Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ADHESION PROMOTING RESINS WITH CROSS-LINKING PROPERTIES
Document Type and Number:
WIPO Patent Application WO/2003/014248
Kind Code:
A2
Abstract:
This invention relates to adhesion-promoting, cross-linking resins that can be designed to be flexible and to have an appropriate molecular weight to provide low volatility and low viscosity. The resins contain carbon to carbon unsaturation and silane functionality, and may also contain electron donor or electron acceptor functionality, epoxy, or other functionality capable of polymerization or capable of an addition, condensation, hydrosilation or ring opening reaction.

Inventors:
MUSA OSAMA M
Application Number:
PCT/US2002/020502
Publication Date:
February 20, 2003
Filing Date:
June 28, 2002
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
NAT STARCH CHEM INVEST (US)
International Classes:
C07F7/18; C08C19/25; C08F8/42; C08G18/28; C08G18/67; C08G18/69; C08G18/70; C08G18/71; C09J201/10; (IPC1-7): C09J201/10; C07F7/18; C08C19/25; C08F8/42; C08F279/02; C08G18/71; C09D7/12
Attorney, Agent or Firm:
Gennaro, Jane E. (NJ, US)
Download PDF:
Claims:
WHAT IS CLAIMED :
1. An adhesion promoting resin having a segment containing silane and a segment having at least one carbon to carbon double bond, with the structure: in which Q is an oligomeric or polymeric group containing at least one carbon to carbon double bond, n is simultaneously for each position 0, 1, or 2; R'is a methyl or ethyl group; R2 is a vinyl group, an aromatic group, or a linear or branched alkyl group of 1 to 4 carbon atoms; A is a hydrocarbyl group ; L is a linking group resulting from the reaction of a functional group on the precursor for the segment containing silane and a functional group on the precursor for the segment containing the at least one carbon to carbon double bond.
2. The adhesion promoting resin according to claim 1 in which Q is derived from a poly (butadiene) precursor.
3. An adhesion promoting resin having a segment containing silane and a segment having at least one carbon to carbon double bond, with the structure: in which Q is an oligomeric or polymeric group containing at least one carbon to carbon double bond, n is simultaneously for each position 0, 1, or 2; R'is a methyl or ethyl group; R2 is a vinyl group, an aromatic group, or a linear or branched alkyl group of 1 to 4 carbon atoms; A is a hydrocarbyl group; L is a linking group resulting from the reaction of a functional group on the precursor for the segment containing silane and a functional group on the precursor for the segment containing the at least one carbon to carbon double bond.
4. The adhesion promoting resin according to claim 3 in which Q is derived from a poly (butadiene) precursor.
5. An adhesion promoting resin having a segment containing silane and a segment having at least one carbon to carbon double bond, with the structure: in which E is an electron donor or an electron acceptor group; Q is an oligomeric or polymeric group containing at least one carbon to carbon double bond, n is simultaneously for each position 0, 1, or 2; R'is a methyl or ethyl group; R is a vinyl group, an aromatic group, or a linear or branched alkyl group of 1 to 4 carbon atoms ; A is a hydrocarbyl group; L is a linking group resulting from the reaction of a functional group on the precursor for the segment containing silane and a functional group on the precursor for the segment containing the at least one carbon to carbon double bond.
6. The adhesion promoting resin according to claim 5 in which Q is derived from a poly (butadiene) precursor.
7. The adhesion promoting resin according to claim 5 in which E is selected from the group consisting of : vinyl ethers, compounds containing carbon to carbon double bonds attached to an aromatic ring and conjugated with the unsaturation in the aromatic ring, fumarates, maleates, acrylates, and maleimides.
8. An adhesion promoting resin having a segment containing silane and a segment having at least one carbon to carbon double bond, with the structure: in which RF is an organic moiety containing a reactive functionality capable of polymerization or capable of an addition, condensation, hydrosilation or ring opening reaction; Q is an oligomeric or polymeric group containing at least one carbon to carbon double bond, n is simultaneously for each position 0,1, or 2; R1 is a methyl or ethyl group; R2 is a vinyl group, an aromatic group, or a linear or branched alkyl group of 1 to 4 carbon atoms; A is a hydrocarbyl group; L is a linking group resulting from the reaction of a functional group on the precursor for the segment containing silane and a functional group on the precursor for the segment containing the at least one carbon to carbon double bond.
9. The adhesion promoting resin according to claim 8 in which Q is derived from a poly (butadiene) precursor.
10. The adhesion promoting resin according to claim 8 in which RF is an organic moiety with a reactive functionality selected from the group consisting of epoxy, vinyl ether, compound containing a carbon to carbon double bond attached to an aromatic ring and conjugated with the unsaturation in the aromatic ring, fumarate, maieate, acrylate, maleimide, hydroxyl, halide, amine, isocyanate, carboxylic acid, acid halide, vinyl, or mercapto.
Description:
ADHESION PROMOTING RESINS WITH CROSS-LINKING PROPERTIES FIELD OF THE INVENTION [0001] This invention relates to resins containing silane and cross- linking functionalities.

BACKGROUND OF THE INVENTION [0002] Adhesive compositions are used in many industries, such as the microelectronics industry, where good adhesion to metal and organic substrates and low viscosity for easy dispensability are important requisites.

[0003] Adhesion to metal and organic substrates is not always easily achievable, and the addition of silane adhesion promoters to adhesive formulations is one means of correcting this deficiency. Commonly used and commercially available silanes are small molecules that tend to volatilize significantly before the cure temperature of the adhesive is reached.

Because silanes tend to be subject to hydrolysis, the addition of higher amounts of the silanes to offset the volatility could lead in turn to the presence of moisture in the adhesive compositions. This could be a problem in many applications. With reference to microelectronic devices, moisture creates the potential, through corrosion of circuits or voiding of the moisture and delamination of device packaging, for eventual failure of the device.

[0004] As a solution to these problems this specification discloses adhesion promoting resins with sufficient molecular weight to give lower volatility than the silanes currently commercially available. The adhesion promoting resins disclosed in this specification are curable compositions that are suitable for use as adhesives, encapsulants, or sealants, particularly for applications within the microelectronic industry.

SUMMARY OF THE INVENTION [0005] This invention is an adhesion promoting resin that comprises an oligomeric or polymeric segment and a silane segment. The silane segment will be. present at the terminus of an oligomeric segment, or at a terminus or the termini of a polymeric segment, or at the terminus or termini and pendant from a polymeric segment. In one embodiment, the adhesion promoting resin has cross-linking capability. In another embodiment, the adhesion promoting resin has electron donor or electron acceptor functionality. In another embodiment, the adhesion promoting resin is combined with a conductive or nonconductive filler, and optionally, an initiator, to provide a curable composition, which can be used, for example, as an adhesive, coating, encapsulant or sealant.

DETAILED DESCRIPTION OF THE INVENTION [00061 The oligomeric or polymeric segment of the inventive adhesion promoting resin will contain at least one carbon to carbon double bond, and can be provided by a precursor resin or compound that is commercially available. Alternatively, the precursor resin or compound can be synthesized by the practitioner.

[0007] Suitable oligomeric segment precursors are linear or branched hydrocarbons having 1 to 50 carbon atoms, which contain a reactive functionality for ultimate reaction with a co-reactive functionality on the silane segment precursor. Exemplary precursors include N- methylallylamine, N-ethyl-2-methylailyl-amine, diallylamine, N, N'-diethyl-2- butene-1, 4-diamine, N-allylcyciopentyl-amine, allylcyclohexylamine, 2- (1- cyclohexenyl) ethylamine, and other compounds such as the alcohols containing unsaturation disclosed later in the Examples in this specification..

[0008] Exemplary suitable polymeric segments are homopolymers of 1,3-butadiene, copolymers of ethylene and propylene, or copolymers of ethylene, propylene and a diene. Poly (butadienes) are commercially available, and can contain hydroxyl-, amino-, halo-, isocyanate-and epoxy- functionality.

[0009] As will be understood from this specification and the examples, the unsaturated oligomeric or polymeric segment may be any molecular weight and structure desired by the practitioner, provided it has at least one carbon to carbon double bond for subsequent cross-linking. The oligomeric or polymeric segment may contain heteroatoms, such as, silicon, sulfur, nitrogen, or oxygen; may contain functional groups, such as hydroxyl, urea, carbamate, or ester, (although it is not limited to these functionalities) ; may contain cyclic or aromatic moieties. The at least one carbon to carbon double bond can be located within the oligomeric or polymeric backbone or chain, or pendant from the chain.

[0010] The silane segment will have the structure in which n is simultaneously for each position 0,1, or 2; R1 is a methyl or ethyl group; R2 is a vinyl group, an aromatic group, or a linear or branched alkyl group, preferably of 1 to 4 carbon atoms, and more preferably methyl or ethyl ; A is a linear or branched alkyl group or a cyclic or aromatic group, and L is a linking group resulting from the reaction of a functional group on the silane precursor and a functional group on the oligomeric or polymeric precursor. There can be more than one silane segment per molecule of adhesion promoting resin.

[00111 Examples of commercially available silanes suitabie as precursors for the silane segment are gamma-isocyanatopropyltriethoxy- silane, gamma-aminopropyltriethoxy-silane, gamma-aminopropyltrimethoxy- <BR> <BR> <BR> <BR> silane, N-beta- (aminoethyl)-gamma-aminopropyltrimethoxysilane, triamino- functional silane, bis- (gamma-trimethoxysilylpropyl) amine, N-phenyl-gamma- <BR> <BR> <BR> <BR> amino-propyltrimethoxysilane, N-beta- (aminoethyl)-gamma-aminopropyl-<BR> <BR> <BR> <BR> methyldimethoxysilane, gamma-mercaptopropyl-trimethoxysilane. 3-amino-<BR> <BR> <BR> <BR> <BR> propyldimethylethoxysilane ; 3-bromopropyltrimethoxysilane, 3-chloro- propylmethyidimethoxysilane, 3-chloropropyltrimethoxysilane, dimethylmethoxy-chlorosilane, methyldimethoxysilane, and methyldiethoxysilane.

[0012] The inventive adhesion promoting resin is synthesized through a reaction between the precursor (also, hereinafer, starting material) for the unsaturated segment and the precursor for the silane segment.

Although any appropriate synthetic route convenient to the practitioner may be used, suitable synthetic routes are through condensation or addition reactions between co-reactive functionalities on the precursors, or through hydrosilation. Examples of these reactions are illustrated later in this specification.

[0013] Thus, in all embodiments, the polymeric or oligomeric segment will be connected to the silane segment through a linking group that results from a reaction between the polymeric or oligomeric precursor and the silane precursor.

[0014] In one embodiment of the adhesion promoting resin, the silane segment will be located at the termini of the oligomeric or polymeric segment-and the at least one carbon to carbon double bond will be located within the oligomeric or polymeric chain or pendant from the chain. In this embodiment, the adhesion promoting resin will have the structure: in which Q is an oligomeric or polymeric group containing at least one carbon to carbon double bond, derived from an oligomeric or polymeric precursor containing carbon to carbon unsaturation; n is simultaneously for each position 0,1, or 2; R'is a methyl or ethyl group; R2 is a vinyl group, an aromatic group, or a linear or branched alkyl group; A is a hydrocarbyl group, for example, a linear or branched alkyl group or a cyclic alkyl or alkenyl group, or aromatic group; L is a linking group resulting from the reaction of a functional group on the precursor for the segment containing silane and a functional group on the precursor for the segment containing the at least one carbon to carbon double bond.

[0015] In another embodiment, the silane segment will be located at the termini of a polymeric chain and pendant from the polymeric chain. The polymeric segment will contain at least one carbon to carbon double bond located within the polymeric chain. The degree of substitution of silane onto pendant functionality can be controlled by reaction stoichiometry as desired by the practitioner. In this embodiment the adhesion promoting resin will have the structure : in which Q, A, L, R', and R2 are as described before.

[0016] In another embodiment, the silane segment with be located pendant from a polymeric chain, and the polymeric segment will contain electron donor or electron acceptor groups at its termini. In this embodiment, the adhesion promoting resin will have the structure: in which Q, A, L, R', and R2 are as described before, and E is an electron acceptor or electron donor group.

[0017] Exemplary electron donor groups are vinyl ethers, compounds containing carbon to carbon double bonds attached to an aromatic ring and conjugated with the unsaturation in the aromatic ring, such as compounds derived from cinnamyl and styrenic starting compounds.

Exemplary electron acceptor groups are fumarates, maleates, acrylates, and mateimides.

[0018] In another embodiment, the silane segment will be located at the termini of a polymeric chain, and an organic moiety containing a reactive functionality capable of polymerization or capable of an addition, condensation, hydrosilation or ring opening reaction will be pendant from the polymeric chain. Thus, the organic moiety will contain an electron donor, an electron acceptor, an epoxy, a silicon hydride, or a polar group, such as, hydroxyl, halide, amine, isocyanate, carboxylic acid, acid chloride, vinyl, or mercapto group. In this embodiment the adhesion promoting resin will have the structure: in which Q, A, L, R', and R2 are as described before, and RF is a reactive functionality capable of polymerization or capable of an addition, condensation, hydrosilation or ring opening reaction.

[0019] The functional groups on the oligomeric or polymeric precursors through which the silane is to be linked include hydroxyl, halide, amine, isocyanate, carboxylic acid, acid chloride, and vinyl double bonds.

The functional groups on the silane precursor, for reaction with the functional groups on the oligomeric or polymeric precursor, include hydroxyl, amine, mercapto, isocyanate, halide, and a hydrosilation reactive hydrogen on a silicon atom. Consequently, it will be understood that the linking group can be a direct bond or an alkyl group, or can have a structure, such as in which R4 is hydrogen, an aromatic, or an alkyl group of 1 to 6 carbon atoms, and preferably is hydrogen, methyl or ethyl.

[0020] The adhesive promoting resins herein may be used as the sole curable resin in an adhesive, coating, sealant or encapsulant formulation. In such cases, the inventive resin can be designed to contain electron donor or electron acceptor functionality, or both, or epoxy functionality. In this case, the formulations will contain the adhesive promoting resin, optionally a curing initiator, and optionally a conductive or nonconductive filler.

[0021] Alternatively, the adhesive promoting resins herein can be used as an additive to promote adhesion in adhesive, encapsulant, coating, and sealant formulations. In such cases, the amount used in the formulation will be an effective amount to cause adhesion promotion. In general, an adhesion promoting amount will range from 0.005 to 20.0 percent by weight of the adhesive, coating, encapsulant or sealant formulation. In addition, such formulations will contain a curable resin, optionally, a curing initiator, and optionally a conductive or nonconductive filler.

[0022] Suitable curable resins that may be used in the adhesive, coating, encapsulant or sealant formulations are known to practitioners in the those arts. Examples of such resins include epoxies, electron donor resins (for example, vinyl ethers, and resins that contain carbon to carbon double bonds attached to an aromatic ring and conjugated with the unsaturation in the aromatic ring, such as compounds derived from cinnamyl and styrenic starting compounds), and, electron acceptor resins (for example, fumarates, maleates, acrylates, and maleimides).

[0023] Suitable curing agents are thermal initiators and photoinitiators present in an effective amount to cure the adhesive, coating, encapsulant or sealant formulation. In general, those amounts will range from 0.5% to 30%, preferably 1% to 20%, by weight of the total organic material (that is, excluding any inorganic fillers) in the formulation. Preferred thermal initiators include peroxides, such as butyl peroctoates and dicumyl peroxide, and azo compounds, such as 2,2'-azobis (2-methyl-propanenitrile) and 2,2'-azobis (2 methyi-butanenitrile). A preferred series of photoinitiators is one sold under the trademark Irgacure by Ciba Specialty Chemicals. In some formulations, both thermal initiation and photoinitiation may be desirable: the curing process can be started either by irradiation, followed by heat, or can be started by heat, followed by irradiation. In general, the formulations will cure within a temperature range of 70°C to 250°C, and curing will be effected within a range of ten seconds to three hours. The actual cure profile will vary with the components and can be determined without undue experimentation by the practitioner.

[0024] The formulations may also comprise conductive or nonconductive fillers. Suitable conductive fillers are carbon black, graphite, gold, silver, copper, platinum, palladium, nickel, aluminum, silicon carbide, boron nitride, diamond, and alumina. Suitable nonconductive fillers are particles of vermiculite, mica, wollastonite, calcium carbonate, titania, sand, glass, fused silica, fumed silica, barium sulfate, and halogenated ethylene polymers, such as tetrafluoroethylene, trifluoroethylene, vinylidene fluoride, vinyl fluoride, vinylidene chloride, and vinyl chloride. If present, fillers generally will be in amounts of 20% to 90% by weight of the formulation.

[0025] In the following Synthetic Procedures and Examples, the reaction stoichiometry for the syntheses of starting materials and inventive resins is given in molar equivalents per molecule of reactant. It will be understood by those skilled in the art that some of the reactants have more than one functionality per molecule, and that the ratio of molar equivalent per functionality can be varied to give a predetermined degree of reactivity or substitution. For convenience, the depicted structures show full substitution along the polymeric chain, but it should be understood that the level of substitution will depend in practice on the ratio of molar equivalents of functionality that are reacted.

0026] For example, the level of hydroxyl functionality added to poly (butadiene) through the reaction of mercaptoethanol with the pendant vinyl functionality can be varied by the molar amounts of mercaptoethanol reacted, and can range from one molar equivalent to full substitution of the 20% of the pendant vinyl groups along the poly (butadiene) polymer chain.

Similarly, the level of silane functionality added to an adhesion promoting resin can be varied by adjusting the mole equivalents of functionalities to be reacted.

SYNTHETIC PROCEDURES [0027] PROCEDURE 1 : Reaction of mercaptoethanol with pendant vinyl functionality on poly (butadiene) (PBD). The synthetic procedure is conducted according Boutevin, G., Ameduri, B., Boutevin, B. , Joubert, J-P., Journal of Applied Polymer Science, 75,1655-1666, 2000, in a ratio of 1: 1 mole equivalent of mercapto functionality to vinyl functionality, at the level of substitution of desired.

[0028] PBD and 2-mercaptoethanol are degassed under nitrogen for ten minutes. When the temperature of the solution reaches 85°C, 1.6 mole equivalent of azobisisobutyronitrile (AIBN) per mole equivalent of mercapto- ethanol is added, followed by a second similar addition after four hours.

When the reaction time is eight hours, the residual mercaptoethanol is titrated and sufficient additional AIBN added to force the reaction to completion.

[0029] PROCEDURE 2. Reaction of isocyanate with alcohol.

One mole equivalent of isocyanate is solvate in toluene in a three-necked flask equipped with a mechanical stirrer, addition funnel and nitrogen inlet/outlet. The reaction is placed under nitrogen, and a catalytic amount of dibutyltin dilaurate (catalyst) is added with stirring as the solution is heated to 60°C. The addition funnel is charged with one mole equivalent of alcohol dissolved in toluene. This solution is then added to the isocyanate solution over 10 minutes, and the resulting mixture is heated for an additional 3 hours at 60 °C. After the reaction is allowed to cool to room temperature, the solvent is removed in vacuo to give the product.

[0030] PROCEDURE 3 : Reaction of gamma-mercaptopropyl- trimethoxysilane SM-11 with pendant vinyl functionality on poly (butadiene).

The synthetic procedure is conducted according to Schapman, F., Couvercelle, J. P. , and Bunel, C., Polymer, 1998, Vol. 39, No. 20, in a ratio of 1: 1 mole equivalent of gamma-mercaptopropyltrimethoxysilane to vinyl functionality, at the level of substitution desired. The level of silane functionality added can be varied by the molar amounts of mercaptosilane reacted and can range from one molar equivalent to full substitution of the 20% of the pendant vinyl groups along the poly (butadiene) polymer chain.

[0031] Poly (butadiene) and gamma-mercaptopropyltrimethoxysilane are degassed under nitrogen for ten minutes. When the temperature of the solution reaches 85°C, 1.6 mole equivalent AIBN is added, followed by a second similar addition after four hours. When the reaction time is eight hours, the residual mercaptosilane is titrated and sufficient AtBN added to force the reaction to completion. For illustration purposes only, full substitution of the pendant vinyl groups is shown in the structures in the Starting Materials and in the Examples.

[0032] PROCEDURE 4 : Reaction of isocyanate with amine.

One mole equivalent of isocyanate is solvate in toluene in a three-necked flask equipped with a mechanical stirrer, addition funnel and nitrogen inlet/outlet. The reaction is placed under nitrogen and the solution heated to 60°C. The addition funnel is charged with one mole equivalent of amine in toluene. This solution is added to the isocyanate solution over 10 minutes, and the resulting mixture heated for an additional 3 hours at 60°C. After the reaction is allowed to cool to room temperature, the solvent is removed in vacuo to give the product.

[0033] PROCEDURE 5 : Reaction of alkyl halide with amine.

One mole equivalent of alkyl halide is solvated in THF in a three neck flask equipped with a mechanical stirrer and addition funnel. The addition funnel is charged with one mole equivalent of amine in THF. This solution is added to the alkyl halide solution over 10 minutes at 0°C, and the resulting mixture is stirred for 12 hours at room temperature. The solvent is removed in vacuo and to the resulting mixture is added ether and water. The organic layer is extracted and dried over MgS04. The solvent removed in vacuo to give the product.

[0034] PROCEDURE 6 : Reaction of alkyl halide with alcohol.

One mole equivalent of alcohol, excess amount of 50% NaOH, a catalytic amount. of tetrabutyl ammonium hydrogen sulfate, and one mole equivalent of alkyl halide in toluene are stirred for 5 hours at 53°C, then for 5 hours at 75°C. The reaction is allowed to cool to room temperature and the organic layer extracted and washed with brine three times. The isolated organic layer is then dried over MgS04, filtered and the solvent removed in vacuo to give the product.

[0035] PROCEDURE 7: Conversion of alcohol functionality to chloride functionality. The synthetic procedure is conducted according to E.

W. Coliington and A. I. Meyers, J. Org. Chem. 36,3044 (1971). A stirred mixture of one mole equivalent of alcohol and 1.1 mole equivalent of s- collidine under nitrogen is treated with one mole equivalent of lithium chloride dissolved in a minimum amount of dry dimethylformamide. On cooling to 0°C, a suspension is formed which is treated dropwise with 1.1 mole equivalent of methanesulfonyl chloride. Stirring is continued at 0°C for 1-1.5 hour, when the pale yellow reaction mixture is poured over ice-water. The aqueous layer is extracted with cold ether-pentane (1 : 1) and the combined extracts are washed successively with saturated copper nitrate solution. This is continued until no further intensification of the blue copper solution occurs, indicating complete removal of s-collidine. The organic extracts are dried (Na2SO4) and concentrated at room temperature, providing a residue of the product.

[0036] PROCEDURE 8 : Reaction of amine with acid chloride.

One mole equivalent of amine and one mole equivalent of triethylamine are mixed in dry methylene chloride at 0°C. One mole equivalent of acid chloride dissolved in dry methylene chloride is carefully added. The mixture is allowed to react for four hours. The solvent is evaporated and the crude product is purified by column chromatography using a gradient of hexane/ ethyl acetate to give the product.

[0037] PROCEDURE 9: Reaction of alcohol with acid chloride. One mole equivalent of alcohol and triethylamine are mixed in dry methylene chloride at 0°C. One mole equivalent acid chloride dissolved in dry methylene chloride is carefully added. The mixture is allowed to react for four hours. The solvent is evaporated and the crude product is purified by column chromatography using a gradient of hexane/ethyl acetate to give the product.

[0038] PROCEDURE 10 : Reaction of alcohol with carboxylic acid. into a four necked flask is charged one mole equivalent of carboxylic acid solvate in toluene, to which is added one mole equivalent of alcohol, and a catalytic amount of sulfuric acid. The flask is fitted with a Dean Stark apparatus, mercury thermometer, mechanical stirrer, and the organic solution covered with nitrogen. The reaction mixture is raised to reflux (110°C.

Reflux is maintained for approximately 4 hours or until theoretical water is obtained in the Dean Stark trap. The condensate trap is emptied to remove the collected water, and allowed to refill with fresh distillate. An equal amount of virgin solvent is charged to the flask to maintain a consistent solvent level.

Following another 30 minutes of reflux, the trap is again emptied and allowed to refill ; again back charging fresh solvent to replace the distillate that is removed. This process. is repeated four more times in an effort to drive maximum water removal from the system. Following the final 30 minutes of reflux, the oil bath is removed and the reaction shut down. The solvent is evaporated and the crude product is purified by column chromatography using a gradient of hexane/ethyl acetate to give the product.

[0039] PROCEDURE 11 : Reaction of alcohol with vinyl silane.

One mole equivalent of alcohol and triethylamine are mixed in dry toluene at 0°C. One mole equivalent of vinyl silane dissolved in toluene is carefully added. The mixture is allowed to react for four hours at room temperature.

The solvent is evaporated to give the product.

[00401 PROCEDURE 12 : Reaction of isocyanate with mercaptan. One mole equivalent of isocyanate is solvate in toluene in a three-necked flask equipped with a mechanical stirrer, addition funnel and nitrogen inlet/outlet. The reaction is placed under nitrogen and the solution heated to 60°C. The addition funnel is charged with one mole equivalent of mercaptan in toluene. This solution is then added to the isocyanate solution over 10 minutes, and the resulting mixture is heated for an additional 3 hours at 60°C. After the reaction is allowed to cool to room temperature, the solvent is removed in vacuo to give the product.

[0041] PROCEDURE 13 : Reaction of isothiocyanate with alcohol. One mole equivalent of isothiocyanate is solvate in toluene in a three-necked flask equipped with a mechanical stirrer, addition funnel and nitrogen inlet/outlet. The reaction is placed under nitrogen, and a catalytic amount of dibutyltin dilaurate (catalyst) is added with stirring as the solution is heated to 60°C. The addition funnel is charged with one mole equivalent of alcohol dissolved in toluene. This solution is added to the isothiocyanate solution over 10 minutes, and the resulting mixture is heated for an additional 3 hours at 60°C. After the reaction is allowed to cool to room temperature, the solvent is removed in vacuo to give the product.

[0042] PROCEDURE 14 : Hydrosilation. A solution of one mole equivalent of alkene and toluene is prepared with stirring, to which is added a catalytic amount of hydrogen hexachloroplatinate (IV) hydrate (H2PtC16, available from Aldrich). The resulting solution is heated to 80°C and one mole equivalent of silicon hydride is added gradually via a syringe.

The resulting mixture is heated for an additional hour at 80°C. After the reaction is allowed to cool to room temperature, the solvent is removed in vacuo to give the product.

[0043] PROCEDURE 15 : Reaction of carboxylic acid with isocyanate. The synthetic procedure is conducted according to T. Nishikubo, E. Takehara, and A. Kameyama, PolymerJoumal, 25,421 (1993). A stirred mixture of one mole equivalent of isocyanate and one mole equivalent of carboxylic acid is solvate in toluene in a three-necked flask equipped with a mechanical stirrer and nitrogen inlet/outlet. The mixture is heated for two hours at 80°C. After the reaction is allowed to cool to room temperature, the solvent is removed in vacuo to give the product.

[0044l PROCEDURE 16 : Reaction of disiloxane with vinyl epoxy. A round-bottomed flask is charged with one mole equivalent of disiloxane and one mole equivalent of vinyl epoxy resin. The reaction flask is equipped with a magnetic stirrer and a reflux condenser. To this mixture is added a catalytic amount of tris (triphenylphosphine) rhodium (l) chloride, and the reaction mixture is heated to 80-85°C for six hours. The reaction is followed using gas chromatography by monitoring the disappearance of the starting materials and the appearance of the products. After the completion of the reaction, pure product is obtained by fractional vacuum distillation.

[0045] PROCEDURE 17 : Synthesis of epoxy functional poly (butadiene). One mole equivalent of PBD is dissolved in toluene and placed in a two-necked round bottomed flask. One mole equivalent of epoxy siloxane adduct is added to the flask, and the reaction mixture is heated to 60°C. One drop of Karstedt's catalyst is added, and the hydrosilation reaction is obtained and monitored by following the disappearance of Si-H band at 2117 cm'in the infrared spectrum. The reaction is completed in approximately two to three hours. After cooling, the reaction mixture is poured with stirring into methanol to precipitate the grafted PBD polymer.

The precipitated PBD is washed with methanol and dried in vacuo at 60°C for eight hours.

STARTING MATERIALS FOR EXAMPLES [0046] The chemical structures, commercial source, or synthetic method for various of the precursors or starting materials used in the Examples are depicted here and identified with the designation SM. [0047] SM-1 : N-beta-(aminoethyl)-gamma-aminopropyltrimethoxy- silane, available from Witco Corporation. [0048] SM-2: N-beta-(aminoethyl)-gamma-aminopropyltriethoxy- silane, available from Witco Corporation. [0049] SM-3: p-Aminophenyltrimethoxysilane, available from Wright Corporation. [0050] SM-4: p-Aminophenyltriethoxysilane, available from Wright Corporation. [0051] SM-5: 3-Aminopropyidimethylethoxysilane, avaiiable from Wright Corporation. [0052] SM-6 : Gamma-aminopropyltriethoxysilane, available from Wright Corporation. [0053] SM-7: Bis (2-hydroxyethyl)-3-aminopropiytriethoxysilane, available from Gelest, Inc. [0054] SM-8: N- (hydroxyethyl)-N-methylaminopropyttrimethoxy- silane, available from Gelest, Inc. [0055] SM-9: Gamma-isocyanatopropyltriethoxysilane, commercially available from Witco Corp. as Silquest A-1310. [0056] SM-10 : Gamma-isocyanatopropyltrimethoxysilane, available from Wright Corporation.

[0057] SM-11 : Gamma-mercaptopropyltrimethoxysilane, commercially available from Witco Corp. as product Silquest A-189.

[0058] SM-12: Trimethoxysilane, available from Gelest, Inc.

[0059] SM-13 : Triethoxysilane, available from Wright Corporation. [0060] SM-14: Propyidiethoxysilane, available from Wright Corporation.

[0061] SM-15: Dimethylethoxysilane, available from Gelest, Inc.

[0062] SM-16: PBD, commercially available from Elf Atochem as PolyBD R-20LM. According to the manufacturer's literature, the predominant microstructure is CH2 OH /CH=CH/CH=CH HOt/H \CHflCH2CH gCH2 n 2, CHZ n cis vinyl trans in which the cis unsaturation constitutes 20% of the unsaturation in the polymer chain, the trans unsaturation constitutes 20% of the unsaturation in the polymer chain, and the vinyl unsaturation constitutes 60% of the unsaturation in the polymer chain, and in which n is 25. This starting material will be represented throughout this specification and claims as: [0063] SM-17 : PBD, commercially available from Elf Atochem as PolyBD R-45 HTLO. According to the manufacturer's literature, the predominant microstructure is the same as that disclosed for SM-16 with the exception that n is 50. This starting material will be represented throughout this specification and claims as: [0064] SM-18: Epoxidized PBD, commercially available from Elf Atochem as product Poly bd 600. According to the manufacturer's literature the predominant microstructure is H CH2 OH CH=CH C oh 4 2 CH 3& . 2 II CH2 cis vinyl trans in which the cis unsaturation constitutes 20% of the unsaturation in the polymer chain, the trans unsaturation constitutes 20% of the unsaturation in the polymer chain, and the vinyl unsaturation constitutes 60% of the unsaturation in the polymer chain, and in which n is a mixture of 14 and 15 (some of the polymer chains will be the length in which n is 14, and the remainder of the polymer chains will be the length in which n is 15). This starting material will be represented throughout this specification and claims as: [0065} SM-19: Epoxidized PBD, commercially available from Elf Atochem as product Poly bd 605. According to the manufacturer's literature, the predominant microstructure is the same as that disclosed for SM-18, with the exception that n is a mixture of 13 and 14 (some of the polymer chains will be the length in which n is 13, and the remainder of the polymer chains will be the length in which n is 14). This starting material will be represented throughout this specification and claims as: [0066] SM-20: Starting material prepared according to synthetic procedure 1 by the reaction of mercaptoethanol and SM-16.

[0067] SM-21: Starting material prepared according to synthetic procedure 1 by the reaction of mercaptoethanol and SM-17. [0068] SM-22: Starting material prepared according to synthetic procedure 1 by the reaction of mercaptoethanol and SM-18. [0069] SM-23: Starting material prepared according to synthetic procedure 1 by the reaction of mercaptoethanol and SM-19. [0070] SM-24: Starting material prepared according to synthetic procedure 2 by the reaction of 4, 4'-methylene di (phenylisocyanate) (MDI) with-16. [0071] SM-25: Starting material prepared according to synthetic procedure 2 by the reaction of MDI with SM-17.

[0072] SM-26: Starting material prepared according to synthetic procedure 2 by the reaction of MDI with SM-18.

[0073] SM-27: Starting material prepared according to synthetic procedure 2 by the reaction of MDI with SM-19. [0074] SM-28: Starting material prepared according to synthetic procedure 3 by the reaction of SM-11 with SM-16.

[0075] SM-29: Starting material prepared according to synthetic procedure 3 by the reaction of gamma-mercaptopropyltrimethoxysilane SM- 11 with SM-17. [0076] SM-30: Starting material prepared according to synthetic procedure 3 by the reaction of SM-11 with SM-18.

[0077] SM-31 : Starting material prepared according to synthetic procedure 3 by the reaction of gamma-mercaptopropyltrimethoxysilane SM- 11 with SM-19. [0078l SM-32: Starting material prepared according to synthetic procedure 2 by the reaction of MDI with SM-28. This material is also an inventive example. [0079] SM-33: Starting material prepared according to synthetic procedure 2 by the reaction of MDI with SM-29. This material is also an inventive example.

[0080] SM-34: Starting material prepared according to synthetic procedure 2 by the reaction of MDI with SM-30. This material is also an inventive example.

[0081] SM-35: Starting material prepared according to synthetic procedure 2 by the reaction of MDI with SM-31. This material is also an inventive example.

[0082] SM-36: Starting material prepared according to synthetic procedure 6 by the reaction of allyl bromide with SM-16. [00831 SM-37: Starting material prepared according to synthetic procedure 6 by the reaction of allyl bromide with SM-17.

[0084] SM-38: Starting material prepared according to synthetic procedure 6 by the reaction of allyl bromide with SM-18.

[0085] SM-39: Starting material prepared according to synthetic procedure 6 by the reaction of allyl bromide with SM-19.

[0086] SM-40: Starting material prepared according to synthetic procedure 2 by the reaction of allyl isocyanate with SM-16. [0087] SM-41 : Starting material prepared according to synthetic procedure 2 by the reaction of allyl isocyanate with SM-17. [0088] SM-42 : Starting material prepared according to synthetic procedure 2 by the reaction of allyl isocyanate with SM-18. [0089] SM-43: Starting material prepared according to synthetic procedure 2 by the reaction of allyl isocyanate with SM-19. [0090] SM-44: Starting material prepared according to synthetic procedure 2 by the reaction of octanyl isocyanate with SM-16. [0091] SM-45: Starting material prepared according to synthetic procedure 2 by the reaction of octanyl isocyanate with SM-17. [0092] SM-46: Starting material prepared according to synthetic procedure 2 by the reaction of octanyl isocyanate with SM-18. [0093] SM-47: Starting material prepared according to synthetic procedure 2 by the reaction of octanyl isocyanate with SM-19. [0094] SM-48: Starting material prepared according to synthetic procedure 7 by the reaction of SM-16 with methyl sulfonyl chloride and lithium chloride.

[0095] SM-49: Starting material prepared according to synthetic procedure 7 by the reaction of SM-17 with methyl sulfonyl chloride and lithium chloride. [0096] SM-50: Starting material prepared according to synthetic procedure 7 by the reaction of SM-18 with methyl sulfonyl chloride and lithium chloride. [0097] SM-51: Starting material prepared according to synthetic procedure 7 by the reaction of SM-19 with methyl sulfonyl chloride and lithium chloride. [0098] SM-52: Starting material prepared according to synthetic procedure 5 by the reaction of SM-48 with NH3. [0099] SM-53: Starting material prepared according to synthetic procedure 5 by the reaction of SM-49 with NH3. [0100] SM-54: Starting material prepared according to synthetic procedure 5 by the reaction of SM-50 with NH3. [0101] SM-55: Starting material prepared according to synthetic procedure 5 by the reaction of SM-51 with NH3. [0102] SM-56: Starting material prepared according to synthetic procedure 4 by the reaction of SM-52 with allyl isocyanate. [0103] SM-57: Starting material prepared according to synthetic procedure 4 by the reaction of SM-53 with allyl isocyanate. [0104] SM-58: Starting material prepared according to synthetic procedure 4 by the reaction of SM-54 with allyl isocyanate. [0105] SM-59: Starting material prepared according to synthetic procedure 4 by the reaction of SM-55 with allyl isocyanate. [0106] SM-60: Starting material prepared according to synthetic procedure 4 by the reaction of SM-52 with octanyl isocyanate. [0107] SM-61: Starting material prepared according to synthetic procedure 4 by the reaction of SM-53 with octanyl isocyanate. [0108] SM-62 : Starting material prepared according to synthetic procedure 4 by the reaction of SM-54 with octanyl isocyanate.

[0109] SM-63: Starting material prepared according to synthetic procedure 4 by the reaction of SM-55 with octanyl isocyanate.

[0110] SM-64 : Starting material prepared according to synthetic procedure 8 by the reaction of SM-52 with butanoyl chloride.

[0111] SM-65: Starting material prepared according to synthetic procedure 8 by the reaction of SM-53 with butanoyl chloride. [0112] SM-66: Starting material prepared according to synthetic procedure 8 by the reaction of SM-54 with butanoyl chloride.

[0113] SM-67: Starting material prepared according to synthetic procedure 8 by the reaction of SM-55 with butanoyl chloride.

[0114] SM-68: Starting material prepared according to synthetic procedure 9 by the reaction of 2-isobutenoyl chloride with SM-16.

[0115] SM-69: Starting material prepared according to synthetic procedure 9 by the reaction of 2-isobutenoyl chloride with SM-17. [0116] SM-70: Starting material prepared according to synthetic procedure 9 by the reaction of 2-isobutenoyl chloride with SM-18.

[0117] SM-71: Starting material prepared according to synthetic procedure 9 by the reaction of 2-isobutenoyl chloride with SM-19.

[0118] SM-72: 1, 3-Divinyltetramethyidisilazane, available from Wright Corporation.

[0119] SM-73: Starting material prepared according to synthetic procedure 5 by the reaction of 4-vinyl benzyl chloride with SM-53. [0120] SM-74: Starting material prepared according to synthetic procedure 5 by the reaction of 4-vinyl benzyl chloride with SM-52.

[0121] SM-75: Starting material prepared according to synthetic procedure 5 by the reaction of 4-vinyl benzyl chloride with SM-54.

[0122] SM-76: Starting material prepared according to synthetic procedure 5 by the reaction of 4-vinyl benzyl chloride with SM-55.

[0123] SM-77: Fumaric acid ethyl ester.

[0124] SM-78: Starting material prepared according to synthetic procedure 10 by the reaction of trimethylolpropane diallyl ether and mercaptoacetic acid.

[0125] SM-79: Starting material prepared according to synthetic procedure 2 by the reaction of trimethylolpropane diallyl ether and isophorene diisocyanate.

EXAMPLES 1-7 [0126] Examples 1 to 7 show adhesion-promoting resins with a polymeric chain of poly (butadiene) (hereinafter"PBD"), and silane segments located at the termini of the polymeric chain.

[0127] EXAMPLE 1: Adhesion-promoting resin prepared according to synthetic procedure 2 by the reaction of PBD SM-16 and SM-9. [0131] EXAMPLE 5 : Adhesion promoting resin prepared according to synthetic procedure 4 by the reaction of SM-26 and SM-3. [0132] EXAMPLE 6 : Adhesion promoting resin prepared according to synthetic procedure 4 by the reaction of SM-24 and SM-2. [0133] EXAMPLE 7: Adhesion promoting resin prepared according to synthetic procedure 12 by the reaction of SM-25 with SM-11.

EXAMPLES 8 to 16 [0134] Examples 8 to 16 show adhesion-promoting resins having silane functionality at the termini of, and pendant from, the polymeric segment.

[0135] EXAMPLE 8: Adhesion promoting resin prepared by the reaction. of SM-9 and SM-20 according to synthetic procedure 2. [0136] EXAMPLE 9: Adhesion promoting resin prepared from the reaction of SM-10 and SM-23 according to synthetic procedure 2. [0137] EXAMPLE 10 : Adhesion promoting resin prepared from the reaction of SM-34 with SM-4 according to synthetic procedure 4.

[0138] EXAMPLE 11: Adhesion promoting resin prepared according to synthetic procedure 4 by the reaction of SM-32 and SM-4.

[0139] EXAMPLE 12: Adhesion promoting resin prepared according to synthetic procedure 12 by the reaction of SM-34 with SM-11.

[0140] EXAMPLE 13: Adhesion promoting resin prepared according to synthetic procedure 14 by the reaction of SM-59 and SM-13.

[0141] EXAMPLE 14: Adhesion promoting resin prepared according to synthetic procedure 14 by the reaction of SM-41 and SM-13.

[0142] EXAMPLE 15: Adhesion promoting resin prepared according to synthetic procedure 14 by the reaction of SM-36 and SM-13.

[01431 EXAMPLE 16 : Adhesion promoting resin prepared according to synthetic procedure 14 by the reaction of SM-38 and SM-12.

EXAMPLES 17 to 36 [0144] Examples 17 to 36 show oligomeric adhesion-promoting resins in which the Tg is greater than 0°C.

[0145] EXAMPLE 17: Adhesion promoting resin prepared according to synthetic procedure 2 by the reaction of (E)-2, 6, 10-trimethyl-5, 9-undecadien-2-ol (Nakamura, S. ; Ishihara, K.; Yamamoto, H.; J. Am. Chem.

Soc. 2000, 122, 8131) with SM-9.

[0146] EXAMPLE 18: Adhesion promoting resin prepared according to synthetic procedure 2 by the reaction of (E)-homogeraniol (Nakamura, S.; Ishihara, K.; Yamamoto, H.; J. Am. Chem. Soc. 2000, 122, 8131) with SM-10.

[0147] EXAMPLE 19: Adhesion promoting resin prepared according to synthetic procedure 2 by the reaction of (E, E)-4, 8, 12-trimethyl- 3,7, 11-tridecadien-1-ol (Nakamura, S.; Ishihara, K. ; Yamamoto, H.; J. Am.

Chem. Soc. 2000, 122, 8131) with SM-9.

[0148] EXAMPLE 20: Adhesion promoting resin prepared according to synthetic procedure 2 by the reaction of (-)-cis-carveol (Buchi, G.; Cushman, M.; Wuest, H.; J. Am. Chem. Soc. 1974, 96,5563) with SM-10. [0149] EXAMPLE 21: Adhesion promoting resin prepared according to synthetic procedure 2 by the reaction of 3-methyl-5- (2', 6', 6'- trimethylcyclohex-1'-enyl)-1-penten-3-ol (Barrero, A. F.; Altarejos, J.; Alvarez- Manzaneda, E. J.; Ramos, J. M.; Salido, S.; J. Org. Chem. 1996, 61, 2215) with SM-9.

[0150J EXAMPLE 22 : Adhesion promoting resin prepared according to synthetic procedure 2 by the reaction of (E)-4-methyl-6- (2', 6', 6'- trimethyl-cyclohex-1'-enyl)-3-hexen--ol (Barrero, A. F.; Altarejos, J.; Alvarez- Manzaneda, E. J. ; Ramos, J. M. ; Salido, S. ; J. Org. Chem. 1996, 61, 2215) with SM-9.

[051] EXAMPLE 23: Adhesion promoting resin prepared according to synthetic procedure 2 by the reaction of (Z)-4-methyl-6- (2', 6', 6'- trimethylcyclohex-1'-enyl)-3-hexen-1-ol (Barrero, A. F.; Altarejos, J.; Alvarez- Manzaneda, E. J.; Ramos, J. M.; Salido, S.; J. Org. Chem. 1996, 61, 2215) with SM-10.

[0152] EXAMPLE 24 : Adhesion promoting resin prepared according to synthetic procedure 2 by the reaction of (all-Z)-icosa- 2, 5, 8, 11, 14, 17-hexanenol (Flock, S. ; Skattebol, L.; J. Chem. Soc., Perkin Trans. 1, 2000, 3071) with SM-10..

[0153] EXAMPLE 25 : Adhesion promoting resin prepared according to synthetic procedure 2 by the reaction of (3E, 7E, 11E)-4, 8,12, 16- tetramethyl-heptadeca-3, 7,11, 15-tetraen-1-ol (Kocienski, P.; Wadman, S.; J.

Org. Chem. 1989, 54,1215) with SM-9.

[0154] EXAMPLE 26 : Adhesion promoting resin prepared according to synthetic procedure 4 by the reaction of N, N'-diethyl-2-butene- 1,4-diamine with SM-9.

[01551 EXAMPLE 27: Adhesion promoting resin prepared according to synthetic procedure 4 by the reaction of diallyl amine with SM-9.

0156] EXAMPLE 28: Adhesion promoting resin prepared according to synthetic procedure 4 by the reaction of allylcyclohexylamine with SM-9.

[0157] EXAMPLE 29: Adhesion promoting resin prepared according to synthetic procedure 4 by the reaction of 2-(1-cyclohexenyl) ethylamin with SM-9.

[0158] EXAMPLE 30: Adhesion promoting resin prepared according to synthetic procedure 4 by the reaction of SM-79 and SM-6.

[0159] EXAMPLE 31: Adhesion promoting resin prepared according to synthetic procedure 6 by the reaction of (E)-homogeraniol and allyl bromide, followed by synthetic procedure 14, reaction with SM-12.

[0160] EXAMPLE 32: Adhesion promoting resin prepared according to synthetic procedure 6. by the reaction of (Z)-4-methyl-6- (2', 6', 6'- trimethylcyclohex-1'-enyl)-3-hexen-1-ol with allyl bromide, followed by synthetic procedure 14, reaction with SM-14.

[0161] EXAMPLE 33: Adhesion promoting resin prepared according to synthetic procedure 12 by the reaction of SM-78 with SM-9.

[0162] EXAMPLE 34: Adhesion promoting resin prepared according to synthetic procedure 12 by the reaction of-79 and SM-11.

[0163] EXAMPLE 35: Adhesion promoting resin prepared according to synthetic procedure 13 by the reaction of allylisothiocyanate and SM-6.

[0164] EXAMPLE 36: Adhesion promoting resin prepared according to synthetic procedure 13 by the reaction of allylisothiocyanate and SM-7.

EXAMPLES 37 to 53 [0165] Examples 37 to 53 show adhesion promoting resins in which the unsaturated polymeric segment is terminated with an electron donor or electron acceptor functionality, and the silane segment is pendant from the polymeric segment.

[0166] EXAMPLE 37: Adhesion promoting resin containing electron donor functionality prepared according to synthetic procedure 2 by the reaction of SM-32 with cinnamyl alcohol.

[0167] EXAMPLE 38 : Adhesion promoting resin containing electron donor functionality prepared according to synthetic procedure 4 by the reaction of SM-34 and 3-isopropenyl-a, a-methylbenzyl amine.

[0168] EXAMPLE 39: Adhesion promoting resin containing electron acceptor functionality prepared according to synthetic procedure 14 by the reaction of SM-26 and SM-13, followed by synthetic procedure 2, reaction with hydroxyethyl maleimide.

[0169] EXAMPLE 40: Adhesion promoting resin containing electron acceptor functionality prepared according to synthetic procedure 14 by the reaction of SM-25 and SM-13, followed by synthetic procedure 2, reaction with hydroxyethyl acrylate.

[0170] EXAMPLE 41: Adhesion promoting resin containing electron donor functionality prepared according to synthetic procedure 14 by the reaction of SM-24 and SM-13, followed by synthetic procedure 2, reaction with propylamine vinyl ether.

[0171] EXAMPLE 42: Adhesion promoting resin containing electron acceptor functionality prepared according to synthetic procedure 15 by the reaction of SM-32 and fumaric acid SM-77.

[0172] Example 43: Adhesion promoting resin containing electron donor functionality prepared according to synthetic procedure 2 by the reaction of SM-28 and 3-isopropenyl-a, a-methylbenzyl isocyanate.

[0173] Example 44: Adhesion promoting resin containing electron donor functionality prepared according to synthetic procedure 6 by the reaction of SM-16 and cinnamyl chloride, followed by synthetic procedure 14, reaction with SM-13.

[0174] EXAMPLE 45: Adhesion promoting resin containing electron acceptor functionality prepared according to synthetic procedure 10 by the reaction of SM-28 and SM-77.

[0175] Example 46: Adhesion promoting resin containing electron acceptor functionality prepared according to procedure 9 by the reaction of SM-28 and 2-isobutanoylchloride.

[0176] Example 47 : Adhesion promoting resin containing electron donor functionality prepared according to synthetic procedure 3 by the reaction of SM-53 and SM-11, followed by synthetic procedure 4, reaction with 3-isopropenyl-a, a- methylbenzyl amine.

[0177] Example 48: Adhesion promoting resin containing electron donor functionality prepared according to synthetic procedure 5 by the reaction of SM-53 with cinnamyl chloride, followed by synthetic procedure 3, reaction with SM-11.

[0178] Example 49: Adhesion promoting resin containing electron donor functionality prepared according to synthetic procedure 2 by the reaction of SM-17 and 3-isopropenyl-a, a-methylbenzyl isocyanate, followed by synthetic procedure 14, reaction with SM-13.

[0179] EXAMPLE 50: Adhesion promoting resin containing electron donor functionality prepared according to synthetic procedure 4 by the reaction of SM-53 and 4-vinyl benzyl chloride, followed by synthetic procedure 14, reaction with SM-13.

[0180] EXAMPLE 51: Adhesion promoting resin containing vinyl silane as electron donor functionality, prepared according to synthetic procedure 4 by the reaction of SM-72 and SM-32.

[0181] EXAMPLE 52: Adhesion promoting resin containing vinyl silane as electron donor functionality prepared according to synthetic procedure 11 by the reaction of SM-29 with trivinylchlorosilane.

[0182] EXAMPLE 53: Adhesion promoting resin containing vinyl silane as electron donor functionality formed by the reaction of SM-28 with methylphenyl vinylchlorosilane EXAMPLES 54 to 56 [0183] Examples 54 to 56 show adhesion promoting resins containing pendant silane functionality added to a polymeric chain through a hydrosilation reaction.

[0184] EXAMPLE 54: Adhesion promoting resin prepared according to synthetic procedure 14 by the reaction of SM-45 and SM-13.

[01853 EXAMPLE 55: Adhesion promoting resin prepared according to synthetic procedure 14 by the reaction of SM-61 and SM-13.

[0186] EXAMPLE 56: Adhesion promoting resin prepared according to synthetic procedure 14 by the reaction of SM-64 and SM-13.

EXAMPLES 57 to 59 [0187] Examples 57 to 59 show adhesion promoting resins in which epoxy, electron acceptor, or electron donor functionality is pendant from the polymeric chain, and the silane segment is on the termini of the polymeric chain.

[0188] EXAMPLE 57 : Reaction of 3-vinyl-7-oxabicyclo [4.1. 0] heptane (prepared according to Procedure 16) with 1,1, 3,3- tetramethyldisiloxane to give 1- [2- (3- [7-oxabicyclo [4. 1. 0] heptyl]) ethyl]- 1,1, 3, 3-tetramethyidisiloxane (prepared according to synthetic procedure 17), further reacted with the adhesion promoting resin from Example 1 according to synthetic procedure 14. Similar adhesion promoting resins can be made using the adhesion promoting resins from Examples 2,3, and 4.

(0189] EXAMPLE 58: Reaction of the adhesion promoting resin from Example 1 with mercaptoethanol according to procedure 1, followed by reaction with acryloyl chloride according to procedure 9.

[0190] EXAMPLE 59: Reaction of the adhesion promoting resin from Example 1 with mercaptoethanol according to procedure 1, followed by reaction with cinnamyl chloride according to procedure 6.

EXAMPLES 60 to 62 [0191] In Examples 60 to 62, the performance of the resins from Examples 1 to 4 were tested.

[0192] EXAMPLE 60 : The volatilities of the neat resins from Examples 1 to 4 were determined by TGA (thermogravimetric analysis) with a rpm rate of 10°C/minute with measurement at 200°C. Results are reported in Table 1.

[0193] Table 1 Weight Loss by TGA of Neat Adhesion Promoter Resins Adhesion Promoter % Weight Loss @ 200°C Resin from Example : 1 1. 8 2 0. 83 3 4. 5 4 2. 8 [01941 The volatility values for these resins are relatively low and indicate that the resins will not volatilize to any substantial extent from adhesive compositions, consequently being effective to enhance adhesion. In general, a weight loss of 5 or lower weight percent at 200°C is acceptable by industry standards.

[0195] EXAMPLE 61 : In this example, the volatility of the resins in a curable formulation was measured by TGA during curing. Each of the adhesion promoter resins from Examples 1 through 4 was formulated into an adhesive composition with the components shown in Table 2.

[0196] Table 2 Adhesive Formulations COMPONENT WEIGHT PERCENT Adhesion Promoter Resin 2.5 from Example 1,2, 3 or 4 Electron Donor Resin 10. 7 Electron Acceptor Resin 10. 7 Radical Initiator 0.5 (Witco, USP 90MD) Adhesion Promoter 0.25 (Witco, A-174) Adhesion Promoter 0.25 (Witco, A-186 Silver flake 75 [0197] The electron donor resin had the following structure : and the electron acceptor resin had the following structure: in which C36 represents a mixture of isomers of a linear or branched alkyl chain having 36 carbon atoms, resulting from the dimerization of linoleic acid and oleic acid. The dimer acid is converted to the alcohol and reacted with 6- maleimido caproic acid to form the bismaleimide electron acceptor resin, or the alcohol is reacted with 3-isopropenyl-a, a-dimethylbenzyl isocyanate to form the electron donor resin.

[0198] TGA was performed on the adhesive compositions using an rpm rate of 10°C/minute. Measurement was taken at 20Q°C. The results are reported in Table 3.

[0199] Table 3 Weight Loss by TGA During Curing of Formulated Adhesives with Adhesion Promoter Resins Formulation Containing Adhesion Promoter Resin % Weight Loss @ 200°C from example : 1 0. 82 2 0. 62 3 0. 90 4 0. 72 [0200] EXAMPLE 62: The adhesive formulations from Example 61 were tested for adhesive strength to Ag coated Cu and Cu leadframes and compared to a control formulation. The control formulation was prepared with the same components and weights of components in Table 2, except that a commercially available polybutadiene containing maleic anhydride (Ricon Corp. , Ricon 130, 8% MA) was substituted in place of the inventive adhesion-promoting resin.

[0201] Two sets of leadframe assemblies were prepared for each of the adhesive formulations. One set consisted of the adhesive formulation disposed between a 120 X 120 mil silicon die on a Cu leadframe, and the second, of the adhesive formulation disposed between a 120 X 120 mil silicon die on a Ag coated Cu leadframe. Sufficient assemblies were prepared for testing at room temperature and at 240°C. Each die and leadframe assembly was placed on a hot plate at 200°C for one minute to cure the adhesive. Die Shear tests were performed on each assembly using a Royer Instruments, System 552, 100K ; half of the assemblies were tested at room temperature, the other half, at 240°C. The 240°C temperature was chosen because that is the temperature at which many current wire-bonding operations are conducted. The results are reported in Table 4 and show that at the critical temperature of 240°C the die shear results are comparable or better than those with the commercially available material.

[0202] Table 4 DIE SHEAR TEST RESULTS in KgF Formulation Containing Room Temperature 240°C Adhesion Promoting Ag Cu Ag Cu Resin from exam le : Control 7.5 6.7 0.8 1.1 1 4.1 5.6 1.5 1.3 2 5.4 5.9 1.8 1.4 3 6. 6 5. 8 1. 8 1. 1 4 6.5 5.4 1.3 1.0 [0203] Moreover, the viscosities of the neat resins are considerably lower than the control formulation, making dispensability easier. The viscosities of the neat resins were determined on a Brookfield viscometer, spindle # 51, 10 rpm at ambient temperature and are reported in Table 5.

[0204] Table 5 VISCOSITY in mPa.s Neat Resin Neat Resin Viscosity Control 48,000-50,000 Ricon 130, 8%MA Resin from Example 1 2,200 Resin from Example 2 5,200 Resin from Example 3 5,700 Resin from Example 4 12, 000