Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ANTIMICROBIAL FOAM HAND SOAP
Document Type and Number:
WIPO Patent Application WO/2010/005699
Kind Code:
A2
Abstract:
An antimicrobial foam hand soap composition includes a glutinous component to promote more thorough hand washing. The glutinous component may be selected from the group consisting of: cocamidopropyl PG-dimonium chloride phosphate; dimer dilinoleamido-propyl PG-dimonium chloride phosphate; sodiumgrapeseedamidopropyl PG-dimonium chloride phosphate; sodium olivamidopropyl PG-dimonium chloride phosphate; linoleamidopropyl PG-dimonium chloride phosphate; PEG-8 dimethicone sunfloweramidopropyl PG-dimonium complex; sunfloweramidopropyl phosphate PG-dimonium chloride, inulin, inulin based surfactants and mixtures thereof. Polysaccharide-based or natural oil-based foaming agents and surfactants are suitably included in the compositions.

Inventors:
LUU PHUONG VAN (US)
WHITE DAVID W (US)
STURM MICHAEL A (US)
Application Number:
PCT/US2009/047354
Publication Date:
January 14, 2010
Filing Date:
June 15, 2009
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
GEORGIA PACIFIC CONSUMER PROD (US)
LUU PHUONG VAN (US)
WHITE DAVID W (US)
STURM MICHAEL A (US)
International Classes:
C11D9/50
Foreign References:
US20020061500A12002-05-23
US5945910A1999-08-31
US5781942A1998-07-21
US6331293B12001-12-18
US6451775B12002-09-17
US6881710B12005-04-19
US6627612B12003-09-30
US5635469A1997-06-03
US20010042761A12001-11-22
US6536685B22003-03-25
US20060011655A12006-01-19
US92809904A2004-08-30
Other References:
See also references of EP 2300592A4
Attorney, Agent or Firm:
CHARLTON, Joel, T. et al. (Atlanta, GA, US)
Download PDF:
Claims:
WHAT IS CLAIMED IS:

1. An aqueous antimicrobial foam, hand soap composition which provides a glutinous tactile signal comprising:

(a) an antimicrobial agent;

(b) a foamable cleansing composition comprising one or more surfactants which readily foam with water and air;

(c) a glutinous composition including glutinous components selected from phospholipids, inulins, inulin-based surfactants and combinations thereof; and

(d) water,

with the proviso that one or more glutinous components are present in an amount of at least 5% by weight based on the weight of components other than water.

2. The hand soap composition according to Claim 1, foamed with air to an initial foam density of from about 0.01 g/cm3 to about 0.25 g/cm3.

3. The hand soap composition according to Claim 1, foamed with air to an average initial bubble size of from about 50 to about 300 microns in diameter.

4. The hand soap composition according to Claim 1, foamed with air to an average initial bubble size of from about 75 to about 150 microns in diameter.

5. The hand soap composition according to Claim 1 , having more than 75% water.

6. The hand soap composition according to Claim 1, having more than 80% water.

7. The hand soap composition according to Claim 1, having more than 85% water.

8. The hand soap composition according to Claim 1, having more than 90% water.

9. The hand soap composition according to Claim 1, wherein the cleansing composition includes a betaine foaming agent.

10. The hand soap composition according to Claim 9, wherein the betaine foaming agent comprises cocamjdopropyl betaine.

1 1. The hand soap composition according to Claim 1, wherein the glutinous composition is present in an amount of from 7.5% to 40% by weight of ingredients other than water.

12. The hand soap composition according to Claim 11, wherein the glutinous composition comprises one or more phospholipids and the phospholipids are present in an amount of greater than 15% by weight of ingredients in the hand soap composition other than water.

13. The hand soap composition according to Claim 11 , wherein the glutinous composition comprises one or more phospholipids and the phospholipids are present in an amount of greater than 20% by weight of ingredients in the hand soap composition other than water.

14. The hand soap composition according to Claim 11, wherein the glutinous composition comprises one or more phospholipids and the phospholipids are present in the hand soap composition in an amount of from 15% to 35% based on the weight of ingredients other than water.

15. The hand soap composition according to Claim 113 wherein the glutinous composition comprises one or more phospholipids and the phospholipids are present in the hand soap composition in an amount of from 17.5% to 30% based on the weight of ingredients other than water.

16. The hand soap composition according to Claim 1, wherein the composition comprises inulin as a glutinous component.

17. The hand soap composition according to Claim 1, wherein the composition comprises an inulin surfactant as a glutinous component.

18. The hand soap composition according to Claim 16, wherein said inulin surfactant is inulin lauryl carbamate,

19. The hand soap composition according to Claim 1, wherein the glutinous composition comprises one or more inulin compounds and the inulin compounds are present in an amount of from about 5% by weight to about

15% by weight based on the weight of ingredients other than water,

20. The hand soap composition according to Claim 1, wherein the glutinous composition comprises one or more inulin compounds and the inulin compounds are present in an amount of from about 10% by weight to about

20% by weight based on the weight of ingredients other than water,

21. The hand soap composition according to Claim 1, wherein the glutinous composition comprises one or more inulin compounds and the inulin compounds are present in an amount of at least 10% by weight based on the weight of ingredients other than water.

22. The hand soap composition according to Claim 1, further comprising a chelating agent.

23. The hand soap composition according to Claim 22, wherein the chelating agent is an ethylene diamine disυccinate salt.

24. The hand soap composition according to Claim 1 , wherein the anti-bacterial agent is triclosan.

25. The hand soap composition according to Claim 1, further comprising a hυmectant.

26. The hand soap composition according to Claim 1, further comprising an emollient.

27. The hand soap composition according to Claim 1, wherein the composition is a sulfate-free hand soap composition.

28. The hand soap composition according to Claim 1, wherein the foamable cleansing composition consist essentially of sulfonate surfactants, betaine surfactants and carbamate surfactants.

29. The hand soap composition according to Claim I1 wherein the composition includes a cocoyl methyl isethionate surfactant.

30. The hand soap composition according to Claim 1, wherein the composition includes an alkyl glucoside surfactant.

31. An aqueous foam hand soap composition suitable for air-foaming comprising: (a) more than 75% water;

(b) a polysaccharide or polysaccharide surfactant selected from inulin, inulin surfactants, polyglucoside surfactants and mixtures thereof; and

(c) at least one additional foaming surfactant selected from betaine surfactants,

wherein the composition includes at least 5% of inulin, inulin surfactants, polyglucoside surfactants or mixtures thereof and the components are selected and present in amounts such that the composition exhibits a liquid viscosity at room temperature of from about 2.5 cps to about 35 cps as well as a 60-second foam stability of at least 0.5.

32. The aqueous foam hand soap composition according to Claim 31, wherein the composition exhibits a 60-second foam stability of from 0.5 to 0.9.

33. The aqueous foam hand soap composition according to Claim 31, wherein the composition exhibits a 60-second foam stability of at least about 0.6.

34. The aqueous foam hand soap composition according to Claim 31, wherein the composition exhibits a 60-second foam stability of at least about 0.7.

35. The aqueous foam hand soap composition according to Claim 31, wherein the composition exhibits a viscosity at room temperature of from about 3 cps to about 7 cps.

36. The aqueous foam hand soap composition according to Claim 31, wherein the composition exhibits a viscosity at room temperature of from about 15 cps to about 25 cps.

37. The aqueous foam hand soap composition according to Claim 31, including at least 85% water.

38. The aqueous foam hand soap composition according to Claim 31, wherein the composition includes a cationic polysaccharide surfactant.

39. The aqueous foam hand soap composition according to Claim 31, wherein the composition includes a sulfonated polysaccharide surfactant.

40. The aqueous foam hand soap composition according to Claim 31, wherein the composition includes at least 20% by weight polysaccharide surfactant, exclusive of water content.

41. The aqueous foam hand soap composition according to Claim 31, wherein the composition includes at least 25% by weight polysaccharide surfactant, exclusive of water content.

42. The aqueous foam hand soap composition according to Claim 31, wherein the composition includes at least 30% by weight polysaccharide surfactant, exclusive of water content.

43. The aqueous foam hand soap composition according to Claim 31, wherein the composition includes from 20% by weight to 50% by weight polysaccharide surfactant, exclusive of water content.

44. The aqueous foam hand soap composition according to Claim 31, wherein the composition includes from 25% by weight to 45% by weight polysaccharide surfactant, exclusive of water content.

Description:
ANTIMICROBIAL FOAM HAND SOAP

Cross-Reference to Related Cases

This application is based upon United States Provisional Application Serial No. 60/936,621, filed June 21, 2007, of the same title. This application is also a continuation-in-part application of co-pending United States Patent Application Serial No. 1 1/304,353, filed December 15, 2005, entitled "Antimicrobial Liquid Hand Soap Compositions With Tactile Signal" (Attorney Docket No. 12577; GP-03-32). United States Patent Application Serial No. 11/304,353 was based upon United States Provisional Application Serial No. 60/637,101, filed December 16, 2004. The priorities of the foregoing applications are hereby claimed and their disclosures incorporated herein by reference.

Technical Field

The present invention relates generally to foam hand soap and more particularly to antimicrobial foam hand soap with glutinous components which provide a tactile signal to promote more thorough contact with the skin so as to enhance antimicrobial activity.

Background of the Invention

Media attention to cases of food poisoning, strep infections, and the like due to microbial contamination has increased public awareness of the dangers posed by inadequate hygiene, particularly in the food service and health industries. Bacteria found on the skin can be divided into two groups: resident and transient bacteria. Resident bacteria are Gram positive bacteria which are established as permanent microcolonies on the surface and outermost layers of the skin and play an important, helpful role in preventing the colonization of other, more harmful bacteria and fungi. Transient bacteria are bacteria which are not part of the normal resident flora of the skin, but can be deposited when airborne contaminated material lands on the skin or when contaminated material is brought into physical contact with it. Transient bacteria are also typically divided into Gram positive and Gram negative subclasses. Gram positive bacteria include pathogens such as Staphylococcus aureus, Streptococcus pyogenes and Clostridium botulimim. Gram negative bacteria include pathogens such as

Salmonella, Escherichia coli, Klebsiella, Haemophilus, Pseudomonas aeruginosa, Proteus and Shigella dysenieriae. Gram negative bacteria are generally distinguished from Gram positive by an additional protective cell membrane which generally results in the Gram negative bacteria being less susceptible to topical antibacterial actives. The American Society of Microbiologists has indicated that adequate hand washing will greatly reduce the incidence of communicable diseases.

Washing of the skin, especially the hands, with antimicrobial soap formulations can remove many viruses and bacteria from the washed surfaces. Removal of the viruses and bacteria is due to the surfactancy of the soap and the mechanical action of the wash procedure. Therefore, it is known and recommended that the people wash frequently to reduce the spread of viruses and bacteria. Recent surveys, however, have revealed that while nearly 95% of people claim to have washed their hands after use of public restrooms, actual observations reveal that this figure does not exceed about 66%. Notwithstanding increased awareness, there is a tendency to rush the hand washing process which leads to inadequate hygiene. A number of systems and devices to encourage longer and more thorough handwashing have accordingly been developed.

Collopy in United States Patent Application 2002/0061500 discloses a hand-washing device containing a display panel that encourages the user to wash their hands for about 15 seconds to remove genus. Gorra, United States Patent No. 5,945,910 discloses method and apparatus for monitoring and reporting hand washing, which includes a sensor for signaling the dispensation of a cleaning agent from a dispenser, and a reporting and monitoring module. Allen et al. United States Patent No. 5,781,942 discloses wash stations and method of operation, which monitors hand washing and assists in hand washing. These systems are relatively expensive and difficult to implement; oftentimes involving training and monitoring personnel. Even when such steps have been taken, there is little certainty that all personnel have followed proper washing procedures.

So also, while many antimicrobial liquid hand soap compositions have been proposed, effectiveness of antimicrobial agents in the soap maybe limited by the thoroughness of the washing procedure as is appreciated by reference to the patents and publications of the preceding paragraph. Another drawback of liquid compositions is that liquid soap tends to be difficult to apply to a targeted area such that it is retained on the desired surface. That is to say, liquid soap tends to drip off the hands before lathering and thus much of the antimicrobial activity of the composition is lost even before the hand washing process has been effectively started.

Summary of the Invention

The present invention is directed generally to an antimicrobial foam hand soap composition including a glutinous component to promote more thorough hand washing. The glutinous component may be selected from the group consisting of: cocamidopropyl PG-dimonium chloride phosphate; dimer dilinoleamido-propyl PG-dimonium chloride phosphate; sodiumgrapeseedamidopropyl PG-dimonium chloride phosphate; sodium olivamidopropyl PG-dimonium chloride phosphate; linoleamidopropyl PG- dimonium chloride phosphate; PEG- 8 dimethicone sunfloweramidopropyl PG- dimonium complex; sunfloweramidopropyl phosphate PG-dimonium chloride, inulin, inulin-based surfactants and mixtures thereof.

While any suitable biocide may be used in the compositions, preferred are those which include halogenated aromatic compounds. One preferred ingredient, for example, is:

2,4,4'-trichloro-2'-hydroxydiphenyl ether

In another aspect of the invention, there is provided an aqueous foam hand soap composition suitable for air-foaming including: (a) more than 75% water; (b) a polysaccharide or polysaccharide surfactant selected from inulin, inulin surfactants, polyglucoside surfactants and mixtures thereof; and (c) at least one additional foaming surfactant selected from betaine surfactants, wherein the composition includes at least 5% of inulin, inulin surfactants, polyglucoside surfactants or mixtures thereof and the components are selected and present in amounts such that the composition exhibits a liquid viscosity at room temperature of from about 2.5 cps to about 35 cps as well as a 60-second foam stability of at least 0.5.

Brief Description of Drawings The invention is described in detail below in connection with the various

Figures, wherein:

Figures IA, IB and 1C are photomicrographs of Foamed Composition No. 1 at 0 ; 30 and 60 seconds, respectively;

Figures 2A, 2B and 2C are photomicrographs of Foamed Composition No. 2 at 0, 30 and 60 seconds, respectively; and

Figures 3A, 3B and 3C are photomicrographs of Foamed Composition No. 3 at 0, 30 and 60 seconds, respectively. Detailed Description of the Invention

The invention is described in detail below for purposes of illustration only. Modifications within the spirit and scope of the invention, set forth in the appended claims, will be readily apparent to one of skill in the art.

As used herein, terminology is given its ordinary meaning as supplemented below. "Room temperature", for example, means 70 0 F (about 21 0 C).

"Antimicrobial agent", "biocide" and the like terminology means and includes any substance that kills or inhibits the growth of microorganisms such as bacteria, viruses, molds, slimes, fungi, etc, Biocidal chemicals include halogenated aromatics, chlorinated hydrocarbons, organometallics, metallic salts, organic sulfur compounds, quaternary ammonium compounds, phenolics and the like. Suitable biocides include triclosan, the structure of which appears above. Other suitable biocides include: (triclocarban); 3,4,4'- trifluoromethyl-4, 4'-dichloro carbanili de (clo flucarban) ; 5-chloro -2-m ethyl-4- isothiazolin-3-one; iodopropynlbutylcarbamate; 8-hydroxyquinoline; 8- hydroxyquinoline citrate; 8-hydroxyquinoJine sulfate; 4-chloro-3,5- xylenol(chloroxylenol); 2-bromo-2-nitropropane-l,3-diol; diazolidinyl urea; butoconazole; nystatin; terconazole; nitrofurantoin; phenazopyridine; acyclovir; clortrimazole; chloroxylenol; chlorhexidine; miconazole; terconazole; butylparaben; ethylparaben; methylparaben; methylchloroisothiazoline; methylisothiazoline; a mixture of l,3-bis(hydroxymethyl)-5,5-dimethyIhydantoin and 3-iodo-2-propynyl butyl carbamate; oxyquinoline; EDTA; tetra sodium EDTA; p-hydroxyl benzoic acid ester; alkyl pyridinum compounds; coco phosphatidyl PG-dimonium chloride; chlorhexidine gluconate; chlorhexidine digluconate; chlorhexidine acetate; chlorhexidine isethionate; chlorhexidine hydrochloride; benzalkonium chloride; benzethonium chloride; polyhexamethylene biguanide; and mixtures thereof. So also, the anti-microbial agent may include a zinc salt. "Glutinous component" means one or more components added to the hand soap composition in order to alter its tactile properties. Some preferred glutinous components are available from Colonial Chemical Inc. and are listed below in Table 1.

Table 1 - Glutinous Phospholipids

COLALIPID™ Chemical Description Oil Primary R-Group

Source C Cocamidopropyl PG- Coconut Cocamidopropyl

Dimonium Chloride

Phosphate

SAFL Linoleamidopropyl PG- Safflower Linoleamidopropyl

Dimonium Chloride

Phosphate

SUN Sunfloweramjdopropyl Sunflower Linoleamidopropyl

Phosphate PG-Dimonium

Chloride

OL Sodium Olivamidopropyl PG- Olive Oleamidopropyl

Dimonium Chloride

Phosphate

DLO Dimer Dilinoieamidopropyl Dimer Di-

PG-Dimonium Chloride Acid Linoleamidopropyl

Phosphate

SIL PEG-S Dimethicone Sunflower Silicone and

Sunfloweramidopropyl PG- Lino leamidopropyl

Dimonium Complex

GS Sodiumgrapeseedamidopropyl Grapes eed Linoleamidopropyl

PG-Dimoniura Chloride

Phosphate

Further details may be seen in United States Patent No. 6,331 ,293 to Smith et al. , as well as United States Patent No. 6,451,775, also to Smith et al,, the disclosures of which are incorporated herein by reference.

Other classes of preferred glutinous components for the inventive foams are inulins and inulin-based surfactants available from ORAFTI (Tienen, Belgium) such as INUTEC H25 and INUTEC SPl. Among foaming agents suitable for use in the compositions of the present invention, betaines are particularly useful. Suitable betaines may include: the higher alkyl betaines, such as coco dimethyl carboxymethyl betaine, lauryl dimethyl carboxymethyl betaine, lauryl dimethyl alphacarboxyethyl betaine, cetyl dimethyl carboxymethyl betaine, lauryl bis-(2-hydroxyethyl) carboxymethyl betaine, stearyl bis-(2-hydroxypropyl) carboxymethyl betaine, oleyl dimethyl gamma-carboxypropyl betaine, lauryl bis-(2-hydroxypropyl) alpha -carboxyethyl betaine, coco dimethyl sulfopropyl betaine, stearyl dimethyl sulfopropyl betaine, lauryl dimethyl sulfoethyl betaine, lauryl bis-(2-hydroxyethyl) sulfopropyl betaine, and amidobetaines and amidosulfobetaines (wherein the RCONH(CHa) 3 radical is attached to the nitrogen atom of the betaine), oleyl betaine and cocamidopropyl betaine.

Particularly suitable surfactants for use in the composition with a betaine foaming agent include polysaccharide surfactants such as alkyl glucosides seen in United States Patent Nos. 6,881,710 to O 'Lenick, Jr, et at. and 6,627,612, also to O 'Lenick, Jr. et at., the disclosures of which are incorporated herein by reference. The '710 patent relates to polyglucoside quaternary surfactants sold under the Suga®Quat name by Colonial Chemicals, while the '612 patent relates to polyglucoside sulfonate surfactants sold by Colonial Chemicals under the Suga®Nate name. Other suitable surfactants are natural oil isethionates such as cocoyl methyl isothionate available from Innospec (Edison, NJ), Chelating agents are also used in many compositions, a suitable chelating agent is tri sodium ethylene diamine disuccinate, for example.

Further components include the optional components listed in the Examples as well as humectants, emollients and the like which are described in United States Patent No. 5,635,469 to Fowler et al., the disclosure of which is incorporated herein by reference. Examples

The following compositions were prepared by mixing the components to a well-mixed aqueous dispersion. Optional components are typically provided in amounts of less than or equal to 0.02% by weight.

Table 2 -Antimicrobial Foam Soap Composition 1

Liquid Viscosity of Formulation 1 = 5 cps@22°C Table 3 -Antimicrobial Foam Soap Composition 2

Liquid Viscosity of Formulation 2 = 5 cps@22°C

Table 4 -Antimicrobial Foam Soap Composition 3

Liquid Viscosity of Formulation 3 = 20 cps@22°C

Colalipid™ is a trademark of Colonial Chemical ϊnc, Suga®Nate and Suga®Quat are registered trademarks of Colonial Chemical Inc. INUTEC® is a registered trademark of ORAFTI; Octaquest® is a registered trademark of Innospec Inc. and Tauranol® is also a registered trademark of Innospec Inc. Frescolat® is a registered trademark of Haarmann & Reimer G.m.b.H. Following mixing, the liquid compositions of Tables 2-4 were foamed with air using a hand-operated foaming apparatus of the class described in United States Publication No. US 2001/0042761 of Ophardt et al. and United States Patent No. 5,635,469 to Fowler et al., the disclosures of which are incorporated herein by reference. Alternatively, a foaming device with a deformable reservoir (squeeze-type) could be used, if so desired. See United States Patent No, 6,536,685 to Bennett, the disclosure of which is incorporated herein by reference.

Likewise the compositions set forth above may be air foamed in a wall mounted or counter mounted soap dispenser equipped with a suitable foaming device of the general class described in the foregoing references, that is having an air pump and a foraminous foam refining screen or other foraminous component. An automated, touchless foam dispenser (wall or counter mounted) may likewise be used in connection with the compositions of the present invention if so desired. See United States Patent Publication No. US 2006/0013655 of Ophardt, United States Patent Application Serial No. 10/928,099, the disclosure of which is incorporated by reference.

Foam Generation and Analysis The soap was pumped five times from an air foam dispenser and into a waste beaker. On the sixth pump, a small amount of the foamed soap was sampled and placed on a concave slide with a cover slip. The slide is placed on the stage of the stereomicroscope utilizing transmitted light. The foam is brought into focus and an image is immediately taken (0 seconds) and saved to file. Using a timer, an image is also taken (of the same area) at 30 seconds and at one 1 minute. Three frames per time interval are collected for each sample.

Since the light source generates heat, and heat has an effect on foam cell size, the light source is not turned on until sampling is ready to be performed. In the case of a series of soaps being tested, the light source should be turned off between samples and allowed to cool down. A magnification of 64x was used for these particular soaps. The magnification chosen should allow for good resolution of small cells, as well as adequate area to capture large cells, at the three time intervals. Once the magnification is determined, the stereoscope must be calibrated for that magnification. Taking an image of a scale micrometer at the magnification used is recommended.

The analySIS® program is used to measure the perimeter of each foam cell. The data obtained for each time interval is saved to an Excel file. When working with saved images, the magnification and calibration of the image must be read back in each time prior to measuring.

Results appear in Table 5 and in Figure IA through 3C.

Table 5 - Foam Stability

In general, the average bubble size of the foamed composition ranges from about 50 microns to about 300 microns in diameter and the foam density ranges from about 0.01 g/cm 3 to about 0.25g/cm 3 in most cases. A typical density range for the foam is from about 0.05 g/cm 3 to about 0.2 g/cm 3 . It is seen in the photomicrographs that the foams of the invention exhibit a relatively uniform cell size, that is the ceil size does not contain a large number of very small or very large bubbles but tends to have bubbles with diameters within a few multiples of the average cell size. The foam average diameter is calculated by dividing the average cell perimeter by f] . It is seen from the photomicrographs that the foams exhibit remarkable stability at 60 seconds which is adequate time for the foams to be fully applied.

Foam stability is calculated by dividing the average cell diameter at t=0 by the average cell diameter at t— 60 seconds and accounts for the coalescence of cells over time.

There is thus provided in accordance with the present invention an aqueous antimicrobial foam hand soap which provides a glutinous tactile signal that includes: a) an antimicrobial agent; b) a foamable cleansing composition including one or more surfactants which readily foam with water and air; c) a glutinous composition including glutinous components selected from phospholipids, inulins, inulm-based surfactants and combinations thereof as well as water. In a first aspect of the invention the glutinous components are present in an amount of at least 5% by weight based on the weight of components other than water in the compositions. Generally the liquid compositions may be foamed with air to initial foam density (t=0) of from about 0.01 g/cm 3 to about 0.25 g/cm 3 . The compositions may be foamed with air in a suitable non-propellant foamer to an average initial bubble size (i.e. t=0) of from about 50 to about 300 microns in diameter. More typically the average initial bubble size is from about 75 to about 150 microns in diameter. The compositions may suitably include more than 75%, more than 80%, more than 85% or more than 90% water. Remarkably, the compositions form stable foams even with very high water content.

The foamable cleansing compositions may include a betaine foaming agent such as cocamidopropyl betaine as well as other surfactants.

The glutinous components may include phospholipids and are generally present in an amount of from about 7,5% to about 40% by weight of ingredients other than water; typically, greater than 15% by weight of ingredients in the composition other than water. More than 20% by weight phospholipid (based on weight of ingredients other than water) is typical. There may be provided in some embodiments phospholipid in an amount of from about 15% to about 35% based on the weight of ingredients other than water such as from about 17.5% to about 30% based on the weight of ingredients other than water. Glutinous components may include inulin or an inulin-based surfactant such as inulin Iauryl carbamate. When inulin is used as the primary glutinous component, inulin compounds are generally present in an amount of from about 5% by weight to about 15% by weight based on the weight of ingredients other than water, or in some cases from about 10% to about 20% based on the weight of ingredients other than water. Inulin compounds may be present in an amount of at least 10% by weight based on the weight of ingredients other than water.

The foamable compositions of the invention optionally include a chelating agent such as ethylene diamine disuccinate salt as well as an anti-bacterial agent such as triclosan. Other components such as humectants, emollients and so forth are typically included.

Most preferably, the composition is a sulfate free hand soap composition and consists essentially of one or more sulfonate surfactants, betaine surfactants, and carbamate surfactants. One preferred surfactant is cocoyl methyl isethionate surfactant. Another preferred group of surfactants are alkyl glucoside surfactants as noted above.

In another aspect of the invention there is provided an aqueous foam hand soap composition suitable for air foaming including: a) more than 75% water; b) a polysaccharide or polysaccharide surfactant selected from inulin, inulin surfactants, polyglucoside surfactants and mixtures thereof; and c) at least one additional foaming surfactant selected from betaine surfactants. These compositions include at least 5% of inulin, inulin surfactants, polyglucoside surfactants or mixtures thereof and the components are selected and present in amounts such that the composition exhibits a liquid viscosity at room temperature of from about 2.5 cps to about 35 cps as well as a 60 second foam stability of at least 0.5, Typically the composition exhibits a 60 second foam stability of from about 0.5 to about 0.9; and preferably at least about 0.6 or at least about 0,7. The composition may exhibit a viscosity at room temperature of from about 3 cps to about 7 cps in lower viscosity embodiments; or the compositions may exhibit a viscosity at room temperature of from about 15 cps to about 25 cps for higher viscosity compositions.

If so desired the aqueous foam hand soap compositions according to the invention may include at least 85% water and include cationic polysaccharide surfactants or sulfonated polysaccharide surfactants. One series of preferred embodiments includes at least about 20% by weight polysaccharide surfactant exclusive of water content. Optionally, the compositions may include at least 25% by weight polysaccharide surfactant, exclusive of water content or at least 30% by weight polysaccharide surfactant exclusive of water content.

Polysaccharide surfactant containing compositions suitably include from about 20% by weight to about 50% by weight polysaccharide surfactant, exclusive of water content in many embodiments. Polysaccharide surfactant content from about 25% to about 45% based on the weight of ingredients other than water is typical. Further aspects should be apparent to one of skill in the art from the foregoing description and examples.

While the invention has been illustrated in connection with several examples, modifications to these examples within the spirit and scope of the invention will be readily apparent to those of skill in the art. In view of the foregoing discussion, relevant knowledge in the art and references discussed above in connection with the Background and Detailed Description, the disclosures of which are all incorporated herein by reference, further description is deemed unnecessary.