Anwendungslösung zeigen insbesondere Konzentrationen von 0,0001 bis 1 Gew. -% eine besonders gute<BR> adhäsionshemmende Wirkung. Bevorzugt werden 0,001 bis 0,1 Gew. -%,<BR> beispielsweise 0,01 Gew. -%, eingesetzt.

Unter Schimmelpilzen sind gemäß der vorliegenden Erfindung solche Pilze zu verstehen, die ihren Lebensraum im Boden, auf Lebens-und/oder Futtermitteln oder in konzentrierten Nährlösungen haben, ein typisches Mycel bilden und ihre Nährstoffe aus organischen Substanzen gewinnen, die sie dadurch zersetzen (saprobiontische bzw. saprophytische Lebensweise). Des weiteren vermehren sie sich überwiegend ungeschlechtlich durch Sporen (insbesondere Sporangiosporen oder Konidien) und bilden, wenn überhaupt, nur sehr kleine sexuelle Fortpflanzungsorgane aus.

Dazu sind zum Beispiel Spezies aus den Klassen Ascomycota, Basidiomycota, Deuteromycota und Zygomycota zu zählen, insbesondere alle Spezies der Gattungen Aspergillus, Penicillium, Cladosporium und Mucor.

Zu den Ascomycota gehören hier insbesondere alle Spezies der Gattungen Aspergillus, Penicillium und Cladosporium. Diese Pilze bilden Sporen aus, die bei Kontakt mit der Haut oder den Atemwegen ein stark allergieauslösendes Potential aufweisen. Zu den Basidiomycota ist beispielsweise Cryptococcus neoformans zu zählen. Zu den Deuteromycota sind alle als Schimmelpilze bekannten Gattungen zu zählen, insbesondere solche, die durch das Fehlen eines sexuellen Stadiums nicht den Klassen Ascomycota, Basidiomycota oder Zygomycota zugeordnet werden.

Die erfindungsgemäß verwendbaren Monoterpene, Sesquiterpene und/oder Diterpene oder deren Derivate sind besonders bevorzugt zur Verminderung der Anhaftung aller Species der Gattung Aspergillus an Oberflächen geeignet, ganz besonders bevorzugt bei Species, die ausgewählt sind unter Aspergillus aculeatus, Aspergillus albus, Aspergillus alliaceus, Aspergillus asperescens, Aspergillus awamori, Aspergillus candidus, Aspergillus carbonarius, Aspergillus carneus, Aspergillus chevalieri, Aspergillus chevalier var. intermedius, Aspergillus clavatus, Aspergillus ficuum, Aspergillus flavipes, Aspergillus flavus, Aspergillus foetidus, Aspergillus fumigatus, Aspergillus giganteus, Aspergillus humicola, Aspergillus intermedius, Aspergillus japonicus, Aspergillus nidulans, Aspergillus niger, Aspergillus niveus, Aspergillus ochraceus, Aspergillus oryzae, Aspergillus ostianus, Aspergillus parasiticus, Aspergillus parasiticus var. globosus, Aspergillus penicillioides, Aspergillus phoenicis, Aspergillus rugulosus, Aspergillus sclerotiorum, Aspergillus sojae var. gymnosardae, Aspergillus sydowi, Aspergillus tamarii, Aspergillus terreus, Aspergillus terricola, Aspergillus toxicarius, Aspergillus unguis, Aspergillus ustus, Aspergillus versicolor, Aspergillus vitricolae und Aspergillus wentii. Besonders bevorzugt wird die Anhaftung von Aspergillus flavus und Apsergillus nidulans vermindert bzw. im wesentlichen ganz verhindert.

Gemäß einer besonders bevorzugten Ausführungsform wird die Anhaftung von Schimmelpilzen an solchen Oberflächen wie Textilien, Keramiken, Metallen, Holz- und/oder Kunststoffen vermindert. Des weiteren kann die Anhaftung von Schimmelpilzen an Oberflächen, die mit Lebensmitteln in Berührung kommen, ebenfalls vermindert werden.

Weitere Gegenstände der vorliegenden Erfindung sind Waschmittel, Reinigungsmittel, Nachspülmittel, Handwaschmittel, Handgeschirrspülmitteln, Maschinengeschirrspülmittel, und Mittel zur Ausrüstung von Oberflächen und/oder Verpackungen, insbesondere solchen, die mit Lebensmitteln in Berührung kommen, Filtermedien, Baustoffen, Bauhilfsstoffen, Textilien, Pelzen, Papier, Fellen oder Leder, enthaltend zur Verminderung der Anhaftung von Schimmelpilzen an Oberflächen geeignete Monoterpene, Sesquiterpene und/oder Diterpene oder deren Derivate.

Gemäß einer weiteren besonders bevorzugten Ausführungsform werden die erfindungsgemäßen Monoterpene, Sesqui-und/oder Diterpene in Wasch-und Reinigungsmitteln zur Verminderung der Anhaftung von Schimmelpilzen an Oberflächen verwendet.

Die erfindungsgemäßen Monoterpene, Sesquiterpene und/oder Diterpene oder deren Derivate können erfindungsgemäß auch zu Reinigungsmitteln, die zum Säubern harter Oberflächen, wie zum Beispiel von Böden, Kacheln, Fliesen, Kunststoffen sowie anderen harten Oberflächen im Haushalt, insbesondere in feuchten Räumen (z. B. Bad) oder in der Arztpraxis, zugegeben oder in diese eingearbeitet werden.

Unter Wasch-und Reinigungsmitteln werden im erfindungsgemäßen Zusammenhang im weitesten Sinn tensidhaltige Zubereitungen in fester Form <BR> <BR> (Partikel, Pulver usw. ), halbfester Form (Pasten usw. ), flüssiger Form (Lösungen,<BR> Emulsionen, Suspensionen, Gele usw. ) und gasähnlicher Form (Aerosole usw. ) verstanden, die im Hinblick auf eine vorteilhafte Wirkung bei der Anwendung ein Tensid oder mehrere Tenside enthalten, üblicherweise neben weiteren Komponenten, die für den jeweiligen Anwendungszweck üblich sind. Beispiele für solche tensidhaltige Zubereitungen sind tensidhaltige Waschmittelzubereitungen, tensidhaltige Reinigungsmittel für harte Oberflächen, oder tensidhaltige Aviviermittelzubereitungen, die jeweils fest oder flüssig sein können, jedoch auch in einer Form vorliegen können, die feste und flüssige Komponenten oder Teilmengen der Komponenten nebeneinander umfasst.

Die Wasch-und Reinigungsmittel können üblicherweise enthaltende Inhaltsstoffe enthalten, wie anionische, nichtionische, kationische und amphotere Tenside, anorganische und organische Buildersubstanzen, spezielle Polymere (beispielsweise solche mit Cobuildereigenschaften), Schauminhibitoren, Farbstoffe und ggf. zusätzliche Duftstoffe (Parfums), Bleichmittel (wie beispielsweise Peroxo- Bleichmittel und Chlor-Bleichmittel), Bleichaktivatoren, Bleichstabilisatoren, Bleichkatalysatoren, Enzyme und Vergrauungsinhibitoren, ohne dass die Inhaltsstoffe auf diese Substanzgruppen beschränkt sind. Häufig sind wichtige Inhaltsstoffe dieser Zubereitungen auch Waschhilfsmittel, für die beispielhaft und nicht beschränkend optische Aufheller, UV-Schutzsubstanzen, sog. Soil Repellents, also Polymere, die einer Wiederanschmutzung von Fasern entgegenwirken, verstanden werden. Die einzelnen Substanzgruppen werden im weiteren näher erläutert.

Für den Fall, dass die Zubereitungen zumindest zum Teil als Formkörper vorliegen, können auch Binde-und Desintegrationshilfsmittel enthalten sein.

Als Tenside können anionische, nichtionische, zwitterionische und kationische Tenside eingesetzt werden.

Als anionische Tenside werden beispielsweise solche vom Typ der Sulfonate und Sulfate eingesetzt. Als Tenside vom Sulfonat-Typ kommen dabei vorzugsweise Cs 13-Alkylbenzolsulfonate, Olefinsulfonate, d. h. Gemische aus Alken-und Hydroxyl- kansulfonaten sowie Disulfonaten, in Betracht, wie man sie beispielsweise aus C12 18-Monoolefinen mit end-oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält. Geeignet sind auch Alkansulfonate, die aus C12 18-Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse bzw. Neutralisation gewonnen werden. Ebenso sind auch die Ester von 2-Sulfofettsäuren (Estersulfonate), z. B. die 2-sulfonierten Methylester der hydrierten Kokos-, Palmkern-oder Talgfettsäu- ren geeignet.

Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester. Unter Fettsäureglycerinestern sind die Mono-, Di-und Triester sowie deren Gemische zu verstehen, wie sie bei der Herstellung durch Veresterung von einem Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Bevorzugte sulfierte Fettsäureglycerinester sind dabei die Sulfierprodukte von gesättigten Fettsäuren mit 6 bis 22 Kohlenstoff- atomen, beispielsweise der Capronsäure, Caprylsäure, Caprinsäure, Myri- stinsäure, Laurinsäure, Palmitinsäure, Stearinsäure oder Behensäure.

Als Alk (en) ylsulfate werden die Alkali-und insbesondere die Natriumsalze der Schwefelsäurehalbester der C12-C18-Fettalkohole, beispielsweise aus Kokosfettalkohol, Talgfettalkohol, Lauryl-, Myristyl-, Cetyl-oder Stearylalkohol oder der C1o-C2o-Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlängen bevorzugt. Weiterhin bevorzugt sind Alk (en) ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der Basis von fettchemischen Rohstoffen. In Wasch-und Reinigungsmitteln sind die C12-C16-Alkylsulfate und C12-C15- Alkylsulfate sowie C14-C15-Alkylsulfate bevorzugt. Auch 2, 3-Alkylsulfate, welche beispielsweise gemäß den US-Patentschriften 3,234, 258 oder 5,075, 041 hergestellt werden und als Handelsprodukte der Shell Oil Company unter dem Namen DANs erhalten werden können, sind geeignete Aniontenside.

Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C7 21-Alkohole, wie 2-Methyl-verzweigte Cg-n- Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder C12 18-Fettalkohole mit 1 bis 4 EO, sind geeignet. Sie werden in Wasch-und Reinigungsmitteln aufgrund ihres hohen Schaumverhaltens nur in relativ geringen Mengen, beispielsweise in Mengen von 1 bis 5 Gew. -%, eingesetzt.

Weitere geeignete Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden, und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vor- zugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen.

Bevorzugte Sulfosuccinate enthalten C8-18-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtioni- sche Tenside darstellen (Beschreibung siehe unten). Dabei sind wiederum Sulfo- succinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit einge- engter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk (en) ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk (en) ylkette oder deren Salze einzusetzen.

Als weitere anionische Tenside kommen insbesondere Seifen in Betracht. Geeig- net sind gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrierte Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, z. B. Kokos-, Palmkern-oder Talgfettsäuren, abgeleitete Seifengemische.

Die anionischen Tenside einschließlich der Seifen können in Form ihrer Natrium-, Kalium-oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di-oder Triethanolamin, vorliegen. Bevorzugt sind die Natrium-oder Kaliumsalze, insbesondere die Natriumsalze. Die Tenside können ebenfalls in Form ihrer Magnesiumsalze eingesetzt werden.

Im Rahmen der vorliegenden Erfindung sind solche Mittel bevorzugt, die 5 bis 50 Gew. -%, vorzugsweise 7,5 bis 40 Gew. -% und insbesondere 15 bis 25 Gew.-% eines oder mehrerer anionischer Tensid (e), enthalten.

Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alko- holethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z. B. aus Kokos-, Palm-, Talgfett-oder Oleylalkohol, und durch- schnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C1214-Alkohole mit 3 EO oder 4 EO, Ce-n- Alkohol mit 7 EO, C13 15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12 18-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, sowie Mischungen aus C12-14-Alkohol mit 3 EO und C1218-Alkohol mit 5 EO. Die angegebenen Ethoxy- lierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow range ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Talgfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO.

Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nicht- ionischen Tensiden eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbesondere Fett- säuremethylester.

Eine weitere Klasse von nichtionischen Tensiden, die vorteilhaft eingesetzt werden kann, sind die Alkylpolyglycoside (APG). Einsetzbare Alkypolyglycoside genügen der allgemeinen Formel RO (G) z, in der R für einen linearen oder verzweigten, insbesondere in 2-Stellung methylverzweigten, gesättigten oder ungesättigten, aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen steht und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Glycosidierungsgrad z liegt dabei zwischen 1,0 und 4,0, vorzugsweise zwischen 1,0 und 2,0 und insbesondere zwischen 1,1 und 1,4.

Bevorzugt eingesetzt werden lineare Alkylpolyglucoside, also Alkylpolyglycoside, in denen der Polyglycosylrest ein Glucoserest und der Alkylrest ein n-Alkylrest ist.

Die erfindungsgemäßen tensidhaltigen Zubereitungen können bevorzugt Alkylpolyglycoside enthalten, wobei Gehalte der für Wasch-, Spül-oder <BR> <BR> Reinigungszwecke vorgesehenen Zubereitungen an APG von über 0,2 Gew. -%, bezogen auf die gesamte Zubereitung, bevorzugt sind. Besonders bevorzugte tensidhaltige Zubereitungen enthalten APG in Mengen von 0,2 bis 10 Gew.-%, <BR> <BR> vorzugsweise in Mengen von 0,2 bis 5 Gew. -% und insbesondere in Mengen von 0,5 bis 3 Gew.-%.

Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl- N, N-dimethylaminoxid und N-Talgalkyl-N, N-dihydroxyethylaminoxid, und der Fett- säurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.

Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel (I), in der R4C0 für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R5 für Wasserstoff, einen Alkyl-oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [z1] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlen- stoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicher- weise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können.

Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel (II), in der R6 für einen linearen oder verzweigten Alkyl-oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R7 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest mit 2 bis 8 Kohlenstoffatomen und R8 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C1 4-Alkyl-oder Phenylreste bevorzugt sind und [z2] für einen linearen Polyhydroxyalkylrest steht, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propxylierte Derivate dieses Restes. [Z2] wird vorzugsweise durch reduktive Aminierung eines reduzierten Zuckers erhalten, beispielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N-Alkoxy-oder N-Aryloxy-substituierten Verbindungen können dann beispielweise, wie in der WO-A-95/07331 beschrieben, durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden.

Weiterhin kann es bevorzugt sein, neben anionischen und nichtionischen Tensiden auch kationische Tenside einzusetzen.

Als textilweichmachende Substanzen sind insbesondere kationische Tenside zu nennen. Beispiele kationische Tenside sind insbesondere quartäre Ammoniumverbindungen, kationische Polymere und Emulgatoren.

Geeignete Beispiele sind quartäre Ammoniumverbindungen der Formeln (III) und (IV) wobei in (IV) Ra und Rb für einen acyclischen Alkylrest mit 12 bis 24 Kohlenstoffatomen, Rc für einen gesättigten Ci-C4 Alkyl-oder Hydroxyalkylrest steht, Rd entweder gleich Ra, Rb oder Rc ist oder für einen aromatischen Rest steht. X-steht entweder für ein Halogenid-, Metho-sulfat-, Methophosphat-oder Phosphation sowie Mischungen aus diesen. Beispiele für kationische Verbindungen der Formel (III) sind Didecyldimethylammoniumchlorid, Ditalgdimethylammoniumchlorid oder Dihexadecylammoniumchlorid.

Verbindungen der Formel (IV) sind sogenannte Esterquats. Esterquats zeichnen sich durch eine hervorragende biologische Abbaubarkeit aus. Hierbei steht Re für einen aliphatischen Acylrest mit 12 bis 22 Kohlenstoffatomen mit 0,1, 2 oder 3 Doppelbindungen ; Rf steht für H, OH oder O (CO) Rh, Rg steht unabhängig von Rf für H, OH oder O (CO) R', wobei Rh und Ri unabhängig voneinander jeweils für einen aliphatischen Acylrest mit 12 bis 22 Kohlenstoffatomen mit 0,1, 2 oder 3 Doppelbindungen steht. m, n und p können jeweils unabhängig voneinander den Wert 1,2 oder 3 haben. X-kann entweder ein Halogenid-, Methosulfat-, Methophosphat-oder Phosphation sowie Mischungen aus diesen sein. Bevorzugt sind Verbindungen, die für Rf die Gruppe O (CO) Rh und für Rc und Rh Alkylreste mit 16 bis 18 Kohlenstoffatomen enthalten. Besonders bevorzugt sind Verbindungen, bei denen R9 zudem für OH steht. Beispiele für Verbindungen der Formel (IV) sind Methyl-N- (2-hydroxyethyl)-N, N-di (talgacyl-oxyethyl) ammonium- methosulfat, Bis- (palmitoyl)-ethyl-hydroxyethyl-methyl-ammonium-methosulfat oder Methyl-N, N-bis (acyloxyethyl)-N- (2-hydroxyethyl) ammonium-methosulfat.

Werden quarternierte Verbindungen der Formel (IV) eingesetzt, die ungesättigte Alkylketten aufweisen, sind die Acylgruppen bevorzugt, deren korrespondierenden Fettsäuren eine Jodzahl zwischen 5 und 80, vorzugsweise zwischen 10 und 60 und insbesondere zwischen 15 und 45 aufweisen und die ein cis/trans- <BR> <BR> Isomerenverhältnis (in Gew. -%) von größer als 30 : 70, vorzugsweise größer als 50 : 50 und insbesondere größer als 70 : 30 haben. Handelsübliche Beispiele sind die von Stepan unter der Marke Stepante) C vertriebenen Methylhydroxyalkyl- dialkoyloxyalkylammoniummethosulfate oder die unter Dehyquarm bekannten Produkte von Cognis bzw. die unter Rewoquats bekannten Produkte von Goldschmidt-Witco. Weitere bevorzugte Verbindungen sind die Diesterquats der Formel (V), die unter dem Namen Rewoquate W 222 LM bzw. CR 3099 erhältlich sind und neben der Weichheit auch für Stabilität und Farbschutz sorgen.

Rk und Rl stehen dabei unabhängig voneinander jeweils für einen aliphatischen Acylrest mit 12 bis 22 Kohlenstoffatomen mit 0,1, 2 oder 3 Doppelbindungen. Neben den oben beschriebenen quartären Verbindungen können auch andere bekannte Verbindungen eingesetzt werden, wie beispielsweise quartäre Imidazoliniumverbindungen der Formel (Vl), wobei Rm für H oder einen gesättigten Alkylrest mit 1 bis 4 Kohlenstoffatomen, R" und R° unabhängig voneinander jeweils für einen aliphatischen, gesättigten oder ungesättigten Alkylrest mit 12 bis 18 Kohlenstoffatomen, R"alternativ auch für O (CO) RP stehen kann, wobei RP einen aliphatischen, gesättigten oder ungesättigten Alkylrest mit 12 bis 18 Kohlenstoffatomen bedeutet, und Z eine NH- Gruppe oder Sauerstoff bedeutet und X-ein Anion ist. q kann ganzzahlige Werte zwischen 1 und 4 annehmen.

Weitere geeignete quartäre Verbindungen sind durch Formel (VII) beschrieben, wobei Rq, Rr und Rs unabhängig voneinander für eine C14-Alkyl-, Alkenyl-oder Hydroxyalkylgruppe steht, Rt und Ru jeweils unabhängig ausgewählt eine C8-28- Alkylgruppe darstellt und r eine Zahl zwischen 0 und 5 ist.

Neben den Verbindungen der Formeln III bis Vil können auch kurzkettige, wasserlösliche, quartäre Ammoniumverbindungen eingesetzt werden, wie Trihydroxyethylmethylammonium-methosulfat oder die Alkyltrimethylammonium- chloride, Dialkyldimethylammoniumchloride und Trialkylmethylammoniumchloride, z. B. Cetyltrimethylammoniumchlorid, Stearyltrimethylammoniumchlorid, Distea- ryldimethylammoniumchlorid, Lauryldimethylammoniumchlorid, Lauryldimethyl- benzylammoniumchlorid und Tricetylmethylammoniumchlorid.

Auch protonierte Alkylaminverbindungen, die weichmachende Wirkung aufweisen, sowie die nicht quaternierten, protonierten Vorstufen der kationischen Emulgatoren sind geeignet.

Weitere erfindungsgemäß verwendbare kationische Verbindungen stellen die quaternisierten Proteinhydrolysate dar.

Zu den geeigneten kationischen Polymeren zählen die Polyquaternium-Polymere, wie sie im CTFA Cosmetic Ingredient Dictionary (The Cosmetic, Toiletry und Fragrance, Inc., 1997), insbesondere die auch als Merquats bezeichneten Polyquaternium-6-, Polyquaternium-7-, Polyquaternium-10-Polymere (Ucare Polymer IR 400 ; Amerchol), Polyquaternium-4-Copolymere, wie Pfropfcopolymere mit einen Cellulosegerüst und quartären Ammoniumgruppen, die über Allyldimethylammoniumchlorid gebunden sind, kationische Cellulosederivate, wie kationisches Guar, wie Guar-hydroxypropyltriammoniumchlorid, und ähnliche quaternierte Guar-Derivate (z. B. Cosmedia Guar, Hersteller : Cognis GmbH), kationische quartäre Zuckerderivate (kationische Alkylpolyglucoside), z. B. das Handelsprodukt Glucquat@100, gemäß CTFA-Nomenklatur ein"Lauryl Methyl Gluceth-10 Hydroxypropyl Dimonium Chloride", Copolymere von PVP und Dimethylaminomethacrylat, Copolymere von Vinylimidazol und Vinylpyrrolidon, Aminosilicon-polymere und Copolymere, Ebenfalls einsetzbar sind polyquaternierte Polymere (z. B. Luviquat Care von BASF) und auch kationische Biopolymere auf Chitinbasis und deren Derivate, beispielsweise das unter der Handelsbezeichnung Chitosane (Hersteller : Cognis) erhältliche Polymer.

Erfindungsgemäß ebenfalls geeignet sind kationische Silikonöle wie beispiels- weise die im Handel erhältlichen Produkte Q2-7224 (Hersteller : Dow Corning ; ein stabilisiertes Trimethylsilylamodimethicon), Dow Corning 929 Emulsion (enthal- tend ein hydroxyl-amino-modifiziertes Silicon, das auch als Amodimethicone be- zeichnet wird), SM-2059 (Hersteller : General Electric), SLM-55067 (Hersteller : Wacker) Abil@-Quat 3270 und 3272 (Hersteller : Goldschmidt-Rewo ; diquartäre Polydimethylsiloxane, Quaternium-80), sowie Siliconquat Rewoquate SQ 1 (Tegoprens 6922, Hersteller : Goldschmidt-Rewo).

Ebenfalls einsetzbar sind Verbindungen der Formel (VIII), die Alkylamidoamine in ihrer nicht quaternierten oder, wie dargestellt, ihrer quaternierten Form, sein können. R kann ein aliphatischer Acylrest mit 12 bis 22 Kohlenstoffatomen mit 0,1, 2 oder 3 Doppelbindungen sein. s kann Werte zwischen 0 und 5 annehmen. Rw und Ru stehen unabhängig voneinander jeweils für H, d-4-Aikyt oder Hydroxyalkyl. Bevorzugte Verbindungen sind Fettsäureamidoamine wie das unter der Bezeichnung Tego Amids 18 erhältliche Stearylamidopropyldimethylamin oder das unter der Bezeichnung Stepantex@X 9124 erhältliche 3-Talgamidopropyl-trimethylammonium-methosulfat, die sich neben einer guten konditionierenden Wirkung auch durch farbübertragungsinhibierende Wirkung sowie speziell durch ihre gute biologische Abbaubarkeit auszeichnen.

Werden kationische Tenside eingesetzt, so sind sie in den Zubereitungen bevorzugt in Mengen von 0,01 bis 10 Gew. -%, insbesondere von 0,1 bis 3,0 Gew. - % enthalten.

Der Gesamttensidgehalt kann in den erfindungsgemäßen Mitteln zwischen 5 und 50 Gew. -%, bevorzugt zwischen 10 und 35 Gew.-% liegen.

Neben den Tensiden sind Gerüststoffe die wichtigsten Inhaltsstoffe von Wasch- und Reinigungsmitteln. In den erfindungsgemäßen tensidhaltigen Zubereitungen können üblicherweise in Wasch-und Reinigungsmitteln eingesetzte Gerüststoffe enthalten sein, insbesondere also Zeolithe, Silicate, Carbonate, organische Cobuilder und-wo keine ökologischen Vorurteile gegen ihren Einsatz bestehen- auch die Phosphate.

Geeignete kristalline, schichtförmige Natriumsilicate besitzen die allgemeine Formel NaMSixOzx+i'HzO, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2,3 oder 4 sind. Derartige kristalline Schichtsilicate werden beispielsweise in der europäischen Patentanmeldung EP-A-0 164 514 beschrieben. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl ß-als auch 6-Natriumdisilicate Na2Si205 yH2O bevorzugt, wobei ß-Natriumdisilicat beispielsweise nach dem Verfahren erhalten werden kann, das in der internationalen Patentanmeldung WO-A-91/08171 beschrieben ist.

Einsetzbar sind auch amorphe Natriumsilicate mit einem Modul Na20 : Si02 von 1 : 2 bis 1 : 3,3, vorzugsweise von 1 : 2 bis 1 : 2,8 und insbesondere von 1 : 2 bis 1 : 2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilicaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Sogenannte röntgenamorphe Silicate, welche ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Wassergläsern aufweisen, werden beispielsweise in der deutschen Patentanmeldung DE-A-44 00 024 beschrieben. Die Produkte weisen mikrokristalline Bereiche der Größe 10 bis einige Hundert nm auf, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Silicate, compoundierte amorphe Silicate und übertrocknete röntgenamorphe Silicate.

Ein gegebenenfalls eingesetzter feinkristalliner, synthetischer und gebundenes Wasser enthaltender Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith des P-Typs wird Zeolith MAP (z. B. Handelsprodukt : Doucil A24 der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P. Kommerziell erhältlich und im Rahmen der vorliegenden Erfindung bevorzugt einsetzbar ist beispielsweise auch ein Co- Kristallisat aus Zeolith X und Zeolith A (ca. 80 Gew.-% Zeolith X), das von der Firma CONDEA Augusta S. p. A. unter dem Markennamen VEGOBOND AXe vertrieben wird und durch die Formel nNa20- (1-n) KzO-AizOs' (2-2,5) Si02' (3,5-5, 5) H20 beschrieben werden kann. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 lim (Volumenverteilung ; Meßmethode : Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.

Selbstverständlich ist in Waschmitteln auch ein Einsatz der allgemein bekannten Phosphate als Buildersubstanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Geeignet sind insbesondere die Natriumsalze der Orthophosphate, der Pyrophosphate und insbesondere der Tripolyphosphate.

Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wobei unter Polycarbonsäuren solche Carbonsäuren verstanden werden, die mehr als eine Säurefunktion tragen.

Beispielsweise sind dies Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Äpfelsäure, Weinsäure, Maleinsäure, Fumarsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern deren Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen.

Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen. Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Builderwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren und mildern pH-Wertes von tensidhaltigen Zubereitungen gemäß der Erfindung. Insbesondere sind in diesem Zusammenhang Citronensäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen von diesen zu nennen.

Als Builder sind weiter polymere Polycarboxylate geeignet. Dies sind beispielsweise die Alkalimetallsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 500 bis 70.000 g/mol.

Bei den für polymere Polycarboxylate angegebenen Molmassen handelt es sich im Rahmen der vorliegenden Erfindung um gewichtsmittlere Molmassen Mw der jeweiligen Säureform, die grundsätzlich mittels Gelpermeationschromatographie (GPC) bestimmt wurden, wobei ein UV-Detektor eingesetzt wurde. Die Messung erfolgte dabei gegen einen externen Polyacrylsäure-Standard, der aufgrund seiner strukturellen Verwandtschaft mit den untersuchten Polymeren realistische Molgewichtswerte liefert. Diese Angaben weichen deutlich von den Molgewichtsangaben ab, bei denen Polystyrolsulfonsäuren als Standard eingesetzt werden. Die gegen Polystyrolsäuren gemessenen Molmassen sind in der Regel deutlich höher als die im Rahmen der vorliegenden Erfindung angegebenen Molmassen.

Geeignete Polymere sind insbesondere Polyacrylate, die bevorzugt eine Molmasse von 2.000 bis 20.000 g/mol aufweisen. Aufgrund ihrer überlegenen Löslichkeit können aus dieser Gruppe wiederum die kurzkettigen Polyacrylate bevorzugt sein, die Molmassen von 2.000 bis 10.000 g/mol, besonders bevorzugt von 3.000 bis 5.000 g/moi, aufweisen.

Geeignet sind weiterhin copolymere Polycarboxylate, insbesondere solche der Acrylsäure mit Methacrylsäure oder der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molmasse, bezogen auf freie Säuren, beträgt im allgemeinen 2.000 bis 70.000 g/mol, vorzugsweise 20.000 bis 50.000 g/mol und insbesondere 30.000 bis 40.000 g/mol.

Die (co-) polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Lösung eingesetzt werden. Der Gehalt an (co-) polymeren Polycarboxylaten in den erfindungsgemäßen Wasch-und Reinigungsmitteln beträgt vorzugsweise 0,5 bis 20 Gew. -%, insbesondere 3 bis 10 Gew.-%.

Zur Verbesserung der Wasserlöslichkeit können die Polymere auch Allylsulfonsäuren, Allyloxybenzolsulfonsäure und Methallylsulfonsäure als Monomer enthalten.

Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Monomereinheiten, beispielsweise solche, die als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol- Derivate oder Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker- Derivate enthalten.

Weiter bevorzugte Copolymere sind solche, die als Monomere vorzugsweise Acrolein und Acrylsäure/Acrylsäuresalze bzw. Acrolein und Vinylacetat enthalten.

Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen.

Besonders bevorzugt sind Polyasparaginsäuren bzw. deren Salze und Derivate, die zum Teil neben Co-Builder-Eigenschaften auch eine bleichstabilisierende Wirkung aufweisen.

Weitere geeignete Buildersubstanzen sind Polyacetale, die durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren erhalten werden können, die 5 bis 7 Kohlenstoffatome und mindestens 3 Hydroxygruppen aufweisen. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.

Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure-oder enzymkatalysierten Verfahren durchgeführt werden.

Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500.000 g/mol. Dabei ist ein Polysaccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30, bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose ist, welche ein DE von 100 besitzt.

Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2.000 bis 30.000 g/mol. Ein bevorzugtes Dextrin ist in der britischen Patentanmeldung 94 19 091 beschrieben.

Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, die in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren.

Ebenfalls geeignet ist ein oxidiertes Oligosaccharid, wobei ein an C6 des Saccharidrings oxidiertes Produkt besonders vorteilhaft sein kann.

Auch Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendiamindisuccinat sind weitere geeignete Co-Builder. Dabei wird Ethylendiamin-N, N'-disuccinat (EDDS) bevorzugt in Form der Natrium-oder Magnesiumsalze verwendet. Weiterhin bevorzugt sind in diesem Zusammenhang auch Glycerindisuccinate und Glycerintrisuccinate. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silicathaltigen Formulierungen bei 3 bis 15 Gew.- %.

Weitere brauchbare organische Co-Builder sind beispielsweise acetylierte Hydroxycarbonsäuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und wenigstens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten.

Eine weitere Substanzklasse mit Co-Builder-Eigenschaften stellen die Phosphonate dar. Dabei handelt es sich insbesondere um Hydroxyalkan-bzw.

Aminoalkanphosphonate. Unter den Hydroalkanphosphonaten ist das 1- Hydroxyethan-1,1-diphosphonat (HEDP) von besonderer Bedeutung als Co- Builder. Es wird vorzugsweise als Natriumsalz eingesetzt, wobei das Dinatriumsalz neutral und das Tetranatriumsalz alkalisch (pH = 9) reagiert. Als Aminoalkanphosphonate kommen vorzugsweise Ethylendiamintetramethylenphosphonat (EDTMP), Diethylentriaminpentamethylenphosphonat (DTPMP) sowie deren höhere Homologe in Frage. Sie werden vorzugsweise in Form der neutralreagierenden Natriumsalze, z. B. als Hexanatriumsalz der EDTMP bzw. als Hepta-und Octanatriumsalz der DTPMP, eingesetzt. Als Builder wird dabei aus der Klasse der Phosphonate bevorzugt HEDP verwendet. Die Aminoalkanphosphonate besitzen zudem ein ausgeprägtes Schwermetallbindevermögen.

Dementsprechend kann es, insbesondere wenn die erfindungsgemäßen tensidhaltigen Zubereitungen auch Bleiche enthalten, bevorzugt sein, Aminoalkanphosphonate, insbesondere DTPMP, einzusetzen oder Mischungen aus den genannten Phosphonaten zu verwenden.

Darüber hinaus können alle Verbindungen, die in der Lage sind, Komplexe mit Erdalkalimetallionen zu bilden, als Co-Builder eingesetzt werden.

Unter den als Bleichmittel dienenden, in Wasser H202 liefernden Verbindungen haben das Natriumperborat-tetrahydrat und das Natriumperborat-monohydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Natriumpercarbonat, Peroxypyrophosphate, Citratperhydrate sowie H202 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandisäure. Werden Reinigungs-oder Bleichmittel-Zubereitungen für das maschinelle Geschirrspülen hergestellt, so können auch Bleichmittel aus der Gruppe der organischen Bleichmittel eingesetzt werden. Typische organische Bleichmittel sind die Diacylperoxide, wie z. B. Dibenzoylperoxid. Weitere typische organische Bleichmittel sind die Peroxysäuren, wobei als Beispiele besonders die Alkylperoxysäuren und die Arylperoxysäuren genannt werden. Bevorzugte Vertreter sind (a) die Peroxybenzoesäure und ihre ringsubstituierten Derivate, wie Alkylperoxybenzoesäuren, aber auch Peroxy-a-Naphtoesäure und Magnesiummonoperphthalat ; (b) die aliphatischen oder substituiert aliphatischen Peroxysäuren, wie Peroxylaurinsäure, Peroxystearinsäure, g-Phthalimidoperoxy- capronsäure [Phthaloiminoperoxyhexansäure (PAP) ], o-Carboxybenzamido-per- oxycapronsäure, N-Nonenylamidoperadipinsäure und N-Nonenylamidoper- succinate ; und (c) aliphatische und araliphatische Peroxydicarbonsäuren, wie 1,12-Diperoxycarbonsäure, 1, 9-Diperoxyazelainsäure, Diperocysebacinsäure, Diperoxybrassylsäure, die Diperoxyphthalsäuren, 2-Decyldiperoxybutan-1, 4- disäure, N, N-Terephthaloyl-di (6-aminopercapronsäue) können eingesetzt werden.

Um beim Waschen oder Reinigen bei Temperaturen von 60 °C und darunter eine verbesserte Bleichwirkung zu erreichen, können Bleichaktivatoren in die tensidhaltigen Zubereitungen eingearbeitet werden. Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocar- bonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O-und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1,5- Diacetyl-2, 4-dioxohexahydro-1,3, 5-triazin (DADHT), acylierte Glykolurile, insbe- sondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoyl- succinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl-oder Isononanoyloxybenzolsulfonat (n-bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat und 2,5-Diacetoxy-2, 5-dihydrofuran.

Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch sogenannte Bleichkatalysatoren in die tensidhaltigen Zubereitungen eingearbeitet werden. Bei diesen Stoffen handelt es sich um bleichverstärkende Übergangsmetallsalze bzw. Übergangsmetallkomplexe wie beispielsweise Mn-, Fe-, Co-, Ru-oder Mo-Salenkomplexe oder-carbonylkomplexe. Auch Mn-, Fe-, Co-, Ru-, Mo-, Ti-, V-und Cu-Komplexe mit N-haltigen Tripod-Liganden sowie Co- , Fe-, Cu-und Ru-Amminkomplexe sind als Bleichkatalysatoren verwendbar.

Als Enzyme kommen solche aus der Klasse der Proteasen, Lipasen, Amylasen, Cellulasen bzw. deren Gemische in Frage. Besonders gut geeignet sind aus Bak- terienstämmen oder Pilzen, wie Bacillus subtilis, Bacillus licheniformis und Strep- tomyces griseus gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Pro- teasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Dabei sind Enzymmischungen, beispielsweise aus Protease und Amylase oder Protease und Lipase oder Protease und Cellulase oder aus Cellulase und Lipase oder aus Protease, Amylase und Lipase oder Pro- tease, Lipase und Cellulase, insbesondere jedoch Cellulase-haltige Mischungen von besonderem Interesse. Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als geeignet erwiesen. Die Enzyme können an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen. Der Anteil der Enzyme, Enzymmischungen oder En- zymgranulate in den erfindungsgemäßen tensidhaltigen Zubereitungen kann beispielsweise etwa 0,1 bis 5 Gew. -%, vorzugsweise 0,1 bis etwa 2 Gew. -%, bet- ragen.

Eine bevorzugte Gruppe geeigneter Additive sind optische Aufheller. Verwendet werden können hier die in Waschmitteln üblichen optischen Aufheller. Beispiele für optische Aufheller sind Derivate von Diaminostilbendisulfonsäure bzw. deren Alkalimetallsalze. Geeignet sind z. B. Salze der 4, 4'-Bis (2-anilino-4- morpholino1, 3, 5-triazinyl-6-amino-) stilben-2, 2'-disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpholino-Gruppe eine Diethanol- amino-Gruppe, eine Methylamino-Gruppe, eine Anilino-Gruppe oder eine 2- Methoxyethylamino-Gruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylstyryle in den Teil-Portionen (waschaktiven Zubereitun-gen) der erfindungsgemäßen tensidhaltigen Zubereitungen enthalten sein, z. B. die Alkalisalze des 4, 4'-Bis (2-sulfostyryl-) diphenyls, 4, 4'-Bis (4-chlor-3-sulfostyryl- ) diphenyls oder 4- (4-Chlorstyryl-) 4'- (2-sulfostyryl-) diphenyis. Auch Gemische der vorgenannten Aufheller können verwendet werden.

Eine weitere erfindungsgemäß bevorzugte Gruppe von Additiven sind UV-Schutz- Substanzen. UV-Absorber können auf die behandelten Textilien aufziehen und die Lichtbeständigkeit der Fasern und/oder die Lichtbeständigkeit des sonstiger Rezepturbestandteile verbessern. Unter UV-Absorber sind organische Substanzen (Lichtschutzfilter) zu verstehen, die in der Lage sind, ultraviolette Strahlen zu absorbieren und die aufgenommene Energie in Form längerwelliger Strahlung, z. B. Wärme wieder abzugeben. Verbindungen, die diese gewünschten Eigenschaften aufweisen, sind beispielsweise die durch strahlungslose Desaktivierung wirksamen Verbindungen und Derivate des Benzophenons mit Substituenten in 2-und/oder 4-Stellung. Weiterhin sind auch substituierte Benzotriazole, wie beispielsweise das wasserlösliche Benzolsulfonsäure-3- (2H- benzotriazol-2-yl)-4-hydroxy-5-(methylpropyl)-mononatriumsal z (Cibafasts H), in 3- Stellung Phenylsubstituierte Acrylate (Zimtsäurederivate), gegebenenfalls mit Cyanogruppen in 2-Stellung, Salicylate, organische Ni-Komplexe sowie Naturstoffe wie Umbelliferon und die körpereigene Urocansäure geeignet.

Besondere Bedeutung haben Biphenyl-und vor allem Stilbenderivate wie sie beispielsweise in der EP 0728749 A beschrieben werden und kommerziell als Tinosorb FD oder Tinosorbo FR ex Ciba erhältlich sind. Als UV-B-Absorber sind zu nennen 3-Benzylidencampher bzw. 3-Benzylidennorcampher und dessen Derivate, z. B. 3- (4-Methylbenzyliden) campher, wie in der EP 0693471 B1 beschrieben ; 4-Aminobenzoesäurederivate, vorzugsweise 4- (Dimethylamino) benzoesäure-2-ethylhexylester, 4- (Dimethylamino) benzoesäure- 2-octylester und 4- (Dimethylamino) benzoesäureamylester ; Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure-2-ethylhexylester, 4-Methoxyzimtsäurepro- pylester, 4-Methoxyzimtsäureisoamylester, 2-Cyano-3, 3-phenylzimtsäure-2- ethylhexylester (Octocrylene) ; Ester der Salicylsäure, vorzugsweise Salicylsäure- <BR> <BR> 2-ethylhexylester, Salicylsäure-4-isopropylbenzylester, Salicylsäurehomomenthy- lester ; Derivate des Benzophenons, vorzugsweise 2-Hydroxy-4- methoxybenzophenon, 2-Hydroxy-4-methoxy-4'-methylbenzophenon, 2, 2'- Dihydroxy-4-methoxybenzophenon ; Ester der Benzalmalonsäure, vorzugsweise 4- Methoxybenzmalonsäuredi-2-ethylhexylester ; Triazinderivate, wie z. B. 2,4, 6- Trianilino- (p-carbo-2'-ethyl-1'-hexyloxy)-1, 3,5-triazin und Octyl Triazon, wie in der EP 0818450 A1 beschrieben oder Dioctyl Butamido Triazone (Uvasorbo HEB) ; Propan-1,3-dione, wie z. B. 1- (4-tert. Butylphenyl)-3- (4'methoxyphenyl) propan-1,3- dion ; Ketotricyclo (5.2. 1.0) decan-Derivate, wie in der EP 0694521 B1 beschrieben.

Weiterhin geeignet sind 2-Phenylbenzimidazol-5-sulfonsäure und deren Alkali-, Erdalkali-, Ammonium-, Alkylammonium-, Alkanolammonium-und Glucammoniumsalze ; Sulfonsäurederivate von Benzophenonen, vorzugsweise 2- Hydroxy-4-methoxybenzophenon-5-sulfonsäure und ihre Salze ; Sulfonsäurederivate des 3-Benzylidencamphers, wie z. B. 4- (2-Oxo-3- bornylidenmethyl) benzol-sulfonsäure und 2-Methyl-5- (2-oxo-3-bornyliden) sulfon- säure und deren Salze.

Als typische UV-A-Filter kommen insbesondere Derivate des Benzoylmethans in Frage, wie beispielsweise 1- (4'-tert. Butylphenyl)-3- (4'-methoxyphenyl) propan-1,3- dion, 4-tert.-Butyl-4'-methoxydibenzoylmethan (Parsol 1789), 1-Phenyl-3- (4'- isopropylphenyl)-propan-1, 3-dion sowie Enaminverbindungen, wie beschrieben in der DE 19712033 A1 (BASF). Die UV-A und UV-B-Filter können selbstverständlich auch in Mischungen eingesetzt werden. Neben den genannten löslichen Stoffen kommen für diesen Zweck auch unlösliche Lichtschutzpigmente, nämlich feindisperse, vorzugsweise nanoisierte Metalloxide bzw. Salze in Frage. Beispiele für geeignete Metalloxide sind insbesondere Zinkoxid und Titandioxid und daneben Oxide des Eisens, Zirkoniums, Siliciums, Mangans, Aluminiums und Cers sowie deren Gemische. Als Salze können Silicate (Talk), Bariumsulfat oder Zinkstearat eingesetzt werden. Die Oxide und Salze werden in Form der Pigmente bereits für hautpflegende und hautschützende Emulsionen und dekorative Kosmetik verwendet. Die Partikel sollten dabei einen mittleren Durchmesser von weniger als 100 nm, vorzugsweise zwischen 5 und 50 nm und insbesondere zwischen 15 und 30 nm aufweisen. Sie können eine sphärische Form aufweisen, es können jedoch auch solche Partikel zum Einsatz kommen, die eine ellipsoide oder in sonstiger Weise von der sphärischen Gestalt abweichende Form besitzen.

Die Pigmente können auch oberflächenbehandelt, d. h. hydrophilisiert oder hydrophobiert vorliegen. Typische Beispiele sind gecoatete Titandioxide, wie z. B.

Titandioxid T 805 (Degussa) oder EusolexE T2000 (Merck). Als hydrophobe Coatingmittel kommen dabei vor allem Silicone und dabei speziell Trialkoxyoctylsilane oder Simethicone in Frage. Vorzugsweise wird mikronisiertes Zinkoxid verwendet. Weitere geeignete UV-Lichtschutzfilter sind der Übersicht von P. Finkel in SÖFW-Journal 122,543 (1996) zu entnehmen. <BR> <BR> <P>Die UV-Absorber werden üblicherweise in Mengen von 0,01 Gew. -% bis<BR> 5 Gew. -%, vorzugsweise von 0,03 Gew. -% bis 1 Gew. -%, eingesetzt.

Eine weitere erfindungsgemäß bevorzugte Gruppe von Additiven sind Farbstoffe, insbesondere wasserlösliche oder wasserdispergierbare Farbstoffe. Bevorzugt sind hier Farbstoffe, wie sie zur Verbesserung der optischen Produktanmutung in Wasch-, Spül-, Reinigungs-und Aviviermitteln üblicherweise eingesetzt werden.

Die Auswahl derartiger Farbstoffe bereitet dem Fachmann keine Schwierigkeiten, insbesondere da derartige übliche Farbstoffe eine hohe Lagerstabilität und Unempfindlichkeit gegenüber den übrigen Inhaltsstoffen der waschaktiven Zubereitungen und gegen Licht sowie keine ausgeprägte Substantivität gegenüber Textilfasern haben, um diese nicht anzufärben. Die Farbstoffe sind erfindungsgemäß in den Wasch-und/oder Reinigungsmitteln gemäß der Erfindung in Mengen von unter 0,01 Gew. -% zugegen.

Eine weitere Klasse von Additiven, die erfindungsgemäß den Wasch-und/oder Reinigungsmitteln zugesetzt werden kann, sind Polymere. Unter diesen Polymeren kommen zum einen Polymere in Frage, die beim Waschen oder Reinigen bzw. Spülen Cobuilder-Eigenschaften zeigen, also zum Beispiel Polyacrylsäuren, auch modifizierte Polyacrylsäuren oder entsprechende Copolymere. Eine weitere Gruppe von Polymeren sind Polyvinylpyrrolidon und andere Vergrauungsinhibitoren, wie Copolymere von Polyvinylpyrrolidon, Cellulose-Ether und dergleichen. Weiterhin kommen als Polymere bevorzugt auch sogenannte Soil Repellent in Frage, wie sie nachfolgend im einzelnen beschrieben werden.

Als weitere erfindungsgemäße Zusätze können die Wasch-und Reinigungsmittel auch sog. Soil Repellent enthalten, also Polymere, die auf Fasern aufziehen, die Öl-und Fettauswaschbarkeit aus Textilien positiv beeinflussen und damit einer Wiederanschmutzung gezielt entgegenwirken. Dieser Effekt wird besonders deutlich, wenn ein Textil verschmutzt wird, das bereits vorher mehrfach mit einem erfindungsgemäßen Wasch-oder Reinigungsmittel, das diese öl-und fettlösende Komponente enthält, gewaschen wurde. Zu den bevorzugten öl-und fettlösenden Komponenten zählen beispielsweise nichtionische Celluloseether wie Me- thylcellulose und Methylhydroxypropylcellulose mit einem Anteil an Methoxy-Grup- pen von 15 bis 30 Gew. -% und an Hydroxypropoxy-Gruppen von 1 bis 15 Gew.-%, jeweils bezogen auf den nichtionischen Celluloseether, sowie die aus dem Stand der Technik bekannten Polymere der Phthalsäure und/oder der Terephthalsäure bzw. von deren Derivaten, insbesondere Polymere aus Ethylenterephthalaten und/oder Polyethylenglykolterephthalaten oder anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Besonders bevorzugt von diesen sind die sulfonierten Derivate der Phthalsäure-und der Terephthalsäure-Polymere.

Insbesondere wenn es sich um flüssige oder gelförmig Zubereitungen handelt, können diese auch Lösungsmittel enthalten. Beispiele für geeignete Lösungsmittel sind ein-oder mehrwertige Alkohole mit 1 bis 4 C-Atomen. Bevorzugte Alkohole sind Ethanol, 1, 2-Propandiol, Glycerin sowie deren beliebigen Gemische. Die Lösungsmittel können in flüssigen Zubereitungen in einer Menge von 2 bis 12 Gew. -%, bezogen auf die fertige Zubereitung, enthalten sein.

Die genannten Additive werden den Wasch-und/oder Reinigungsmitteln in Mengen bis höchstens 30 Gew. -%, vorzugsweise 2 bis 20 Gew. -%, zugesetzt.

Diese Aufzählung von Wasch-und Reinigungsmittelinhaltsstoffen, die in den erfindungsgemäßen Wasch-, Spül-oder Reinigungsmittel vorkommen können, ist keineswegs abschließend, sondern gibt lediglich die wesentlichen typischen Inhaltsstoffe derartiger Mittel wieder. Insbesondere können, soweit es sich um flüssige oder gelförmig Zubereitungen handelt, in den Mitteln auch organische Lösungsmittel enthalten sein. Vorzugsweise handelt es sich um ein-oder mehrwertige Alkohole mit 1 bis 4 C-Atomen. Bevorzugte Alkohole in solchen Mitteln sind Ethanol, 1, 2-Propandiol, Glycerin sowie Gemische aus diesen Alkoholen. In bevorzugten Ausführungsformen enthalten derartige Mittel 2 bis 12 Gew. -% solcher Alkohole.

Nach einer bevorzugten Ausführungsform sind in den erfindungsgemäßen Wasch- und/oder Reinigungsmittel 0,000001 bis 3 Gew. -% an Monoterpenen, Sesquiterpenen und/oder Diterpenen enthalten. Besonders bevorzugt sind Konzentrationen von 0,00001 bis 1,0 Gew. -% und insbesondere 0,0001 bis 0,5<BR> Gew. -%. Ganz besonders bevorzugt enthalten die Wasch-und Reinigungsmittel<BR> 0,0001 bis 0,05 Gew. -% dieser Stoffe.

Vorteilhafterweise können solche erfindungsgemäßen Wasch-und Reinigungsmittel ohne Belastung der Abwässer relativ geringe Mengen der genannten Stoffe enthalten. Da sie in konzentrierter Form eingesetzt und auf die entsprechend wirksamen Konzentrationen in der Waschlauge verdünnt werden, müssen die Wirkstoffe in entsprechend höherer Konzentration eingesetzt werden.

Üblich sind Verdünnungen der Wasch-und Reinigungsmittel mit Wasser zwischen 1 : 40 und 1 : 200.

Weitere Gegenstände der vorliegenden Erfindung sind Verpackungen, insbesondere solche für Lebensmittel, Filtermedien, Baustoffe, Bauhilfsstoffe, Textilien, Pelze, Papier, Felle oder Leder, die Monoterpene, Sesquiterpene und/oder Diterpene oder deren Derivate zur Verminderung der Anhaftung von Schimmelpilzen an Oberflächen enthalten und/oder die mit einem erfindungsgemäßen Mittel ausgerüstet wurden.

Die Ausrüstung der Verpackungen, Oberflächen, Textilien, Pelze, Felle oder Leder erfolgt in dem Fachmann bekannter Weise, beispielsweise durch Eintauchen oder Besprühen des Papiers oder der Textilien, Pelze, Felle oder Leder in eine geeignet konzentrierte Lösung eines erfindungsgemäßen Mittels. So können beispielsweise auch Kunstwerke auf Papier, Pergament, Holz und/oder Leinwand vor Schimmelbefall geschützt bzw. von diesem befreit werden. Die Ausrüstung der Filtermedien, Baustoffe oder Bauhilfsstoffe erfolgt beispielsweise durch mechanisches Einarbeiten oder Aufbringen einer geeignet konzentrierten Lösung eines erfindungsgemäßen Mittels in bzw. auf die Filtermedien, Baustoffe oder Bauhilfsstoffe.

Vorzugsweise sind die erfindungsgemäß ausgerüsteten Baustoffe oder Bauhilfsstoffe ausgewählt unter Klebe-, Dichtungs-, Spachtel-und Anstrichmassen, Kunststoffen, Lacken, Farben, Putz, Mörtel, Estrich, Beton, Isoliermaterialien sowie Grundierungen. Besonders bevorzugte Baustoffe oder Bauhilfsstoffe sind Fugendichtmassen (bspw. silikonhaltige Fugendichtmassen), Tapetenkleister, Putz, Teppichfixierer, Silikonkleber, Fliesenkleber.

Dichtungsmassen und insbesondere Fugendichtungsmassen enthalten typischerweise organische Polymere sowie in vielen Fällen mineralische oder organische Füllstoffe und sonstige Additive.

Geeignete Polymere sind beispielsweise thermoplastische Elastomere, wie in der DE-A-3602526 der Anmelderin beschrieben, vorzugsweise Polyurethane und Acrylate. Geeignete Polymere sind auch in den Offenlegungsschriften DE-A- 3726547, DE-A-4029504 und DE-A-4009095 der Anmelderin sowie in DE-A- 19704553 und DE-A-4233077 genannt, auf die hiermit in vollem Umfang Bezug genommen wird.

Die Dichtungsmassen und insbesondere Fugendichtungsmassen können wäßrige oder organische Lösungsmittel enthalten. Als organische Lösungsmittel kommen Kohlenwasserstoffe wie Cyclohexan, Toluol oder auch Xylol oder Petrolether in Frage. Weitere Lösungsmittel sind Ketone wie Methylbutylketon oder Chlorkohlenwasserstoffe.

Weiterhin können die Dichtungsmassen noch weitere kautschukartige Polymere enthalten. Hier kommen relativ niedermolekulare, handelsübliche Typen von Polyisobutylen, Polyisopren oder auch Polybutadienstyrol in Frage. Auch die Mitverwendung von abgebautem Naturkauschuk oder von Neoprenkautschuk ist möglich. Hier können auch bei Raumtemperatur noch fließfähige Typen eingesetzt werden, welche häufig als"Flüssigkautschuk"bezeichnet werden.

Die erfindungsgemäßen Dichtungsmassen können verwendet werden, um die verschiedensten Materialien miteinander zu verbinden bzw. abzudichten. Hier ist in erster Linie an die Verwendung auf Beton, auf Glas, auf Putz und/oder Emaille sowie Keramik und Porzellan gedacht. Aber auch das Verbinden bzw. Abdichten von Formteilen bzw. Profilen aus Aluminium, Stahl, Zink oder auch aus Kunststoffen wie PVC oder Polyurethanen oder Acrylharzen ist möglich.

Schließlich sei das Abdichten von Holz oder Holzmaterialien mit den verschiedensten anderen Werkstoffen erwähnt.

Die Standfestigkeit von Fugendichtungsmassen wird in der Regel durch Zusatz von feinteiligen Feststoffen-auch Füllstoffe genannt-erzielt. Diese lassen sich in solche organischer und solche anorganischer Art unterscheiden. Als anorganische Füllstoffe können beispielsweise Kreide-gecoatet oder ungecoatet-und/oder Zeolithe bevorzugt sein. Letztere können zudem auch als Trockenmittel fungieren. Als organischer Füllstoff kommt z. B. PVC-Pulver in Betracht.

Die Füllstoffe tragen im allgemeinen wesentlich dazu bei, daß die Dichtungsmasse nach der Anwendung einen notwendigen inneren Halt besitzt, so daß ein Auslaufen oder Ausbuchten der Dichtungsmasse aus senkrechten Fugen verhindert wird. Die genannten Zusatz-bzw. Füllstoffe lassen sich in Pigmente und thixotropierende Füllstoffe, auch verkürzt als Thixotropiermittel bezeichnet, einteilen.

Als Thixotropierungsmittel eignen sich die bekannten Thixotropierungsmittel wir Bentone, Kaoline oder auch organische Verbindungen wie hydriertes Rizinusöl bzw. Derivate desselben mit mehrfunktionellen Aminen oder die Umsetzungsprodukte von Stearinsäure oder Rizinolsäure mit Ethylendiamin. Als besonders günstig hat sich die Mitverwendung von Kieselsäure, insbesondere von Kieselsäure aus der Pyrolyse erwiesen. Außerdem kommen als Thixotropiermittel im wesentlichen quellfähige Polymerpulver in Betracht. Beispiele sind hierfür Polyacrylnitril, Polyurethan, Polyvinylchlorid, Polyacrylsäureester, Polyvinylalkohole, Polyvinylacetate sowie die entsprechenden Copolymerisate.

Besonders gute Ergebnisse lassen sich mit feinteiligem Polyvinylchloridpulver erhalten. Neben den Thixotropierungsmitteln können auch noch zusätzlich Haftvermittler eingesetzt werden wie etwa Mercaptoalkylsilan. Hier hat es sich als zweckmäßig erwiesen, ein Monomercaptoalkyltrialkoxysilan einzusetzen.

Handelsüblich ist beispielsweise das Mercaptopropyltrimethoxysilan.

Die Eigenschaften einer Fugendichtungsmasse lassen sich noch weiter verbessern, wenn dem als Thixotropiermittel verwendeten Kunststoffpulver weitere Komponenten zugesetzt werden. Dabei handelt es sich um Stoffe, die unter die Kategorie der für Kunststoffe angewendeten Weichmacher bzw. Quellmittel und Quellhilfsmittel fallen. Es kommen z. B. Weichmacher aus der Klasse der Phthalsäureester in Betracht. Beispiele für anwendbare Verbindungen aus dieser Substanzklasse sind Dioctylphthalat, Dibutylphthalat und Benzylbutylphthalat.

Weitere geeignete Substanzklassen sind Chlorparaffine, Alkylsulfonsäureester etwa der Phenole oder Kresole sowie Fettsäureester.

Als Quellhilfsmittel sind solche niedermolekularen organischen Substanzen einsetzbar, die mit dem Polymerpulver und dem Weichmacher mischbar sind.

Derartige Quellhilfsmittel lassen sich den einschlägigen Kunststoff-und Polymer- Handbüchern für den Fachmann entnehmen. Als bevorzugte Quellhilfsmittel für Polyvinylchloridpulver dienen Ester, Ketone, aliphatische Kohlenwasserstoffe, aromatische Kohlenwasserstoffe sowie aromatische Kohlenwasserstoffe mit Alkylsubstituenten.

Als Pigmente und Farbstoffe werden die für diese Verwendungszwecke bekannten Substanzen wie Titandioxid, Eisenoxide und Ruß verwendet Zur Verbesserung der Lagerstabilität werden bekanntermaßen den Dichtungsmassen Stabilisatoren wie Benzoylchlorid, Acetylchlorid, Toluolsulfonsäuremethylester, Carbodiimide und/oder Polycarbodiimide zugesetzt.

Als besonders gute Stabilisatoren haben sich Olefine mit 8 bis 20 Kohlenstoffatomen erwiesen. Neben der stabilisierenden Wirkung können diese auch Aufgaben von Weichmachern bzw. Quellmitteln erfüllen. Bevorzugt werden Olefine mit 8 bis 18 Kohlenstoffatomen, insbesondere wenn die Doppelbindung in 1, 2-Stellung angeordnet ist. Beste Ergebnisse erhält man, wenn die Molekülstruktur dieser Stabilisatoren linear ist.

Durch die erfindungsgemäße Verwendung von Monoterpenen, Sesquiterpenen und/oder Diterpenen sowie deren Derivaten zur Verminderung der Anhaftung von Schimmelpilzen an Oberflächen umgeht man das Problem der Resistenzbildung aufgrund biozider Wirkstoffe. Bei der Anwendung in schimmelgefährdeten Bau- und Bauhilfsstoffen, insbesondere in Dichtungsmassen und besonders bevorzugt in Fugendichtungsmassen werden durch die Verminderung der Anhaftung von Schimmelpilzen an Oberflächen mehrere erwünschte Effekte erzielt : a) Verhinderung von Verfärbungen durch pigmentierte-Sporen. b) Verzögerung der Ausbreitung des Schimmelbefalls. c) Verminderung der Allergenbelastung.

Eine weitere bevorzugte Ausführungsform der vorliegenden Erfindung sind Tapetenkleber, enthaltend 0,000001 bis 3 Gew. -% Monoterpene, Sesquiterpene und/oder deren Derivate. Tapetenkleister aus wässrigen Lösungen von Hydrokolloiden wie Methylcellulose, Methylhydroxypropylcellulose oder wasserlöslichen Stärkederivaten. Auch wässrige Dispersionen von filmbildenden Hochmolekularen wie Polyvinylacetat können, insbesondere in Verbindung mit den bereits erwähnten Cellulose-und Stärkederivaten, eingesetzt werden.

Als Filtermedien können alle bekannten Arten eingesetzt werden, solange sie für den Einsatz in Wasser-oder Luftfilteranlagen geeignet sind. Insbesondere sind Filtermaterialien aus Cellulose, Glasfasern, PVC-Fasern, Polyesterfasern, Polyamidfasern, insbesondere Nylonfasern, Vliesstoffen, Sintermaterialien und Membranfilter zu nennen.

Die Konzentration der zur Verminderung der Anhaftung von Schimmelpilzen an Oberflächen einzusetzenden Monoterpene, Sesquiterpene und/oder Diterpene oder deren Derivate in den erfindungsgemäßen Mitteln kann durch den Fachmann in einem breiten Bereich variiert werden, abhängig von den Einsatzbedingungen der Mittel.

Die erfindungsgemäßen Mittel werden nach üblichen und dem Fachmann bekannten Rezepturen hergestellt. Die zur Verminderung der Anhaftung von Schimmelpilzen an Oberflächen geeigneten Monoterpene, Sesquiterpene und/oder Diterpene oder deren Derivate werden vorzugsweise den bereits fertig zubereiteten Mitteln zugegeben, sie können aber auch während des Herstellungsprozesses zugesetzt werden, wenn dies gewünscht ist.