Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ARTIFICIAL DNA-BINDING PROTEINS AND USES THEREOF
Document Type and Number:
WIPO Patent Application WO/2015/075154
Kind Code:
A2
Abstract:
The present invention relates to proteins consisting of an artificial DNA-binding domain (DBD) and related molecules and uses thereof. In particular, the proteins are ZF-DBD or TALE-DBD and are used for the treatment of eye disorders caused by gain of function mutation. The disorder may be ADRP, in particular ADRP caused by mutation in the rhodopsin gene. The present invention also relates to a method to identify cis-regulatory elements and to modulate them via DBDs.

Inventors:
SURACE ENRICO MARIA (IT)
MARROCCO ELENA (IT)
BOTTA SALVATORE (IT)
Application Number:
PCT/EP2014/075212
Publication Date:
May 28, 2015
Filing Date:
November 20, 2014
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
FOND TELETHON (IT)
International Classes:
C07K14/47
Domestic Patent References:
WO2012106725A22012-08-09
Other References:
"An integrated encyclopedia of DNA elements in the human genome", NATURE, vol. 489, no. 7414, 6 September 2012 (2012-09-06), pages 57 - 74
THURMAN ET AL.: "The accessible chromatin landscape of the human genome", NATURE, vol. 489, no. 7414, 6 September 2012 (2012-09-06), pages 75 - 82, XP055269699, DOI: doi:10.1038/nature11232
SANTOS-ROSA ET AL.: "Active genes are trimethylated at K4 of histone H3", NATURE, vol. 419, 2002, pages 407 - 411
SANYAL ET AL.: "The long-range interaction landscape of gene promoters", NATURE, vol. 489, no. 7414, 6 September 2012 (2012-09-06), pages 109 - 13
SONG ET AL.: "Open chromatin defined by DNase I and FAIRE identifies regulatory elements that shape cell-type identity", GENOME RES, vol. 21, 2011, pages 1757 - 1767
STAMATOYANNOPOULOS JA., GENOME RES., vol. 22, no. 9, September 2012 (2012-09-01), pages 1602 - 11
LAVAIL ET AL., PNAS USA, vol. 97, 2000, pages 11488 - 11493
LEWIN ET AL., NAT MED, vol. 4, 1998, pages 967 - 971
O'REILLY ET AL., AM J HUM GENET, vol. 81, 2007, pages 127 - 135
XIA ET AL., NAT, vol. 10, 2004, pages 816 - 820
JAMIESON ET AL., NAT REV DRUG DISCOV, vol. 2, 2003, pages 361 - 368
PEARSON, NATURE, vol. 455, 2008, pages 160 - 164
SEGAL; BARBAS, CURR OPIN BIOTECHNOL, vol. 12, 2001, pages 632 - 637
MATTEI ET AL., PLOS ONE, vol. 2, 2007, pages E774
REBAR ET AL., NAT MED, vol. 8, 2002, pages 1427 - 1432
MUSSOLINO ET AL., EMBO MOL MED, vol. 3, 2011, pages 118 - 128
MILLER ET AL.: "A TALE nuclease architecture for efficient genome editing", NATURE BIOTECHNOLOGY, vol. 29, no. 2, 2010, pages 143 - 148, XP055458374, DOI: doi:10.1038/nbt.1755
CONG ET AL.: "Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains", NATURE COMMUNICATIONS, vol. 968, no. 3
ZHANG ET AL.: "Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription", NATURE BIOTECHNOLOGY, vol. 29, no. 2, 2011, pages 149, XP055005146, DOI: doi:10.1038/nbt.1775
ROSSMILLER ET AL., MOLECULAR VISION, vol. 18, 2012, pages 2479 - 2496
LI, L. ET AL.: "Characterization and DNA-binding specificities of Ralstonia TAL-like effectors", MOL. PLANT, vol. 6, 2013, pages 1318 - 1330, XP002711130, DOI: doi:10.1093/mp/sst006
MOSCOU, M. J.; BOGDANOVE, A. J.: "A simple cipher governs DNA recognition by TAL effectors", SCIENCE, vol. 326, 2009, pages 1501, XP002599998
MUSSOLINO ET AL., EMBO MOL MED., vol. 3, no. 3, March 2011 (2011-03-01), pages 118 - 28
J. LEE ET AL., GENE THERAPY, 2010
AURICCHIO A; HILDINGER M; O'CONNOR E; GAO GP; WILSON JM: "Isolation of highly infectious and pure adeno-associated virus type 2 vectors with a single-step gravity-flow column", HUM GENE THER, vol. 12, 2001, pages 71 - 76, XP002297594, DOI: doi:10.1089/104303401450988
DORIA M; FERRARA A; AURICCHIO A: "AAV2/8 vectors purified from culture medium with a simple and rapid protocol transduce murine liver, muscle, and retina efficiently", HUM GENE THER METHODS, 2013
SURACE EM; DOMENICI L; CORTESE K; COTUGNO G; DI VICINO U ET AL.: "Amelioration of both functional and morphological abnormalities in the retina of a mouse model of ocular albinism following AAV-mediated gene transfer", MOL THER, vol. 12, 2005, pages 652 - 658, XP005078444, DOI: doi:10.1016/j.ymthe.2005.06.001
LI T; SNYDER WK; OLSSON JE; DRYJA TP: "Transgenic mice carrying the dominant rhodopsin mutation P347S: evidence for defective vectorial transport of rhodopsin to the outer segments", PROC NATL ACAD SCI USA, vol. 93, 1996, pages 14176 - 14181
LIANG FQ; ANAND V; MAGUIRE AM; BENNETT J: "Vision Research Protocols", 2000, HUMANA PRESS INC., article "Intraocular delivery of recombinant virus", pages: 125 - 139
MUSSOLINO C; DELLA CORTE M; ROSSI S; VIOLA F; DI VICINO U ET AL.: "AAV-mediated photoreceptor transduction of the pig cone-enriched retina", GENE THER, vol. 18, 2011, pages 637 - 645, XP055110971, DOI: doi:10.1038/gt.2011.3
EMBO MOL MED., vol. 3, no. 3, March 2011 (2011-03-01), pages 118 - 28
MORTAZAVI A; WILLIAMS BA; MCCUE K; SCHAEFFER L, WOLD B.NAT METHODS, vol. S, no. 7, July 2008 (2008-07-01), pages 621 - 8
J LEE ET AL., GENE THERAPY, 2010
ROHS R; JIN X; WEST SM; JOSHI R; HONIG B; MANN RS., ANNU REV BIOCHEM., vol. 79, 2010, pages 233 - 69
MAURANO MT; WANG H; KUTYAVIN T; STAMATOYANNOPOULOS JA., PLOS GENET., vol. 8, no. 3, 2012, pages E1002599
STAMATOYANNOPOULOS JA, GENOME RES., vol. 22, no. 9, September 2012 (2012-09-01), pages 1602 - 11
ROHS R; JIN X; WEST SM; JOSHI R; HONIG B; MANN RS, ANNU REV BIOCHEM., vol. 79, 2010, pages 233 - 69
HARDISON RC; TAYLOR J., NAT REV GENET., vol. 13, no. 7, 18 June 2012 (2012-06-18), pages 469 - 83
WHITE MA ET AL., PNAS, July 2013 (2013-07-01), pages 11952 - 11957
WHITE MA; MYERS CA; CORBO JC; COHEN BA, PROC NATL ACAD SCI U S A., vol. 110, no. 29, 16 July 2013 (2013-07-16), pages 11952 - 7
WHITE MA; MYERS CA; CORBO JC; COHEN BA, PROC NATL ACAD SCI USA., vol. 110, no. 29, 16 July 2013 (2013-07-16), pages 11952 - 7
BOCH J; SCHOLZE H; SCHORNACK S; LANDGRAF A; HAHN S; KAY S; LAHAYE T; NICKSTADT A; BONAS U: "Breaking the code of DNA binding specificity of TAL-type III effectors", SCIENCE, vol. 326, no. 5959, 11 December 2009 (2009-12-11), pages 1509 - 12
Attorney, Agent or Firm:
CAPASSO, Olga et al. (Via Vincenzo Bellini 20, Rome, IT)
Download PDF:
Claims:
CLAIMS

1- A protein consisting of a DNA binding domain targeting a DNA regulatory sequence of a gene selected from the group consisting of: RHO, BEST1, CA4, RP17, CRX, FSCN2, RP30, GUCA1B, RP48, IMPDH1, RP10, KLHL7, RP42, NR2E3, NRL, RP27, ORP1, DCDC4A, RP1, PRPF3, RP18, PRPF31, PRPF6, rp60, PRPF8, PRPH2, RDS, RP7, ROM1, RP1, LI, RP63, RP9, RPE65, RP20, SEMA4A, RP35, MERTK, RP33, TOPORS, HK1, PRPF4, RDH12, LCA13, RP53, SNRNP200, ASCC3L1, BRR2, HECIC2, RP33.

2- The protein according to claim 1 wherein the targeting of the DNA regulatory sequence induces the repression of the expression of said gene.

3- The protein according to claim 1 or 2 wherein said gene is in a mutated form or a wild-type form.

4- The protein according to claim 1 or 2 wherein said gene is in a mutated form.

5- The protein according to any one of previous claim wherein the DNA binding domain is selected from the group consisting of: a zinc finger domain, a transcription activatorlike (TAL) DNA binding domain or a RNA-guided DNA-binding domain or a functional fragment thereof or a functional derivative thereof.

6- The protein according to any one of previous claim wherein the DNA regulatory sequence is comprised in a promoter region sequence of said gene.

7- The protein according to any one of previous claim wherein the DNA regulatory sequence is comprised in the promoter region sequence of RHO.

8- The protein according to any one of previous claim wherein the DNA regulatory sequence comprises a sequence selected from the group of: GGGGGTTAGAGGGTCTACGA (SEQ ID No. 22), CACCCCCAATCTCCCAGATGCTGAT (SEQ ID No. 23), TCAGCATCTGGGAGATTG (SEQ ID No. 24), GGGGGTTAGAGGGTCT (SEQ ID No. 25), G G G G GTTAG AG G GTCT A (SEQ ID No. 26), TGAACACCCCCAATCTCC (SEQ ID No. 27) or GTGGGGGTTAGAGGGT (SEQ ID No. 28).

9- The protein according to any one of previous claim wherein the DNA regulatory sequence has essentially a sequence selected from the group of: GGGGGTTAGAGGGTCTACGA (SEQ ID No. 22), CACCCCCAATCTCCCAGATGCTGAT (SEQ ID No. 23), TCAGCATCTGGGAGATTG (SEQ ID No. 24), GGGGGTTAGAGGGTCT (SEQ ID No. 25), G G G G GTTAG AG G GTCT A (SEQ ID No. 26), TGAACACCCCCAATCTCC (SEQ ID No. 27) or GTGGGGGTTAGAGGGT (SEQ ID No. 28). 10- The protein according to any one of claim 7, 8 or 9 consisting essentially of a sequence selected from the group consisting of: SEQ ID No. 3, SEQ ID No. 5, SEQ ID No. 7, SEQ ID No. 9, SEQ. ID No. 13, SEQ. ID No. 15, SEQ ID No. 17, or a functional fragment or functional derivative thereof.

11- A nucleic acid molecule encoding the protein as defined in any one of claim 1 to 10.

12- A vector comprising the nucleic acid molecule according to claim 11.

13- The vector according to claim 12 wherein said vector is a viral vector.

14- The vector according to claim 13 selected from the group consisting of: adenoviral vectors, lentiviral vectors, retroviral vectors, adeno associated vectors (AAV) or naked plasmid DNA vectors.

15- The vector according to any one of claim 12 to 14 wherein said vector further comprises a nucleotide sequence of a gene selected from the group consisting of: RHO, BEST1, CA4, RP17, CRX, FSCN2, RP30, GUCA1B, RP48, IMPDH1, RP10, KLHL7, RP42, NR2E3, NRL, RP27, ORP1, DCDC4A, RP1, PRPF3, RP18, PRPF31, PRPF6, rp60, PRPF8, PRPH2, RDS, RP7, ROM1, RP1, LI, RP63, RP9, RPE65, RP20, SEMA4A, RP35, MERTK, RP33, TOPORS, HK1, PRPF4, RDH12, LCA13, RP53, SNRNP200, ASCC3L1, BRR2, HECIC2 and RP33.

16- The vector according to any one of claim 12 to 15 wherein said vector further comprises a retina specific promoter and, optionally, regulatory sequences.

17- The vector according to claim 16 wherein the retina specific promoter is the rhodopsin kinase (RHOK) promoter or the transducin 1 (GNAT1) promoter, preferably the human transducin 1 (GNAT1) promoter.

18- A host cell transformed by the vector as defined in any one of claim 12 to 17.

19- A viral particle containing the vector as defined in any one of claim 12 to 17.

20- A pharmaceutical composition comprising the protein according to any one of claim 1 to 10 or the nucleic acid according to claim 11 or the host cell according to claim 18 or the viral particle according to claim 19 and a pharmaceutically acceptable excipient.

21- A pharmaceutical composition comprising the vector according to any one of claims 12 to 17 and a pharmaceutically acceptable excipient.

22- The pharmaceutical composition according to claim 21 further comprising a vector comprising a nucleotide sequence of a gene selected from the group consisting of: RHO, BEST1, CA4, RP17, CRX, FSCN2, RP30, GUCA1B, RP48, IMPDH1, RP10, KLHL7, RP42, NR2E3, NRL, RP27, ORP1, DCDC4A, RP1, PRPF3, RP18, PRPF31, PRPF6, rp60, PRPF8, PRPH2, RDS, RP7, ROM1, RP1, LI, RP63, RP9, RPE65, RP20, SEMA4A, RP35, MERTK, RP33, TOPORS, HK1, PRPF4, RDH12, LCA13, RP53, SNRNP200, ASCC3L1, BRR2, HECIC2 and RP33.

23- The protein according to any one of claims 1 to 10 or the nucleic acid according to claim 11 or the vector according to any one of claims 12 to 17 or the host cell according to claim 18 or the viral particle according to claim 19 or the pharmaceutical composition according to any one of claims 20 to 22 for use in the treatment of an autosomal dominant inherited eye disease and/or of an autosomal recessive inherited eye disease.

24- The protein according to any one of claims 1 to 10 or the nucleic acid according to claim 11 or the vector according to any one of claims 12 to 17 or the host cell according to claim 18 or the viral particle according to claim 19 or the pharmaceutical composition according to any one of claims 20 to 22 for use according to claim 23 wherein the treatment is a gene therapy.

25- The protein according to any one of claims 1 to 10 or the nucleic acid according to claim 11 or the vector according to any one of claims 12 to 17 or the host cell according to claim 18 or the viral particle according to claim 19 or the pharmaceutical composition according to any one of claims 20 to 22 for use according to claims 23 or 24 wherein the autosomal dominant inherited eye disease is autosomal dominant retinitis pigmentosa (ADRP) or Congenital Stationary Night Blindness.

26- The protein according to any one of claims 1 to 10 or the nucleic acid according to claim 11 or the vector according to any one of claims 12 to 17 or the host cell according to claim 18 or the viral particle according to claim 19 or the pharmaceutical composition according to any one of claims 20 to 22 for use according to claims 23 or

24 wherein the autosomal dominant inherited eye disease is autosomal dominant retinitis pigmentosa (ADRP).

27- The protein according to any one of claims 1 to 10 or the nucleic acid according to claim 11 or the vector according to any one of claims 12 to 17 or the host cell according to claim 18 or the viral particle according to claim 19 or the pharmaceutical composition according to any one of claims 20 to 22 for use according to claims 23 or 24 wherein the autosomal recessive inherited eye disease is autosomal recessive retinitis pigmentosa.

28- A method for the treatment of an autosomal dominant inherited eye disease or of an autosomal recessive inherited eye disease of a subject in need thereof, said method comprising administering a suitable amount of the protein according to any one of claims 1 to 10 or the nucleic acid according to claim 11 or the vector according to any one of claims 12 to 17 or the host cell according to claim 18 or the viral particle according to claim 19 or the pharmaceutical composition according to any one of claims 20 to 22.

29- A method to identify a DNA binding domain targeting a potential DNA regulatory sequence comprising:

e) generating two independent constructs:

-a first construct comprising a sequence of a reporter gene under the control of the potential DNA regulatory sequence;

-a second construct comprising a sequence of a reporter gene under the control of the potential DNA regulatory sequence that has been mutated;

f) expressing each construct of step a) in vivo in the retina;

g) comparing the expression of the reporter gene under the control of the potential DNA regulatory sequence with the expression of the reporter gene under the control of the mutated potential DNA regulatory sequence;

wherein if a reduction in the expression of the reporter gene under the control of the mutated potential DNA regulatory sequence is observed when compared to the expression of the reporter gene under the control of the potential DNA regulatory sequence , the potential DNA regulatory sequence is a DNA regulatory sequence and a DNA binding domain is identified;

h) Optionally, designing a DNA binding protein targeting the DNA regulatory sequence.

30- A DNA binding domain targeting a potential DNA regulatory sequence identified by the method according to claim 29.

31- The DNA binding domain targeting a potential DNA regulatory sequence identified by the method according to claim 29 wherein said DNA binding domain is as defined in any one of claim 1 to 10.

Description:
Artificial DNA-binding proteins and uses thereof

TECHNICAL FIELD

The present invention relates to proteins consisting of an artificial DNA-binding domain (DBD) and related molecules and uses thereof. I n particular, the proteins are ZF-DBD or TALE-DBD and are used for the treatment of eye disorders caused by gain of function mutation. The disorder may be ADRP, in particular ADRP caused by mutation in the rhodopsin gene. The present invention also relates to a method to identify cis-regulatory elements. BACKGROUND ART

Extraction of Biological I nformation content from genomic sequence remains challenging. Besides conserved DNA-sequence motif along evolution, prediction of cis-regulatory modules/elements (CRMs/CREs, i.e. a stretch of DNA where a number of effector/transcription factors can bind and regulate expression of nearby genes.) embodied in a specific DNA sequence and understanding their function remains a challenging task. Furthermore, the existing models of DNA sequence function generally are not capable to extract the special properties of CRM sequences. The special properties of CRM sequences are partly uncovered by the ENCODE project which is providing key insight into CRMs and gene regulation. The emerging scenario is showing that the architecture of physical connectivity among CRMs and the spatial distribution along the chromosomes play a critical role in gene regulation. I ndeed, gene regulation is fundamentally a dynamic process involving the combinatorial interactions between genomic DNA and nuclear protein machinery. What is apparent is that the wiring of specific CREs determine cell type-selective DNA regulatory transcriptional network. Therefore, what is emerging is that gene regulation, rather tha n function, had to evolve to associate regulatory alternatives to particular genes, and this in turn generate diversity intra and inter individuals and among species. Therefore, cell-specific diversity is generated by regulatory combinatorial properties contained in genomic regulatory regions, CREs, eventually modulating genes sets.

The Encyclopedia of DNA Elements (ENCODE) Consortium is an international collaboration of research groups funded by the Nationa l Human Genome Research Institute (NHGRI). The goal of ENCODE is to build a comprehensive parts list of functional elements in the human genome, including elements that act at the protein and RNA levels, and regulatory elements that control cells and circumstances in which a gene is active. However, it is widely acknowledged that the same DNA element may be recognized by different (generally related) transcription factors in different cellular environments, with alternative functional consequences. Additionally, the authors now know that the biochemical signatures of many ENCODE-defined elements exhibit complex trans-cellular patterns of activity (The ENCODE Project Consortium. 2012. An integrated encyclopedia of DNA elements in the human genome Nature. 2012 Sep 6;489(7414):57-74. doi: 10.1038/naturell247; Thurman et al. 2012. The accessible chromatin landscape of the human genome. Nature. 2012 Sep 6;489(7414):75-82. doi: 10.1038/naturell232), which may be accompanied by functional behaviors such as an enhancer interacting with different target genes (Santos-Rosa et al. 2002 Active genes are tri- methylated at K4 of histone H3. Nature 419: 407-411; Sanyal et al. 2012. The long-range interaction landscape of gene promoters. Nature. 2012 Sep 6;489(7414):109-13. doi: 10.1038/naturell279; Thurman et al. 2012 The accessible chromatin landscape of the human genome. Nature. 2012 Sep 6;489(7414):75-82. doi: 10.1038/naturell232). Together, these observations suggest that the genome may, in fact, be extensively multiply encoded— i.e., that the same DNA element gives rise to different activities in different cell types. Cross-cell- type regulatory patterning evident in distal regulatory DNA uncovered by ENCODE (Song et al. 2011 Open chromatin defined by DNase I and FAIRE identifies regulatory elements that shape cell-type identity. Genome Res 21: 1757-1767; Thurman et al. 2012 The accessible chromatin landscape of the human genome. Nature. 2012 Sep 6;489(7414):75-82. doi: 10.1038/naturell232) suggests tremendous heterogeneity and functional diversity.

The above mentioned consideration suggests that the protein composition of a DNA-binding protein is not bound uniquely to the same DNA element in the same cell type. On the contrary, the same DNA element gives rise to different activities in different cell types.

Thus, the interface and interaction between cis regulatory elements and trans elements strongly depend on the cis regulatory elements in exquisite unique cellular subtype milieu and trans-binding elements properties (biochemical properties) that change accordingly to a specific cellular subtype (Stamatoyannopoulos JA. Genome Res. 2012 Sep;22(9):1602-ll). Gene therapy for dominantly inherited genetic disease is more difficult than gene-based therapy for recessive disorders, which can be treated with gene supplementation. Treatment of dominant disease requires gene supplementation partnered with suppression of the expression of the mutant gene either at the DNA level, by gene repair, or at the RNA level by RNA interference or transcriptional repression.

The main target of genetic silencing strategies is the messenger RNA (mRNA) transcript, the function of which can be inhibited by antisense-RNA-based, ribozyme-based and more recently by small interfering (si)RNA-based and micro (mi)RNA-based approaches. In particular, RNA interference (RNAi) has great promise for treating dominant diseases in both mutation dependent and -independent manners, through its efficiency of mRNA transcript cleavage (LaVail et al. 2000 PNAS USA 97:11488-11493; Lewin et al. 1998 Nat Med 4:967-971; O'Reilly et al. 2007 Am J Hum Genet 81:127-135; Xia et al. 2004 Nat Med 10:816-820). Nevertheless, studies have shown that high levels of siRNAs can cause cellular toxicity through various mechanisms (Boudreau et al, 2009; Grimm et al, 2006).

A possible alternative to such RNA-targeting approaches is the modulation of gene expression at the transcriptional level, by using zinc-finger (ZF)-based artificial transcription factors (ZF- ATFs) that can be tailored to a desired DNA target sequence. Such artificial ZF proteins (also designated as ZFPs) are becoming a novel and powerful technological platform for both gene manipulation and development of therapeutics (Jamieson et al. 2003 Nat Rev Drug Discov 2:361-368; Pearson 2008 Nature 455:160-164; Segal & Barbas 2001 Curr Opin Biotechnol 12:632-637). Artificial ZFPs are composed of a DNA-binding domain (DBD, i.e. an independently folded protein domain that contains at least one motif that recognizes double- or single-stranded DNA. A DBD can recognize a specific DNA sequence (a recognition sequence) or have a general affinity to DNA.) that is based on the Cys2His2 ZF scaffold fused with a transcriptional regulation domain (such as an activator or repressor). Their modular structure enables both the sequential assembling of multiple ZFs to generate DBDs with different target specificities and the use of various effector domains to engineer ATFs or nucleases.

To date, several functional ZF-ATFs have been generated to modulate target gene expression in vitro and in vivo (Mattei et al. 2007 PLOS One 2:e774; Rebar et al. 2002 Nat Med 8:1427- 1432). Mussolino et al. were able to demonstrate in vivo silencing of the human disease gene rhodopsin (hRHO) in a ADRP mouse model via vector-mediated somatic-gene transfer thanks to a ZF comprising a repressor domain (Mussolino et al. 2011 EMBO Mol Med 3:118-128). WO2012106725 relates to a fusion protein comprising an engineered DNA binding domain and a functional domain, wherein the protein binds to a target site in, and modulates expression of, at least one endogenous rhodopsin allele. This document discloses rhodopsin- targeted zinc finger proteins comprising nucleases as effector domain. Such proteins recognize specific target sequences of the rhodopsin gene. Such sequences correspond to the location of the cleavage site of the specific nuclease and are located in the vicinity of specific RHO mutations. Therefore, each described zinc finger proteins acts only on a specific mutation of rhodopsin that can be modified by ZFN-driven DNA repair.

Similarly, artificial TAL (transcription activator-like) effectors protein (often referred to as TALEs) may be used. They are composed of a DBD that can recognize DNA sequences through a central repeat domain consisting of a variable number of around 34 amino acid repeats fused with a transcriptional regulation domain (such as an activator or repressor). There appears to be a one-to-one correspondence between the identity of two critical amino acids in each repeat and each DNA base in the target sequence. Numerous groups have designed artificial TAL effectors capable of recognizing new DNA sequences in a variety of experimental systems. Such engineered TAL effectors have been used to create artificial transcription factors that can be used to target and activate or repress endogenous genes also in human cells (Miller et al. (2010). "A TALE nuclease architecture for efficient genome editing". Nature Biotechnology 29 (2): 143-148; Cong et al. "Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains". Nature Communications. 968 3; Zhang et al. (2011). "Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription". Nature Biotechnology 29 (2): 149).

Autosomal dominant retinitis pigmentosa (ADRP) is the most genetically heterogeneous inherited disease in humans: more than 30 genes and many different mutations, over 100 mutations in rhodopsin alone, have been associated with retinitis pigmentosa. Dominant forms of retinitis pigmentosa include those that molecularly are owed to gain of function mutation but either those due to aplo-insufficiency or dominant negative effect. This genetic heterogeneity is associated with differences in rate and the extent of the degeneration. Accounting for 30%-40% of all cases of retinitis pigmentosa, autosomal dominant retinitis pigmentosa (ADRP) is the consequence of mutations in 24 known genes (Table 1) (Rossmiller et al. Molecular Vision 2012; 18:2479-2496). Despite the range of genes responsible for ADRP, approximately 30% of ADRP arises from mutations in the rhodopsin gene and therefore the authors focused the authors' attention on treatment of mutations affecting the rhodopsin gene. Table 1: Known gene causing ADRP and associated proteins names. References are at RetNet: https://sph.uth.edu/retnet/.

Currently, there are no effective treatments for ADRP. Nutritional therapy featuring vitamin A or vitamin A plus docosahexaenoic acid reduces the rate of degeneration in some patients. Retinal analogs and pharmaceuticals functioning as chaperones show some progress in protecting the retina in animal models, and several antioxidant studies have shown lipophilic antioxidant taurousodeoxycholic acid (TUDCA), metallocomplex zinc desferrioxamine, N- acetyl-cysteine, and a mixture of antioxidants slow retinal degeneration in rodent rdl, rdlO, and Q.344ter models. A clinical trial is under way to test the efficacy of the protein deacetylase inhibitor valproic acid as a treatment for retinitis pigmentosa. Valproic acid blocks T-type calcium channels and voltage-gated sodium channels, and is associated with significant side effects such as hearing loss and diarrhea. Therefore, the use of valproic acid as a treatment for retinitis pigmentosa has been questioned (Rossmiller et al. Molecular Vision 2012; 18:2479-2496).

SUMMARY OF THE INVENTION

In the present invention, the authors generated a novel functional DNA binding domain and surprisingly determined novel properties of this isolated domain by comparing it to a previously described system comprising also repressor domains and by functionally assessing the transcriptional output and the physiological and pathophysiological consequences on a healthy and diseased retina photoreceptor cellular specific subtypes in two animal species. In addition, the authors also studied the consequences of altering the cis-acting elements on a DNA target site in photoreceptor cellular specific subtypes.

In particular, in the present study authors demonstrate that an artificial DNA-binding domain (ZF6-DBD) targeted to 20 base-pair (bp) long sequence of human RHODOPSIN (RHO) proximal promoter when expressed via somatic gene transfer to retinal-rod photoreceptors blocks per se Rhodopsin expression. Differentially from a natural transcription factor (TF) this artificial DNA-binding domain lacks the effector domain, thus, this ZF6-DBD surprisingly generates transcriptional silencing per se owed to its DNA-binding properties.

Here the authors demonstrate that the sole ZF-DBD, without other functional domain such as the repressor domain, is surprisingly able to repress the human disease gene rhodopsin in two different animal settings (mouse and pig). The present finding is an example and is also applicable to other DNA binding domains, e.g. other zinc finger and TAL derived DNA binding domains and RNA-guided DNA-binding domain (Crispr/cas 9).

These surprising results have dramatic beneficial effects for dominantly inherited genetic eye diseases, in particular, Autosomal Dominant Retinitis Pigmentosa. Specifically the ablation of the effector domain from an artificial DNA-binding protein generates a protein with different properties (compared to an intact protein composed of a DNA-binding domain and a effector domain, i.e KRAB), which are mirrored in different functional outcomes, these include:

1- higher recovery of retinal function when delivered to photoreceptors of a mouse model of autosomal dominant retinitis pigmentosa (adRP) through an Adeno-associated virus (AAV) vector (Figure 3),

2- higher recovery of retinal function when delivered to photoreceptors of a mouse model of adRP through an AAV vector at different time points (Figure 6),

3- higher rhodopsin transcriptional down-regulation when delivered to photoreceptors of two species (mouse and pig) through an Adeno-associated virus (AAV) vector (Figure 4 and 8), 4- higher rhodopsin transcriptional down-regulation when delivered to photoreceptors of two species (mouse and pig) through an Adeno-associated virus (AAV) vector at different time points (Figures 4, 8, 12).

5- absence of potential side effects (no off-targets; no reduction in Arr3, Figure 8);

6- good vector yield (improved production of protein), In particular in an adeno-associated viral vector, mare particularly in a AAV8-CMV system (Figure 14).

Natural transcription factors (TFs) have both a DBD and effectors domains, which attracts by protein-protein interactions a number of other proteins which can ultimately result in either transcriptional repression or transcriptional activation. Transcriptional repression and transcriptional activation generate cell-specific signaling, including whole cell-specific transcriptome map. On the contrary, artificial DBDs are external and independent to the topology of the regulatory network (they are driven as in the example thereof by a CMV promoter and they are not connected by protein-protein regulatory maps) and are transcriptionally independent from the endogenous cell-specific regulatory code (whole cell- specific transcriptome map). Indeed, natural TFs themself belong to a cell-specific transcriptome map, i.e. regulators of regulators, therefore they are finely tuned by other cell- specific TFs sets which control through binding to TFs binding sites either transcriptional activation or repression eventually resulting in cell-specific function.

Data of the present Invention suggest the identification of a novel short (20bp) cis-acting DNA sequence (cis-regulatory element, CRE) not fully conserved in evolution that is not an enhancer but can significantly control RHO levels. These results support that per se the DNA target cis-acting element (besides the activity of the binding protein) contains critical information content for RHO expression.

Regarding the cis-acting DNA target sequence, it was observed that:

1- site-specific ablation of the DNA target result in a significant drop of transgene expression when expressed with AAV vectors in the proper specific cellular subtype milieu (Figure 19), 2- site-specific mutagenesis of the DNA target result in a significant drop of transgene expression when expressed with AAV vectors in the proper specific cellular subtype milieu (Figure 20).

The authors then propose a two-step repression-replacement strategy: (i) mutational- independent silencing of the human rhodopsin gene (transcriptional silencing targeted to both wild-type and mutated RHO alleles) through ZF-DBDs; and optionally (ii) gene replacement of the endogenous RHO copies by vector-mediated photoreceptor exogenous gene transfer.

The feasibility of this proposed approach is based on the following considerations:

(i) the authors have demonstrated the superior ability of ZF-DBD delivery to down-regulate the levels of RHO gene transcription, which represents the major limiting step in the strategy;

(ii) the therapeutic levels of transcriptional silencing result in phenotype amelioration;

(iii) the authors have demonstrated the superior safety of ZF-DBD delivery compared to a protein comprising DNA binding domain and functional domain (in particular due to fewer off-tagert effects);

(iv) there is the possibility to incorporate both the silencing and the replacement constructs into the same vector.

Indeed, a vector that incorporates both the ZF-DBD and the replacement gene will ensure their simultaneous action in the same transduced photoreceptors e.g. with bidirectional promoters allowing the coordinated expression of the two transgenes.

The present invention provides a protein consisting of a DNA binding domain targeting a DNA regulatory sequence of a gene selected from the group consisting of: RHO, BEST1, CA4, RP17, CRX, FSCN2, RP30, GUCA1B, RP48, IMPDH1, RP10, KLHL7, RP42, NR2E3, NRL, RP27, ORP1, DCDC4A, RP1, PRPF3, RP18, PRPF31, PRPF6, rp60, PRPF8, PRPH2, RDS, RP7, ROM1, RP1, LI, RP63, RP9, RPE65, RP20, SEMA4A, RP35, MERTK, RP33, TOPORS, HK1, PRPF4, RDH12, LCA13, RP53, SNRNP200, ASCC3L1, BRR2, HECIC2, RP33.

Preferably the targeting of the DNA regulatory sequence induces the repression of the expression of said gene.

Preferably said gene is in a mutated form or a wild-type form. The mutated form of said genes is responsible for an inherited eye disease, preferably an autosomal dominant inherited eye disease, preferably an autosomal recessive inherited eye disease. It can be any mutation in the genes reported in Table 1.

In a preferred embodiment the gene is in a mutated form.

In a preferred embodiment the DNA binding domain is selected from the group consisting of: a zinc finger domain, a transcription activator-like (TAL) DNA binding domain or a RNA-guided DNA-binding domain or a functional fragment thereof or a derivative thereof.

Preferably, the DNA regulatory sequence is comprised in a promoter region sequence of said gene.

Still preferably the DNA regulatory sequence is comprised in the promoter region sequence of RHO.

Yet preferably the DNA regulatory sequence comprises a sequence selected from the group of: GGGGGTTAGAGGGTCTACGA (SEQ ID No. 22), CACCCCCAATCTCCCAGATGCTGAT (SEQ ID No.

23), TCAGCATCTGGGAGATTG (SEQ ID No. 24), GGGGGTTAGAGGGTCT (SEQ ID No. 25),

GGGGGTTAGAGGGTCTA (SEQ ID No. 26), TGAACACCCCCAATCTCC (SEQ ID No. 27) or

GTGGGGGTTAGAGGGT (SEQ ID No. 28).

More preferably the DNA regulatory sequence has essentially a sequence selected from the group of: GGGGGTTAGAGGGTCTACGA (SEQ ID No. 22), CACCCCCAATCTCCCAGATGCTGAT

(SEQ ID No. 23), TCAGCATCTGGGAGATTG (SEQ ID No. 24), GGGGGTTAGAGGGTCT (SEQ ID No.

25), GGGGGTTAGAGGGTCTA (SEQ ID No. 26), TGAACACCCCCAATCTCC (SEQ ID No. 27) or

GTGGGGGTTAGAGGGT (SEQ ID No. 28).

In a preferred embodiment the protein consists essentially of a sequence selected from the group consisting of: SEQ ID No. 3, SEQ ID No. 5, SEQ ID No. 7, SEQ ID No. 9, SEQ ID No. 13,

SEQ ID No. 15, SEQ ID No. 17, or a fragment or derivative thereof.

The present invention provides a nucleic acid molecule encoding the protein as defined above The present invention provides a vector comprising the nucleic acid molecule of the invention. Preferably said vector is a viral vector. Preferably the vector is selected from the group consisting of: adenoviral vectors, lentiviral vectors, retroviral vectors, adeno associated vectors (AAV) or naked plasmid DNA vectors.

In a preferred embodiment said vector further comprises a nucleotide sequence of a gene selected from the group consisting of: RHO, BEST1, CA4, RP17, CRX, FSCN2, RP30, GUCA1B, RP48, IMPDH1, RP10, KLHL7, RP42, NR2E3, NRL, RP27, ORP1, DCDC4A, RP1, PRPF3, RP18, PRPF31, PRPF6, rp60, PRPF8, PRPH2, RDS, RP7, ROM1, RP1, LI, RP63, RP9, RPE65, RP20, SEMA4A, RP35, MERTK, RP33, TOPORS, HK1, PRPF4, RDH12, LCA13, RP53, SNRNP200, ASCC3L1, BRR2, HECIC2 and RP33.

In a preferred embodiment the vector further comprises a retina specific promoter and, optionally, regulatory sequences.

Preferably the retina specific promoter is the rhodopsin kinase (RHOK) promoter or the transducin 1 (GNAT1) promoter, preferably the human transducin 1 (GNAT1) promoter.

The present invention provides a host cell transformed by the vector of the invention.

The present invention provides a viral particle containing the vector of the invention.

The present invention provides a pharmaceutical composition comprising the protein as defined above or the nucleic acid or the host cell or the viral particle containing the vector as defined above and a pharmaceutically acceptable excipient.

The present invention provides a pharmaceutical composition comprising the vector as defined above and a pharmaceutically acceptable excipient.

In the present invention any combination of the protein, nucleic acid, host cell or vector as defined above may be used in the pharmaceutical composition.

Preferably the composition further comprises a vector comprising a nucleotide sequence of a gene selected from the group consisting of: RHO, BEST1, CA4, RP17, CRX, FSCN2, RP30, GUCA1B, RP48, IMPDH1, RP10, KLHL7, RP42, NR2E3, NRL, RP27, ORP1, DCDC4A, RP1, PRPF3, RP18, PRPF31, PRPF6, rp60, PRPF8, PRPH2, RDS, RP7, ROM1, RP1, LI, RP63, RP9, RPE65, RP20, SEMA4A, RP35, MERTK, RP33, TOPORS, HK1, PRPF4, RDH12, LCA13, RP53, SNRNP200, ASCC3L1, BRR2, HECIC2 and RP33.

Preferably he protein or the nucleic acid or the vector or the host cell or the viral particle or the pharmaceutical composition of the invention as defined above is for use in the treatment of an autosomal dominant inherited eye disease and/or of an autosomal recessive inherited eye disease.

In particular BEST1, NR2E3, NRL, RHO, RP1, RPE65 are genes that cause both autosomal dominant and recessive inherited eye disease, such as Autosomal Dominant Retinitis Pigmentosa and Autosomal Recessive Retinitis Pigmentosa.

Preferably the treatment is a gene therapy. Still preferably the autosomal dominant inherited eye disease is autosomal dominant retinitis pigmentosa (ADRP) or Congenital Stationary Night Blindness. Yet preferably the autosomal dominant inherited eye disease is autosomal dominant retinitis pigmentosa (ADRP).

Preferably the autosomal recessive inherited eye disease is autosomal recessive retinitis pigmentosa.

The present invention provides a method for the treatment of an autosomal dominant inherited eye disease or of an autosomal recessive inherited eye disease of a subject in need thereof, said method comprising administering a suitable amount of the protein or the nucleic acid or the vector or the host cell or the viral or the pharmaceutical composition as defined above.

The present invention provides a method to identify a DNA binding domain targeting a potential DNA regulatory sequence comprising:

a) generating two independent constructs:

-a first construct comprising a sequence of a reporter gene under the control of the potential DNA regulatory sequence;

-a second construct comprising a sequence of a reporter gene under the control of the potential DNA regulatory sequence that has been mutated;

b) expressing each construct of step a) in vivo in the retina;

c) comparing the expression of the reporter gene under the control of the potential

DNA regulatory sequence with the expression of the reporter gene under the control of the mutated potential DNA regulatory sequence;

wherein if a reduction in the expression of the reporter gene under the control of the mutated potential DNA regulatory sequence is observed when compared to the expression of the reporter gene under the control of the potential DNA regulatory sequence , the potential DNA regulatory sequence is a DNA regulatory sequence and a DNA binding domain is identified;

d) Optionally, designing a DNA binding protein targeting the DNA regulatory sequence.

The present invention provides a DNA binding domain targeting a potential DNA regulatory sequence identified by the method as defined above. Preferably the DNA binding domain targeting a potential DNA regulatory sequence identified by the above method is as defined above.

In the present invention, the targeting of the DNA regulatory sequence by means of the sole DNA-binding domain induces the repression of the expression of the gene of interest. The term repression means inhibition, lowering, decreasing gene expression.

In the present invention, the gene therapy may be achieved by the administration of a single vector comprising:

-a nucleic acid molecule encoding a DNA binding domain targeting a DNA regulatory sequence controlling the expression of a gene selected from the group consisting of: RHO, BEST1, CA4, RP17, CRX, FSCN2, RP30, GUCA1B, RP48, IMPDH1, RP10, KLHL7, RP42, NR2E3, NRL, RP27, ORPl, DCDC4A, RPl, PRPF3, RP18, PRPF31, PRPF6, rp60, PRPF8, PRPH2, RDS, RP7, ROMl, RPl, LI, RP63, RP9, RPE65, RP20, SEMA4A, RP35, MERTK, RP33, TOPORS, HK1, PRPF4, RDH12, LCA13, RP53, SNRNP200, ASCC3L1, BRR2, HECIC2 and RP33,

-a nucleic acid molecule of a wild type gene selected from the group consisting of: RHO,

BEST1, CA4, RP17, CRX, FSCN2, RP30, GUCA1B, RP48, IMPDH1, RP10, KLHL7, RP42, NR2E3, NRL, RP27, ORPl, DCDC4A, RPl, PRPF3, RP18, PRPF31, PRPF6, rp60, PRPF8, PRPH2, RDS, RP7,

ROMl, RPl, LI, RP63, RP9, RPE65, RP20, SEMA4A, RP35, MERTK, RP33, TOPORS, HK1, PRPF4,

RDH12, LCA13, RP53, SNRNP200, ASCC3L1, BRR2, HECIC2 and RP33.

Alternatively, two vectors may be used, each comprising i) or ii), respectively.

In the present invention the doses to be administered may be determined easily based on the desired effect and known methods. Preferably the molecule or the composition of the invention is administered in the retina.

The delivery vehicles of the present invention may be administered to a patient. A skilled worker would be able to determine appropriate dosage rates. The term "administered" includes delivery by viral or non-viral techniques. The vectors may, for example, be plasmid vectors, mRNA vectors (e.g. in vitro transcribed mRNA vectors) or viral vectors. Viral delivery mechanisms include but are not limited to adenoviral vectors, adeno-associated viral (AAV) vectors, herpes viral vectors, retroviral vectors, lentiviral vectors, and baculoviral vectors vaccinia viruses, foamy viruses, cytomegaloviruses, Semliki forest virus, poxviruses, RNA virus vector and DNA virus vector, etc as described above. Such viral vectors are well known in the art. Non-viral delivery mechanisms include lipid mediated transfection, liposomes, immunoliposomes, lipofectin, cationic facial amphiphiles (CFAs) and combinations thereof. As an alternative to the delivery of polynucleotides to cells, the DBD of the present invention may be delivered to cells by protein transduction. The protein transduction may, for example, be via vector delivery or by direct protein delivery.

The present invention also provides a pharmaceutical composition for treating an individual, wherein the composition comprises a therapeutically effective amount of the protein/nucleic acid/vector or host cell of the present invention or a viral particle produced by or obtained from same. The pharmaceutical composition may be for human or animal usage. Typically, a physician will determine the actual dosage which will be most suitable for an individual subject and it will vary with the age, weight and response of the particular individual. The composition may optionally comprise a pharmaceutically acceptable carrier, diluent, excipient or adjuvant. The choice of pharmaceutical carrier, excipient or diluent can be selected with regard to the intended route of administration and standard pharmaceutical practice.

The pharmaceutical compositions may comprise as - or in addition to - the carrier, excipient or diluent any suitable binder(s), lubricant(s), suspending agent(s), coating agent(s), solubilising agent(s), and other carrier agents that may aid or increase the viral entry into the target site (such as for example a lipid delivery system).

Where appropriate, the pharmaceutical compositions can be administered by any one or more of: inhalation, in the form of a suppository or pessary, topically in the form of a lotion, solution, cream, ointment or dusting powder, by use of a skin patch, orally in the form of tablets containing excipients such as starch or lactose, or in capsules or ovules either alone or in admixture with excipients, or in the form of elixirs, solutions or suspensions containing flavouring or colouring agents, or they can be injected parenterally, for example intracavernosally, intravenously, intramuscularly or subcutaneously. In one aspect, the parenteral administration route may be intraocular administration. Intraocular administration of the present composition can be accomplished by injection or direct (e.g., topical) administration to the eye. In addition to the topical routes of administration to the eye described above, suitable intraocular routes of administration include intravitreal, intraretinal, subretinal, subtenon, peri- and retro-orbital, trans-corneal and trans-scleral administration. Such intraocular administration routes are within the skill in the art.

For parenteral administration, the compositions may be best used in the form of a sterile aqueous solution which may contain other substances, for example enough salts or monosaccharides to make the solution isotonic with blood. For buccal or sublingual administration the compositions may be administered in the form of tablets or lozenges which can be formulated in a conventional manner.

The man skilled in the art is well aware of the standard methods for incorporation of a polynucleotide or vector into a host cell, for example transfection, lipofection, electroporation, microinjection, viral infection, thermal shock, transformation after chemical permeabilisation of the membrane or cell fusion. As used herein, the term "host cell or host cell genetically engineered" relates to host cells which have been transduced, transformed or transfected with the construct or with the vector here described.

As representative examples of appropriate host cells, one can cites bacterial cells, such as E. coli, Streptomyces, Salmonella typhimurium, fungal cells such as yeast, insect cells such as Sf9, animal cells such as CHO or COS, plant cells, etc. The selection of an appropriate host is deemed to be within the scope of those skilled in the art from the teachings herein. Preferably, said host cell is an animal cell, and most preferably a human cell. The host cell can be a cultured cell or a primary cell, i.e., isolated directly from an organism, e.g., a human. The host cell can be an adherent cell or a suspended cell, i.e., a cell that grows in suspension..

Administration of a therapeutically active amount of the pharmaceutical compositions of the present invention, or an "effective amount", is defined as an amount effective at dosages and for periods of time, necessary to achieve the desired result of increasing/decreasing the production of proteins. A therapeutically effective amount of a substance may vary according to factors such as the disease state/health, age, sex, and weight of the recipient, and the inherent ability of the particular polypeptide, nucleic acid coding therefore, or recombinant virus to elicit the desired response. Dosage regimen may be adjusted to provide the optimum therapeutic response. For example, several divided doses may be administered daily or at periodic intervals, and/or the dose may be proportionally reduced as indicated by the exigencies of the therapeutic situation. For instance, in general for viral vectors administration, suitable dosages will vary from 108 to 1013 vg (vector genomes)/eye.

The transcriptional, mutational-independent strategy used in the present study is aimed at improving the use of ZFs to overcome the hurdles in the development of an effective therapeutic strategy for gain-of function mutations in autosomal dominant inherited eye diseases.

A "protein domain" is a conserved part of a given protein sequence and structure that can evolve, function, and exist independently of the rest of the protein chain. Each domain forms a compact three-dimensional structure and often can be independently stable and folded. Many proteins consist of several structural domains. Molecular evolution uses domains as building blocks and these may be recombined in different arrangements to create proteins with different functions. Domains vary in length from between about 25 amino acids up to 500 amino acids in length. Because they are independently stable, domains can be "swapped" by genetic engineering between one protein and another to make chimeric proteins.

A "DNA-binding domain" (DBD) is an independently folded protein domain that contains at least one motif that recognizes double- or single-stranded DNA. A DBD can recognize a specific DNA sequence (a recognition or regulatory sequence) or have a general affinity to DNA. One or more DNA-binding domains are usually part of a so-called DNA binding protein, i.e. a larger protein consisting of additional domains with differing function. The additional domains often regulate the activity of the DNA-binding domain. The function of DNA binding is either structural or involving transcription regulation, with the two roles sometimes overlapping.

In the present invention the DNA binding domain may be a zinc finger domain (ZF domain) or a transcription activator-like DNA binding domain (TAL domain) or a RNA-guided DNA-binding domain (Crispr/cas 9). In particular synthetic or artificial ZF or TAL domains or RNA-guided DNA-binding domain (Crispr/cas 9). The DNA binding domain may be a functional fragment or a functional derivative of the above domain. A functional fragment is a domain that lacks one or more modules and that nevertheless maintains the ability to recognize the specific regulatory sequence. A functional derivative is a domain that contains mutation, substitutions and that nevertheless maintains the ability to recognize the specific regulatory sequence. A man skilled in the art is well aware of the methods for designing ZF or TAL or Crispr/cas domains and functional fragments and functional derivative thereof and testing specificity. A single ZF motif (also called module) consists of approximately 30 amino acids with a simple beta-beta-alpha fold that is stabilized by hydrophobic interactions and the chelation of a single zinc ion. Each ZF module primarily recognizes an overlapping 3-4-bp DNA sequence, where the last base pair is the first of the following target (the fourth base of each target is on the opposite strand). The binding takes place through key amino-acid residues, which can be exchanged to generate ZF modules with different sequence specificities. To obtain a DBD that is tailored to a unique target sequence (also called regulatory sequence) in mammalian genomic DNA (genome size in humans, 3.0_109 bp), theoretically a sequence longer than 18 bp is needed, and this can be achieved by consecutive linking of one or more ZF modules, in particular at least two ZF modules, at least three ZF modules, at least four ZF modules, at least five ZF modules or six ZF modules. However this theoretical sequence length is a general speculation that does not take into account cell-specific genomic features of human photoreceptors. Therefore, a specific sequence shorter than 18 bp could be equally uniquely recognized in specific tissue and cell types.

The general structural of DNA-binding domains derived from transcription activator-like effectors (TALEs), which are derived from the plant pathogenic Xanthomonas spp. bacterium or TALE-like proteins from Ralstonia spp. can also be engineered to bind to predetermined DNA sequences (Li, L. et al. Characterization and DNA-binding specificities of Ralstonia TAL- like effectors. Mol. Plant 6, 1318-1330; 2013). TAL-DBD are composed of tandem arrays of 33-35 amino acid repeats, each of which recognizes a single base-pair in the major groove. The nucleotide specificity of each repeat module is determined by the two amino acids at positions 12 and 13 (Moscou, M. J. & Bogdanove, A. J. A simple cipher governs DNA recognition by TAL effectors. Science 326, 1501; 2009), which are called repeat variable diresidues (RVDs). Four different RVD modules— namely Asn-Asn, Asn-lle, His-Asp and Asn- Gly — are most widely used to recognize guanine, adenine, cytosine and thymine, respectively.

The CRISPR (clustered regularly interspaced short palindromic repeats) system provides a potential platform for targeted gene regulation (Barrangou et al., 2007). CRISPR systems have been found in different organisms; one of the simplest is the type II CRISPR system from Streptococcus pyogenes. In this system a single gene encoding the Cas9 protein and two RNAs, a mature CRISPR RNA (crRNA) and a partially complementary trans-acting RNA (tracrRNA), are necessary and sufficient for RNA-guided silencing of foreign DNAs. The mutant protein Cas9, which is defective in DNA cleavage, can actually act as a simple RNA-guided DNA-binding domain.

Therefore, the CRISPR/Cas system of Streptococcus pyogenes can be programmed to design DNA binding domain to specific eukaryotic regulatory sequences through the simple engineering of guide RNAs with base-pairing complementarity to such regulatory DNA sites. Cas9 can be used as a customizable RNA-guided DNA-binding platform.

DNA-binding domains (i.e. DNA-binding proteins lacking an effector domain) are potent by their nature because they are acting at the source of signaling (genomic DNA), mimicking the intrinsic robustness of the nature of transcriptional signaling a nd outperforming it considering the specificity and thus, in therapeutic perspective safety and efficacy.

Transcription factors (TFs) are DNA-binding proteins composed of two main functional domains, the effector domain and the DNA binding domain. The effector domains are responsible of transcription activation and repression. The activator-domain and repressor- domain work mainly by recruitment of large transcriptional coactivators and corepressors complexes via protein-protein interactions These cofactors then act both directly and indirectly to regulate the activity of the RNA polymerase II transcriptional machinery at the core promoter. The DNA binding domains have the function of determining DNA recognition properties (DNA-binding specificities) . Members of a particular class (i.e., paralogous TFs) often have similar DNA binding preferences (Badis et al., 2009). However, despite apparently shared protein structure of DNA binding domains, TFs might exhibit non-conserved binding properties. In these cases, protein-protein interactions occurring typically between the effector domain and other cell-specific nuclear proteins are thought to be responsible for differential in vivo DNA binding of TFs. For instance KRAB-mediated gene silencing requires binding to the corepressor KAP-1. The KRAB:KAP-1 interaction requires the RING-B box-coiled coil (RBCC) domain (Peng H. et al). Therefore, also protein-protein interactions participate in generating different DNA-binding specificities. Another factor that determines in vivo TF binding is the local chromatin environment (Arvey et al., 2012). In addition, natural TFs themself belong to a cell-specific transcriptome map (regulators of regulators), therefore they are finely tuned by other cell-specific TF sets which control their activation or repression eventually resulting in cell-specific function.

Therefore in summary both natural transcription factors and artificial DBDs domains coupled to effector domains have both a DBD and effectors domains which attracts by protein-protein interactions a number of other proteins which can ultimately result in either transcriptional repression or transcriptional activation.

On the contrary, artificial isolated DBDs are external to the topology of the regulatory network and are transcriptionally independent from the endogenous cell-specific regulatory code (whole cell-specific transcriptome map). Therefore, artificial DNA-binding domains are suited to generate potent means to efficaciously and safely modulate transcription, then leading to generate therapeutics.

The present invention will be illustrated by means of non-limiting examples in reference to the following figures.

Figure 1. A- Schematic representation of the ZF6 transcriptional repressor (ZF6-KRAB; Mussolino et al 2011 (EMBO Mol Med. 2011 Mar;3(3):118-28) and the novel ZF6-DBD. B- DNA sequence on the Human promoter proximal region, in capitals the DNA bases binding sites for both ZF6-KRAB and ZF6-DBD. C- Western Blot analysis following transfection on HEK293 cells, using anti HA epitope antibody, showing the different molecular weight of ZF6-KRAB (34KDa) compared to ZF6-DBD (22KDa). Total protein quantity was normalized with anti tubulin antibody.

Figure 2. Electrophysiological responses of retina recorded by ERG analysis, on P347S mice injected subretinally with AAV8-CMV-ZF6-DBD or AAV8-CMV-ZF6-KRAB or AAV8-CMV-EGFP (lxlOE9 vg) at P30. A-C, The amplitudes represent retinal responses evoked by increasing light intensities under scotopic (dim light) and photopic (bright light) conditions. B-wave amplitudes before treatment (base-line: P30; black circles,) and after treatment (P50; triangles). Twenty days after vector delivery, the electrophysiologic responses of the retina were preserved in ZF6-DBD and ZF6-KRAB treated eyes compared to control contralateral EGFP injected eyes. D diagram representing the conservation of the functional retinal responses in both ZF6-DBD and ZF6-KRAB retinas compared to controls, however the ZF6-DBD outperformed ZF6-KRAB level of retinal function preservation. *p < 0.01; **p < 0.001, ***p<0.0001 as statistically significance differences (t-test) Statistical value: figure 2. A [eyes before injection of eGFP (baseline, P30) vs eyes injected with eGFP (P50)]; figure 2.B [eyes before injection of ZF6-KRAB (baseline, P30) vs eyes injected with ZF6-KRAB (P50)]; figure 2.B [eyes before injection of ZF6-DBD (baseline, P30) vs eyes injected with ZF6-DBD (P50)].

Figure 3. Comparison of electrophysiological responses of retina recorded by ERG analysis, on P347S mice injected subretinally with AAV8-CMV-ZF6-DBD or AAV8-CMV-ZF6-KRAB or AAV8- CMV-EGFP (lxlOE9 vg) at P14 and sacrified at P30. A-B, The amplitudes represent retinal a- and b-waves responses evoked by increasing light intensities under scotopic (dim light) and photopic (bright light) conditions. Statistically significance differences in panel A between EGFP control eyes and ZF6-DBD injected eyes; in panel B between eGFP control eyes and ZF6- DBD injected eyes and between ZF6-DBD and ZF6-KRAB (square bracket). C, Fourteen days after vector delivery, the electrophysiologic responses of the retina were preserved much more significantly in ZF6-DBD than in ZF6-KRAB treated eyes; statistically significance difference between ZF6-DBD and ZF6-KRAB injected eyes vs eGFP injected eyes. D, diagram representing the direct comparison of conservation of retinal ERG responses relative to ZF6- DBD and ZF6-KRAB; statistically significance difference between ZF6-DBD injected eyes (n=32) vs ZF6-KRAB injected eyes (n=10). *p < 0.01; **p < 0.001, ***p<0.0001 as statistically significance differences (t-test). Figure 4. A Histogram from quantitative RT-PCR analysis of hRHO and Gnatl mRNA levels in transduced retinas, with ZF6-DBD (17 eyes with rhodopsin down-regulation on 21 eyes analized) and ZF6-KRAB (10 eyes with rhodopsin down-regulation on 11 eyes analized) The values were normalized with murine GAPDH and Act β transcript levels, *p < 0.01; **p < 0.001, ***p<0.0001 as statistically significance differences between ZF6-DBD injected eyes vs eGFP injected eyes (t-test). (B) Average expression levels of the AAV8 vector transgenes upon subretinal injections of lxlOE9 vector particles of AAV8-CMV-EGFP, AAV8-CMV-ZF6-DBD and AAV8-CMV-ZF6-KRAB (C) Western blot a nalysis on RHO in retina l samples treated with AAV8- CMV-EGFP, AAV8-CMV-ZF6-DBD and AAV8-CMV-ZF6-KRAB (D) I mmunofluorescence analysis of P347S mice injected with AAV8-CMV-ZF6-DBD. (E) HA stained retina shows nuclear localization of the HA tag and lack of its presence in AAV8-CMV-EGFP control. (F-H) human- specific 3A6 antibodies does not label wild type retinas (F), is virtually absent in AAV8-CMV- ZF6-DBD treated eye (G) and label AAV8-CMV-EGFP treated control retinas (H).

Figure 5. Electrophysiological responses of retina recorded by ERG analysis, on P347S mice injected at P4 subretinally with AAV8-CMV-ZF6-DBD or AAV8-CMV-EGFP (lxlOE9 vg) and analyzed at P30 between ZF6-DBD injected eyes vs eGFP injected eyes *p < 0.01; **p < 0.001, as statistically significance differences (t-test).

Figure 6. Electrophysiological responses of retina recorded by ERG ana lysis of P347S mice injected at P4, P14 and P30 P30 subretinally with AAV8-CMV-ZF6-DBD or AAV8-CMV-EGFP (lxlOE9 vg) a nd analyzed at P30 or P50 (P30 injected cohort). A Representative wave form of eyes treated with ZF6-DBD (P4, P14, P30) and eGFP treated eyes (P30) at different luminance. B Representative wave form of eyes treated with ZF6-DBD (black line) and eGFP treated eyes (grey line) at different time point of injection; P4 top panel, P14 middle panel and P30 bottom panel. C Mean delta ERG response between ZF6-DBD injected eyes vs contralateral eyes injected with eGFP at different time point.

Figure 7. A.Chromosome localization of proximal rhodopsin promoter. Schematic representation of the rhodopsin proximal promoter, indicating the transcription start site and the location of cis-regulatory elements and their cognate binding proteins. B. Alignment of human and porcine proximal promoter; Bold ZFS-DBDCis-seq; in red the mismatch between human and porcine ZFS-DBDCis-seq. C. Schematic representation of binding of the ZF6-DBD with human and porcine rhodopsin promoter.

Figure 8. Treatment of wild type pig's retinae with AAV8-CMV-ZF6-DBD or AAV8-CMV-ZF6- KRAB at P90 and sacrificed after 15 days (vector dose 2xl0el0 vg). A Levels of retina's transcripts evaluated by qReal Time PCR. The ZF6-DBD reduced the endogenous rhodopsin expression compared with eGFP treated eyes, whereas the other genes of the retina are unaltered; **pvalue<0,01 B Western Blot analysis of lysate of pigs retinas using an a-RHO (1D4); a-Tubulin antibody was used for normalization.

Figure 9. A.Expression analysis of endogenous transcription factors (CRX and NRL) compared to ZF6-DBD delivered by AAV's in pig's retinas. B. Expression levels (in FPKM) of known Master Transcription Factors in the retina.

Figure 10. Binding of ZF6-DBD (Zf6DBD) on rhodopsin promoter. ChIP analysis in Sus scrofa retina using antibody against HA. We compared the physical binding of ZF6-DBD on rhodopsin transcription starting site (Tss) in ZF6-DBD treated versus untreated portions of the retina. We observed a specific and statistically significant enrichment in the treated region comparing with the level of binding in untreated region.

We used the upstream region of the rhodopsin promoter (3000bp up) as a negative control, in this case there are not differences between treated and untreated region. * pValue<0,05 Figure 11. Morphological characterization of pigs retina injected with AAV8-CMV-ZF6-DBD A. Coimmunolabeling analysis of pigs retinae for rhodopsin 1D4 (green) and HA-tag (red), that identified the ZF6-DBD protein, injected ZF6-DBD. B. Triple immunofluorescence analysis using rhodopsin 1D4 (blue), HA-tag (red) and GNAT1 (green) of ZF6-DBD injected retina; red arrow indicates the HA-tag positive cell; green arrow indicates HA-tag negative cell. C. Immunofluorescence analysis using cone arrestin antibody (Arr3; red in not injected retina and green in injected retina) and HA-tag (red) indicating the integrity of the cones. Magnification: 40X; OS, outer segments; IS, inner segments; ONL, outer nuclear layer.

Figure 12. A) AAV8-CMV-ZF6-DBD and AAV8-CMV-ZF6-KRAB delivery to P90 pigs retinas at a vector dose of lxlOElO vg, resulted in highly significant endogenous porcine Rhodopsin transcript repression at P97 compared to controls (ZF-KRAB not transduced area (NT) and ZF- DBD non transduced area (NT). B) Transgene expression levels (RT-PCR) obtained from harvested retinas.

Figure 13. A. Intersection between the ZF6-KRABand ZF-DBD Differentially Expressed Genes; B. Correlation between the Fold Change Levels of the DEGs shared by ZF-DBD and ZF-DBD- KRAB; Differentially expressed genes (FDR<0.05) shown as a Vann diagram and Correlation level between the fold changes levels of the differentially expressed genes in common between DBD-KRAB and DBD treatments, showing that the intersection between ZF6-KRAB and ZF6-DBD (57 DEGs) are functionally correlated and therefore likely binding the same genome targets.

Figure 14. Vector particles assessed by qPCR following AAV8 vector production. N= 4 AAV8- CMV-ZF6-KRAB, n=2 AAV8-RHOK-ZF6-KRAB, n= 2 AAV8-CMV-ZF6-DBD. *p<0.01 significant statistical differences between ZF6-DBD vs ZF6-KRAB (ubiquitus promoter).

Figure 15. Assessment in porcine adult retinae of human GNAT1 promoter strength for RHO replacement step of the silencing replacement strategy. Upper left panel: picture representing the GNAT1 promoter locus including a mutation in the CRX TF binding site, which enables enhancement of gene expression (J. Lee et a I, Gene Therapy 2010). Upper right panel: levels of transgene transcript (EGFP) after delivery in the subretinal spaces of increasing AAV8 vector doses containing the GNAT1 elements (AAV8hGNATl-EGFP: lxlOelO; lxlOell; Ixl0el2 vg). Lower panels: representative pictures of histological analysis of the retina treated at different vector doses (lxlOelO; lxlOell; Ixl0el2 vg).

Figure 16. Silencing and replacement experiment in pigs A. Expression levels of endogenous retina's genes of Pigs injected with AAV8-CMV-ZF6-DBD (dose: 1χ10 Λ 11) and AAV8-hGNATl- hRHO (dose 1χ10 Λ 12) sacrificed 15 days after injection. B. Expression levels of ZF6-DBD in injected eyes.

Figure 17. Identification of the minimal core sequence recognized by ZF6-DBD. Gel mobility shift analisys of ZF6-DBD DNA binding to the hRho proximal promoter region (hRho 43bp) including ZF6-DBDCVs-seg (A). The sequence of the hRho 43 bp wild type, hRho 43 bp mut F and hRho 43 bp mut L oligonucleotides are indicated (B); the core sequence is underlined, and the bases that have been mutated are indicated in green (B).

Figure 18. A . Sequences of human rhodopsin proximal promoter: wild type, ZF6-DBDCVs-seg mutated (MZF6-DBD) and ZF6-DBDC/ ' s-seg deleted (AZF6-DBD) respectively (in green CRX binding sites, in blue NRL binding site, in bold ZF6-DBDCVs-seg, in red the mutated and deleted sequences) B. Expression levels of eGFP evaluated by fold change analysis relative to expression of reporter vector (hRHO).

Figure 19. Assessment of cis-regulatory (ZF6 DNA-binding motif) significance in vivo by AAV8 vector (lxlOE9 vg) retinal delivery of a reporter (EGFP) expression cassette lacking the ZF6 target DNA motif (GGGGGTTAGagGGTCTACGA SEQ. ID No. 22; AZF6; AAV8-hRHO-AZF6-5'UTR- EGFP). A eGFP expression levels of AAV8-hRHO-5'UTR-EGFP and AAV8-hRHO-AZF6-5'UTR- EGFP in injected eyes by qRT-PCR using primers on polyA (bGH, bovine growth hormone polyA). ***p<0.0001 significance statistical differences between RHO-5'UTR-eGFP injected eyes vs hRHO-AZF6-5'UTR-EGFP. B eGFP expression levels of AAV8-hRHO-5'UTR-EGFP and AAV8-hRHO-AZF6-5'UTR-EGFP in injected eyes by histological analysis.

Figure 20. Assessment of cis-regulatory (ZF6 DNA-binding motif) significance in vivo by AAV8 vector (lxlOE9 vg) retinal delivery of a reporter (EGFP) expression cassette lacking the ZF6 target DNA motif (TTACTGTAATCTTAACCGGA [SEQ ID No. 29]; MutZF6; AAV8-hRHO-MutZF6- 5'UTR-EGFP). A eGFP expression levels of AAV8-hRHO-5'UTR-EGFP and AAV8-hRHO-AZF6- 5'UTR-EGFP in injected eyes by qRT-PCR using primers on polyA (bGH, bovine growth hormone polyA). ***p<0.0001 significance statistical differences between RHO-5'UTR-eGFP injected eyes vs hRHO- MutZF6-5'UTR-EGFP. B eGFP expression levels of AAV8-hRHO-5'UTR- EGFP and AAV8-hRHO-MutZF6-5'UTR-EGFP in injected eyes by histological analysis.

Figure 21. A . Sequences of rhodopsin proximal promoter: hRHOs, mRHOs, hRHOs insMurine, mRHO insHuman, hRHOs ΔΕνο, hRHOs Mevo, hRHOs 5G and hRHOs T3C. (in green CRX binding sites, in blue NRL binding site, in bold ZF6-DBDCVs-seg, in red the mutated and deleted sequences). B. Expression levels of eGFP evaluated by fold change analysis relative to expression of reporter vector (hRHO). ** pvalue<0,01; *** pvalue<0,001

Figure 22 A. Transfac analysis of the 25 bp containing the ZF6-DBDCVs-seg, 100 bp upstream the TSS. This site is reported in literature to cointain the binding sites for klf 15 (pig sequence). B. Expression levels of endogenous retina's genes of Pigs injected with AAV8-CMV-hKLF15 (dose: 2χ10 Λ 10) sacrificed 15 days after injection. (NT, not transduced area;)

Figure 23. Histogram showing the extent of repression relative to CRX transactivation of the luciferase activity mediated by ZF6-KRAB, ZF6-DBD, TALE-DBD and a control ZF9-KRAB. ZF6- KRAB, ZF6-DBD and TALE-DBD significantly repress the luciferase activity induced by CRX. Figure 24. pAAV2.1-CMV-ZF6-DBD. Features :

5'-ITR [248 : 377 - CW]

3'-ITR [2692 : 2821 - CW]

additional\AAV\sequences [2646 : 2691 - CW]

CMV\pro motor [458 : 1040 - CW]

SV40\misc\intron\(Promega) [1078 : 1210 - CW]

WPRE [1847 : 2383 - CW]

BGH\pA [2390 : 2604 - CW] ITR_RT_fw [292 : 309 - CW]

ITR_RT_rev [352 : 372 - CW]

ITR_RT_rev [2697 : 2717 - CW]

ITR_RT_fw [2760 : 2777 - CW]

AmpR [3585 : 4445 - CW]

ZF6\DBD [1227 : 1829 - CW]

ITR: Inverted Terminal Repeat

CMV: Cytomegalovirus

BGH: bovine growth hormone polyA

AmpR: Ampicillin Resistance

WPRE: woodchuck hepatitis posttranscriptional regulatory element

Figure 25. pAAV2.1-hGNATl-hRHO. Features :

5'-ITR : [248 : 377 - CW]

3'-ITR : [3029 : 3158 - CW]

additional\AAV\sequences : [2983 : 3028 - CW]

WPRE : [2179 : 2720 - CW]

BGH\pA : [2727 : 2941 - CW]

Rev\Ori\Nhel : [5572 : 5597 - CW]

Fw\Nhel\Ori : [4779 : 4802 - CW]

M13-fwd : [3194 : 3177 - CCW]

M13-rev : [205 : 225 - CW]

ColEl origin : [4931 : 5559 - CW]

LacZ alpha : [3265 : 3333 - CW]

LacO : [177 : 199 - CW]

Amp prom : [3852 : 3880 - CW]

lac : [143 : 172 - CW]

FactorXa site : [2661 : 2650 - CCW]

hGnatl prom : [458 : 1119 - CW]

hRho CDS : [1120 : 2167 - CW]

Figure 26. Overall medthod to generate DNA-binding protein tageted to CIS-acting elements to modulate transcription. A- Taking advantage of the gene transfer efficacy of AAV vectors to photoreceptors it is possible to study the activity of CIS-acting elements within the appropriate cell-specific environment (AAV-Cis-acting elements-REPORTER, i.e. AAV-RHO- promoter-mutant-EGFP delivered in vivo to photoreceptors). Once identified the sensitive Cis- acting elements it is possible to generate a DNA-binding protein tageted to this sequence

(AAV-ZF6-DBD for instance) to mimic the Cis-acting effect. ZF6DBD-5 TALRHO-02 and TAL7 DBD domains generated after isolation of Cis-acting properties within RHO promoter. B- After the generation of a RHO silencer as thereof reported, it is possible to generate a AAV vector containing it and couple this to a replacement construct (i.e. RHODOPSIN) to generate a

Silencing (ZF6-DBD) and Replacement (RHODOPSIN) strategy.

Figure 27. pAAV2.1-CMV-ZF6-5F. Features :

5' ITR : [248 : 377 - CW]

CMV promoter : [458 : 1040 - CW]

SV40 misc intron (promega) : [1078 : 1210 - CW]

BGH pA : [2309 : 2523 - CW]

Additional AW sequence : [2565 : 2610 - CW]

3' ITR : [2611 : 2740 - CW]

WPRE : [1761 : 2302 - CW]

M13-fwd : [2776 : 2759 - CCW]

M13-rev : [205 : 225 - CW]

ColEl origin : [4513 : 5141 - CW]

LacZ alpha : [2847 : 2915 - CW]

LacO : [177 : 199 - CW]

Amp prom : [3434 : 3462 - CW]

lac : [143 : 172 - CW]

HA tag : [1713 : 1739 - CW]

FactorXa site : [2243 : 2232 - CCW]

ZF6-5F (also called ZF6-5) : [1227 : 1748 - CW]

Figure 28. pAAV2.1-CMV-TAL7-DBD. Features :

Features :

5' ITR : [248 : 377 - CW]

CMV promoter : [458 : 1040 - CW]

SV40 misc intron (promega) : [1078 : 1210 - CW] NLS [1227 : 1256 - CW]

TAL7-DBD : [1257 : 3305 - CW]

bGH : [3312 : 3526 - CW]

3' ITR : [3568 : 3743 - CW]

Figure 29. pAAV2.1-CMV-TALRHO(02)DBD. Features :

5' ITR : [248 : 377 - CW]

CMV promoter : [458 : 1040 - CW]

SV40 misc intron (promega) : [1078 : 1210 - CW]

NLS [*] : [1227 : 1251 - CW]

TALRHO(02)DBD : [1252 : 3566 - CW]

HA : [3567 : 3602 - CW]

3'ITR : [3917 : 4046 - CW]

bGH PolyA : [3615 : 3829 - CW]

Figure 30. Schematic representation of binding of ZF6-5F, TAL7-DBD and TALRHO(02)DBD with human and porcine rhodopsin promoter. Shifting the target site of DBD domains (Zinc Finger-based and TALE technologies) based on the ZF6-DBDCis-seq elements results, see figure 21. Considering the sensitivity of the CCCCCA [SEQ. ID No. 30] sequence within the genomic ZF6-DBDCis-seq, artificial DNA binding proteins were either partially fragmented, ZF6-5F corresponding to the same amino acids composition of ZF6-DBD but lacking the last Finger (Finger 6, Figure 7) or targeting a 5" upstream sequence centering the CCCCCA [SEQ. ID NO. 30] sequence. In the case of TALRHO(02) (17 modules) 6 bases upstream on the + strand. In the case of TAL7 (15 modules) 2 bases upstream on the - strand. The target sequences are underlined, in bold the ZF6-DBDCis-seq. Boxes CRX binding sites, dotted box NRL binding site.

Figure 31. Electrophysiological responses of retina recorded by ERG analysis, on P347S mice injected subretinally with AAV8-CMV-ZF6-5F or AAV8-CMV-TALRHO(02)DBD or AAV8-CMV- TAL7-DBD (lxlOE9 vg) at P15. The amplitudes represent retinal responses evoked by increasing light intensities under scotopic (dim light) and photopic (bright light) conditions. B- wave amplitudes 15 days after vector delivery (P30 mice), the electrophysiologic responses of the retina were preserved in ZF6-5F, TALRHO(02) and TAL7 treated eyes compared to control contralateral EGFP injected eye.

DETAILED DESCRIPTION OF THE INVENTION MATERIAL AND METHODS

Sequences

Nucleotide sequence of human rhodopsin promoter and its 5'UTR (SEQ ID No. 1)

Cagatcttccccacctagccacctggcaaactgctccttctctcaaaggcccaaaca tggcctcccagactgcaac ccccaggcagtcaggccctgtctccacaacctcacagccaccctggacggaatctgcttc ttcccacatttgagtc ctcctcagcccctgagctcctctgggcagggctgtttctttccatctttgtattcccagg ggcctgcaaataaatg tttaatgaacgaacaagagagtgaattccaattccatgcaacaaggattgggctcctggg ccctaggctatgtgtc tggcaccagaaacggaagctgcaggttgcagcccctgccctcatggagctcctcctgtca gaggagtgtggggact ggatgactccagaggtaacttgtgggggaacgaacaggtaaggggctgtgtgacgagatg agagactgggagaata aaccagaaagtctctagctgtccagaggacatagcacagaggcccatggtccctatttca aacccaggccaccaga ctgagctgggaccttgggacagacaagtcatgcagaagttaggggaccttctcctccctt ttcctggatcctgagt acctctcctccctgacctcaggcttcctcctagtgtcaccttggcccctcttagaagcca attaggccctcagttt ctgcagcggggattaatatgattatgaacacccccaatctcccagatgctgattcagcca ggagcttaggaggggg aggtcactttataagggtctgggggggtcagaacccagagtcatccagctggagccctga gtggctgagctcaggc cttcgcagcattcttgggtgggagcagccacgggtcagccacaagggccacagcc

Nucleotide sequence of ZF6-DBD (SEQ ID No. 2)

atgatcgatctggaacctggcgaaaaaccgtataagtgcccagaatgcggcaagtct ttttcccagtctggccacc tgacggaacatcagcgcactcacaccggcgagaaaccatataaatgtccggagtgcggca agagctttagccagaa tagcaccctgaccgaacatcagcgtacgcacacgggtgaaaagccatataaatgccctga gtgcggcaaatccttt agcacctctggccatctggtccgtcaccagcgcacccaccagaataagaagggcggttct ggtgacggtaaaaaga aacagcacgcctgtccagagtgtggcaaatctttttcccgtgaagacaacctgcacactc accagcgcactcatac tggcgagaaaccttacaagtgtccggaatgtggtaagagcttctccacttccggccatct ggttcgtcaccagcgc acgcacaccggcgaaaaaccatacaagtgcccggaatgcggcaaatcattctcccgtagc gacaaactggttcgtc accaacgtacgcataccggtaaaaagacttcctctagatacccgtacgacgttccagact atgcatcttga

Protein Sequence of ZF6-DBD (SEQ ID No. 3)

MIDLEPGEKPYKCPECGKSFSQSGHLTEHQRTHTGEKPYKCPECGKSFSQNSTLTEHQRT HTGEKPYKCPECGKSF STSGHLVRHQRTHQNKKGGSGDGKKKQHACPECGKSFSREDNLHTHQRTHTGEKPYKCPE CGKSFSTSGHLVRHQR THTGEKPYKCPECGKSFSRSDKLVRHQRTHTGKKTSSRYPYDVPDYAS*

Nucleotide sequence of ZF2 (SEQ ID No. 4)

atgatcgatctggaacctggcgaaaaaccgtataagtgcccagaatgcggcaagtct ttttccacctctggcaatc tggtgcgccatcagcgcactcacaccggcgagaaaccatataaatgtccggagtgcggca agagctttagcactag cggcgagctggtccgtcatcagcgtacgcacacgggtgaaaagccatataaatgccctga gtgcggcaaatccttt agcacctctggtaacctggtacgtcaccagcgcacccacacgggccgttcttctgtagag tctgcgtgcgtcacct ctgtactggttgccctcctgccggctacctctgcaccgactcaggtgagcggtgaaaagc catacaaatgtccaga gtgtggcaaatctttttcccagtctggcaacctgactgaacaccagcgcactcatactgg cgagaaaccttacaag tgtccggaatgtggtaagagcttctcctccaaaaagcatctggctgagcaccagcgcacg cacaccggcgaaaaac catacaagtgcccggaatgcggcaaatcattcagctccaaaaaggctctgactgagcacc aacgtacgcataccgg taaaaagacttcctctagaccgaaaaagaaacgcaaagtttacccatacgacgtacctga ttatgcaagctga

Protein sequence of ZF2 (SEQ ID No. 5)

MIDLEPGEKPYKCPECGKSFSTSGNLVRHQRTHTGEKPYKCPECGKSFSTSGELVRHQRT HTGEKPYKCPECGKSF STSGNLVRHQRTHTGRSSVESACVTSVLVALLPATSAPTQVSGEKPYKCPECGKSFSQSG NLTEHQRTHTGEKPYK CPECGKSFSSKKHLAEHQRTHTGEKPYKCPECGKSFSSKKALTEHQRTHTGKKTSSRPKK KRKVYPYDVPDYAS*

Nucleotide sequence of TAL01 (SEQ ID No. 6)

atgtacccatacgatgtcccagactacgcgaatttaatgtcgcggacccggctccct tccccacccgcacccagcc cagcgttttcggccgactcgttctcagacctgcttaggcagttcgacccctcactgttta acacatcgttgttcga ctcccttcctccgtttggggcgcaccatacggaggcggccaccggggagtgggatgaggt gcagtcgggattgaga gctgcggatgcaccacccccaaccatgcgggtggccgtcaccgctgcccgaccgccgagg gcgaagcccgcaccaa ggcggagggcagcgcaaccgtccgacgcaagccccgcagcgcaagtagatttgagaactt tgggatattcacagca gcagcaggaaaagatcaagcccaaagtgaggtcgacagtcgcgcagcatcacgaagcgct ggtgggtcatgggttt acacatgcccacatcgtagccttgtcgcagcaccctgcagcccttggcacggtcgccgtc aagtaccaggacatga ttgcggcgttgccggaagccacacatgaggcgatcgtcggtgtggggaaacagtggagcg gagcccgagcgcttga ggccctgttgacggtcgcgggagagctgagagggcctccccttcagctggacacgggcca gttgctgaagatcgcg aagcggggaggagtcacggcggtcgaggcggtgcacgcgtggcgcaatgcgctcacggga gcacccctcaacctga ccccagagcaggtcgtggcaattgcgagccatgacgggggaaagcaggcactcgaaaccg tccagaggttgctgcc tgtgctgtgccaagcgcacggacttacgccagagcaggtcgtggcaattgcgagcaacat cgggggaaagcaggca ctcgaaaccgtccagaggttgctgcctgtgctgtgccaagcgcacggactaaccccagag caggtcgtggcaattg cgagcaacaacgggggaaagcaggcactcgaaaccgtccagaggttgctgcctgtgctgt gccaagcgcacgggtt gaccccagagcaggtcgtggcaattgcgagccatgacgggggaaagcaggcactcgaaac cgtccagaggttgctg cctgtgctgtgccaagcgcacggcctgaccccagagcaggtcgtggcaattgcgagcaac atcgggggaaagcagg cactcgaaaccgtccagaggttgctgcctgtgctgtgccaagcgcacggactgacaccag agcaggtcgtggcaat tgcgagcaacggagggggaaagcaggcactcgaaaccgtccagaggttgctgcctgtgct gtgccaagcgcacgga cttacacccgaacaagtcgtggcaattgcgagccatgacgggggaaagcaggcactcgaa accgtccagaggttgc tgcctgtgctgtgccaagcgcacggacttacgccagagcaggtcgtggcaattgcgagca acggagggggaaagca ggcactcgaaaccgtccagaggttgctgcctgtgctgtgccaagcgcacggactaacccc agagcaggtcgtggca attgcgagcaacaacgggggaaagcaggcactcgaaaccgtccagaggttgctgcctgtg ctgtgccaagcgcacg ggttgaccccagagcaggtcgtggcaattgcgagcaacaacgggggaaagcaggcactcg aaaccgtccagaggtt gctgcctgtgctgtgccaagcgcacggcctgaccccagagcaggtcgtggcaattgcgag caacaacgggggaaag caggcactcgaaaccgtccagaggttgctgcctgtgctgtgccaagcgcacggactgaca ccagagcaggtcgtgg caattgcgagcaacatcgggggaaagcaggcactcgaaaccgtccagaggttgctgcctg tgctgtgccaagcgca cggcctcaccccagagcaggtcgtggcaattgcgagcaacaacgggggaaagcaggcact cgaaaccgtccagagg ttgctgcctgtgctgtgccaagcgcacggacttacgccagagcaggtcgtggcaattgcg agcaacatcgggggaa agcaggcactcgaaaccgtccagaggttgctgcctgtgctgtgccaagcgcacggactaa ccccagagcaggtcgt ggcaattgcgagcaacggagggggaaagcaggcactcgaaaccgtccagaggttgctgcc tgtgctgtgccaagcg cacgggttgaccccagagcaggtcgtggcaattgcgagcaacggagggggaaagcaggca ctcgaaaccgtccaga ggttgctgcctgtgctgtgccaagcgcacggactcacgcctgagcaggtagtggctattg catccaataacggggg cagacccgcactggagtcaatcgtggcccagctttcgaggccggaccccgcgctggccgc actcactaatgatcat cttgtagcgctggcctgcctcggcggacgacccgccttggatgcggtgaagaaggggctc ccgcacgcgcctgcat tgattaagcggaccaacagaaggattcccgagaggacatcacatcgagtggcagatcacg cgcaagtggtccgcgt gctcggattcttccagtgtcactcccaccccgcacaagcgttcgatgacgccatgactca atttggtatgtcgaga cacggactgctgcagctctttcgtagagtcggtgtcacagaactcgaggcccgctcgggc acactgcctcccgcct cccagcggtgggacaggattctccaagcgagcggtatgaaacgcgcgaagccttcaccta cgtcaactcagacacc tgaccaggcgagccttcatgcgttcgcagactcgctggagagggatttggacgcgccctc gcccatgcatgaaggg gaccaaactcgcgcgtcagctagccccaagaagaagagaaaggtggaggccagctga

Protein Sequence of TAL01 (SEQ ID No. 7)

MYPYDVPDYANLMSRTRLPSPPAPSPAFSADSFSDLLRQFDPSLFNTSLFDSLPPFGAHH TEAATGEWDEVQSGLR AADAPPPTMRVAVTAARPPRAKPAPRRRAAQPSDASPAAQVDLRTLGYSQQQQEKIKPKV RSTVAQHHEALVGHGF THAHIVALSQHPAALGTVAVKYQDMIAALPEATHEAIVGVGKQWSGARALEALLTVAGEL RGPPLQLDTGQLLKIA KRGGVTAVEAVHAWRNALTGAPLNLTPEQWAIASHDGGKQALETVQRLLPVLCQAHGLTP EQWAIASNIGGKQA LETVQRLLPVLCQAHGLTPEQWAIASNNGGKQALETVQRLLPVLCQAHGLTPEQWAIASH DGGKQALETVQRLL PVLCQAHGLTPEQWAIASNIGGKQALETVQRLLPVLCQAHGLTPEQWAIASNGGGKQALE TVQRLLPVLCQAHG LTPEQWAIASHDGGKQALETVQRLLPVLCQAHGLTPEQWAIASNGGGKQALETVQRLLPV LCQAHGLTPEQWA IASNNGGKQALETVQRLLPVLCQAHGLTPEQWAIASNNGGKQALETVQRLLPVLCQAHGL TPEQWAIASNNGGK QALETVQRLLPVLCQAHGLTPEQWAIASNIGGKQALETVQRLLPVLCQAHGLTPEQWAIA SNNGGKQALETVQR LLPVLCQAHGLTPEQWAIASNIGGKQALETVQRLLPVLCQAHGLTPEQWAIASNGGGKQA LETVQRLLPVLCQA HGLTPEQWAIASNGGGKQALETVQRLLPVLCQAHGLTPEQWAIASNNGGRPALESIVAQL SRPDPALAALTNDH LVALACLGGRPALDAVKKGLPHAPALIKRTNRRIPERTSHRVADHAQWRVLGFFQCHSHP AQAFDDAMTQFGMSR HGLLQLFRRVGVTELEARSGTLPPASQRWDRILQASGMKRAKPSPTSTQTPDQASLHAFA DSLERDLDAPSPMHEG DQTRASASPKKKRKVEAS*

Nucleotide sequence of TAL02 (on reverse strand of human Rhodopsin promoter) (SEQ ID No. 8)

atgtacccatacgatgtcccagactacgcgaatttaaaccccaagaagaagcggaag gtgcacgggaattctgcga gcgcgccgcgccgccgcgcggcgcagccgagcgatgcgagcccggcggcgcaggtggatc tgcgcaccctgggcta tagccagcagcagcaggaaaaaattaaaccgaaagtgcgcagcaccgtggcgcagcatca tgaagcgctggtgggc catggctttacccatgcgcatattgtggcgctgagccagcatccggcggcgctgggcacc gtggcggtgaaatatc aggatatgattgcggcgctgccggaagcgacccatgaagcgattgtgggcgtgggcaaac agtggagcggcgcgcg cgcgctggaagcgctgctgaccgtggcgggcgaactgcgcggcccgccgctgcagctgga taccggccagctgctg aaaattgcgaaacgcggcggcgtgaccgcggtggaagcggtgcatgcgtggcgcaacgcg ctgaccggcgcgccgc tgaacctgaccccgcagcaggtggtggcgattgcgagccatgatggcggcaaacaggcgc tggaaaccgtgcagcg cctgctgccggtgctgtgccaggcgcatggcctgaccccggaacaggtggtggcgattgc gagcaacggcggcggc aaacaggcgctggaaaccgtgcagcgcctgctgccggtgctgtgccaggcgcatggcctg accccggaacaggtgg tggcgattgcgagcaacaacggcggcaaacaggcgctggaaaccgtgcagcgcctgctgc cggtgctgtgccaggc gcatggcctgaccccggaacaggtggtggcgattgcgagcaacaacggcggcaaacaggc gctggaaaccgtgcag cgcctgctgccggtgctgtgccaggcgcatggcctgaccccggaacaggtggtggcgatt gcgagcaacaacggcg gcaaacaggcgctggaaaccgtgcagcgcctgctgccggtgctgtgccaggcgcatggcc tgaccccggaacaggt ggtggcgattgcgagcaacattggcggcaaacaggcgctggaaaccgtgcagcgcctgct gccggtgctgtgccag gcgcatggcctgaccccgcagcaggtggtggcgattgcgagcaacaacggcggcaaacag gcgctggaaaccgtgc aggcgctgctgccggtgctgtgccaggcgcatggcctgaccccggaacaggtggtggcga ttgcgagcaacattgg cggcaaacaggcgctggaaaccgtgcaggcgctgctgccggtgctgtgccaggcgcatgg cctgaccccggaacag gtggtggcgattgcgagcaacggcggcggcaaacaggcgctggaaaccgtgcagcgcctg ctgccggtgctgtgcc aggcgcatggcctgaccccgcagcaggtggtggcgattgcgagcaacggcggcggcaaac aggcgctggaaaccgt gcagcgcctgctgccggtgctgtgccaggcgcatggcctgaccccgcagcaggtggtggc gattgcgagcaacaac ggcggcaaacaggcgctggaaaccgtgcagcgcctgctgccggtgctgtgccaggcgcat ggcctgaccccggaac aggtggtggcgattgcgagcaacaacggcggcaaacaggcgctggaaaccgtgcagcgcc tgctgccggtgctgtg ccaggcgcatggcctgaccccggaacaggtggtggcgattgcgagcaacaacggcggcaa acaggcgctggaaacc gtgcagcgcctgctgccggtgctgtgccaggcgcatggcctgaccccggaacaggtggtg gcgattgcgagcaaca acggcggcaaacaggcgctggaaaccgtgcagcgcctgctgccggtgctgtgccaggcgc atggcctgaccccgca gcaggtggtggcgattgcgagcaacaacggcggccgcccggcgctggaaagcattgtggc gcagctgagccgcccg gatccggcgctggcggcgctgaccggcagcTGA

Protein Sequence of TAL02 (SEQ ID No. 9)

MYPYDVPDYANLNPKKKRKVHGNSASAPRRRAAQPSDASPAAQVDLRTLGYSQQQQEKIK PKVRSTVAQHHEALVG HGFTHAHIVALSQHPAALGTVAVKYQDMIAALPEATHEAIVGVGKQWSGARALEALLTVA GELRGPPLQLDTGQLL KIAKRGGVTAVEAVHAWRNALTGAPLNLTPQQWAIASHDGGKQALETVQRLLPVLCQAHG LTPEQWAIASNGGG KQALETVQRLLPVLCQAHGLTPEQWAIASNNGGKQALETVQRLLPVLCQAHGLTPEQWAI ASNNGGKQALETVQ RLLPVLCQAHGLTPEQWAIASNNGGKQALETVQRLLPVLCQAHGLTPEQWAIASNIGGKQ ALETVQRLLPVLCQ AHGLTPQQWAIASNNGGKQALETVQALLPVLCQAHGLTPEQWAIASNIGGKQALETVQAL LPVLCQAHGLTPEQ WAIASNGGGKQALETVQRLLPVLCQAHGLTPQQWAIASNGGGKQALETVQRLLPVLCQAH GLTPQQWAIASNN GGKQALETVQRLLPVLCQAHGLTPEQWAIASNNGGKQALETVQRLLPVLCQAHGLTPEQW AIASNNGGKQALET VQRLLPVLCQAHGLTPEQWAIASNNGGKQALETVQRLLPVLCQAHGLTPQQWAIASNNGG RPALESIVAQLSRP DPALAALTGS* pAAV2.1 CMV_ZF6-DBD (SEQ ID No. 10)

agcgcccaatacgcaaaccgcctctccccgcgcgttggccgattcattaatgcagct ggcacgacaggtttcccga ctggaaagcgggcagtgagcgcaacgcaattaatgtgagttagctcactcattaggcacc ccaggctttacacttt atgcttccggctcgtatgttgtgtggaattgtgagcggataacaatttcacacaggaaac agctatgaccatgatt acgccagatttaattaaggCTGCGCGCTCGCTCGCTCACTGAGGCCGCCCGGGCAAAGCC CGGGCGTCGGGCGACC TTTGGTCGCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATC ACTAGGGGTTCCTtgt agttaatgattaacccgccatgctacttatctacgtagccatgctctaggaagatcggaa ttcgcccttaagctag ctagttattaatagtaatcaattacggggtcattagttcatagcccatatatggagttcc gcgttacataacttac ggtaaatggcccgcctggctgaccgcccaacgacccccgcccattgacgtcaataatgac gtatgttcccatagta acgccaatagggactttccattgacgtcaatgggtggagtatttacggtaaactgcccac ttggcagtacatcaag tgtatcatatgccaagtacgccccctattgacgtcaatgacggtaaatggcccgcctggc attatgcccagtacat gaccttatgggactttcctacttggcagtacatctacgtattagtcatcgctattaccat ggtgatgcggttttgg cagtacatcaatgggcgtggatagcggtttgactcacggggatttccaagtctccacccc attgacgtcaatggga gtttgttttggcaccaaaatcaacgggactttccaaaatgtcgtaacaactccgccccat tgacgcaaatgggcgg taggcgtgtacggtgggaggtctatataagcagagctggtttagtgaaccgtc&g& amp;tcctgc&g&agttggtcgtg aqqcactqqqcaqqtaaqtatcaaqqttacaaqacaqqtttaaqqaqaccaataqaaact qqqcttqtcqaqacaq aqaaqactcttqcqtttctqataqqcacctattqqtcttactqacatccactttqccttt ctctccacaqgtgtcc aggcggccgcatgatcgatctggaacctggcgaaaaaccgtataagtgcccagaatgcgg caagtctttttcccag tctggccacctgacggaacatcagcgcactcacaccggcgagaaaccatataaatgtccg gagtgcggcaagagct ttagccagaatagcaccctgaccgaacatcagcgtacgcacacgggtgaaaagccatata aatgccctgagtgcgg caaatcctttagcacctctggccatctggtccgtcaccagcgcacccaccagaataagaa gggcggttctggtgac ggtaaaaagaaacagcacgcctgtccagagtgtggcaaatctttttcccgtgaagacaac ctgcacactcaccagc gcactcatactggcgagaaaccttacaagtgtccggaatgtggtaagagcttctccactt ccggccatctggttcg tcaccagcgcacgcacaccggcgaaaaaccatacaagtgcccggaatgcggcaaatcatt ctcccgtagcgacaaa ctggttcgtcaccaacgtacgcataccggtaaaaagacttcctctagatacccgtacgac gttccagactatgcat cttq-aaaqcttqqatccaatcaACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGT ATTCTTAACTATGTTGC TCCTTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCCCG TATGGCTTTCATTTTC TCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTATGAGGAGTTGTGGCCCGTTGTCAGG CAACGTGGCGTGGTGT GCACTGTGTTTGCTGACGCAACCCCCACTGGTTGGGGCATTGCCACCACCTGTCAGCTCC TTTCCGGGACTTTCGC TTTCCCCCTCCCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGAC AGGGGCTCGGCTGTTG GGCACTGACAATTCCGTGGTGTTGTCGGGGAAGCTGACGTCCTTTCCATGGCTGCTCGCC TGTGTTGCCACCTGGA TTCTGCGCGGGACGTCCTTCTGCTACGTCCCTTCGGCCCTCAATCCAGCGGACCTTCCTT CCCGCGGCCTGCTGCC GGCTCTGCGGCCTCTTCCGCGTCTTCGagatctGCCTCGACTGTGCCTTCTAGTTGCCAG CCATCTGTTGTTTGCC CCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAA ATGAGGAAATTGCATC GCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGG GGAGGATTGGGAAGAC AATAGCAGGCATGCTGGGGActcgagttaagggcgaattcccgattaggatcttcctaga gCArGGCrACGrAGAr A¾GrAGCArGGCGGGrrA¾rCArrA¾CrACAAGGAACCCCTAGTGATGGAGTTGGCC ACTCCCTCTCTGCGCGCTC GCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGG CCTCAGTGAGCGAGCG AGCGCGCAGccttaattaacctaattcactggccgtcgttttacaacgtcgtgactggga aaaccctggcgttacc caacttaatcgccttgcagcacatccccctttcgccagctggcgtaatagcgaagaggcc cgcaccgatcgccctt cccaacagttgcgcagcctgaatggcgaatgggacgcgccctgtagcggcgcattaagcg cggcgggtgtggtggt tacgcgcagcgtgaccgctacacttgccagcgccctagcgcccgctcctttcgctttctt cccttcctttctcgcc acgttcgccggctttccccgtcaagctctaaatcgggggctccctttagggttccgattt agtgctttacggcacc tcgaccccaaaaaacttgattagggtgatggttcacgtagtgggccatcgccccgataga cggtttttcgcccttt gacgctggagttcacgttcctcaatagtggactcttgttccaaactggaacaacactcaa ccctatctcggtctat tcttttgatttataagggatttttccgatttcggcctattggttaaaaaatgagctgatt taacaaaaatttaacg cgaattttaacaaaatattaacgtttataatttcaggtggcatctttcggggaaatgtgc gcggaacccctatttg tttatttttctaaatacattcaaatatgtatccgctcatgagacaataaccctgataaat gcttcaataatattga aaaaggaagagtATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCA TTTTGCCTTCCTGTTT TTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAG TGGGTTACATCGAACT GGATCTCAATAGTGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGAT GAGCACTTTTAAAGTT CTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGC ATACACTATTCTCAGA ATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAA GAGAATTATGCAGTGC TGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACC GAAGGAGCTAACCGCT TTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAAT GAAGCCATACCAAACG ACGAGCGTGACACCACGATGCCTGTAGTAATGGTAACAACGTTGCGCAAACTATTAACTG GCGAACTACTTACTCT

AGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACT TCTGCGCTCGGCCCTTCCG GCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTCGCGGTATCATT GCAGCACTGGGGCCAG ATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATG AACGAAATAGACAGAT CGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAActqtcaqaccaaqtttactcata tatactttaqattqat ttaaaacttcatttttaatttaaaaggatctaggtgaagatcctttttgataatctcatg accaaaatcccttaac gtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaaggatcttcttgag atcctttttttctgcg cgtaatctgctgcttgcaaacaaaaaaaccaccgctaccagcggtggtttgtttgccgga tcaagagctaccaact ctttttccgaaggtaactggcttcagcagagcgcagataccaaatactgtccttctagtg tagccgtagttaggcc accacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccag tggctgctgccagtgg cgataagtcgtgtcttaccgggttggactcaagacgatagttaccggataaggcgcagcg gtcgggctgaacgggg ggttcgtgcacacagcccagcttggagcgaacgacctacaccgaactgagatacctacag cgtgagctatgagaaa gcgccacgcttcccgaagggagaaaggcggacaggtatccggtaagcggcagggtcggaa caggagagcgcacgag ggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctg acttgagcgtcgattt ttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagcaacgcggccttttta cggttcctggcctttt gctgcggttttgctcacatgttctttcctgcgttatcccctgattctgtggataaccgta ttaccgcctttgagtg agctgataccgctcgccgcagccgaacgaccgagcgcagcgagtcagtgagcgaggaagc ggaag

Features :

5 ' -ITR : [248 : 377 - CW] (AAA)

CMV\promotor ; [458 : 1040 - - CW] (aaa)

SV40\misc\intron\ (Promega) : [1078 : 1210 - CW] (aaa)

ZF6-DBD ; [1227 ; 1829 - CW] (aaa)

WPRE : [1847 : 2383 - CW] (AAA)

BGH\pA : [2390 : 2604 - CW] (AAA)

additional \AAV\sequences ; [2646 ; 2691 - CW] (AGO

3 ' -ITR : [2692 : 2821 - CW] (AAA)

AmpR : [3585 : 4445 - CW] (AAG)

Nucleotide sequence of the human transducin 1 (GNAT1) promoter (SEQ ID No. 11)

Tccctgcaggtcataaaatcccagtccagagtcaccagcccttcttaaccacttcct actgtgtgaccctttcage ctttacttcctcatcagtaaaatgaggctgatgatatgggcatccatactccagggccag tgtgagcttacaacaa gataaggagtggtgctgagcctggtgccgggcaggcagcaggcatgtttctcccaattat gccctctcactgccag ccccacctccattgtcctcacccccagggctcaaggttctgccttcccctttctcagccc tgaccctactgaacat gtctccccactcccaggcagtgccagggcctctcctggagggttgcggggacagaaggac agccggagtgcagagt cagcggttgagggattggggctatgccagcTAatCCgaagggttgggggggctgagctgg attcacctgtccttgt ctctgattggctcttggacacccctagcccccaaatcccactaagcagccccaccaggga ttgcacaggtccgtag agagccagttgattgcaggtcctcctggggccagaagggtgcctgggaggccaggttctg gggatcccctccatcc agaagaaccacctgctcactctgtcccttcgcctgctgctgggaccgcggccgc Nucleotide sequence of ZF6-5F (also called ZF6-5) (SEQ ID No. 12)

atgatcgatctggagccaggtgaaaagccttataagtgccctgaatgcgggaaatca ttcagccagaactccacac ttaccgagcaccagagaacccatactggggagaaaccctataagtgcccagaatgtggga agtctttctctaccag cggacacttggtcaggcaccagagaacgcaccagaacaagaaaggaggttctggtgatgg caagaagaagcagcat gcttgtcccgaatgcggcaagtcctttagcagggaggacaatctgcacactcaccaacgc acacatactggcgaga agccgtacaagtgtcccgaatgtggcaaaagtttctccacaagtggacatctcgttcgtc accagcgaacccacac cggagagaaaccctacaaatgcccagagtgtgggaaatccttttcacggagcgacaaact ggtgagacatcaacgc actcatacaggcaagaaaacgagctcacggtacccttacgatgtgcctgactatgccagt taataa

Protein sequence of ZF6-5F (also called ZF6-5) (SEQ ID No. 13)

MIDLEPGEKPYKCPECGKSFSQNSTLTEHQRTHTGEKPYKCPECGKSFSTSGHLVRHQRT HQNKKGGSGDGKKKQH ACPECGKSFSREDNLHTHQRTHTGEKPYKCPECGKSFSTSGHLVRHQRTHTGEKPYKCPE CGKSFSRSDKLVRHQR THTGKKTSSRYPYDVPDYAS

Nucleotide sequence of TAL7-DBD (SEQ ID No. 14)

gcaagtgccccaagaaggcgggccgcccagccttctgacgctagccccgctgcccag gtggatctgcgaacgctgg gttattctcagcagcagcaagagaagattaagcctaaggtccggagtactgtggcacagc accatgaggctctggt cgggcacggcttcacgcacgcacacatcgttgcactctcccagcaccctgccgcgctggg cacagtggcagtgaag taccaagatatgattgcggcacttcccgaagctactcacgaggccatcgtcggcgttggg aagcagtggtcaggcg ctagggcactggaggcactgctgactgtggccggggagcttcgcggaccccccctgcagt tggacacaggccagct gctgaagatagcaaaacgaggaggcgtcacagctgtagaggccgtgcatgcgtggcgcaa tgcccttaccggggcc cctctgaatctgaccccgcagcaagtggtagccattgcgtctaacaacggagggaaacag gcactcgagacagttc aacggctgctccccgtgctttgccaggcgcacggactgaccccagaacaagtggtggcga tcgcctcaaataacgg cggcaaacaggctcttgaaaccgtgcagagactgctgccagtactgtgccaggctcatgg cctgaccccagagcag gttgtggccatcgcttcaaacaatggcggtaaacaggcgctcgagactgtccagaggctg ttgcctgtgctctgcc aagctcatggcctgacgcccgaacaggtggttgccatcgctagcaacatcggcggcaagc aagctctcgagacagt gcaacggctgctgcccgtactctgccaggcacatgggctgactcccgagcaagtggttgc tattgcatctaacaac ggcggaaagcaggcgctggagactgtccagcgtttgcttcctgttttgtgtcaggctcac ggcttgacgcccgaac aggtagtggccatagcctccaacatcggaggaaaacaggcacttgaaacagtccagaggc ttctccccgtcctgtg ccaagcccatggcctcactccacagcaagtagtggctattgcatccaatggaggcgggaa acaagccttggaaacc gtccaggccctgctgcctgtcctgtgccaggcacacgggctgacacctgaacaggtggtc gcaattgccagtaatg gtggcgggaagcaagccctggagactgttcaggctttgctgcccgttctgtgtcaagcac acggtctgactccaga acaggttgtggctatcgcctccaataatggtggcaaacaggctctcgaaacagtgcagag gctgctgcccgtgctg tgtcaagcccatggcctgaccccacagcaggtcgtggccattgcctctaataatggaggt aaacaggccctggaga cagtccagagattgcttccagttctgtgtcaggcccacgggctgacccctcaacaggtcg tcgccatcgcctcaaa caacggtggcaagcaggcactcgagactgtgcagcggctcttgcctgtgctgtgtcaagc ccatggactgaccccg gaacaggtggttgccattgccagcaacaacggtgggaaacaggctttggaaaccgtgcaa cgcctgctgccggttc tgtgccaggctcacgggcttaccccggaacaggtggtagctatcgctagcaataatggag ggaagcaggccctgga aacagtgcagagactgctccccgtcctctgccaggcacacggactcaccccggagcaagt ggtcgccatagcctcc aacggtggagggaagcaggcactggagacagtgcagagacttctcccagtgctctgtcag gctcatgggctcaccc ctcaacaggtagtagccatagctagtaacaatggaggtcgtccagcattggagagcatcg tggcgcagctgagccg cccagacccagcgcttgccgccttgaccggaagctatccctacgacgtgcctgattacgc ttaataaaagctt

Protein sequence of TAL7-DBD (SEQ ID No. 15) MPKKKRKVTSASAPRRRAAQPSDASPAAQVDLRTLGYSQQQQEKIKPKVRSTVAQHHEAL VGHGFTHAHIVALSQH PAALGTVAVKYQDMIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQ LLKIAKRGGVTAVEAV HAWRNALTGAPLNLTPQQWAIASNNGGKQALETVQRLLPVLCQAHGLTPEQWAIASNNGG KQALETVQRLLPVL CQAHGLTPEQWAIASNNGGKQALETVQRLLPVLCQAHGLTPEQWAIASNIGGKQALETVQ RLLPVLCQAHGLTP EQWAIASNNGGKQALETVQRLLPVLCQAHGLTPEQWAIASNIGGKQALETVQRLLPVLCQ AHGLTPQQWAIAS NGGGKQALETVQALLPVLCQAHGLTPEQWAIASNGGGKQALETVQALLPVLCQAHGLTPE QWAIASNNGGKQAL ETVQRLLPVLCQAHGLTPQQWAIASNNGGKQALETVQRLLPVLCQAHGLTPQQWAIASNN GGKQALETVQRLLP VLCQAHGLTPEQWAIASNNGGKQALETVQRLLPVLCQAHGLTPEQWAIASNNGGKQALET VQRLLPVLCQAHGL TPEQWAIASNGGGKQALETVQRLLPVLCQAHGLTPQQWAIASNNGGRPALESIVAQLSRP DPALAALTGSYPYD VPDYA-

Nucleotide sequence of TALRHO (02) DBD (SEQ ID No. 16)

ctagcgcccccagaagaagggccgctcagccttccgatgcctctcctgccgcccagg tggacctgagaaccctggg ctacagccagcagcagcaggaaaagatcaagcccaaagtgcggagcaccgtggcccagca ccacgaagccctcgtg ggccacggctttacccacgctcacatcgtggccctgagccagcatcctgccgctctggga accgtggccgtgaagt accaggacatgatcgccgccctgcccgaggccacacacgaggctatcgtgggcgtgggca agcagtggtccggcgc tagagcactcgaggccttgctgacagtggccggcgagctgagaggccctccactgcagct ggacaccggccagctg ctgaagatcgccaagcggggaggcgtgacagccgtggaagccgtgcacgcttggcggaat gccctgacaggcgctc ccctgaaccttacgccgcagcaggtggtggccatcgccagccacgatggcggcaagcagg cgctggagacggtgca gcggctgcttccggtgctgtgccaggcccatggcctgaccccggagcaggtggtggccat cgccagcaatattggt ggcaagcaggcgctggagacggtgcagcgattgttgccggtgctgtgccaggcccatggc ctgaccccggagcagg tggtggccatcgccagccacgacggtggcaagcaggcgctggagactgtccagcggctgt tgccggtgctgtgcca ggcccatggcctgaccccggagcaggtggtggccatcgccagcaatggcggtggcaagca ggcgcttgagacggtg cagcggctgttgccggtgctgtgccaggcccatggcctgaccccggagcaggtggtggcc atcgccagcaatggcg gtggcaagcaggctctggagacggtgcagcggctgttgccggtgctgtgccaggcccatg gcctgaccccggagca ggtggtggccatcgccagcaatggcgggggcaagcaggcgctggagacggtgcagcggct gttgccggtgctgtgc caggcccatggcctgaccccgcagcaggtggtggccatcgccagcaatattggcggcaag caggcgctggagacgg tgcaggcgctgttgccggtgctgtgccaggcccatggcctgaccccggagcaggtggtgg ccatcgcaagcaatgg cggtggcaagcaggcgctggagacggtgcaggcgctgttgccggtgctgtgccaggccca tggcctgaccccggag caggtggtggcaatcgccagcaatattggtggcaagcaggcgctggagacggtgcagcgg ctgttgccggtgctgt gccaggcccatggcctgaccccgcaacaggtggtagccatcgccagcaatattggtggca agcaggcgctggagac ggtgcagcggctgttgccggtgctgtgccaggcccatggcctgacaccccagcaggtggt agcgatcgccagcaat aagggtggcaagcaggcgctggagacggtgcagcggctgcttccggtgctgtgccaggcc catggcctgaccccgg agcaggtggtggccatcgccagcaataagggtggcaagcaggcgctggagacggtgcagc gattgttgccggtgct gtgccaggcccatggcctgaccccggagcaggtggtggccatcgccagcaataagggtgg caagcaggcgctggag actgtccagcggctgttgccggtgctgtgccaggcccatggcctgaccccggagcaggtg gtggccatcgccagca atggcggtggcaagcaggcgcttgagacggtgcagcggctgttgccggtgctgtgccagg cccatggcctgacccc gcagcaggtggtggccatcgccagccacgacggtggcaagcaggctctggagacggtgca gcggctgttgccggtg ctgtgccaggcccatggcctgaccccggagcaggtggtggccatcgccagcaatggcggg ggcaagcaggcgctgg agacggtgcagcggctgttgccggtgctgtgccaggcccatggcctgaccccgcagcagg tggtggccatcgccag caataagggcggcaagcaggcgctggagacggtgcaggcgctgttgccggtgctgtgcca ggcccatggcctgaca ccccagcaggtcgtggccattgccagcaacaagggaggcagacccgccctggaatctatt gtggcccagctgagca gacccgacccagctctggccgccctgacaggatcc

Protein sequence of TALRHO02DBD (SEQ ID No. 17)

MPKKKRKVTSAPRRRAAQPSDASPAAQVDLRTLGYSQQQQEKIKPKVRSTVAQHHEA LVGHGFTHAHIVALSQHPA ALGTVAVKYQDMIAALPEATHEAIVGVGKQWSGARALEALLTVAGELRGPPLQLDTGQLL KIAKRGGVTAVEAVHA WRNALTGAPLNLTPQQWAIASHDGGKQALETVQRLLPVLCQAHGLTPEQWAIASNIGGKQ ALETVQRLLPVLCQ AHGLTPEQWAIASHDGGKQALETVQRLLPVLCQAHGLTPEQWAIASNGGGKQALETVQRL LPVLCQAHGLTPEQ WAIASNGGGKQALETVQRLLPVLCQAHGLTPEQWAIASNGGGKQALETVQRLLPVLCQAH GLTPQQWAIASNI GGKQALETVQALLPVLCQAHGLTPEQWAIASNGGGKQALETVQALLPVLCQAHGLTPEQW AIASNIGGKQALET VQRLLPVLCQAHGLTPQQWAIASNIGGKQALETVQRLLPVLCQAHGLTPQQWAIASNKGG KQALETVQRLLPVL CQAHGLTPEQWAIASNKGGKQALETVQRLLPVLCQAHGLTPEQWAIASNKGGKQALETVQ RLLPVLCQAHGLTP EQWAIASNGGGKQALETVQRLLPVLCQAHGLTPQQWAIASHDGGKQALETVQRLLPVLCQ AHGLTPEQWAIAS NGGGKQALETVQRLLPVLCQAHGLTPQQWAIASNKGGKQALETVQALLPVLCQAHGLTPQ QWAIASNKGGRPAL ESIVAQLSRPDPALAALTGSYPYDVPDYAS- pAAV2.1 hGNAT1-hRHO (SEQ ID No . 18)

Features :

5 ' -ITR [248 : 377 - CW] (AAA)

3 ' -ITR [3029 3158 - CW] (AAA)

additional\AAV\sequences [2983 3028 - CW] (AGC)

WPRE [2179 2720 - CW] (AAA)

BGH\pA [2727 2941 - CW] (AAA)

Rev\Ori\NheI [5572 5597 - CW] (AAA)

Fw\NheI\Ori [4779 4802 - CW] (AAA)

M13-fwd [3194 3177 - CCW] (AGC)

M13-rev [205 : 225 - CW] (AGC)

ColEl origin [4931 5559 - CW] (aaa)

LacZ alpha [3265 3333 - CW] (AAA)

LacO [177 : 199 - CW] (AAA)

Amp prom [3852 3880 - CW] (AAG)

lac [143 : 172 - CW] (AAA)

hGnatl prom [458 : 1119 - - CW] (aaa)

hRho CDS [1120 2167 - CW] (aaa)

agcgcccaatacgcaaaccgcctctccccgcgcgttggccgattcattaatgcagct ggcacgacaggtttcccga ctggaaagcgggcagtgagcgcaacgcaattaatgtgagttagctcactcattaggcacc ccaggcTTTACACTTT ATGCTTCCGGCTCGTATGTTgtgtGGAATTGTGAGCGGATAACAATTtcacaCAGGAAAC AGCrArGACCArGatt acgccagatttaattaaggCTGCGCGCTCGCTCGCTCACTGAGGCCGCCCGGGCAAAGCC CGGGCGTCGGGCGACC TTTGGTCGCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATC ACTAGGGGTTCCTtgt agttaatgattaacccgccatgctacttatctacgtagccatgctctaggaagatcggaa ttcgcccttaagctag ctccctgcaggtcataaaatcccagtccagagtcaccagcccttcttaaccacttcctac tgtgtgaccctttcag cctttacttcctcatcagtaaaatgaggctgatgatatgggcatccatactccagggcca gtgtgagcttacaaca agataaggagtggtgctgagcctggtgccgggcaggcagcaggcatgtttctcccaatta tgccctctcactgcca gccccacctccattgtcctcacccccagggctcaaggttctgccttcccctttctcagcc ctgaccctactgaaca tgtctccccactcccaggcagtgccagggcctctcctggagggttgcggggacagaagga cagccggagtgcagag tcagcggttgagggattggggctatgccagctaatccgaagggttgggggggctgagctg gattcacctgtccttg tctctgattggctcttggacacccctagcccccaaatcccactaagcagccccaccaggg attgcacaggtccgta gagagccagttgattgcaggtcctcctggggccagaagggtgcctgggaggccaggttct ggggatcccctccatc cagaagaaccacctgctcactctgtcccttcgcctgctgctgggaccgcggccgcatgaa tggcacagaaggccct aacttctacgtgcccttctccaatgcgacgggtgtggtacgcagccccttcgagtaccca cagtactacctggctg agccatggcagttctccatgctggccgcctacatgtttctgctgatcgtgctgggcttcc ccatcaacttcctcac gctctacgtcaccgtccagcacaagaagctgcgcacgcctctcaactacatcctgctcaa cctagccgtggctgac ctcttcatggtcctaggtggcttcaccagcaccctctacacctctctgcatggatacttc gtcttcgggcccacag gatgcaatttggagggcttctttgccaccctgggcggtgaaattgccctgtggtccttgg tggtcctggccatcga gcggtacgtggtggtgtgtaagcccatgagcaacttccgcttcggggagaaccatgccat catgggcgttgccttc acctgggtcatggcgctggcctgcgccgcacccccactcgccggctggtccaggtacatc cccgagggcctgcagt gctcgtgtggaatcgactactacacgctcaagccggaggtcaacaacgagtcttttgtca tctacatgttcgtggt ccacttcaccatccccatgattatcatctttttctgctatgggcagctcgtcttcaccgt caaggaggccgctgcc cagcagcaggagtcagccaccacacagaaggcagagaaggaggtcacccgcatggtcatc atcatggtcatcgctt tcctgatctgctgggtgccctacgccagcgtggcattctacatcttcacccaccagggct ccaacttcggtcccat cttcatgaccatcccagcgttctttgccaagagcgccgccatctacaaccctgtcatcta tatcatgatgaacaag cagttccggaactgcatgctcaccaccatctgctgcggcaagaacccactgggtgacgat gaggcctctgctaccg tgtccaagacggagacgagccaggtggccccggcctaaaaqcttqqatccAA CAACC C GGA ACAAAA G TGAAAGATTGACTGGTATTCTTAACTATGTTGCTCCTTTTACGCTATGTGGATACGCTGC TTTAATGCCTTTGTAT CATGCTATTGCTTCCCGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTG TCTCTTTATGAGGAGT TGTGGCCCGTTGTCAGGCAACGTGGCGTGGTGTGCACTGTGTTTGCTGACGCAACCCCCA CTGGTTGGGGCATTGC CACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCCCCTCCCTATTGCCACGGCGGA ACTCATCGCCGCCTGC CTTGCCCGCTGCTGGACAGGGGCTCGGCTGTTGGGCACTGACAATTCCGTGGTGTTGTCG GGGAAGCTGACGTCCT TTCCATGGCTGCTCGCCTGTGTTGCCACCTGGATTCTGCGCGGGACGTCCTTCTGCTACG TCCCTTCGGCCCTCAA TCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTCTTCCGCGTCTTCG agatctGCCTCGACTG TGCCTTCTAGTTGCCAGCCATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGG AAGGtGCCACTCCCAC TGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTAT TCTGGGGGGTGGGGTG GGGCAGGACAGCAAGGGGGAGGATTGGGAAGACAATAGCAGGCATGCTGGGGActcgagt taagggcgaattcccg attaqqatcttcctaqaqCATGGCTACGTAGATAAGTAGCATGGCGGGTTAATCATTAAC TACAAGGAACCCCTAG TGATGGAGTTGGCCACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAA AGGTCGCCCGACGCCC GGGCTTTGCCCGGGCGGCCTCAGTGAGCGAGCGAGCGCGCAGccttaattaacctaattc ACrGGCCGrCGrrrrA CAacgtcgtgactgggaaaaccctggcgttacccaacttaatcgccttgcagcacatccc cctttcgccagcTGGC GTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCG AATGGgacgcgccctg tagcggcgcattaagcgcggcgggtgtggtggttacgcgcagcgtgaccgctacacttgc cagcgccctagcgccc gctcctttcgctttcttcccttcctttctcgccacgttcgccggctttccccgtcaagct ctaaatcgggggctcc ctttagggttccgatttagtgctttacggcacctcgaccccaaaaaacttgattagggtg atggttcacgtagtgg gccatcgccccgatagacggtttttcgccctttgacgctggagttcacgttcctcaatag tggactcttgttccaa actggaacaacactcaaccctatctcggtctattcttttgatttataagggatttttccg atttcggcctattggt taaaaaatgagctgatttaacaaaaatttaacgcgaattttaacaaaatattaacgttta taatttcaggtggcat ctttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacarrCAAflrA rGrArCCGCrCArG.AG.A CAATaaccctgataaatgcttcaataatattgaaaaaggaagagtatgagtattcaacat ttccgtgtcgccctta ttcccttttttgcggcattttgccttcctgtttttgctcacccagaaacgctggtgaaag taaaagatgctgaaga tcagttgggtgcacgagtgggttacatcgaactggatctcaatagtggtaagatccttga gagttttcgccccgaa gaacgttttccaatgatgagcacttttaaagttctgctatgtggcgcggtattatcccgt attgacgccgggcaag agcaactcggtcgccgcatacactattctcagaatgacttggttgagtactcaccagtca cagaaaagcatcttac ggatggcatgacagtaagagaattatgcagtgctgccataaccatgagtgataacactgc ggccaacttacttctg acaacgatcggaggaccgaaggagctaaccgcttttttgcacaacatgggggatcatgta actcgccttgatcgtt gggaaccggagctgaatgaagccataccaaacgacgagcgtgacaccacgatgcctgtag taatggtaacaacgtt gcgcaaactattaactggcgaactacttactctagcttcccggcaacaattaatagactg gatggaggcggataaa gttgcaggaccacttctgcgctcggcccttccggctggctggtttattgctgataaatct ggagccggtgagcgtg ggtctcgcggtatcattgcagcactggggccagatggtaagccctcccgtatcgtagtta tctacacgacggggag tcaggcaactatggatgaacgaaatagacagatcgctgagataggtgcctcactgattaa gcattgGTAACTGTCA GACCAAGTTTACtcatatatactttagattgatttaaaacttcatttttaatttaaaagg atctaggtgaagatcc tttttgataatctcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcag acccc tagaaaaga t caaaggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaa accaccgctaccagcg gtggtttgtttgccggatcaagagctaccaactctttttccgaaggtaactggcttcagc agagcgcagataccaa atactgtccttctagtgtagccgtagttaggccaccacttcaagaactctgtagcaccgc ctacatacctcgctct gctaatcctgttaccagtggctgctgccagtggcgataagtcgtgtcttaccgggttgga ctcaagacgatagtta ccggataaggcgcagcggtcgggctgaacggggggttcgtgcacacagcccagcttggag cgaacgacctacaccg aactgagatacctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaagg cggacaggtatccggt aagcggcagggtcggaacaggagagcgcacgagggagcttccagggggaaacgcctggta tctttatagtcctgtc gggtttcgccacctctgacttgagcgtcgatttttgtgatgctcgtcaggggggcggagc ctatggaaaaacgcca gcaacgcggcctttttacggttcCTGGCCTTTTGCTGCGGTTTTGCTCAcatgttctttc ctgcgttatcccctga ttctgtggataaccgtattaccgcctttgagtgagctgataccgctcgccgcagccgaac gaccgagcgcagcgag tcagtgagcgaggaagcggaag pAAV2.1-CMV-ZF6-5F (SEQ ID No. 19) Features :

5 ' ITR [248 : 377 - CW] (AAA)

CMV promoter [458 : 1040 - - CW] (aaa)

SV40 raise intron (promega) [1078 1210 - CW] (aaa)

BGH pA [2309 2523 - CW] (AAA)

Additional AW sequence [2565 2610 - CW] (AGO

3 ' ITR [2611 2740 - CW] (AAA)

WPRE [1761 2302 - CW] (AAA)

M13-fwd [2776 2759 - CCW] (AGC)

M13-rev [205 : 225 - CW] (AGC)

ColEl origin [4513 5141 - CW] (aaa)

LacZ alpha [2847 2915 - CW] (AAA)

LacO [177 : 199 - CW] (AAA)

Amp prom [3434 3462 - CW] (AAG)

lac [143 : 172 - CW] (AAA)

HA tag [1713 1739 - CW] (aaa)

FactorXa site [2243 2232 - CCW] (aaa)

ZF6-5F [1227 1748 - CW] (aaa)

agcgcccaatacgcaaaccgcctctccccgcgcgttggccgattcattaatgcagct ggcacgacaggtttcccga ctggaaagcgggcagtgagcgcaacgcaattaatgtgagttagctcactcattaggcacc ccaggcTTTACACTTT ATGCTTCCGGCTCGTATGTTgtgtGGAATTGTGAGCGGATAACAATTtcacaCAGGAAAC AGCrATGflCCArGatt acgccagatttaattaaggCTGCGCGCTCGCTCGCTCACTGAGGCCGCCCGGGCAAAGCC CGGGCGTCGGGCGACC TTTGGTCGCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATC ACTAGGGGTTCCTtgt agttaatgattaacccgccatgctacttatctacgtagccatgctctaggaagatcggaa ttcgcccttaagctag ctagttattaatagtaatcaattacggggtcattagttcatagcccatatatggagttcc gcgttacataacttac ggtaaatggcccgcctggctgaccgcccaacgacccccgcccattgacgtcaataatgac gtatgttcccatagta acgccaatagggactttccattgacgtcaatgggtggagtatttacggtaaactgcccac ttggcagtacatcaag tgtatcatatgccaagtacgccccctattgacgtcaatgacggtaaatggcccgcctggc attatgcccagtacat gaccttatgggactttcctacttggcagtacatctacgtattagtcatcgctattaccat ggtgatgcggttttgg cagtacatcaatgggcgtggatagcggtttgactcacggggatttccaagtctccacccc attgacgtcaatggga gtttgttttggcaccaaaatcaacgggactttccaaaatgtcgtaacaactccgccccat tgacgcaaatgggcgg taggcgtgtacggtgggaggtctatataagcagagctggtttagtgaaccgtc&g& amp;tcctgc&g&agttggtcgtg aggcactgggcaggtaagtatcaaggttacaagacaggtttaaggagaccaatagaaact gggcttgtcgagacag agaagactcttgcgtttctgataggcacctattggtcttactgacatccactttgccttt ctctccacaggtgtcc aggcggccgcatgatcgatctggagccaggtgaaaagccttataagtgccctgaatgcgg gaaatcattcagccag aactccacacttaccgagcaccagagaacccatactggggagaaaccctataagtgccca gaatgtgggaagtctt tctctaccagcggacacttggtcaggcaccagagaacgcaccagaacaagaaaggaggtt ctggtgatggcaagaa gaagcagcatgcttgtcccgaatgcggcaagtcctttagcagggaggacaatctgcacac tcaccaacgcacacat actggcgagaagccgtacaagtgtcccgaatgtggcaaaagtttctccacaagtggacat ctcgttcgtcaccagc gaacccacaccggagagaaaccctacaaatgcccagagtgtgggaaatccttttcacgga gcgacaaactggtgag aca tcaaccrcactca tacacrcrcaacraaaaccracrctcaccrcrtacccttacgatgtgcctgactatgcca gt taa taa aagcttggatccAATCAACCTCTGGATTACAAAATTTGTGAAAGATTGACTGGTATTCTT AACTATGTTGCTCCTT TTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCCCGTATGG CTTTCATTTTCTCCTC CTTGTATAAATCCTGGTTGCTGTCTCTTTATGAGGAGTTGTGGCCCGTTGTCAGGCAACG TGGCGTGGTGTGCACT GTGTTTGCTGACGCAACCCCCACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCC GGGACTTTCGCTTTCC CCCTCCCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGG CTCGGCTGTTGGGCAC TGACAATTCCGTGGTGTTGTCGGGGAAGCTGACGTCCTTTCCATGGCTGCTCGCCTGTGT TGCCACCTGGATTCTG CGCGGGACGTCCTTCTGCTACGTCCCTtcq-q-ccctcaatCCAGCGGACCTTCCTTCCC GCGGCCTGCTGCCGGCTC TGCGGCCTCTTCCGCGTCTTCGagatctGCCTCGACTGTGCCTTCTAGTTGCCAGCCATC TGTTGTTTGCCCCTCC CCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAG GAAATTGCATCGCATT GTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGACAGCAAGGGGGAGG ATTGGGAAGACAATAG CAGGCATGCTGGGGActcgagttaagggcgaattcccgattaggatcttcctagagCArG GCrACGrAGArA¾GrA GCArGGCGGGrrA¾rCArrA¾CrACAAGGAACCCCTAGTGATGGAGTTGGCCACTCCC TCTCTGCGCGCTCGCTCG CTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTGCCCGGGCGGCCTCA GTGAGCGAGCGAGCGC GCAGccttaattaacctaattcACTGGCCGrCGrrrrACAacgtcgtgactgggaaaacc ctggcgttacccaact taatcgccttgcagcacatccccctttcgccagcTGGCGTAATAGCGAAGAGGCCCGCAC CGATCGCCCTTCCCAA CAGTTGCGCAGCCTGAATGGCGAATGGgacgcgccctgtagcggcgcattaagcgcggcg ggtgtggtggttacgc gcagcgtgaccgctacacttgccagcgccctagcgcccgctcctttcgctttcttccctt cctttctcgccacgtt cgccggctttccccgtcaagctctaaatcgggggctccctttagggttccgatttagtgc tttacggcacctcgac cccaaaaaacttgattagggtgatggttcacgtagtgggccatcgccccgatagacggtt tttcgccctttgacgc tggagttcacgttcctcaatagtggactcttgttccaaactggaacaacactcaacccta tctcggtctattcttt tgatttataagggatttttccgatttcggcctattggttaaaaaatgagctgatttaaca aaaatttaacgcgaat tttaacaaaatattaacgtttataatttcaggtggcatctttcggggaaatgtgcgcgga acccctatttgtttat ttttctaaatacaTTCAAATATGTATCCGCTCATGAGACAATaaccctgataaatgcttc aataatattgaaaaag gaagagtatgagtattcaacatttccgtgtcgcccttattcccttttttgcggcattttg ccttcctgtttttgct cacccagaaacgctggtgaaagtaaaagatgctgaagatcagttgggtgcacgagtgggt tacatcgaactggatc tcaatagtggtaagatccttgagagttttcgccccgaagaacgttttccaatgatgagca cttttaaagttctgct atgtggcgcggtattatcccgtattgacgccgggcaagagcaactcggtcgccgcataca ctattctcagaatgac ttggttgagtactcaccagtcacagaaaagcatcttacggatggcatgacagtaagagaa ttatgcagtgctgcca taaccatgagtgataacactgcggccaacttacttctgacaacgatcggaggaccgaagg agctaaccgctttttt gcacaacatgggggatcatgtaactcgccttgatcgttgggaaccggagctgaatgaagc cataccaaacgacgag cgtgacaccacgatgcctgtagtaatggtaacaacgttgcgcaaactattaactggcgaa ctacttactctagctt cccggcaacaattaatagactggatggaggcggataaagttgcaggaccacttctgcgct cggcccttccggctgg ctggtttattgctgataaatctggagccggtgagcgtgggtctcgcggtatcattgcagc actggggccagatggt aagccctcccgtatcgtagttatctacacgacggggagtcaggcaactatggatgaacga aatagacagatcgctg agataggtgcctcactgattaagcattggtaactgtcagaccaagtttactcatatatac tttagattgatttaaa acttcatttttaatttaaaaggatctaggtgaagatcctttttgataatctcatgaccaa aatcccttaacgtgag ttttcgttccactgagcgtcagacccc taqaaaaqatcaaaqqatcttcttqaqatcctttttttctqcqcqtaa tctqctqcttqcaaacaaaaaaaccaccqctaccaqcqqtqqtttqtttqccqqatcaaq aqctaccaactctttt tccqaaqqtaactqqcttcaqcaqaqcqcaqataccaaatactqtccttctaqtqtaqcc qtaqttaqqccaccac ttcaaqaactctqtaqcaccqcctacatacctcqctctqctaatcctqttaccaqtqqct qctqccaqtqqcqata aqtcqtqtcttaccqqqttqqactcaaqacqataqttaccqqataaqqcqcaqcqqtcqq qctqaacqqqqqqttc qtqcacacaqcccaqcttqqaqcqaacqacctacaccqaactqaqatacctacaqcqtqa qctatqaqaaaqcqcc acqcttcccqaaqqqaqaaaqqcqqacaqqtatccqqtaaqcqqcaqqqtcqqaacaqqa qaqcqcacqaqqqaqc ttccaqqqqqaaacqcctqqtatctttataqtcctqtcqqqtttcqccacctctqacttq aqcqtcqatttttqtq atqctcqtcaqqqqqqcqqaqcctatqqaaaaacqccaqcaacqcqqcctttttacggtt cctggccttttgctgc ggttttgctcacatgttctttcctgcgttatcccctgattctgtggataaccgtattacc gcctttgagtgagctg ataccgctcgccgcagccgaacgaccgagcgcagcgagtcagtgagcgaggaagcggaag

pAAV2.1-CMV-TALRHO(02)DBD (SEQ ID No. 20)

Features :

5 ' ITR [248 : 377 - CW] (AAA)

CMV promoter [458 : 1040 - CW] (aaa)

SV40 raise intron (promega) [1078 1210 - CW] (aaa)

NLS [*] [1227 1251 - CW] (AAA)

TALRHO-02DBD [1252 3566 - CW] (aaa)

HA [3567 3602 - CW] (AAA)

3 ' ITR [3917 4046 - CW] (AAA)

bGH PolyA [3615 3829 - CW] (AAA)

agcgcccaatacgcaaaccgcctctccccgcgcgttggccgattcattaatgcagct ggcacgacaggtttcccga ctggaaagcgggcagtgagcgcaacgcaattaatgtgagttagctcactcattaggcacc ccaggctttacacttt atgcttccggctcgtatgttgtgtggaattgtgagcggataacaatttcacacaggaaac agctatgaccatgatt acgccagatttaattaaggCTGCGCGCTCGCTCGCTCACTGAGGCCGCCCGGGCAAAGCC CGGGCGTCGGGCGACC TTTGGTCGCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATC ACTAGGGGTTCCTtgt agttaatgattaacccgccatgctacttatctacgtagccatgctctaggaagatcggaa ttcgcccttaagctag ctagttattaatagtaatcaattaeggggteattagttcatageccatatatggagttcc gcgttacataacttac ggtaaatggcccgcctggctgaccgcccaacgacccccgcccattgacgtcaataatgac gtatgttcccatagta acgccaatagggactttccattgacgtcaatgggtggagtatttacggtaaactgcccac ttggcagtacatcaag tgtatcatatgccaagtacgccccctattgacgtcaatgacggtaaatggcccgcctggc attatgcccagtacat gaccttatgggactttcctacttggcagtacatctacgtattagtcatcgctattaccat ggtgatgcggttttgg cagtacatcaatgggcgtggatagcggtttgactcacggggatttccaagtctccacccc attgacgtcaatggga gtttgttttggcaccaaaatcaacgggactttccaaaatgtcgtaacaactccgccccat tgacgcaaatgggcgg taggcgtgtacggtgggaggtctatataagcagagctggtttagtgaaccgtcagatcct gcagaagttggtcgtg aggcactgggcaggtaagtatcaaggttacaagacaggtttaaggagaccaatagaaact gggcttgtcgagacag agaagactcttgcgtttctgataggcacctattggtcttactgacatccactttgccttt ctctccacaggtgtcc aggeggecgc&TGCCGh&Gh&Gh&!GCGTh&&GTC& amp;.ctaqcqcccccaqaaqaaqqqccqctcaqccttccqatqcc tctcctqccqcccaqqtqqacctqaqaaccctqqqctacaqccaqcaqcaqcaqqaaaaq atcaaqcccaaaqtqc qqaqcaccqtqqcccaqcaccacqaaqccctcqtqqqccacqqctttacccacqctcaca tcqtqqccctqaqcca qcatcctqccqctctqqqaaccqtqqccqtqaaqtaccaqqacatqatcqccqccctqcc cqaqqccacacacqaq qctatcqtqqqcqtqqqcaaqcaqtqqtccqqcqctaqaqcactcqaqqccttqctqaca qtqqccqqcqaqctqa gaggccctccactgcagctggacaccggccagctgctgaagatcgccaagcggggaggcg tgacagccgtggaagc cgtgcacgcttggcggaatgccctgacaggcgctcccctgaaccttacgccgcagcaggt ggtggccatcgccagc cacgatggcggcaagcaggcgctggagacggtgcagcggctgcttccggtgctgtgccag gcccatggcctgaccc cggagcaggtggtggccatcgccagcaatattggtggcaagcaggcgctggagacggtgc agcga ttgttgccggt gctgtgccaggcccatggcctgaccccggagcaggtggtggccatcgccagccacgacgg tggcaagcaggcgctg gagactgtccagcggctgttgccggtgctgtgccaggcccatggcctgaccccggagcag gtggtggccatcgcca gcaatggcggtggcaagcaggcgcttgagacggtgcagcggctgttgccggtgctgtgcc aggcccatggcctgac cccggagcaggtggtggccatcgccagcaatggcggtggcaagcaggctctggagacggt gcagcggctgttgccg gtgctgtgccaggcccatggcctgaccccggagcaggtggtggccatcgccagcaatggc gggggcaagcaggcgc tggagacggtgcagcggctgttgccggtgctgtgccaggcccatggcctgaccccgcagc aggtggtggccatcgc cagcaatattggcggcaagcaggcgctggagacggtgcaggcgctgttgccggtgctgtg ccaggcccatggcctg accccggagcaggtggtggccatcgcaagcaatggcggtggcaagcaggcgctggagacg gtgcaggcgctgttgc cggtgctgtgccaggcccatggcctgaccccggagcaggtggtggcaatcgccagcaata ttggtggcaagcaggc gctggagacggtgcagcggctgttgccggtgctgtgccaggcccatggcctgaccccgca acaggtggtagccatc gccagcaatattggtggcaagcaggcgctggagacggtgcagcggctgttgccggtgctg tgccaggcccatggcc tgacaccccagcaggtggtagcgatcgccagcaataagggtggcaagcaggcgctggaga cggtgcagcggctgct tccggtgctgtgccaggcccatggcctgaccccggagcaggtggtggccatcgccagcaa taagggtggcaagcag gcgctggagacggtgcagcgattgttgccggtgctgtgccaggcccatggcctgaccccg gagcaggtggtggcca tcgccagcaataagggtggcaagcaggcgctggagactgtccagcggctgttgccggtgc tgtgccaggcccatgg cctgaccccggagcaggtggtggccatcgccagcaatggcggtggcaagcaggcgcttga gacggtgcagcggctg ttgccggtgctgtgccaggcccatggcctgaccccgcagcaggtggtggccatcgccagc cacgacggtggcaagc aggctctggagacggtgcagcggctgttgccggtgctgtgccaggcccatggcctgaccc cggagcaggtggtggc catcgccagcaatggcgggggcaagcaggcgctggagacggtgcagcggctgttgccggt gctgtgccaggcccat ggcctgaccccgcagcaggtggtggccatcgccagcaataagggcggcaagcaggcgctg gagacggtgcaggcgc tgttgccggtgctgtgccaggcccatggcctgacaccccagcaggtcgtggccattgcca gcaacaagggaggcag acccgccctggaatctattgtggcccagctgagcagacccgacccagctctggccgccct gacaggatccTACCCG TACGACGTTCCAGACTATGCATCTTAATAAaagcttagatctGCCTCGACTGTGCCTTCT AGTTGCCAGCCATCTG TTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTT CCTAATAAAATGAGGA AATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGCAGGA CAGCAAGGGGGAGGAT TGGGAAGACAATAGCAGGCATGCTGGGGActcgagttaagggcgaattcccgattaggat cttcctagagcatggc tacgtagataagtagcatggcgggttaatcattaactacaAGGAACCCCTAGTGATGGAG TTGGCCACTCCCTCTC TGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTTG CCCGGGCGGCCTCAGT GAGCGAGCGAGCGCGCAGccttaattaacctaattcactggccgtcgttttacaacgtcg tgactgggaaaaccct ggcgttacccaacttaatcgccttgcagcacatccccctttcgccagctggcgtaatagc gaagaggcccgcaccg atcgcccttcccaacagttgcgcagcctgaatggcgaatgggacgcgccctgtagcggcg cattaagcgcggcggg tgtggtggttacgcgcagcgtgaccgctacacttgccagcgccctagcgcccgctccttt cgctttcttcccttcc tttctcgccacgttcgccggctttccccgtcaagctctaaatcgggggctccctttaggg ttccgatttagtgctt tacggcacctcgaccccaaaaaacttgattagggtgatggttcacgtagtgggccatcgc cccgatagacggtttt tcgccctttgacgctggagttcacgttcctcaatagtggactcttgttccaaactggaac aacactcaaccctatc tcggtctattcttttgatttataagggatttttccgatttcggcctattggttaaaaaat gagctgatttaacaaa aatttaacgcgaattttaacaaaatattaacgtttataatttcaggtggcatctttcggg gaaatgtgcgcggaac ccctatttgtttatttttctaaatacattcaaatatgtatccgctcatgagacaataacc ctgataaatgcttcaa taatattgaaaaaggaagagtatgagtattcaacatttccgtgtcgcccttattcccttt tttgcggcattttgcc ttcctgtttttgctcacccagaaacgctggtgaaagtaaaagatgctgaagatcagttgg gtgcacgagtgggtta catcgaactggatctcaatagtggtaagatccttgagagttttcgccccgaagaacgttt tccaatgatgagcact tttaaagttctgctatgtggcgcggtattatcccgtattgacgccgggcaagagcaactc ggtcgccgcatacact attctcagaatgacttggttgagtactcaccagtcacagaaaagcatcttacggatggca tgacagtaagagaatt atgcagtgctgccataaccatgagtgataacactgcggccaacttacttctgacaacgat cggaggaccgaaggag ctaaccgcttttttgcacaacatgggggatcatgtaactcgccttgatcgttgggaaccg gagctgaatgaagcca taccaaacgacgagcgtgacaccacgatgcctgtagtaatggtaacaacgttgcgcaaac tattaactggcgaact acttactctagcttcccggcaacaattaatagactggatggaggcggataaagttgcagg accacttctgcgctcg gcccttccggctggctggtttattgctgataaatctggagccggtgagcgtgggtctcgc ggtatcattgcagcac tggggccagatggtaagccctcccgtatcgtagttatctacacgacggggagtcaggcaa ctatggatgaacgaaa tagacagatcgctgagataggtgcctcactgattaagcattggtaactgtcagaccaagt ttactcatatatactt tagattgatttaaaacttcatttttaatttaaaaggatctaggtgaagatcctttttgat aatctcatgaccaaaa tcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaaggat cttcttgagatccttt ttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgctaccagcggtggtttg tttgccggatcaagag ctaccaactctttttccgaaggtaactggcttcagcagagcgcagataccaaatactgtc cttctagtgtagccgt agttaggccaccacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcc tgttaccagtggctgc tgccagtggcgataagtcgtgtcttaccgggttggactcaagacgatagttaccggataa ggcgcagcggtcgggc tgaacggggggttcgtgcacacagcccagcttggagcgaacgacctacaccgaactgaga tacctacagcgtgagc tatgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatccggtaagcggca gggtcggaacaggaga gcgcacgagggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcg ccacctctgacttgag cgtcgatttttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagcaacgcg gcctttttacggttcc tggccttttgctgcggttttgctcacatgttctttcctgcgttatcccctgattctgtgg ataaccgtattaccgc ctttgagtgagctgataccgctcgccgcagccgaacgaccgagcgcagcgagtcagtgag cgaggaagcggaag pAAV2.1-CMV-TAL7-DBD (SEQ ID No. 21)

Features :

5 ' ITR [248 : 377 - CW] (AAA)

CMV promoter [458 : 1040 - - CW] (aaa)

SV40 raise intron (promega) [1078 1210 - CW] (aaa)

NLS [1227 1256 - CW] (AAA)

TAL7-DBD [1257 3305 - CW] (aaa)

bGH [3312 3526 - CW] (AAA)

3 ' ITR [3568 3743 - CW] (AAA) agcgcccaatacgcaaaccgcctctccccgcgcgttggccgattcattaatgcagctggc acgacaggtttcccga ctggaaagcgggcagtgagcgcaacgcaattaatgtgagttagctcactcattaggcacc ccaggctttacacttt atgcttccggctcgtatgttgtgtggaattgtgagcggataacaatttcacacaggaaac agctatgaccatgatt acgccagatttaattaaggCTGCGCGCTCGCTCGCTCACTGAGGCCGCCCGGGCAAAGCC CGGGCGTCGGGCGACC TTTGGTCGCCCGGCCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCCAACTCCATC ACTAGGGGTTCCTtgt agttaatgattaacccgccatgctacttatctacgtagccatgctctaggaagatcggaa ttcgcccttaagctag ctagttattaatagtaatcaattacggggtcattagttcatagcccatatatggagttcc gcgttacataacttac ggtaaatggcccgcctggctgaccgcccaacgacccccgcccattgacgtcaataatgac gtatgttcccatagta acgccaatagggactttccattgacgtcaatgggtggagtatttacggtaaactgcccac ttggcagtacatcaag tgtatcatatgccaagtacgccccctattgacgtcaatgacggtaaatggcccgcctggc attatgcccagtacat gaccttatgggactttcctacttggcagtacatctacgtattagtcatcgctattaccat ggtgatgcggttttgg cagtacatcaatgggcgtggatagcggtttgactcacggggatttccaagtctccacccc attgacgtcaatggga gtttgttttggcaccaaaatcaacgggactttccaaaatgtcgtaacaactccgccccat tgacgcaaatgggcgg taggcgtgtacggtgggaggtctatataagcagagctggtttagtgaaccgtc&g& amp;tcctgc&g&agttggtcgtg aggcactgggcaggtaagtatcaaggttacaagacaggtttaaggagaccaatagaaact gggcttgtcgagacag agaagactcttgcgtttctgataggcacctattggtcttactgacatccactttgccttt ctctccacaggtgtcc aggeggecgcATGCCGAAGAAGAAGCGTAAAGTCACTAGTgcaagtgccccaagaaggcg ggccgcccagccttct gacgctagccccgctgcccaggtggatctgcgaacgctgggttattctcagcagcagcaa gagaagattaagccta aggtccggagtactgtggcacagcaccatgaggctctggtcgggcacggcttcacgcacg cacacatcgttgcact ctcccagcaccctgccgcgctgggcacagtggcagtgaagtaccaagatatgattgcggc acttcccgaagctact cacgaggccatcgtcggcgttgggaagcagtggtcaggcgctagggcactggaggcactg ctgactgtggccgggg agcttcgcggaccccccctgcagttggacacaggccagctgctgaagatagcaaaacgag gaggcgtcacagctgt agaggcegtgeatgcgtggcgcaatgeecttaccggggcccctctgaatctgaccccgca gcaagtggtagccatt gcgtctaacaacggagggaaacaggcactcgagacagttcaacggctgctccccgtgctt tgccaggcgcacggac tgaccccagaacaagtggtggcgatcgcctcaaataacggcggcaaacaggctcttgaaa ccgtgcagagactgct gccagtactgtgccaggctcatggcctgaccccagagcaggttgtggccatcgcttcaaa caatggcggtaaacag gcgctcgagactgtccagaggctgttgcctgtgctctgccaagctcatggcctgacgccc gaacaggtggttgcca tcgctagcaacatcggcggcaagcaagctctcgagacagtgcaacggctgctgcccgtac tctgccaggcacatgg gctgactcccgagcaagtggttgctattgcatctaacaacggcggaaagcaggcgctgga gactgtccagcgtttg cttcctgttttgtgtcaggctcacggcttgacgcccgaacaggtagtggccatagcctcc aacatcggaggaaaac aggcacttgaaacagtccagaggcttctccccgtcctgtgccaagcccatggcctcactc cacagcaagtagtggc tattgcatccaatggaggcgggaaacaagccttggaaaccgtccaggccctgctgcctgt cctgtgccaggcacac gggctgacacctgaacaggtggtcgcaattgccagtaatggtggcgggaagcaagccctg gagactgttcaggctt tgctgcccgttctgtgtcaagcacacggtctgactccagaacaggttgtggctatcgcct ccaataatggtggcaa acaggctctcgaaacagtgcagaggctgctgcccgtgctgtgtcaagcccatggcctgac cccacagcaggtcgtg gccattgcctctaataatggaggtaaacaggccctggagacagtccagagattgcttcca gttctgtgtcaggccc acgggctgacccctcaacaggtcgtcgccatcgcctcaaacaacggtggcaagcaggcac tcgagactgtgcagcg gctcttgcctgtgctgtgtcaagcccatggactgaccccggaacaggtggttgccattgc cagcaacaacggtggg aaacaggctttggaaaccgtgcaacgcctgctgccggttctgtgccaggctcacgggctt accccggaacaggtgg tagctatcgctagcaataatggagggaagcaggccctggaaacagtgcagagactgctcc ccgtcctctgccaggc acacggactcaccccggagcaagtggtcgccatagcctccaacggtggagggaagcaggc actggagacagtgcag agacttctcccagtgctctgtcaggctcatgggctcacccctcaacaggtagtagccata gctagtaacaatggag gtcgtccagcattggagagcatcgtggcgcagctgagccgcccagacccagcgcttgccg ccttgaccggaagcta tccctacgacgtgcctgattacgcttaataaaagcttagatctGCCTCGACTGTGCCTTC TAGTTGCCAGCCATCT GTTGTTTGCCCCTCCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTT TCCTAATAAAATGAGG

AAATTGCATCGCATTGTCTGAGTAGGTGTCATTCTATTCTGGGGGGTGGGGTGGGGC AGGACAGCAAGGGGGAGGA TTGGGAAGACAATAGCAGGCATGCTGGGGActcgagttaagggcgaattcccgattagga tcttcctagagCATGG CTACGTAGATAAGTAGCATGGCGGGTTAATCATTAACTACAAGGAACCCCTAGTGATGGA GTTGGCCACTCCCTCT CTGCGCGCTCGCTCGCTCACTGAGGCCGGGCGACCAAAGGTCGCCCGACGCCCGGGCTTT GCCCGGGCGGCCTCAG TGAGCGAGCGAGCGCGCAGccttaattaacctaattcactggccgtcgttttacaacgtc gtgactgggaaaaccc tggcgttacccaacttaatcgccttgcagcacatccccctttcgccagctggcgtaatag cgaagaggcccgcacc gatcgcccttcccaacagttgcgcagcctgaatggcgaatgggacgcgccctgtagcggc gcattaagcgcggcgg gtgtggtggttacgcgcagcgtgaccgctacacttgccagcgccctagcgcccgctcctt tcgctttcttcccttc ctttctcgccacgttcgccggctttccccgtcaagctctaaatcgggggctccctttagg gttccgatttagtgct ttacggcacctcgaccccaaaaaacttgattagggtgatggttcacgtagtgggccatcg ccccgatagacggttt ttcgccctttgacgctggagttcacgttcctcaatagtggactcttgttccaaactggaa caacactcaaccctat ctcggtctattcttttgatttataagggatttttccgatttcggcctattggttaaaaaa tgagctgatttaacaa aaatttaacgcgaattttaacaaaatattaacgtttataatttcaggtggcatctttcgg ggaaatgtgcgcggaa cccctatttgtttatttttctaaatacattcaaatatgtatccgctcatgagacaataac cctgataaatgcttca ataatattgaaaaaggaagagtatgagtattcaacatttccgtgtcgcccttattccctt ttttgcggcattttgc cttcctgtttttgctcacccagaaacgctggtgaaagtaaaagatgctgaagatcagttg ggtgcacgagtgggtt acatcgaactggatctcaatagtggtaagatccttgagagttttcgccccgaagaacgtt ttccaatgatgagcac ttttaaagttctgctatgtggcgcggtattatcccgtattgacgccgggcaagagcaact cggtcgccgcatacac tattctcagaatgacttggttgagtactcaccagtcacagaaaagcatcttacggatggc atgacagtaagagaat tatgcagtgctgccataaccatgagtgataacactgcggccaacttacttctgacaacga tcggaggaccgaagga gctaaccgcttttttgcacaacatgggggatcatgtaactcgccttgatcgttgggaacc ggagctgaatgaagcc ataccaaacgacgagcgtgacaccacgatgcctgtagtaatggtaacaacgttgcgcaaa ctattaactggcgaac tacttactctagcttcccggcaacaattaatagactggatggaggcggataaagttgcag gaccacttctgcgctc ggcccttccggctggctggtttattgctgataaatctggagccggtgagcgtgggtctcg cggtatcattgcagca ctggggccagatggtaagccctcccgtatcgtagttatctacacgacggggagtcaggca actatggatgaacgaa atagacagatcgctgagataggtgcctcactgattaagcattggtaactgtcagaccaag tttactcatatatact ttagattgatttaaaacttcatttttaatttaaaaggatctaggtgaagatcctttttga taatctcatgaccaaa atcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaagga tcttcttgagatcctt tttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgctaccagcggtggttt gtttgccggatcaaga gctaccaactctttttccgaaggtaactggcttcagcagagcgcagataccaaatactgt ccttctagtgtagccg tagttaggccaccacttcaagaactctgtagcaccgcctacatacctcgctctgctaatc ctgttaccagtggctg ctgccagtggcgataagtcgtgtcttaccgggttggactcaagacgatagttaccggata aggcgcagcggtcggg ctgaacggggggttcgtgcacacagcccagcttggagcgaacgacctacaccgaactgag atacctacagcgtgag ctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatccggtaagcggc agggtcggaacaggag agcgcacgagggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttc gccacctctgacttga gcgtcgatttttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagcaacgc ggcctttttacggttc ctggccttttgctgcggttttgctcacatgttctttcctgcgttatcccctgattctgtg gataaccgtattaccg cctttgagtgagctgataccgctcgccgcagccgaacgaccgagcgcagcgagtcagtga gcgaggaagcggaag

RT-PCR studies

RNAs from tissues were isolated using RNAeasy Mini Kit (Qiagen), according to the manufacturer protocol. cDNA was amplified from 1000 fi g isolated RNA using QuantiTect Reverse Transcription Kit (Qiagen), as indicated in the manufacturer instructions. Transcript levels of transcripts were

measured by real-time PCR using the LightCycler 480 (Roche) and the following primers: hRhoJorward 5'. . . CCATCCCAGCGTTCTTTGCC . .3' [SEQ ID No. 31] and

hRho_reverse 5' . . GGCCTCATCGTCACCCAGTGGG. . .3' [SEQ ID No. 32] ;

mRhoJorward 5'. . . CTCTG CCAG CTTTCTTTG CT. . . 3' [SEQ ID No. 33]and

mRho_reverse 5'. . . GGCGTCGTCATCTCCCAGTGGA...3'[SEQ ID No. 34]; Gnatl_Forward 5'...GACCGAGCCTCAGAATACCA...3' [SEQ ID No. 35]and

Gnatl_reverse 5'...GGAGAATTGAGTCTCGATAATACC...3' [SEQ ID No. 36].

The levels of transgene were evaluated using the following primers:

bGH_Forward 5'... TCTAGTTG C C AG C C ATCTGTTGT ...3 ' [S E Q ID No. 37] and

bGH_reverse 5'... GGGAGTGGCACCTTCC...3' [SEQ ID No. 38].

The PCRs with cDNA were carried out in a total volume of 20 μ I, using 10 μ I LightCycler 480 SYBR Green I Master Mix (Roche) and 400nM primers under the following conditions: preincubation, 50°C for 5 min, cycling: 45 cycles of 95°C for 10 s, 60°C for 20 s and 72°C for 20 s. All of the reactions were standardized against murine GAPDH and Act β using the following primers:

mGAPDHJorward 5'. . . GTCGGTGTGAACGGATTTG. . .3' [SEQ ID No. 39]

mGAPDH_reverse 5'...CAATGAAGGGGTCGTTGATG...3'[SEQ ID No. 40];

Act_Forward 5'... C A AG ATC ATTG CTC CTCCTG A ...3 ' [SEQ ID No. 41]and

Act_reverse 5' CATCGTA CTCCTG CTTG CTG A...3' [SEQ ID No. 42]

Each sample was analysed in duplicate in two-independent experiments.

Immunostaining anti-HA antibody

Frozen retinal sections were washed once with PBS and then fixed for 10 min in 4% PFA. Sections were immerse in a retrieval solution (0,01 M sodium citrate buffer, pH 6.0) and boiled three times in a microwave. After the Blocking solution (10%FBS,10%NGS,1%BSA) was added for 1 hour. The primary antibody mouse anti-HA (1:300, Covance) was diluited in a Blocking solution and incubated overnight at 4°C. The secondary antibody (Alexa Fluor ® 594,anti-mouse 1:1000, Molecular Probes, Invitrogen, Carlsbad, CA) has been incubated for 1 hour . Vectashield (Vector Lab Inc., Peterborough, UK) was used to visualize nuclei. Sections were photographed using either a Zeiss 700 Confocal Microscope (Carl Zeiss, Oberkochen, Germany) or a Leica Fluorescence Microscope System (Leica Microsystems GmbH, Wetzlar, Germany). h-Rhodopsin 3A6 antibody

Frozen retinal sections were washed once with PBS . Sections were then permeabilized for 1 hour in PBS containing 0.2% Triton ® X-100. Blocking solution containing 10% normal goat serum (Sigma-Aldrich, St. Louis, MO) was applied for 1 hour. Primary antibodies were diluted in Blocking solution and incubated overnight at 4°C mouse anti-hRhodopsin 3A6(1:5 kindly provided by Robert S. Molday, University of British Columbia, Canada) .The secondary antibody (Alexa Fluor ® 594,anti-mouse 1:1000, Molecular Probes, Invitrogen, Carlsbad, CA) was incubated for 1 hour . Vectashield (Vector Lab Inc., Peterborough, UK) was used to visualize nuclei. Sections were photographed using a Leica Fluorescence Microscope System (Leica Microsystems GmbH, Wetzlar, Germany).

AAV vector preparations

AAV vectors were produced by the TIGEM AAV Vector Core, by triple transfection of HEK293 cells followed by two rounds of CsCI2 purification [Auricchio A, Hildinger M, O'Connor E, Gao GP, Wilson JM (2001) Isolation of highly infectious and pure adeno-associated virus type 2 vectors with a single-step gravity-flow column. Hum Gene Ther 12: 71-76.]. For each viral preparation, physical titers [genome copies (GC)/mL] were determined by averaging the titer achieved by dot-blot analysis [Doria M, Ferrara A, Auricchio A (2013) AAV2/8 vectors purified from culture medium with a simple and rapid protocol transduce murine liver, muscle, and retina efficiently. Hum Gene Ther Methods] and by PCR quantification using TaqMan (Applied Biosystems, Carlsbad, CA, USA). The pAAV2.1-CMV-ZF6-DBD and pAAV2.1-hGNATl-hRHO used for vector preparation are represented respectively in figures 24 and 25. The pAAV2.1- CMV-ZF6-5F, pAAV2.1-CMV-TAL7-DDB and pAAV2.1-CMV-TALRHO02DBD used for vector preparation are represented respectively in figures 27, 28 and 29. pAAV2.1-CMV was used for all vector preparation (Figure 26).

Cis-sequences mutagenesis

The pAAV8-hRHO-AZF6-5'UTR-EGFP was generated via pAAV2.1 hRhoPromoter_eGFP plasmid mutagenesis by QuikChange II XL Site-Directed Mutagenesis Kit (Agilent Technologies) as indicated in the manufacturer instructions using the following primers:

Mut_forward 5'...attaatatgattatgaacagattcagccaggagctta ...3' [SEQ ID No. 43]and

Mut_Reverse 5'...taagctcctggctgaatctgttcataatcatattaat...3' [SEQ ID No. 44].

The pAAV8-hRHO-MutZF6-5'UTR-EGFP was generated via pAAV2.1 hRhoPromoter_eGFP plasmid mutagenesis by QuikChange II XL Site-Directed Mutagenesis Kit (Agilent Technologies) as indicated in the manufacturer instructions using the following primers: Mut_forward 5'...attaatatgattatgaacaTTACTGTAATCTTAACCGGAgattcagccaggagct ta ...3' [SEQ. ID No. 45]

and Mut_Reverse 5'...taagctcctggctgaatcTCCGGTTAAGATTACAGTAAtgttcataatcatatta at...3' [SEQ ID No. 46].

Electrophysiological testing

The method is as described in Surace EM, Domenici L, Cortese K, Cotugno G, Di Vicino U, et al. (2005) Amelioration of both functional and morphological abnormalities in the retina of a mouse model of ocular albinism following AAV-mediated gene transfer. Mol Ther 12: 652- 658).

Mice were dark reared for three hours and anesthetized. Flash electroretinograms (ERGs) were evoked by 10-ms light flashes generated through a Ganzfeld stimulator (CSO, Costruzione Strumenti Oftalmici, Florence, Italy) and registered as previously described. ERGs and b-wave thresholds were assessed using the following protocol. Eyes were stimulated with light flashes increasing from -5.2 to +1.3 log cd*s/m 2 (which correspond to lxlO -5,2 to 20.0 cd*s/m 2 ) in scotopic conditions. The log unit interval between stimuli was 0.3 log from -5.4 to 0.0 log cd*s/m 2 < and 0.6 log from 0.0 to +1.3 log cd*s/m 2 . For ERG analysis in scotopic conditions the responses evoked by 11 stimuli (from -4 to +1.3 log cd*s/m 2 ) with an interval of 0.6 log unit were considered. To minimize the noise, three ERG responses were averaged at each 0.6 log unit stimulus from -4 to 0.0 log cd*s/m 2 while one ERG response was considered for higher (0.0-+1.3 log cd*s/m 2 ) stimuli. The time interval between stimuli was 10 seconds from -5.4 to 0.7 log cd*s/m 2 , 30 sec from 0.7 to +1 log cd*s/m 2 , or 120 seconds from +1 to +1.3 log cd*s/m 2 . a- and b-waves amplitudes recorded in scotopic conditions were plotted as a function of increasing light intensity (from -4 to +1.3 log cd*s/m 2 , Fig. 1, SI and S2). The photopic ERG was recorded after the scotopic session by stimulating the eye with ten 10 ms flashes of 20.0 cd*s/m 2 over a constant background illumination of 50 cd/m 2 .

Vector administration and Animal Model

P347S+/+ animals (Li T, Snyder WK, Olsson JE, Dryja TP (1996) Transgenic mice carrying the dominant rhodopsin mutation P347S: evidence for defective vectorial transport of rhodopsin to the outer segments. Proc Natl Acad Sci USA 93: 14176-14181) for breeding were kindly provided by Dr. G. Jane Farrar (Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland) and were bred in the animal facility of the Biotechnology Centre of the Cardarelli Hospital (Naples, Italy) with C57BL/6 mice (Charles Rivers Laboratories, Calco, Italy), to obtain the P347S+/- mice.

Mice

Mice were anesthetized with an intraperitoneal injection of 2 mL/100 g body weight of avertin [1.25% w/v of 2,2,2-tribromoethanol and 2.5% v/v of 2-methyl-2-butanol (Sigma- Aldrich, Milan, Italy)], then AAV vectors were delivered subretinally via a trans-scleral transchoroidal approach as described by Liang et al. [Liang FQ, Anand V, Maguire AM, Bennett J (2000) Intraocular delivery of recombinant virus. In: Rakoczy PE editor. Vision Research Protocols.Totowa: Humana Press Inc. 125-139.].

Pigs

Eleven-week-old Large White (LW) female piglets were utilized. Pigs were fasted overnight leaving water ad libitum. The anesthetic and surgical procedures for pigs were previously described [Mussolino C, della Corte M, Rossi S, Viola F, Di Vicino U, et al. (2011) AAV- mediated photoreceptor transduction of the pig cone-enriched retina. Gene Ther 18: 637- 645].

AAV vectors were inoculated subretinally in the avascular nasal area of the posterior pole between the two main vascular arches, as performed in Mussolino et al [Mussolino C, della Corte M, Rossi S, Viola F, Di Vicino U, et al. (2011) AAV-mediated photoreceptor transduction of the pig cone-enriched retina. Gene Ther 18: 637-645]. This retinal region is crossed by a streak-like region that extends from the nasal to the temporal edge parallel to the horizontal meridian, where cone density is high, reaching 20000 to 35000 cone cells mm 2 . Each viral vector was injected in a total volume of 100 μΙ, resulting in the formation of a subretinal bleb with a typical 'dome-shaped' retinal detachment, with a size corresponding to 5 optical discs.

Western Blot Analyses

Western blot analysis was performed on retinas, which were harvested. Samples were lysed in hypotonic buffer (10 mM Tris-HCI [pH 7.5], 10 mM NaCI, 1,5 mM MgCI2, 1% CHAPS, 1 mM PMSF, and protease inhibitors) and 20 μg of these lysates were separated by 12% SDS-PAGE. After the blots were obtained, specific proteins were labeled with anti-lD4 antibody anti- Rhodopsin-lD4 (l:500;Abcam, Cambridge, MA) and anti^-tubulin (1:1000; Sigma-Aldrich, Milan, Italy) antibodies. Cloning and Purification of the proteins:

DNA fragments encoding the sequence of the engineered transcription factors ZF6-KRAB and ZF6-DBD to be expressed as maltose-binding protein (MBP) fusion were generated by PCR using the plasmids pAAV2.1 CMV ZF6-KRAB and pAAV2.1 CMV ZF6-DBD as a DNA template. The following oligonucleotides were used as primers: primer 1, 5' - GGAATTCCATATGGAATTCCCCATGGATGC - 3' [SEQ ID No. 47] and

primer 2, 5' - CGGGATCCCTATCTAGAAGTCTTTTTACCGGTATG - 3' [SEQ ID No. 48]for ZF6- KRABand primer 3, 5' - G G A ATTC C AT ATG CTG G A ACCTG G CG A A A A AC CG [SEQ ID No. 49] and primer 4 5' - CGGGATCCCTATCTAGAAGTCTTTTTACCGGTATG - 3' [SEQ ID No. 50] for ZF6-DBD. Both the PCR products were digested with the restriction enzymes Ndel and BamHl and cloned into Ndel BamHl-digested pMal C5G (New England Biolabs) bacterial expression vector. The human Klfl5 and human NR2E3 coding regions were PCR amplified from the human retina cDNA. The following oligonucleotides were synthetized on the basis of the published sequences (GeneBank accession number NM_014079.3 and NM_014249.3 respectively): primer 5, 5' - GGAATTCCATATG GAGACCAGACCAACAGCTC - 3' [SEQ ID No. 51] and primer 6, 5' - CGGAATTCCTAGTTTTTGAACATATCAC - 3' [SEQ ID No. 52] for hNR2e3; primer 7, 5' - GGAATTCCATATGGTGGACCACTTACTTCCAG- 3' [SEQ ID No. 53] and primer 8, 5' - CGGGATCC TCAGTTCACGGAGCGCACGGAG - 3' [SEQ ID No. 54] for hKlfl5. The hKlfl5 PCR product was digested with the restriction enzymes Ndel and BamHl and cloned into Ndel BamHl-digested pMal C5G and the Nr2e3 PCR product was digested with the restriction enzymes Ndel and EcoRI and cloned into Ndel EcoRI-digested pMal C5G (New England Biolabs). All the plasmids obtained were sequenced to confirm that there were no mutations in the coding sequences. The fusion proteins were expressed in the Escherichia coli BL21DE3 host strain. The transformed cells were grown in rich medium plus 0.2% glucose (according to protocol from New England Biolabs) at 37 °C until the absorbance at 600 nm was 0.6-0.8, at which time the medium was supplemented with 200 μΜ ZnS04 , and protein expression was induced with 0.3 mM isopropyl l-thio- -D-galactopyranoside and was allowed to proceed for 2 h. The cells were then harvested, resuspended in IX PBS (pH 7.4) (25), 1 mM phenylmethylsulfonyl fluoride, ΙμΜ leupeptin, ΙμΜ aprotinin, and 10 μg/ml lysozyme, sonicated, and centrifuged for 30 min at 27,500 relative centrifugal force. The supernatant was then loaded on amylose resin (New England Biolabs) according to the manufacturer's protocol. Following washes with IX PBS, purified fractions were eluted in maltose elution buffer (10 mM maltose, 100 mM Tris (pH 8.0), and 100 mM NaCI).

Gel Mobility Shift Analysis:

Unless otherwise specified, 5 pmol of each of the purified proteins were incubated for 15 min on ice with 5 pmol of the specified labeled duplex oligonucleotide in the presence of 25 mM Hepes (pH 7.9), 50 mM KCI, 6.25 mM MgCI2, 1% Nonidet P-40 and 5% glycerol. After incubation, the mixture was loaded on a 5% polyacrylamide gel (29:1 acrylamide/bisacrylamide ratio) and run in 0.5 X TBE at 4 °C (200 V for 2 h, 15 min). The gels were than stained with SYBR Green (Invitrogen) and acquired with Typhoon Trio++ scanner (GE Healthcare). Protein concentration was determined by a modified version of the Bradford procedure (Bio-Rad protein assay). In the case of the NR2E3 protein, an apparent higher protein concentration (20, 50 and 100 pmol) was required likely because not all the protein sample was correctly folded (see Fig SI). The apparent affinity binding assay were measured by a gel mobility shift assay by performing a titration of the proteins with the hRho 65bp and hRho 43 bp oligonucleotides. The fraction of protein - bound DNA was plotted against the protein concentration in the reaction mixture. All numerical values were obtained by computer quantification of the image using a Amersham Biosciences Typhoon Trio++ apparatus.

ChIP

For ChIP experiments, both ZF6-KRAB transduced and un-transduced region of the same retina were dissected from the eye.

ChIP was performed as follow: Retina was homogenized mechanically and cross linked using 1% formaldehyde in PBS at room temperature for 10 minutes, then quenched by adding glycine at final concentration 125mM and incubated at room temperature for 5 minutes.

Retina was washed three times in cold PBS IX then cells were lysed in cell lysis buffer (Pipes

5mM pH 8.0, Igepal 0,5%, Kcl 85mM) for 15 min. Nuclei were lysed in nuclei lysis buffer ( Tris

HCI pH8.0 50mM, EDTA lOmM, SDS 0,8 %) for 30 min.

Chromatin was shared using Covaris s220. The shared chromatin was immunoprecipitated over night with anti HA ChIP grade (abeam, ab 9110). The immunoprecipitated chromatin was incubated 3 hours with magnetic protein A/G beads (Invitrogen....). Beads were than washed with wash buffers and DNA eluted in elution buffer ( Tris HCI pH 8 50mM, EDTA Im M, SDS 1%). Then real time was performed using primers on rhodopsin TSS and Rpl30 TSS.

Triple-immunostaining for anti-HA ,anti-GNATl, and anti-Rhodopsin antibody.

Frozen retinal sections were washed once with PBS and then fixed for 10 min in 4% PFA. Sections were immerse in a retrieval solution (0,01 M sodium citrate buffer, pH 6.0) and boiled three times in a microwave. After the Blocking solution (10%FBS,10%NGS,1%BSA) was added for 1 hour. The two primary antibody mouse anti-HA (1:300, Covance) and rabbit GaTl (Santacruz Biotechnology), were diluited in a Blocking solution and incubated overnight at 4°C. The secondary antibodies (Alexa Fluor ® 594,anti-mouse 1:800, Molecular Probes, and Alexa Fluor ® 488,anti-rabbit 1:500, Molecular Probes, I nvitrogen, Carlsbad, CA) have been incubated for 1 hour, followed by three rinses with PBS. After the slides were incubated in blocking solution (10% NGS) for 1 hour and then incubated O.N with primary antibody mouse- 1D4 (1:500, Abeam). The secondary antibodies (Alexa Fluor ® 405,anti-mouse 1:200, Molecular Probes, I nvitrogen) Vectashield (Vector Lab I nc., Peterborough, UK) was used to visualize nuclei. Sections were photographed using a Leica Fluorescence Microscope System (Leica Microsystems GmbH, Wetzlar, Germany).

RNASEQ

Samples were aligned to the Sus crofa genome (ensemble 10.2) and counts were estimated with RSEM. Normalization and differential expression ana lysis were performed with egdeR bioconductor package. We removed from the dataset genes with a count average of less than 3. The Filtering and Normalization processes retained 15508 genes out of the 22863 of the starting condition.

Hypergeometric test

We used again the GO categories extracted from the dataset and calculated the probability of finding enriched a particular GO category in the extraction of the differentially expressed genes, 204 and 81 respectively, and then the 57 genes of the intersection, from the 15508 genes composing the total background.

Gene Set Enrichment Analysis GSEA Genes in the experiment were ranked by their Fold Change value to get a gene list comprising the total 15508 genes of the filtered experiment. From that dataset we extracted 10734 Gene Ontology Categories (biomaRt package) and we filtered out those which had less than 10 genes, obtaining 1426 GO categories that we used as gene sets.

We performed a Gene Set Enrichment analysis procedure (Source code was downloaded from the Broadlnstitute -link) 1426 times obtaining 1426 Enrichment Scores and the associated Pvalue.

RESULTS AND DISCUSSION DNA-binding specificities of artificial zinc-finger-based protein: Generation and characterization ofZF6-DBD.

To repress transcriptionally the human RHODOPSIN locus in Mussolino et al. 2011 (EMBO Mol Med. 2011 Mar;3(3):118-28) a ZF6-KRAB construct was generated. This construct contains a DNA-binding domain generated by the sequential assembling of artificial Zinc finger based platform to target the human RHODOPSIN proximal region of the human RHO proximal promoter, the human- derived Kruppel-associated box (KRAB) repression domain at N- terminus of the protein, a Nuclear Localization Signal (NLS) and a HA tag.

The authors removed from the construct the KRAB domain (Figure 1). The resulting construct ZF6-DBD encodes for a protein that possesses exclusively the DNA-binding domain, thus with in principle a significant reduced functional content and no repression ability and smaller in molecular weight than the ZF6-KRAB counterpart (Figure 1C). Besides the local properties at the locus of the ZF6-DBD, the KRAB domain confer major functional genomic and epigenomic consequences on transcription output. Indeed, KRAB-ZFPs (Kruppel-associated box domain- zinc finger proteins) are vertebrate-restricted transcriptional repressors encoded in the hundreds by the mouse and human genomes. They act via an essential cofactor, KAP1, which recruits effectors responsible for the formation of facultative heterochromatin. The KRAB/KAP1 can mediate long-range transcriptional repression through heterochromatin spreading, and this process is at times countered by endogenous influences. Thus, in principle the lack of the KRAB domain should not produce distinct biological outcomes upon delivery to the retina.

To evaluate the in vivo functional activity of the ZF6-DBD, the authors generated an Adeno- associated virus (AAV) vector serotype 8 containing the ZF6-DBD under the transcriptional control of the ubiquitous Cytomegalovirus promoter fragment (CMV). In order to directly compare the activity of the ZF6-DBD to that of ZF6-KRAB previously described, the authors delivered both vectors (AAV8-CMV-ZF6-KRAB and the novel AAV8-CMV-ZF6-DBD) independently to the retina of the P347S mouse model of adRP. Before vector administration, at day 30 (P30), the authors measured the base-line retinal functional responses by electroretinogram responses (ERG; EMBO Mol Med. 2011 Mar;3(3):118-28). Twenty days after delivery (P50, subretinal injection of a vector dose of 2.5xl0e8 vector particles of AAV8- CMV-EGFP, AAV8-CMV-ZF6-DBD and AAV8-CMV-ZF6-KRAB, respectively) the retinal ERG responses were re-measured to assess retinal disease progression. As shown in Figure 2, the most significant decrease of ERG responses were observed in the EGFP control eyes followed by the ZF6-KRAB and ZF6-DBD, respectively (Figure 2, Figure 2D). In particular, remarkably highly significant differences were observed between the ZF6-KRAB and ZF6-DBD ERG responses. ZF6-DBD treated eye show conserved responses compared to base-line measurements whereas a decrease of ERG responses was observed in the ZF6-KRAB, consistently with equivalent data in Mussolino et al 2011 (EMBO Mol Med. 2011 Mar;3(3):118-28). To deepen the characterization of the therapeutic activity and the molecular mechanisms of the ZF6-DBD, the authors selected an earlier time point of subretinal AAV8-CMV-ZF6-DBD vector delivery in P347S mice, i.e. P14. At this stage the retina is fully differentiated and the P347S pathology is not yet evident. The authors injected a large series of mice (n=32) to generate a number of independent observations and ERG measurements. As shown in Figure 3 the eyes treated with AAV8-CMV-ZF6-DBD demonstrate robust and consistent recovery of the ERG a-wave and b-wave responses along a wide range of luminance in both scotopic and photopic conditions when compared to EGFP treated eyes. In addition, when ZF6-DBD treated eyes were compared to AAV8-CMV-ZF6-KRAB treated eyes a statistically significant higher responses were observed in AAV8-CMV-ZF6-DBD treated eyes (Figure 3C). Indeed, the direct comparison of ERG responses between ZF6-DBD and ZF6-KRAB before and after treatment show a statistical significant decrease of progression of P347S retinal responses loss in ZF6-DBD treated eyes (Figure 3D). These data strongly indicate that the delivery of AAV8-CMV-ZF6-DBD to P347S retina result in a significant higher functional and therapeutic value than AAV8-CMV-ZF6-KRAB.

To investigate the transcriptional molecular consequences of AAV8-CMV-ZF6-DBD vector treatment in distinct cohorts of P347S animals, the authors collected the retinas and determined the expression levels of photoreceptor-specific transcripts. As shown in Figure 4, subretinal administration of AAV8-CMV-ZF6-DBD result in a significant and specific downregulation of the Human RHO transcript levels and unaltered levels of GNA1 photoreceptor specific gene (Figure 4 A). In addition, the authors calculate the average expression levels of the AAV8 vector transgenes upon subretinal injections of lxlOE9 vector particles of AAV8-CMV-EGFP, AAV8-CMV-ZF6-DBD and AAV8-CMV-ZF6-KRAB (Figure 4B) and found no statistically significant differences. To determine at protein levels the impact of the treatment the authors performed a western blot analysis on RHO in retinal samples treated with AAV8-CMV-EGFP, AAV8-CMV-ZF6-DBD and AAV8-CMV-ZF6-KRAB. As shown (Figure 4C) a reduction of RHO protein was observed in both ZF6-DBD and ZF6-KRAB treated retinas compered to EGFP control retinas. Furthermore, an apparent higher reduction of RHO protein quantity was observed in ZF6-DBD relative to ZF6-KRAB treated retinas by immunofluorescence analysis (Figure 4F-H). This result was also confirmed qualitatively in histological section (Figure 4). Indeed, the use of an antibody that can discriminate between human and non-human RHO protein was used on P347S retinas and show lack of staining in human rhodopsin protein in ZF6-DBD treated retinas compared to EGFP control in which a positive staining is apparent in the degenerating photoreceptor outer segments. To further characterize the P347S phenotype the authors performed immunohistological studies. Figure 4D depicts the nuclear localization of the ZF6-DBD 20 days after AAV8 subretinal gene transfer in P347S mice at P30. Anti-HA tag staining showed high transduction efficiency of photoreceptor cells and a nuclear localization. Besides lack of HA staining, the EGFP control retina show significant reduction of photoreceptor nuclei. These data suggest that AAV8 delivery of ZF6-DBD results in efficient and appropriate nuclear localization, leading to a partial preservation of retinal structure.

The regulatory DNA elements and epigenetics landscapes are dynamically activated during cell-fate transitions, lineage relationships, and dysfunction. Therefore, the accessibility of DNA-binding protein to DNA dynamically changes synchronously. In essence, one may assume that a DNA-binding protein may encounter a completely different genomic landscape depending on the developmental and metabolic status of the target cell. In this perspective the authors decided to test during active photoreceptor differentiation state, whether ZF6- DBD impact on retinal differentiation and whether a functional recovery of P347S retinal function may be, consistently with previous results, observable. The authors injected P347S mice at P4 subretinally with the AAV8-CMV-ZF6-DBD. At P4 retinal neuroblasts are in part still dividing whereas those that exit cell cycle are in active differentiation state. As shown in figure 5, 26 days after treatment (P30), the authors observed an higher retinal functional recovery as compared to both P14 and P30 treated eyes (Figure 6). These data indicate that retinal development do not influence the safety and efficacy of ZF6-DBD.

Figure 6 shows the major increase of therapeutic outcome when the AAV8-CMV-ZF6-DBD are performed at early time point.

One of the main hurdle to assess DNA binding specificities of a DNA-binding protein designated for a targeted genomic landscape, such as the human RHO promoter region of humans diseased photoreceptors, is the availability of other similar genomic context for testing. In particular the P347S mouse model possesses, besides the P347S mutated human rhodopsin gene, only 3.4 kb of the human RHO promoter, i.e. a limited portion of the RHO promoter and obviously no portions surrounding human rhodopsin gene, thus limiting the human genomic specificities of the somatic (photoreceptors) genomic cell-specific landscape (Li T, Snyder WK, Olsson JE, Dryja TP (1996) Transgenic mice carrying the dominant rhodopsin mutation P347S: evidence for defective vectorial transport of rhodopsin to the outer segments. Proc Natl Acad Sci USA 93: 14176-14181). In fact, both the random integration and the copy number variation of the P347S mutated human rhodopsin gene may impact a faithful resembling of the human RHO photoreceptor locus in rods.

Based on sequence identity between the human and the porcine ZF6-DBD target site (Figure 7) the authors decided to assess the functional ability of the construct in the porcine retina. Authors subretinally injected a low dose (lxlOelO) of AAV8-CMV-ZF6-DBD in a physiological intact genomic landscape of the porcine retina (adult female P90) whose RHO proxmal promoter genomic region contains the ZF6 binding sequence with the exception of 1 mismatch (Figure 7). To assess "pure" transcriptional effects and not possible secondary degeneration owed to rhodopsin knock-down, an early sacrifice was performed. Fifteen days after vector administration both qRT-PCR and authorsstern blot analysis on the transduced portion of the retina (EGFP positive) demonstrate 45 % repression of rhodopsin transcript and robust reduction of Rho protein levels, respectively (Figure 8). Remarkably, the ratio between levels of relative expression of ZF6-DBD and the resulting levels of repression is of a 3 logs unit.

Retinal transduction efficiency quantified as AAV8-CMV-ZF6-DBD transgene transcript levels (qRT-PCR) resulted in an on average of 148 fold to 32 lower than NRL and CRX, two endogenous rod-specific transcription factors used as reference (Figure 9). Chromatin immunoprecipitation experiments (ChiP) on AAV vector transduced retina showed proper occupancy of the ZF6-DBD on the genomic target (Figure 10). Co-immunoistochemical staining of retinas ZF6-DBD AAV-transduced with anti-HA tag antibody shows a strong nuclear localization. Co-immunostaining with a rod-specific marker (GNAT) shows that expression of ZF6-DBD inversely correlates with rhodopsin protein expression levels. In particular in the most intensively HA-stained rods rhodopsin is virtually absent. In addition, the outer segments of ZF6-DBD transduced rods appear completely collapsed, consistently with the fact that rod outer segments is composed quantitatively for 90 % of rhodopsin which confers to the outer segment structural properties (as observed in rho knock out mice). Despite the absence of rhodopsin the number of rows of photoreceptor nuclei appear conserved (Figure 11). Furthermore, the missexpression of ZF6-DBD in cones does not affect their morphological appearance, as also shown by the levels of cone specific transcript Arrestin 3 (Figure 8) .

To assess an earlier time points the authors measured photoreceptor transcripts levels 7 days post injection, as shown (Figure 12) the result were similar to that obtained at 15 days post- injection.

To evaluate the impact of the vector dose on the functionality of ZF6-DBD, the authors injected a series of porcine retinas with a double of the dose previously used, i.e. a vector dose of 2xl0el0 vg. As shown in Figure 12B, the higher dose of both AAV8-CMV-ZF6-DBD or AAV8-CMV-EGFP are mirrored in the transgene transcript levels assessed. However, the Rhodopsin transcript levels values were similar to that obtained with lxlOelO vg.

Comparison between ZF6KRAB and ZF6-DBD by RNA-seq to evaluate off-targets.

To gain insights in the interference pattern induced by our Artificial Transcription Factor, authors performed a whole transcriptome sequencing [RNA-Seq] (Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B.Nat Methods. 2008 Jul;5(7):621-8). RNA-seq enables the detection of RNA-transcripts and levels resulting from the transcriptional machinery activity. Thus, RNA-seq measures the final output of target and off targets activity of DNA-binding protein. Differentially from ChlP-seq analysis, in which a whole genome map of a given DBD is provided, RNA-seq enables the detection of relevant functional activity (transcripts) deriving from binding in functional relevant genome sites (transcriptionally sensitive). The authors processed 11 retinae from pigs injected with ZF6-KRAB or ZF6-DBD at 3 months and sacrificed after 8 or 15 days post injection. The dataset consisted of 3 ZF6-KRAB treated and 3 ZF6-DBD treated retinae plus 5 Controls (non transduced areas of the same retinae as internal controls, Table2).

Table2: Retinae used in the whole transcriptome sequencing [RNA-Seq]

% % One % of Mean

% of raw

Perfect Mismatch > = Q30 Quality

Description # Reads clusters

Index Reads Bases Score per lane

Reads (Index) (PF) (PF)

Control 55.622.772,000 13,2 98,88 1,12 92,11 35,67

Control 55.969.232,000 16,63 99, 1 0,9 94,36 36,42

Control 51.482.106,000 15,3 99,06 0,94 94,27 36,38

Control 45.364.948,000 13,48 99,26 0,74 94,48 36,48

Control 59.438.368,000 14,42 99,08 0,92 91,96 35,79

DBD-treated 45.584.960,000 10,82 98,22 1,78 92,48 35,82

DBD-treated 52.250.358,000 12,68 98,84 1,16 91,63 35,68

DBD-treated 67.242.006,000 16,32 99,38 0,62 92, 1 35,83

KRAB-treated 127.962.394,000 30,38 98,84 1, 16 92,47 35,84

KRAB-treated 65.608.020,000 19,49 98,95 1,05 94,09 36,31

KRAB-treated 50.299.864,000 14,95 99,37 0,63 94,46 36,46

The quality of the reads were assessed with the following lllumina index:

Raw clusters per lane. The number of clusters detected by the image analysis module.

% Perfect Index Reads. Percentage of index reads in this sample which perfectly matched thegiven index. % One Mismatch Reads (Index). Percentage of index reads in this sample which had 1 mismatch to given index.

% of >= Q30. Bases Yield of bases with Q.30 or higher from clusters passing filter divided by total yield of clusters passing filter.

Mean Quality Score (PF). The total sum of quality scores of clusters passing filter divided by total yield of clusters passing filter. Authors filtered genes with average counts greater than or equal to 3, and selected those with an adjusted Pvalue of less than or equal to 0.05 to identify differential expressed genes (DEGs) in treated retinae, compared to controls. Surprisingly, authors found a lower number of disregulated genes induced by ZF6-DBD treatment compared to ZF6-KRAB treatment and negligible levels of fluctuation of the genes from the treated sample compared to the wild type condition. We obtained, respectively, 81 DEGs in ZF6-DBD treated retinae (two of which include EGFP and ZF6-DBD) and 204 DEGs in ZF6-KRAB treated retinae (Figure 13 and Tables 3 and 4).

Table 3A: ZF6-DBD differentially expressed genes (81, FDR <0.05) logFC logCPM PValue FDR ensembl_gene_id external_gene_id

6,161438875 -1,321679658 4,18E-09 2,03E-06 eGFP eGFP

1,487261172 2,283931402 7,94E-05 0,017591012 ENSSSCG00000000362 RDH5

1,482647156 1,817939463 0,000120014 0,024755682 ENSSSCG00000000371

2,364830195 7,971622814 2,51E-11 l,72E-08 ENSSSCG00000000660 A2M

1,643825956 4,355513069 4,21E-06 0,001242435 ENSSSCG00000001427 C4A

1,583349095 4,333804953 9,16E-06 0,002463978 ENSSSCG00000001544 TEAD3

1,726632938 0,175566867 0,000163905 0,032053021 ENSSSCG00000002800

5,295063827 -1,811005407 l,30E-05 0,003316718 ENSSSCG00000002977 AQN-3

1,384649577 3,478445175 0,000131777 0,026457357 ENSSSCG00000003794 RPE65

2,310104374 -0,393948087 6,39E-06 0,001814431 ENSSSCG00000004195 ARG1

1,834158093 2,656659323 7,52E-07 0,000257385 ENSSSCG00000006025 PKHD1L1

4,18457531 4,770570467 3,67E-28 l,llE-24 ENSSSCG00000006276 CEBPD

1,916837007 4,257050285 9,18E-08 3,55E-05 ENSSSCG00000006780 WNT2B

6,230702371 -1,31012621 l,26E-09 6,77E-07 ENSSSCG00000008101

1,743437437 4,759298225 9,56E-07 0,000320039 ENSSSCG00000008203 IGKC

2,331043381 2,550751739 5,95E-10 3,32E-07 ENSSSCG00000008995 LRAT

1,93058605 -0,245200124 0,000226203 0,043115942 ENSSSCG00000010474 CYP26C1

1,606649504 1,818371052 2,96E-05 0,007312394 ENSSSCG00000010529 SFRP5

2,211790474 2,00049955 l,llE-08 5,04E-06 ENSSSCG00000010613 ITPRIP

1,697535475 0,728072825 5,93E-05 0,013746241 ENSSSCG00000010647 ADRB1

2,253042038 0,761439468 8,93E-08 3,54E-05 ENSSSCG00000010805

2,454716019 -0,912366572 4,57E-05 0,010741461 ENSSSCG00000011148

3,353107041 -1,68318296 0,000253983 0,04721574 ENSSSCG00000011153

2,896043491 -0,357884972 7,84E-08 3,19E-05 ENSSSCG00000011579 PPARG

1,789015925 6,324065196 3,96E-07 0,000142141 ENSSSCG00000011700 CP

2,495743157 3,868824302 6,93E-12 5,21E-09 ENSSSCG00000011796 CRYGS

3,203364284 -1,237480254 l,04E-05 0,002754767 ENSSSCG00000012040 OUG1

2,106332374 -0,928523554 0,000207676 0,04009205 ENSSSCG00000016187

1,354675874 10,17282403 0,000112212 0,023467997 ENSSSCG00000017343 GFAP

2,726173516 2,905085892 3,80E-13 3,37E-10 ENSSSCG00000017445 KRT13

1,792487081 4,302359077 5,57E-07 0,000194981 ENSSSCG00000017956 CD68 ,840894235 2,334892081 1,09Ε-28 4,12E-25 ENSSSCG00000020750

,744770611 3,961111153 7,09E-14 6,67E-11 ENSSSCG00000021232 SYNC

,261685338 0,185696149 6,73E-11 4,22E-08 ENSSSCG00000023489 CXCL9,146898753 1,125362761 6,08E-33 4,00E-29 ENSSSCG00000023511

,807155473 3,351293821 4,28E-14 4,60E-11 ENSSSCG00000023684

,465528094 6,065214845 4,49E-12 3,56E-09 ENSSSCG00000023686 TTR

,458243125 2,29726141 9,92E-05 0,021344169 ENSSSCG00000024174 TGIF1,243181843 2,199880858 3,76E-09 l,89E-06 ENSSSCG00000024348

,068602752 -0,624451392 l,07E-07 4,04E-05 ENSSSCG00000024911

,452384041 -0,287640749 l,39E-06 0,000444107 ENSSSCG00000025300

,066972764 0,113415054 2,64E-22 3,98E-19 ENSSSCG00000025378

,901609863 -0,952775174 2,77E-08 l,16E-05 ENSSSCG00000026645

,948122397 0,678811374 3,55E-26 7,63E-23 ENSSSCG00000026986

,611916684 -1,213146584 8,53E-05 0,018623654 ENSSSCG00000027199

,230546458 2,305712341 3,18E-16 3,68E-13 ENSSSCG00000027332 IGKV-110,94582925 2,8177767 l,17E-53 l,77E-49 ENSSSCG00000027582

,645978549 0,628323488 l,17E-27 2,93E-24 ENSSSCG00000027868

,381559335 -0,306330844 3,43E-06 0,001032648 ENSSSCG00000028038

,954022522 0,758715053 6,20E-06 0,001796381 ENSSSCG00000028112 CLIC6,24013983 3,711384683 5,94E-18 7,45E-15 ENSSSCG00000028233

,201851398 -0,727843551 l,26E-07 4,63E-05 ENSSSCG00000028525 SAA4

,909778622 -0,064481227 7,72E-05 0,017348851 ENSSSCG00000029057

,77493674 -0,919742276 1,77E-12 l,48E-09 ENSSSCG00000029210 CLDN7,55267093 4,844054614 l,19E-05 0,00308997 ENSSSCG00000030300 MT2A,029326209 0,305432221 8,23E-06 0,002293796 ENSSSCG00000030447 AKR1C3,615251213 0,175362169 2,77E-08 l,16E-05 ENSSSCG00000030738 IGKV-5,545630452 4,18656911 l,56E-05 0,003911372 ENSSSCG00000030868 IGLV-10,393496991 2,604144493 2,89E-10 l,67E-07 ENSSSCG00000030893 IGLV-3,487766272 1,60283372 7,97E-33 4,00E-29 ZF6 ZF6

Table 3B: Functional description of ZF6-DBD differentially expressed genes (81, FDR <0.05) ensembl_gene_id external_gene_id description

eGFP eGFP eGFP

retinol dehydrogenase 5 (ll-cis/9-cis) [Source:HGNC

ENSSSCG00000000362 RDH5 Symbol;Acc:9940]

ENSSSCG00000000371 Uncharacterized protein [Source:UniProtKB/TrEMBL;Acc:FlSPI9]

ENSSSCG00000000660 A2M alpha-2-macroglobulin [Source:HGNC Symbol;Acc:7]

Sus scrofa complement C4 (C4), mRNA. [Source:RefSeq

ENSSSCG00000001427 C4A mRNA;Acc:NM_001123089]

ENSSSCG00000001544 TEAD3 TEA domain family member 3 [Source:HGNC Symbol;Acc:11716]

ENSSSCG00000002800 Uncharacterized protein [Source:UniProtKB/TrEMBL;Acc:FlRFT2]

Sus scrofa seminal plasma sperm motility inhibitor/spermadhesin AQN-3-like protein (SPMI), mRNA. [Source:RefSeq

ENSSSCG00000002977 AQN-3 mRNA;Acc:NM_001031776]

retinal pigment epithelium-specific protein 65kDa [Source:HGNC

ENSSSCG00000003794 RPE65 Symbol;Acc:10294]

ENSSSCG00000004195 ARG1 Arginase-1 [Source:UniProtKB/Swiss-Prot;Acc:Q95JC8]

ENSSSCG00000006025 PKHD1L1 polycystic kidney and hepatic disease 1 (autosomal recessive)-like 1 [Source:HGNC Symbol;Acc:20313]

CCAAT/enhancer binding protein (C/EBP), delta [Source:HGNC

ENSSSCG00000006276 CEBPD Symbol;Acc:1835]

wingless-type MMTV integration site family, member 2B

ENSSSCG00000006780 WNT2B [Source:HGNC Symbol;Acc:12781]

ENSSSCG00000008101 Uncharacterized protein [Source:UniProtKB/TrEMBL;Acc:FlSUAO]

ENSSSCG00000008203 IGKC immunoglobulin kappa constant [Source:HGNC Symbol;Acc:5716] lecithin retinol acyltransferase (phosphatidylcholine-retinol 0-

ENSSSCG00000008995 LRAT acyltransferase) [Source:HGNC Symbol;Acc:6685]

cytochrome P450, family 26, subfamily C, polypeptide 1

ENSSSCG00000010474 CYP26C1 [Source:HGNC Symbol;Acc:20577]

ENSSSCG00000010529 SFRP5 secreted frizzled-related protein 5 [Source:HGNC Symbol;Acc:10779] inositol 1,4,5-trisphosphate receptor interacting protein

ENSSSCG00000010613 ITPRIP [Source:HGNC Symbol;Acc:29370]

beta-1 adrenergic receptor [Source:RefSeq

ENSSSCG00000010647 ADRB1 peptide;Acc:NP_001116546]

ENSSSCG00000010805 Uncharacterized protein [Source:UniProtKB/TrEMBL;Acc:FlSAA5]

ENSSSCG00000011148 Uncharacterized protein [Sou rce: U ni ProtKB/TrEM BL;Acc: F1RYV5]

Sus scrofa aldo-keto reductase family 1 member C2-like (LOC733635),

ENSSSCG00000011153 mRNA. [Source:RefSeq mRNA;Acc:NM_001044570]

Sus scrofa peroxisome proliferator-activated receptor gamma

ENSSSCG00000011579 PPARG (PPARG), mRNA. [Source:RefSeq mRNA;Acc:NM_214379]

ENSSSCG00000011700 CP ceruloplasmin (ferroxidase) [Source:HGNC Symbol;Acc:2295]

ENSSSCG00000011796 CRYGS crystallin, gamma S [Source:HGNC Symbol;Acc:2417]

oligodendrocyte transcription factor 1 [Source:HGNC

ENSSSCG00000012040 0UG1 Symbol;Acc:16983]

Sus scrofa chromosome 2 open reading frame 62 (C15H2orf62),

ENSSSCG00000016187 mRNA. [Source:RefSeq mRNA;Acc:NM_001190220]

Sus scrofa glial fibrillary acidic protein (GFAP), mRNA. [Source:RefSeq

ENSSSCG00000017343 GFAP mRNA;Acc:NM_001244397]

ENSSSCG00000017445 KRT13 keratin 13 [Source:HGNC Symbol;Acc:6415]

ENSSSCG00000017956 CD68 Uncharacterized protein [Source:UniProtKB/TrEMBL;Acc:FlST28]

ENSSSCG00000020750 Uncharacterized protein [Source:UniProtKB/TrEMBL;Acc:l3L728] syncoilin, intermediate filament protein [Source:HGNC

ENSSSCG00000021232 SYNC Symbol;Acc:28897]

Sus scrofa chemokine (C-X-C motif) ligand 9 (CXCL9), mRNA.

ENSSSCG00000023489 CXCL9 [Source:RefSeq mRNA;Acc:NM_001114289]

ENSSSCG00000023511 Importin subunit alpha [Source:UniProtKB/TrEMBL;Acc:FlSV93]

Sus scrofa metallothionein 1A (MT1A), mRNA. [Source:RefSeq

ENSSSCG00000023684 mRNA;Acc:NM_001001266]

Sus scrofa transthyretin (TTR), mRNA. [Source:RefSeq

ENSSSCG00000023686 TTR mRNA;Acc:NM_214212]

ENSSSCG00000024174 TGIF1 TGFB-induced factor homeobox 1 [Source:HGNC Symbol;Acc:11776]

Uncharacterized protein; Uncharacterized protein

ENSSSCG00000024348 [Source:UniProtKB/TrEMBL;Acc:FlRVMO]

ENSSSCG00000024911 Metallothionein [Source:UniProtKB/TrEMBL;Acc:l3LP58]

ENSSSCG00000025300 Uncharacterized protein [Source:UniProtKB/TrEMBL;Acc:l3LHC3]

ENSSSCG00000025378 Uncharacterized protein [Source:UniProtKB/TrEMBL;Acc:FlS4G5]

ENSSSCG00000026645 Uncharacterized protein [Source:UniProtKB/TrEMBL;Acc:l3L970] mitochondrial ribosomal protein S23 [Source:RefSeq

ENSSSCG00000026986 peptide;Acc:NP_001230742]

ENSSSCG00000027199 Uncharacterized protein [Source:UniProtKB/TrEMBL;Acc:l3L9A9]

ENSSSCG00000027332 IGKV-11

ENSSSCG00000027582 Uncharacterized protein [Source:UniProtKB/TrEMBL;Acc:FlSIH3]

ENSSSCG00000027868 Uncharacterized protein [Source:UniProtKB/TrEMBL;Acc:FlRLZ7] ENSSSCG00000028038 Uncharacterized protein [Source:UniProtKB/TrEMBL;Acc:l3L695]

ENSSSCG00000028112 CLIC6 chloride intracellular channel 6 [Source:HGNC Symbol;Acc:2065]

ENSSSCG00000028233 Uncharacterized protein [Source:UniProtKB/TrEMBL;Acc:FlSDH3]

Sus scrofa serum amyloid A2 (LOC733603), mRNA. [Source:RefSeq

ENSSSCG00000028525 SAA4 mRNA;Acc:NM_001044552]

ENSSSCG00000029057 Uncharacterized protein [Source:UniProtKB/TrEMBL;Acc:l3LBK0]

Sus scrofa claudin 7 (CLDN7), mRNA. [Source:RefSeq

ENSSSCG00000029210 CLDN7 mRNA;Acc:NM_001160076]

ENSSSCG00000030300 MT2A Metallothionein-2A [Source:UniProtKB/Swiss-Prot;Acc:P79379]

Sus scrofa aldo-keto reductase family 1, member CI (dihydrodiol dehydrogenase 1; 20-alpha (3-alpha)-hydroxysteroid dehydrogenase)

ENSSSCG00000030447 AKR1C3 (AKR1C1), mRNA. [Source:RefSeq mRNA;Acc:NM_001044618]

ENSSSCG00000030738 IGKV-5

Sus scrofa immunoglobulin lambda-like polypeptide 5

ENSSSCG00000030868 IGLV-10 (LOC100152327), mRNA. [Source:RefSeq mRNA;Acc:NM_001243319]

ENSSSCG00000030893 IGLV-3

ZF6 ZF6 ZF6

Table 4: ZF6-KRAB differentially expressed genes (204, FDR <0.05) external_gene_i

ensembl_gene_id d logFC logCPM PValue FDR

ZF6 ZF6 7,278871303 2,413446532 3,28E-54 4,94E-50

ENSSSCG00000027582 9,966196799 1,859352668 2,28E-51 l,72E-47

ENSSSCG00000021164 -9,421301813 1,829389425 l,38E-30 6,93E-27

ENSSSCG00000027868 8,488117179 0,55717728 7,85E-30 2,96E-26

ENSSSCG00000008318 VAX2 -4,592008926 3,602797713 3,49E-28 l,04E-24

ENSSSCG00000028996 ALDH1A1 3,483184476 3,22934307 4,16E-28 l,04E-24

ENSSSCG00000026986 6,732615212 0,395768447 l,06E-27 2,28E-24

ENSSSCG00000005385 NOR-1 -4,021873624 4,205792595 2,39E-26 4,49E-23

ENSSSCG00000006276 CEBPD 3,223955907 3,967228489 4,87E-26 8,16E-23

ENSSSCG00000025378 8,144255564 0,263169934 l,02E-25 l,54E-22

ENSSSCG00000028235 -4,906529139 2,454069444 l,21E-25 l,66E-22

ENSSSCG00000023287 -8,822956672 1,315511692 8,12E-25 1,02E-21

ENSSSCG00000005973 -8,422224465 0,869702364 1,77E-21 2,05E-18

ENSSSCG00000023684 2,778132732 3,384018554 1,36E-19 1,47E-16

ENSSSCG00000000660 A2M 2,598474784 8,178849644 3,43E-19 3,45E-16

ENSSSCG00000012441 5,859096846 -0,248802256 4,44E-19 4,17E-16

ENSSSCG00000009867 TBX5 2,722582775 3,277152929 5,48E-19 4,85E-16

ENSSSCG00000010647 ADRB1 2,961660472 1,669675424 1,23E-17 1,03E-14

ENSSSCG00000028579 5,132387018 -0,329896827 6,44E-17 5,10E-14

ENSSSCG00000011796 CRYGS 2,444168826 3,872635866 3,23E-16 2,43E-13

ENSSSCG00000022626 -7,701933686 0,225138089 8,05E-16 5,77E-13

ENSSSCG00000029135 TNFRSF25 6,784172639 -0,978780652 1,89E-14 1,30E-11

ENSSSCG00000005580 -3,232678111 1,152547156 4,64E-14 3,04E-11

ENSSSCG00000025618 TAP -7,401264148 -0,055915235 9,95E-14 6,24E-11

ENSSSCG00000001427 C4A 2,170535452 4,754134462 1,48E-13 8,90E-11

ENSSSCG00000024842 -7,366719165 -0,086540906 1,90E-13 1,10E-10 eGFP eGFP 6,879599151 -0,830177726 2,15E-13 1,20E-10

ENSSSCG00000010613 ITPRIP 2,334986909 2,129686743 6,07E-13 3,26E-10

ENSSSCG00000030825 IGLV-9 2,205038931 2,493456628 2,72E-12 l,41E-09

ENSSSCG00000011808 SST -2,45398974 3,207201493 3,24E-12 l,63E-09

ENSSSCG00000006114 CU207250.1 -5,263297108 -0,219630606 4,51E-12 2,19E-09

ENSSSCG00000027332 IGKV-11 2,242297263 1,597076937 4,32E-11 2,03E-08

ENSSSCG00000014118 2,100682625 2,399287953 4,92E-11 2,24E-08

ENSSSCG00000030344 CLDN19 -2,128091826 5,422541347 6,72E-11 2,98E-08

ENSSSCG00000023405 -4,256319433 -0,049264717 7,11E-11 3,06E-08

ENSSSCG00000021518 -6,847646235 -0,534420885 1,84E-10 7,71E-08

ENSSSCG00000028038 2,803560602 0,035763025 2,80E-10 l,14E-07

ENSSSCG00000017956 CD68 1,81318436 4,351969763 6,74E-10 2,67E-07

ENSSSCG00000005638 LCN2 1,98192396 1,873024646 l,17E-09 4,53E-07

ENSSSCG00000017445 KRT13 1,898163514 2,367389814 l,28E-09 4,84E-07

ENSSSCG00000013669 PIN1 -2,038042266 3,172198854 2,16E-09 7,94E-07

ENSSSCG00000008101 6,030278211 -1,426659959 3,98E-09 l,43E-06

ENSSSCG00000030009 2,177491095 0,535024395 4,42E-09 l,55E-06

ENSSSCG00000011106 CREB -1,87605221 5,315766307 6,10E-09 2,09E-06

ENSSSCG00000015791 -6,532238692 -0,774577709 8,36E-09 2,80E-06

ENSSSCG00000006780 WNT2B 1,690202352 4,141918489 9,62E-09 3,15E-06

ENSSSCG00000008311 CYP26B1 1,881313879 1,56416778 l,39E-08 4,45E-06

ENSSSCG00000028056 -6,485990517 -0,822733143 l,49E-08 4,67E-06

ENSSSCG00000006288 SELP 1,789553263 2,144819403 2,10E-08 6,46E-06

ENSSSCG00000012584 CAPN6 1,837714952 1,790378611 2,18E-08 6,57E-06

ENSSSCG00000000893 AMDHD1 1,778794681 1,949948478 2,86E-08 8,45E-06

ENSSSCG00000017439 KRT32 3,328917064 -0,885115105 3,32E-08 9,62E-06

ENSSSCG00000017343 GFAP 1,57700841 10,33435702 3,59E-08 l,02E-05

ENSSSCG00000002702 -1,995809314 2,441457013 4,45E-08 l,24E-05

ENSSSCG00000023686 TTR 1,568992576 5,463993077 5,63E-08 l,54E-05

ENSSSCG00000015879 DAPL1 -1,876520953 2,486448545 7,91E-08 2,13E-05

ENSSSCG00000016216 1,623790563 2,583287658 l,llE-07 2,94E-05

ENSSSCG00000030927 IGKV-7 1,864125612 1,167586657 l,15E-07 2,98E-05

ENSSSCG00000015476 CHI3L1 1,704816958 1,860170428 l,25E-07 3,19E-05

ENSSSCG00000002977 AQN-3 5,75514981 -1,56054597 l,56E-07 3,88E-05

ENSSSCG00000027199 3,008503143 -0,913744531 l,57E-07 3,88E-05

ENSSSCG00000014726 HBE1 3,319650799 -1,068390305 l,96E-07 4,75E-05

ENSSSCG00000016859 C7 2,585298944 -0,582668229 2,01E-07 4,80E-05

ENSSSCG00000003471 EPHA2 -1,654310889 5,545689573 2,18E-07 5,12E-05

ENSSSCG00000012344 TROP -6,189962598 -1,050550077 2,24E-07 5,18E-05

ENSSSCG00000008664 FAM84A 1,51503585 4,28099778 2,31E-07 5,26E-05

ENSSSCG00000010529 SFRP5 1,65635865 1,889769252 2,85E-07 6,39E-05

ENSSSCG00000014725 HBB 1,50380937 4,273198499 2,88E-07 6,39E-05

ENSSSCG00000026526 CATSPER4 -1,715254319 3,059935797 3,42E-07 7,46E-05

ENSSSCG00000025300 2,325237299 -0,201989204 3,51E-07 7,49E-05

ENSSSCG00000028233 1,583574525 2,548471964 3,53E-07 7,49E-05 ENSSSCG00000031054 IGLV-8 1,502354529 3,745540811 3,71E-07 7,77E-05

ENSSSCG00000008314 ATP6V1B1 -2,802711683 -0,090041988 4,29E-07 8,84E-05

ENSSSCG00000001544 TEAD3 1,478566173 4,300276435 4,51E-07 9,18E-05

ENSSSCG00000020750 2,057455347 0,13829939 5,02E-07 0,000100693

ENSSSCG00000008203 IGKC 1,45884815 4,60744638 5,74E-07 0,000113804

ENSSSCG00000010044 IGLC 1,427680446 6,221668726 7,03E-07 0,000137509

ENSSSCG00000017988 CCDC42 -6,05087467 -1,134401072 7,94E-07 0,000151653

TMP-CH242-

ENSSSCG00000030790 74M17.6 1,434363459 4,90554081 7,96E-07 0,000151653

ENSSSCG00000004666 1,429918138 5,053265136 8,15E-07 0,000153438

ENSSSCG00000012026 -1,563348806 5,521915562 8,55E-07 0,000158981

ENSSSCG00000000368 MMP19 1,538739124 2,402691957 8,98E-07 0,000163967

ENSSSCG00000009361 POSTN -1,651323076 3,078247143 9,04E-07 0,000163967

ENSSSCG00000001025 DSP -1,578978542 4,701438353 9,18E-07 0,000164532

ENSSSCG00000026645 3,342731042 -1,285181501 l,12E-06 0,000198073

ENSSSCG00000001463 LMP2 1,631568363 1,464768231 l,30E-06 0,000222002

ENSSSCG00000011014 BAMBI 1,399092473 5,437359075 l,29E-06 0,000222002

ENSSSCG00000030300 MT2A 1,40614253 4,780105759 l,27E-06 0,000222002

ENSSSCG00000028112 CLIC6 1,788198678 0,685384933 l,50E-06 0,000254591

ENSSSCG00000013909 CRLF1 -1,59558768 3,34754256 l,55E-06 0,000258658

ENSSSCG00000007476 KCNG1 -2,018785429 0,861309241 l,76E-06 0,000290585

ENSSSCG00000014117 THBS4 1,652704034 1,328535904 l,81E-06 0,000296296

ENSSSCG00000011579 PPARG 2,401952047 -0,58397614 2,13E-06 0,000345026

ENSSSCG00000011700 CP 1,360654082 6,077544507 2,29E-06 0,000367366

ENSSSCG00000029057 1,94464886 -0,013698311 2,65E-06 0,000420124

ENSSSCG00000021903 1,387771198 3,544489252 3,30E-06 0,000518105

ENSSSCG00000002405 ISM2 2,722054775 -0,934957401 3,48E-06 0,000540571

ENSSSCG00000001849 APN 1,337786801 5,212659863 3,79E-06 0,000581635

ENSSSCG00000002254 NR2F2 1,336608682 4,757494906 4,34E-06 0,000653654

ENSSSCG00000016034 COL3A1 1,427097718 2,505396608 4,34E-06 0,000653654

ENSSSCG00000030868 IGLV-10 1,335802347 4,091296314 5,30E-06 0,000790079

ENSSSCG00000011299 CLEC3B 1,330266254 4,088671808 6,24E-06 0,000920597

CH242-

ENSSSCG00000031039 138G12.1 1,324506968 4,099240963 6,60E-06 0,000964785

ENSSSCG00000005591 GPR144 -1,972315058 0,439273597 6,80E-06 0,000972395

ENSSSCG00000010474 CYP26C1 2,026835328 -0,149447024 6,82E-06 0,000972395

ENSSSCG00000027130 TNFRSF12A 1,506949411 1,493356909 6,85E-06 0,000972395

ENSSSCG00000013586 LRRC8E -1,405155206 6,384561304 7,08E-06 0,000996884

ENSSSCG00000015326 COL1A2 1,335306634 3,180155195 9,01E-06 0,001256406

ENSSSCG00000030493 -1,922546385 0,067845409 l,03E-05 0,001405464

ENSSSCG00000030921 APOA1 1,262954556 8,871636525 l,03E-05 0,001405464

ENSSSCG00000023571 SLC22A6 1,890532432 -0,127955088 l,10E-05 0,001490728

ENSSSCG00000011193 -1,731095609 0,92403661 l,12E-05 0,001504273

ENSSSCG00000007687 1,501232704 1,369094351 l,19E-05 0,001587449

ENSSSCG00000001775 KIAA1024 -1,450049976 3,111445323 l,41E-05 0,001844456

ENSSSCG00000031037 IGLV-7 1,284074794 3,907251242 l,41E-05 0,001844456

ENSSSCG00000007978 HBA 1,289660764 3,384246848 l,50E-05 0,001951528 ENSSSCG00000010567 2,563415593 -1,030332238 l,54E-05 0,00198195

ENSSSCG00000009535 EFNB2 1,313346868 2,896821833 l,56E-05 0,001996794

ENSSSCG00000003616 FAM167B 1,544905227 0,814294012 l,94E-05 0,002461052

ENSSSCG00000015579 PTGS2 1,408411371 1,529012479 2,05E-05 0,002576355

ENSSSCG00000008205 1,379378606 1,804099487 2,41E-05 0,002997975

ENSSSCG00000004789 THBS1 1,386127955 1,584300222 2,64E-05 0,00325634

ENSSSCG00000017433 KRT14 1,682438076 0,150290364 2,86E-05 0,003507267

ENSSSCG00000007208 TRIB3 1,573855551 0,572992142 3,22E-05 0,003910219

ENSSSCG00000025199 -5,538872942 -1,50336671 3,27E-05 0,003941846

ENSSSCG00000015073 TAGLN 1,202913563 5,086931232 3,41E-05 0,00408057

ENSSSCG00000029488 ADAMTS1 -1,28638316 5,80239426 3,82E-05 0,004525127

ENSSSCG00000012871 FGF19 -1,549202144 1,622025872 3,96E-05 0,004663449

ENSSSCG00000006238 CYP7A1 1,445878111 0,979201435 4,07E-05 0,004752933

ENSSSCG00000000371 1,322655428 1,758632172 4,22E-05 0,004885597

ENSSSCG00000016925 PLK2 1,173624523 7,168363336 4,32E-05 0,004966309

ENSSSCG00000003218 1,185606835 5,081386288 4,40E-05 0,005017141

ENSSSCG00000023435 DBI 1,154619081 7,170454577 5,72E-05 0,006472065

ENSSSCG00000012448 ITM2A 1,165789128 5,248491196 5,77E-05 0,006487842

ENSSSCG00000009304 -1,293307771 3,487022927 6,27E-05 0,006996706

ENSSSCG00000026352 -1,231808722 10,19474378 6,66E-05 0,007361948

ENSSSCG00000027743 -5,440155591 -1,562592136 6,70E-05 0,007361948

ENSSSCG00000005608 ANGPTL2 -1,281986455 3,951456839 6,93E-05 0,007560486

ENSSSCG00000003920 HPDL 1,26216541 2,102692194 7,04E-05 0,007623102

ENSSSCG00000027426 BCL3 1,202113649 3,040207852 7,37E-05 0,0079292

ENSSSCG00000016129 GPR1 1,266453483 1,922670612 7,74E-05 0,008264422

ENSSSCG00000004665 1,154885363 4,321949725 7,86E-05 0,008279066

ENSSSCG00000011153 3,203544367 -1,747204409 7,83E-05 0,008279066

ENSSSCG00000017995 USP43 -1,381937633 1,96198567 9,03E-05 0,009444632

ENSSSCG00000009285 1,531834842 0,175962901 0,000105867 0,010994071

ENSSSCG00000027157 1,119639934 5,449380281 0,000108503 0,011190657

ENSSSCG00000010447 ACTA2 1,142592138 4,051922593 0,000109418 0,011208254

ENSSSCG00000005981 FBX032 -1,320353738 2,529565398 0,000110251 0,011217244

ENSSSCG00000005465 SUSD1 1,388192538 0,954004685 0,000114299 0,011551136

ENSSSCG00000004937 SLC24A1 -1,180929024 8,321327013 0,000129694 0,013019562

ENSSSCG00000000021 1,298184515 1,347468778 0,000135707 0,013532972

ENSSSCG00000025038 KCNJ13 1,152327943 2,897875873 0,000143229 0,014189096

ENSSSCG00000001765 ADAMTS7 1,114024891 4,167902825 0,000149256 0,014689517

ENSSSCG00000010475 1,121780912 3,604898784 0,000161097 0,015751956

ENSSSCG00000003666 2,405544016 -1,314582503 0,000169445 0,016461343

ENSSSCG00000000362 RDH5 1,181360924 2,137207703 0,000171911 0,016593803

ENSSSCG00000000252 KRT8 1,198124222 1,824455456 0,000193035 0,01851411

ENSSSCG00000002471 ISG12(A) 1,066942412 7,321497721 0,000201211 0,019176197

ENSSSCG00000010670 -3,037273164 -1,087678902 0,000225687 0,021373576

ENSSSCG00000030789 IGLV-12 1,425595961 0,346574743 0,000228384 0,021493758

ENSSSCG00000004822 -1,362860321 1,50229323 0,000235293 0,021671133 ENSSSCG00000006958 -1,318173573 1,289064592 0,000235611 0,021671133

ENSSSCG00000010966 CCL19 1,241151729 1,385285141 0,000233994 0,021671133

ENSSSCG00000023522 TGM2 1,109360818 3,12698286 0,000236025 0,021671133

ENSSSCG00000005844 NRARP -1,526644903 0,648314986 0,000251402 0,022943097

ENSSSCG00000001454 SLA-DRB2 1,117045267 2,703738492 0,000267252 0,024242677

ENSSSCG00000029763 IFI35 1,19684919 1,652633522 0,000271242 0,024457263

ENSSSCG00000013243 1,062345771 4,364649576 0,000283889 0,025445201

ENSSSCG00000026706 1,046555773 5,905478618 0,000286213 0,025501738

ENSSSCG00000004869 CNDP1 -1,134057025 4,891103102 0,000298422 0,026433209

ENSSSCG00000012676 MBNL3 1,154626998 1,953463734 0,000307282 0,027058819

ENSSSCG00000014167 GLRX 1,089333825 2,868159622 0,000315672 0,027635984

ENSSSCG00000026893 1,22446082 1,315176753 0,000336082 0,029252741

ENSSSCG00000007336 NNAT -1,102116732 8,216715009 0,000338674 0,029308905

ENSSSCG00000030165 MAFF -1,187786375 2,775823765 0,000346288 0,029796621

ENSSSCG00000012121 EGFL6 1,083823774 2,803072585 0,000378167 0,032354772

ENSSSCG00000016040 1,053773608 3,492067128 0,000412629 0,035008578

ENSSSCG00000016664 NPSR1 1,425076667 0,056848049 0,000413835 0,035008578

ENSSSCG00000021968 SLC19A3 1,099315302 2,41242279 0,000421772 0,035480722

ENSSSCG00000028137 SIK1 -1,132681252 3,380470736 0,000426873 0,035513033

ENSSSCG00000028672 GCKR 1,036972785 4,354127968 0,000426294 0,035513033

ENSSSCG00000012103 GPR143 1,025731322 4,651253506 0,000431649 0,035713027

ENSSSCG00000029683 -1,229070097 2,147485422 0,000445438 0,036652525

ENSSSCG00000021606 1,093528059 2,398455314 0,000454606 0,037203597

ENSSSCG00000003526 1,018304228 4,69319723 0,000472743 0,03842756

ENSSSCG00000014560 C0X8H 1,318634843 0,509688816 0,00047977 0,03842756

ENSSSCG00000020745 SP0T14 1,531718199 -0,242125742 0,000478155 0,03842756

ENSSSCG00000024447 SP0T14 1,531718199 -0,242125742 0,000478155 0,03842756

ENSSSCG00000006001 ENPP2 1,018874139 4,537120636 0,000483508 0,038522032

ENSSSCG00000028525 SAA4 2,18131888 -1,259707727 0,000506863 0,040170245

ENSSSCG00000024246 CNG-1 -1,065834331 9,647922064 0,000512961 0,040440686

ENSSSCG00000001767 1,176262148 1,282847139 0,00053922 0,042289434

ENSSSCG00000006955 GSDMD 1,034289145 3,238356598 0,000558101 0,043424041

ENSSSCG00000027638 BMP2 1,383108978 0,035105047 0,000559454 0,043424041

ENSSSCG00000001457 SLA-DQB*G07 1,015329325 3,937483052 0,000582769 0,044693398

ENSSSCG00000002032 SLC7A8 0,988280816 6,743107019 0,000587578 0,044693398

ENSSSCG00000003525 C1QC 0,993522664 5,65355153 0,000580825 0,044693398

ENSSSCG00000003711 CABYR -1,113450064 3,189409491 0,00058768 0,044693398

ENSSSCG00000004195 ARG1 1,682085908 -0,664989022 0,000607538 0,045971423

ENSSSCG00000009138 CFI 0,992699248 5,253517842 0,000610677 0,045977844

ENSSSCG00000027962 -2,269835139 -0,719602499 0,000616484 0,046184183

ENSSSCG00000005307 -1,40341989 0,56130106 0,000646505 0,047991968

ENSSSCG00000012040 0UG1 2,580788988 -1,522162646 0,000650177 0,047991968

ENSSSCG00000030984 GYPC 1,097196116 1,873148896 0,000649252 0,047991968 Authors found a high level of concordance between the two sets of differentially expressed genes, with high Correlation on their Fold Changes Values, indicating that the two artificial construct share the same biochemical properties and are able to bind the same genes given their engineered binding specificity.

To exclude that the number of the 57 target genes in common between the two experiments is by chance, authors calculated the hypergeometric probability, that tests the probability of obtaining a specific subset of genes out of a population whom the composition is known, obtaining a pvalue < 4.711962e-93. This value corroborates the finding that the two experiments share a great part of the interfered genes.

As shown in table 3, interestingly in ZF6-DBD treated retinae 60 DEGs out of 81 were up regulated and 21 were down regulated. This set of DEGs is not expected enriched in any functional relation. To determine whether relation were present among the 81 DEGs authors performed an hypergeometric test. Authors found enrichment (FDR<0.05) in two unrelated categories (GO: 0005576, extracellular region; GO: 0010951, negative regulation of endopeptidase activity). The fragments per kilobase of exon per million fragments mapped FPKM which accounts expression levels demonstrate expression, which compared to endogenous transcription factors appears very low. This result underscore the potency of the ZF6-DBD function (Figure 9). Indeed, the level of expression of ZF6-DBD strongly suggest its specificity and affinity, also suggesting that at least in part the ZF6-DBD does not compete with other endogenous TFs.

Notably the number of DEGs related to ZF6-DBD treatment (81) is consistently small if compared to those of a natural transcription factor such as the rod-specific transcription factor NRL (457). In addition ZF6-DBD silences RHO transcription with 148 folds less expression levels of NRL, measured with qRT-PCR.

The authors performed a Gene Set Enrichment Analysis (Gene Set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles: Subramanian et al. 2005) on the two sets of differentially expressed genes, to identify up or down - regulated processes in the two experiments. Authors observed that both the sets shared similar functions. Particularly in the context of the phototransduction, significative downregulation of these processes was found [GO:0042462, eye photoreceptor cell development; GO:0007602, phototransduction]. These data are consistent with the fact that RHO downregulation due to either ZF6-DBD or ZF6-KRAB activity results in secondary transcriptional changes (endogenous cell-specific regulatory code, i.e. whole cell-specific transcriptome map). Therefore, it is possible to infer that the primary physical targets of either ZF6-DBD or ZF6-KRAB (ZF6-DBD or ZF6-KRAB genome bound) are far less that those observed and that upon RHO downregulation a series of functionally related transcript are secondarily perturbed.

Therefore, ZF6-DBD is per se potent and mimics the intrinsic robustness of transcriptional signaling outperforming it, thanks to the fact that:

• Artificial DNA-binding domains are external to the topology of the regulatory network (interaction of the binding of the transcription factor to a specific DNA binding site near its target gene)

• Artificial DNA-binding domains are transcriptionally independent from the endogenous cell-specific regulatory code (whole cell-specific transcriptome map). Indeed, natural TFs themself belong to a cell-specific transcriptome map (regulators of regulators), therefore they are finely tuned by other cell-specific TF sets which control their transcriptional activation or repression eventually resulting in cell-specific function.

• Artificial DNA-binding domains are without protein-protein interaction domains

As a further observation, the authors also hypothesize that the ZF6-DBD may have a safer profile than ZF6-KRAB during AAV vector production in which the plasmid containing the transgene (between the AAV-ITRs) is cotransfected with REP and CAP plasmids in HEK 293 cells (for methods see Auricchio et al, 2001). To be noted, during AAV vector production, if the transgene between the ITRs (i.e. ZF-KRAB or ZF-DBD) is under the control of an ubiquitous promoter like CMV, it is expressed in HEK 293 cells. The authors observed that, when the AAV8-CMV-ZF6-KRAB was produced, a very low vector yields was observed (Figure 14). On the contrary, when ZF6-KRAB was under the control of a retinal specific promoter (RHOK) the titers of the vector was restore to normal yields (around lxlOE12). In the case of the ZF6-DBD production, the ubiquitous CMV promoter element and consequently ZF-DBD expression in production cells, had no negative effect and vector yields were within normal values(Figure 10).

Replacement Strategy

For the second part of our therapeutic strategy for the treatment of autosomal dominant retinitis pigmentosa authors assessed the replacement of the ZF6 repressed alleles with wild type copy of human rhodopsin CDS. To set up the replacement conditions authors selected the human transducin 1 (GNATl) promoter that is specific for rods (J Lee et al, Gene Therapy 2010) to deliver the transgene specifically in rods, and evaluated the dose of AAVs to have the best rods transduction. . As the human rhodopsin promoter contains the binding site of ZF6, it cannot be used in the replacement strategy.. Authors generated an AAV with eGFP reporter gene to evaluate the levels of transduction and to perform dose-response studies. Authors injected in pigs retinae three different doses of AAV8- hGNATl-eGFP, 1x1010, 1x1011 and 1x1012. After 15 days we sacrificed the animals and we collected the retinae for the evaluation of the transcript levels and the localization of the eGFP in the retina. By qReal Time PCR we assessed the transcription levels of the eGFP and we observed an increase of the expression of the eGFP mRNA correlated with an increase of the dose used. When we evaluate the localization of the eGFP in retina we noticed that the expression is delimited only in rods. Based on these results, authors used a 1x1012 dose for the replacement. Therefore authors performed a silencing and replacement experiments in three months old pigs using two AAVs, an AAV8- CMV-ZF6-DBD, at a dose of 1x1011, for the repression of the endogenous porcine rhodopsin, and an AAV8-hGNATl-hRHO at a dose of 1x1012. The expression levels of transcript, analysed 15 days post-injection, showed a repression of about the 55% of endogenous porcine rhodopsin and a replacement of repressed protein with human wild type CDS of about the 33% of total porcine rhodopsin. This data demonstrate that it is practicable to repress endogenous rhodopsin and replace it with an exogenous human rhodopsin. These are very promising results for the treatment of autosomal dominant retinitis pigmentosa caused by mutations in rhodopsin sequence in mutational independent manner (Figures 15 and 16 ). As shown, GNATl (rod-specific) and Arr3 (cone-specific) transcript levels are not affected by ZF6 miss-expression. This is also robustly confirmed by the RNA-seq data.

Contribution of cis-acting DNA element (cis-regulatory element, CRE) to gene expression.

Cis-regulatory potential of bound and not bound DNA genomic sequence motifs are determined by 1- chemical-physical properties of the DNA per se (the A, C, G, and T bases are chemical entities that, along with the inclusion of the backbone sugar and phosphate groups, create a three-dimensional double-stranded structure in which each base pair has a specific chemical and conformational signature) and by 2- epigenetics constrains, 3- complex of protein-protein interactions, 4- long distance physical connectivity (3D physical connectivity among distant genomic loci including distinct chromosomes) (Stamatoyannopoulos JA. Genome Res. 2012 Sep;22(9):1602-ll and Rohs R, Jin X, West SM, Joshi R, Honig B, Mann RS. Annu Rev Biochem. 2010;79:233-69). Indeed, most genomic DNA sequences defined by biochemical signatures lacked strong evolutionary conservation, and most highly conserved genomic DNA sequence elements escape annotation using biochemical and other functional assays. Moreover, nucleotide-level evolutionary conservation is by itself a poor predictor of functional regulatory variation and function (Maurano MT, Wang H, Kutyavin T, Stamatoyannopoulos JA.PLoS Genet. 2012;8(3):el002599.).

Therefore, DNA sequence features or DNA information content is way more than a nucleotide sequence view as a one-dimensional string of letters based on an alphabet consisting of only four characters: A, C, G, and T, on the contrary a higher-order complexes between protein and genomic DNA exists (Stamatoyannopoulos JA. Genome Res. 2012 Sep;22(9):1602-ll and Rohs R, Jin X, West SM, Joshi R, Honig B, Mann RS. Annu Rev Biochem. 2010;79:233-69).

A series of different methods have been employed to determine the DNA sequence features contained in genomic DNA (Genomic approaches towards finding cis-regulatory modules in animals. Hardison RC, Taylor J. Nat Rev Genet. 2012 Jun 18;13(7):469-83). Nevertheless, many of these methods rely on germ-line genomic engineering and thus lack one of the main feature urgently need in both basic science and medicine, the possibility to identify selective regulatory DNA active in space and time in a specific cell type in somatic cells over development, adult and aging , thus in each or in distinct categories of somatic cell types.

Considering the poor prediction based on primary DNA sequence, a system to generate unbiased screening of possible regulatory DNA active in space and time in a somatic specific cell type is needed. The authors tested the hypothesis in which the above mentioned biochemical features of the ZF6-DBD may serve as a method to determine cis-regulatory elements in a specific cell type (photoreceptors) via AAV vector mediated gene transfer on somatic cells (photoreceptors).

Authors were able to demonstrate that a short sequence within ZF6-DBD target site (ZF6- DBDCis-seq), possesses base composition and length that is necessary to confer activity to RHO promoter. Such cognate 20 bp ZF6-DBD target site (is located on the human genomic promoter in position - 94 from the transcription start site (Figure 7).

In particular, authors showed that both an artificial DNA-binding protein covering the 20 bp of the human rhodopsin proximal promoter (ZF6-DBDCis-seq) and changing 5bp contained within these sequence completely abolished RHO expression. Furthermore, authors were able to demonstrate that a single DNA base change can abolish RHO promoter driven expression. In addition, authors showed that this region is potentially controlled in non-rod specific cells via an endogenous transcriptional repressor KLF15 targeting the same genomic sequences of ZF6-DBD and that its missexpression in rods generates RHO transcriptional silencing.

Features of ZF6-DBDCis-seq genomic element.

First authors investigated the DNA-protein interaction properties of the ZF6-DBDCis-seq. Gel mobility shift analysis demonstrated binding of ZF6-DBD on hRho proximal promoter region 43 bp oligonucleotide duplexes including the ZF6-DBD consensus sequence. Specificity was further supported by the ZF6-DBD binding when 18 bp ZF6-DBD core sequence was preserved and changed the 25 bp of the 43 bp oligonucleotide duplexes (hRho mut F and hRho mut L; Figure 17)

Authors next investigated through complementation the genomic ZF6-DBDCis-seq. To isolate the features of ZF6-DBDCis-seq with high spatial resolution authors generate a short human RHO proximal promoter of 259 bp (164bp from the TSS and the 95 bp of the 5' UTR; hRHOs). To determine the transcriptional output driven by hRHOs, authors generated an AAV-EGFP reporter construct (AAV8-hRHOs-EGFP) and injected it in adult WT C57BL6 mice and assess EGFP expression driven by hRHOs in vivo (Corbo Ref). Thus, in this experimental setting authors challenged this hRHOs promoter sequence against the entire nuclear proteome of mice photoreceptors. qRT-PCR analysis fifteen days after sub retinal delivery show that hRHOs reporter construct enable sustained EGFP expression in vivo (Figure 18).

To determine cis-regulatory elements (regulatory DNA active in space and time) in a specific cell type (photoreceptors) via AAV vector mediated gene transfer on somatic cells (photoreceptors), the authors next generated constructs carrying deletion or mutagenesis of ZF6-DBDCis-seq. The authors generated 2 constructs: 1- with the complete deletion of the (GGGGGTTAGagGGTCTACGA [SEO ID No. 22]; AZF6); 2- the mutagenized ZF6-DBD target (TTACTGTAATCTTAACCGGA [SEO ID No. 29]; MutZF6) (Figure 19 and 20).

In order to test in vivo the functional consequences of the AZF6 and MutZF6 DNA changes in the proper cell type, the authors sought to investigate whether the use of AAV vector gene transfer to photoreceptors may represent a convenient method to carry out this assessment. The authors thus generated AAV8 vectors containing human RHO promoter (see methods) with its 5' UTR and with the AZF6 or MutZF6 embedded in their RHO promoter sequence to control EGFP expression (AAV8-hRHO-AZF6-5'UTR-EGFP and AAV8-hRHO-MutZF6-5'UTR- EGFP). After AAV vector production, wild type mice (P30) received or the AAV8-hRHO-AZF6- 5'UTR-EGFP, or AAV8-hRHO-MutZF6-5'UTR-EGFP, or AAV8-hRHO-5'UTR-EGFP as positive control at a vector dose of Ixl0e9 vg. As shown in Figure 11 and 12, after sacrifice (P50) both the RT-PCR and immunohistological studies showed that in both AAV8-hRHO-AZF6-5'UTR- EGFP, or AAV8-hRHO-MutZF6-5'UTR-EGFP injected eyes EGFP expression levels were highly significantly reduced compared to the promoter containing the complete RHO proximal promoter DNA sequence. This result suggests that the ZF6-DBD cis-acting element is necessary for the activity of hRHOs elements in photoreceptors. Additionally, the lack of conservation of the ZF6 target sequence in mice underscore the critical features and information content (including the architecture) contained in the regulatory DNA sequences which controls gene expression and the strength of the method of in vivo AAV vector delivery in the proper somatic cell target (i.e. photoreceptors) to unravel cis-regulatory elements function.

To narrow down the functional bases of activity of this ZF6-DBDCis-seq authors performed phylogeny sequence analysis. Unexpectedly the 5' of the ZF6-DBDCis-seq is not conserved in mouse Rho promoter sequence. Authors generated a murine version of the reporter construct; 243 bp (165bp from the TSS and the 78 bp of the 5' UTR; mRHOs). Following 15 days after injection in adult WT C57BL6 mice the reporter activity was reduced (35%) compared to human counterpart. However, the activity was retained. Authors then wondered whether the TF binding sites architecture diverge between the two species. TF binding sites mapping, shows that NRL and CRX binding sites are flanking the ZF6-DBDCis-seq. Humans presents a further CRX binding site conserved in vertebrates that appears lacking in mouse. Thus, authors tested the hypothesis of whether the CRX and NRL binding sites together with the ZF6-DBDCis-seq generate a functional unit. Insertion of the murine "functional unit" (hRHOs InsMurine) in the human hRHOs remarkably mimics the transcriptional activity of the murine promoter fragment (Figure 21). The reverse (mRHOs InsHuman), the human fragment in the murine RHO proximal promoter results in a slightly higher expression compared to hRHOs. These results support the model of a discrete functional unit present in both human and murine promoters. To further dissect the properties of this sequence authors tested whether the critical features of the 20bp ZF6-DBDCis-seq were located in the CACCCCCA [SEO ID No. 55] sequence not present in mouse sequence. Nucleotide change (hRHOs MEvo) completely abolishes activity, whereas deletion (hRHOs ΔΕνο) of the same sequence surprisingly resulted in sustained activity. This result support that the ZF6-DBD DNA binding site on the genome is not an obvious endogenous TF binding site controlling, upon TF binding, transactivation of RHODOPSIN. The lack of a binding site coupled to preservation of activity and the shortness of the promoter used also rule out a "CTCF" looping mechanism. In addition, this result support that the sequence does not act as a TF binding site but that the nucleotide composition and the length may play an essential role in generating promoter function. Authors further test whether the nucleotide changes were sensitive to sequence composition replacing the CCCCC [SEO ID No. 56] stretch with GGGGG [SEO ID No. 57] (hRHOs 5G) but similar loss of activity was observed. To further determine the level of sensitivity of this sequence authors mutated only one base (CCACC [SEO ID No. 58]; hRHOs T3C) and remarkably the activity of the promoter was extinguished (Figure 21). These data support a model in which, the properties of this RHO regulatory genomic functional unit follows precise rules, the 20bp-long genomic DNA linking the CRX and NRL DNA-binding sites (ZF6-DBDCis- seq) carries complex and specific features in length and nucleotide composition. This functional unit diverges in mouse, hoauthorsver it preserves the basic grammar governing the human counterpart. Indeed, this functional unit is reciprocally transportable in human and mouse RHO promoters (hRHOs InsMurine; mRHOs InsHuman) resulting in the same transcriptional output as it produces in the species it belongs to.

Based on the extraction of the RHO cis acting regulatory properties retrieved by the above experiments in photoreceptor specific context, the authors decided to use a trans DBD domain approach therein presented to mirror the Cis-acting effect generated by mutagenesis analysis (above). The authors generated a shorter version of ZF6-DBD, lacking the 6 th finger, and thus restricting the target site of the DBD domain (Figure 30). This artificial DBD domain called ZF6-5 or ZF6-5F (5 stands for 5 fingers) generates a more accurate targeting on the novel RHO cis-acting element identified, avoiding the potential interference of ZF6-DBD on the NRL site. This novel protein can generate an interference specifically centered to the RHO Cis-acting element CCCCCA [SEO ID NO. 30] . To test the activity of ZF6-5 an AAV8 vector (AAV8-CMV-ZF6-5F) was injected in P347S mice at P15 and the functional outcome was assessed by ERG analysis at P30 (15 days after vector administration). As shown in figure 31, the activity of ZF6-5 generated a preservation of retinal function compared to controls (AAV8- EGFP). To further explore other potential trans DBD domains based on TAL technology and again more appropriately targeted to the RHO Cis-acting elements identified, the authors generated two TAL-based DNA binding domains as reported in figure 30. These two DBD domains, TALRHO(02) and TAL7 were then used to generate AAV8 vectors (AAV8-CMV- TALRHO(02)-DBD and AAV8-CMV-TAL7-DBD) and tested in P347S mice, as above. Similarly to ZF6-5, both AAV8-CMV- TALRHO-(02)-DBD and AAV8-CMV- TALRHO-(02)-DBD generated a significant preservation of retinal function compared to EGFP injected controls.

To further analyze the ZF6-DBDCis-seq authors scanned the 20bp together with the corresponding murine sequence (TATGATATCTCGCGGATGCT, [SEQ ID No. 59]) by TRANSFAC analysis. As shown in figure 22 authors retrieved 3 matrixes for human and 1 distinct matrix for the mouse sequences. The matrix centered to the CCCCCA [SEQ. ID NO. 30] sequence displays RREB-1 factor, which belong to the retinal specific KLF15 TF. KLF15 is a zinc-finger TF that showed in vitro binding to the CCCCCA [SEQ. ID NO. 30] sequence. Based on the expression pattern KLF15, which is expressed in the retina with the exception of photoreceptors it was suggested that its function may rely on rhodopsin transcriptional expression blocking in non rods cells of the retina. Authors thought that if this is the case KLF15 missexpression to photoreceptor may result in RHO silencing. Authors generated an AAV8 vector carrying human KLF15 (AAV8-CMV-KLF15) and injected porcine retinae. Fifteen days after delivery AAV8-CMV-KLF15 transduction resulted in an impressive 50% repression of porcine rhodopsin and a similar relative repression of the rod-specific GNAT1 gene. These results suggest that another trans-acting element (endogenous TF) with known binding for the sequence CCCCCA [SEQ ID NO. 30] acts similarly to ZF6-DBD when missexpressed in rod cells.

These data strongly suggest that the cis-regulatory element targeted by the ZF6-DBD is a novel cis-regulatory element of human RHODOPSIN promoter critical for RHODOPSIN expression.

Therefore, ZF technology and AAV retinal gene transfer allowed determining the function of a regulatory DNA element in two reciprocal manners:

A) the design of ZF DBD without an effector domain, targeted to a DNA sequence can be used for the identification of novel cis-regulatory elements. In the case of ZF6-DBD the authors identified a previously unknown element. Moreover, considering the specific cell type in which a cis-regulatory element acts, the ability of AAV vector to express the ZF6-DBD constructs in space (in the authors' case, a- subretinal administration, b- of a vector with tropism for photoreceptors, and possibly with a photoreceptor-specific promoter) and in time (subretinal administration at different time-points) allow a tailored method to identify and to determine the properties of a cis-regulatory elements in time and space.

B) Many strategies can be employed to study genomic regulatory sequences (Genomic approaches towards finding cis-regulatory modules in animals. Hardison RC, Taylor J. Nat Rev Genet. 2012 Jun 18;13(7):469-83). However, the use of in vivo AAV vector mediated gene transfer is for the first time employed. The data the authors show describe a method to identify cis-regulatory elements activity with AAV vectors in somatic cells (Figure 14 and 19). A method in principle similar was described by White MA et al PNAS 2013 11952-11957, July 2013 (Massively parallel in vivo enhancer assay reveals that highly local features determine the cis-regulatory function of ChlP-seq peaks. White MA, Myers CA, Corbo JC, Cohen BA.Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11952-7). Nevertheless, in that case retinal electroporation was used (instead of AAV8 vector).

Therefore authors propose a two-step method:

- test in vivo (via AAV-vector delivery as shown by authors, or via high throughput electroporation as reported by White MA, Myers CA, Corbo JC, Cohen BA. Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11952-7. Massively parallel in vivo enhancer assay reveals that highly local features determine the cis-regulatory function of ChlP-seq peaks.) a series of CIS- mutants (promoter, enhancers of a gene of interest) to identify the critical region controlling expression;

- generate an artificial DNA-binding protein to mimic the CIS-effect that in principle can function either as an activator or a repressor.

Barrow et al PNAS 2012 test the hypothesis of using the Zinc finger technology for a known cis-regulatory element of the β-globin and used transgenesis method to proof that Zinc fingers without an effector domain can be used for study and modulating the function of a known cis-regulatory DNA elements but not a method to identify novel CREs. In addition, the transgenesis used by Barrow was employed with germ-line approach (random integration of the transgene with uncontrolled time and space expression and dosage) and not a germ-line targeted approach with the ZF-DBD under the control of an ubiquitous promoter. Therefore, that study suffers of the major limitation of lack of control of time and space, that are clearly critical to determine the function of cis-regulatory elements (regulatory DNA active in space and time) in a specific cell type. On the contrary, the method the authors used with somatic gene transfer mediated by AAV vectors allow to control dosage, cellular restriction (spatial resolution) and time (time of vector delivery; time resolution); this are crucial determinants for proper assessment of cis-regulatory elements (regulatory DNA active in space and time) in a specific cell type, in particular considering that current genomic studies are suggesting that the authors can legitimately consider "somatic cells composing the body are a genetic functional mosaicism".

In order to assess whether on the same ZF6 target DNA region another technology to generate DNA-binding domains can be applied, the authors used Transcription activator-like effector (TALE) technology (Breaking the code of DNA binding specificity of TAL-type III effectors. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U. Science. 2009 Dec 11;326(5959):1509-12). Since this platform allows tailoring any DNA-binding protein starting with a T DNA base, the authors generated two constructs on the ZF6 target site as follow: TC AG C ATCTG G G AG ATTG [SEQ. ID No. 24] and complementary sequence TCTGGGAGATTGGGGG [SEQ. ID No. 60]. Transient transfection experiments on HEK293 cells show that the TALE-DBDs in vitro represses CRX mediated expression to a similar extent as ZF6-DBD and ZF6-KRAB (Figure 23), suggesting that TALE technology can be an alternative to Zinc finger technology to employ the above described system.