Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
CORIOLIS MEASURING SENSOR AND CORIOLIS MEASURING DEVICE HAVING A CORIOLIS MEASURING SENSOR
Document Type and Number:
WIPO Patent Application WO/2021/008808
Kind Code:
A1
Abstract:
The invention relates to a Coriolis measuring sensor (10) of a Coriolis measuring device (1), comprising: at least a pair of measuring tubes (11); a support body (12); at least one exciter (13), at least two sensors (14) per pair of measuring tubes, wherein the sensors are designed to mask interference magnetic fields and to detect local inhomogeneous magnetic fields generated by magnet devices of the sensor.

Inventors:
POHL JOHAN (DE)
BITTO ENNIO (CH)
Application Number:
PCT/EP2020/066974
Publication Date:
January 21, 2021
Filing Date:
June 18, 2020
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
FLOWTEC AG (CH)
International Classes:
G01F1/84
Domestic Patent References:
WO1997026508A11997-07-24
WO2019110353A12019-06-13
Foreign References:
EP1253409A12002-10-30
RU2155939C22000-09-10
DE102015120087A12017-05-24
DE102015120087A12017-05-24
Attorney, Agent or Firm:
ANDRES, Angelika (DE)
Download PDF:
Claims:
Patentansprüche

1. Coriolis-Messaufnehmer (10) eines Coriolismessgeräts (1) zum Messen eines Massedurchflusses oder einer Dichte eines durch Messrohre des Coriolis-Messaufnehmers strömenden Mediums umfassend: mindestens ein Paar Messrohre (1 1) zum Führen eines Mediums; einen Trägerkörper (12) zum Tragen der Messrohre; mindestens einen Erreger (13) eingerichtet zum Anregen von Messrohrschwingungen, pro Messrohrpaar mindestens zwei Sensoren (14) eingerichtet zum Erfassen von

Messrohrschwingungen, wobei die Messrohre eines jeweiligen Messrohrpaars in Ruhestellung symmetrisch bezüglich einer jeweiligen Mittenebene (18) sind, wobei die Messrohre jedes Messrohrpaars dazu eingerichtet sind, Schwingungen senkrecht zur jeweiligen Mittenebene auszuführen und entgegengesetzt zu schwingen, dadurch gekennzeichnet, dass jeder Sensor zumindest eine Magnetvorrichtung (15) mit jeweils einem Permanentmagnet (15.3) sowie zwei Spulenvorrichtungen (16) mit jeweils einer Spule (16.3) aufweist, wobei mindestens eine Magnetvorrichtung dazu eingerichtet ist, durch Messrohrschwingungen relativ zu mindestens einer Spulenvorrichtung bewegt zu werden, wobei Querschnittsflächen der Spulen parallel und insbesondere gleich zueinander sind und in einer Projektion aufeinander einen Überlapp von mindestens 90% bezüglich ihrer Flächenmaße aufweisen, wobei einander zugewandte Seiten der Spulen jeweils eine erste Stirnfläche (16.33) definieren, wobei die ersten Stirnflächen einen Spulenabstand definieren, wobei ein Verhältnis

Querschnittsfläche zu einem Quadrat des Spulenabstands beispielsweise größer ist als 10, und insbesondere größer ist als 30 und bevorzugt größer ist als 100, wobei die Spulen jeweils ein inneres, der jeweils anderen Spule zugewandtes Ende (16.31) und ein äußeres, der jeweils anderen Spule abgewandtes Ende (16.32) aufweisen, und wobei die Spulen jeweils einen Windungssinn aufweisen, wobei einem gegenläufigen Windungssinn der beiden Spulen ein negativer Windungskoeffizient zugeordnet ist, und wobei einem gleichläufigen Windungssinn der beiden Spulen ein positiver Windungskoeffizient zugeordnet ist, wobei das Vorzeichen des Windungskoeffizienten ein erstes Vorzeichen ist, wobei die Spulen über ihre Enden miteinander in Reihe geschaltet sind, wobei einer Verschaltung der Spulen über beide inneren Enden oder über beide äußeren Enden ein positiver

Schaltungskoeffizient zugeordnet ist, wobei einer Verschaltung der Spulen über ein inneres Ende und ein äußeres Ende ein negativer Schaltungskoeffizient zugeordnet ist, wobei das Vorzeichen des Schaltungskoeffizienten ein zweites Vorzeichen ist, wobei ein Produkt aus dem erstem Vorzeichen und dem zweitem Vorzeichen negativ ist, wobei der mindestens eine Permanentmagnet (15.3) dazu eingerichtet ist, im Bereich der Spulen ein inhomogenes Magnetfeld mit einer senkrecht zu den Querschnittsflächen der Spulen stehenden Feldkomponente zu erzeugen.

2. Coriolis-Messaufnehmer nach Anspruch 1 , wobei der mindestens eine Permanentmagnet (15.3) eine zu den Spulensystemen gerichtete zweite Stirnfläche (15.31) aufweist, welche parallel zu den Querschnittsflächen der Spulen verläuft, wobei eine Größe der zweiten Stirnfläche um höchstens 50% von einer Größe der ersten Stirnfläche abweicht.

3. Coriolis-Messaufnehmer nach Anspruch 2, wobei die zweite Stirnfläche (15.31) einen Maximalabstand zu einer durch die ersten Stirnflächen definierten Spulenmittenebene aufweist, wobei der Maximalabstand kleiner ist als 7 Spulenabstände und insbesondere kleiner als 5

Spulenabstände und bevorzugt kleiner als 3 Spulenabstände, und/oder wobei der Maximalabstand kleiner ist als 7 mm und insbesondere kleiner als 5 mm und bevorzugt kleiner als 3.5 mm. 4. Coriolis-Messaufnehmer nach einem der vorigen Ansprüche, wobei entweder die Windungssinne gegenläufig sind, und die Spulen (16.3) über beide inneren Enden oder über beide äußeren Enden elektrisch verbunden sind, oder wobei die Windungssinne gleichläufig sind und die Spulen über ein inneres Ende und ein äußeres Ende elektrisch verbunden sind.

5. Coriolis-Messaufnehmer nach einem der vorigen Ansprüche, wobei eine erste Magnetvorrichtung (15.1) an einem ersten Messrohr (11.1) eines Messrohrpaars angeordnet und dazu eingerichtet ist, den Schwingungsbewegungen des ersten Messrohrs zu folgen, wobei der Permanentmagnet dazu eingerichtet ist, ein Magnetfeld mit einer senkrecht zur Mittenebene stehenden Feldkomponente zu erzeugen, wobei eine erste Spulenvorrichtung (16.1) am ersten Messrohr des Messrohrpaars angeordnet ist, und wobei eine zweite Spulenvorrichtung (16.2) an einem zweiten Messrohr (11 .2) des

Messrohrpaars angeordnet ist, wobei die Spulenvorrichtungen dazu eingerichtet sind, den

Schwingungsbewegungen des jeweiligen Messrohrs zu folgen, wobei auf die jeweilige Mittenebene projizierte Querschnitte des Permanentmagnets sowie der Spulen überlappen, und wobei eine am ersten Messrohr angeordnete Spule insbesondere zwischen Permanentmagnet und einer an einem zweiten Messrohr des Messrohrpaars angeordnete Spule angeordnet ist.

6. Coriolis-Messaufnehmer nach Anspruch 5, wobei der Sensor eine zweite Magnetvorrichtung (15.2) mit einem Permanentmagnet aufweist, wobei die zweite Magnetvorrichtung am zweiten Messrohr (11.2) des Messrohrpaars angeordnet und dazu eingerichtet ist, den Schwingungsbewegungen des zweiten Messrohrs zu folgen, wobei der Permanentmagnet dazu eingerichtet ist, ein Magnetfeld senkrecht zur Mittenebene

entgegengesetzt zum Magnetfeld der ersten Magnetvorrichtung zu erzeugen, wobei auf die jeweilige Mittenebene projizierte Querschnitte des Permanentmagnets sowie der Spulen überlappen, und wobei die am zweiten Messrohr angeordnete Spule insbesondere zwischen dem Permanentmagnet der zweiten Magnetvorrichtung und der Spule der ersten Spulenvorrichtung angeordnet ist.

7. Coriolis-Messaufnehmer nach einem der Ansprüche 1 bis 3, wobei eine erste Magnetvorrichtung (15.1) an einem ersten Messrohr (11.1) eines Messrohrpaars angeordnet und dazu eingerichtet ist, den Schwingungsbewegungen des ersten Messrohrs zu folgen, wobei der Permanentmagnet dazu eingerichtet ist, ein Magnetfeld mit einer parallel zur Mittenebene verlaufenden Feldkomponente zu erzeugen, wobei eine erste Spulenvorrichtung (16.1) am ersten Messrohr des Messrohrpaars angeordnet ist, und wobei eine zweite Spulenvorrichtung (16.2) an einem zweiten Messrohr (1 1.2) des

Messrohrpaars angeordnet ist, oder wobei eine erste Spulenvorrichtung (16.1) und eine zweite Spulenvorrichtung an einem zweiten Messrohr (1 1.2) des Messrohrpaars angeordnet sind, wobei die Spulenvorrichtungen dazu eingerichtet sind, den Schwingungsbewegungen des jeweiligen Messrohrs zu folgen.

8. Coriolis-Messaufnehmer nach Anspruch 7, wobei eine zweite Magnetvorrichtung (15.2) mit einem Permanentmagnet vorgesehen ist, wobei der Permanentmagnet der zweiten Magnetvorrichtung entgegengesetzt zum Permanentmagnet der ersten Magnetvorrichtung orientiert ist, wobei in einer Projektion auf die Mittenebene die Spulen zwischen den Permanentmagneten angeordnet sind.

9. Coriolis-Messaufnehmer nach Anspruch 8, wobei die zweite Magnetvorrichtung am ersten Messrohr angeordnet und dazu eingerichtet ist, den Schwingungsbewegungen des ersten Messrohrs zu folgen, wobei die erste Spulenvorrichtung am zweiten Messrohr angeordnet ist, oder wobei die zweite Magnetvorrichtung am zweiten Messrohr angeordnet und dazu eingerichtet ist, den Schwingungsbewegungen des zweiten Messrohrs zu folgen, wobei die erste

Spulenvorrichtung am ersten Messrohr angeordnet ist.

10. Coriolis-Messaufnehmer nach einem der vorigen Ansprüche, wobei der Sensor (14) zwei Anschlussdrähte (14.1) eingerichtet zur Verbindung mit einer elektronischen Mess-/Betriebsschaltung aufweist, welche jeweils mit einem Spulenende verbunden sind, wobei die Anschlussdrähte elektrisch isoliert sind und zusammengeführt werden, wobei die Anschlussdrähte nach Zusammenführen insbesondere verdrillt sind, oder wobei die Anschlussdrähte zu einer Platine (17) mit elektrisch leitfähigen Leiterbahnen (17.1) geführt sind, welche Leiterbahnen zumindest in einem Kontaktbereich Anschlussdraht - Leiterbahn parallel geführt sind und einen Abstand zueinander aufweisen, welcher kleiner ist als zwei

Leiterbahnbreiten.

1 1 . Coriolis-Messaufnehmer nach einem der vorigen Ansprüche, wobei die Reihenschaltung der Spulen mittels eines elektrisch leitfähigen Verbindungsdrahts (14.2) oder über eine Platine (17) mit einer elektrisch leitfähigen Leiterbahn (17.1) hergestellt ist, wobei die Spulen mit der Leiterbahn mittels elektrisch leitfähiger Verbindungsdrähte verbunden sind.

12. Coriolis-Messaufnehmer nach einem der vorigen Ansprüche, wobei eine Querschnittsfläche der Spulen kleiner ist als 1000 Quadratmillimeter, und insbesondere kleiner als 500 Quadratmillimeter und bevorzugt kleiner als 300 Quadratmillimeter, und/oder wobei eine Querschnittsfläche der Permanentmagnete kleiner ist als 1000

Quadratmillimeter, und insbesondere kleiner als 500 Quadratmillimeter und bevorzugt kleiner als 300 Quadratmillimeter. 13. Coriolismessgerät (1) zum Messen eines Massedurchflusses oder einer Dichte eines durch

Messrohre des Coriolis-Messaufnehmers strömenden Mediums umfassend: einen Coriolis-Messaufnehmer (10) nach einem der vorigen Ansprüche; eine elektronische Mess-/Betriebsschaltung (77) eingerichtet zum Betreiben des mindestens einen Erregers und der Sensoren und zum Bereitstellen von Messwerten des Massedurchflusses oder der Dichte des Mediums; ein Elektronikgehäuse (80) zum Behausen der elektronischen Mess-/Betriebsschaltung.

Description:
Coriolis-Messaufnehmer und Coriolis-Messgerät mit Coriolis-Messaufnehmer

Die Erfindung betrifft einen Coriolis-Messaufnehmer mit einer verbesserten Sensorik und ein Coriolis-Messgerät mit einem solchen Coriolis-Messaufnehmer.

Coriolis-Messgeräte zum Messen eines Massedurchflusses oder einer Dichte eines durch ein Messrohr des Messgeräts strömenden Mediums sind Stand der Technik, so zeigt die

DE102015120087A1 beispielsweise ein Zweirohr-Coriolis-Messgerät, wobei Schwingungssensoren auf einer magnetischen Kopplung zwischen einer Spule und einem Magnet basieren.

Solche Coriolis-Messgeräte lassen sich durch Stören der magnetischen Kopplung, beispielsweise mittels eines externen Magnets manipulieren. Aber auch ein Betrieb eines Coriolis-Messgeräts in einem externen Magnetfeld führt zu Störungen der magnetischen Kopplung Ein externes Magnetfeld bewirkt bei vibrierenden Messrohren einerseits direkt eine Wechselspannung in mit dem Messrohr mitbewegten Spulen und andererseits Wirbelströme beispielsweise in Wandungen des Messrohrs, welche ein mittels der Spulen erfasstes Messsignal verfälschen.

Aufgabe der Erfindung ist es, einen Coriolis-Messaufnehmer und ein Coriolis-Messgerät mit einem solchen Coriolis-Messaufnehmer vorzuschlagen, bei welchen eine Manipulation mittels eines externen Magnets erschwert wird.

Die Aufgabe wird gelöst durch einen Coriolis-Messaufnehmer gemäß dem unabhängigen Anspruch 1 sowie durch ein Coriolis-Messgerät gemäß dem unabhängigen Anspruch 13.

Ein erfindungsgemäßer Coriolis-Messaufnehmer eines Coriolismessgeräts zum Messen eines Massedurchflusses oder einer Dichte eines durch Messrohre des Coriolis-Messaufnehmers strömenden Mediums umfasst: mindestens ein Paar Messrohre zum Führen eines Mediums; einen Trägerkörper zum Tragen der Messrohre; mindestens einen Erreger eingerichtet zum Anregen von Messrohrschwingungen, pro Messrohrpaar mindestens zwei Sensoren eingerichtet zum Erfassen von

Messrohrschwingungen, wobei die Messrohre eines jeweiligen Messrohrpaars in Ruhestellung symmetrisch bezüglich einer jeweiligen Mittenebene sind, wobei die Messrohre jedes Messrohrpaars dazu eingerichtet sind, Schwingungen senkrecht zur jeweiligen Mittenebene auszuführen und entgegengesetzt zu schwingen, wobei jeder Sensor zumindest eine Magnetvorrichtung mit jeweils einem Permanentmagnet sowie zwei Spulenvorrichtungen mit jeweils einer Spule aufweist, wobei die Magnetvorrichtung sowie die Spulenvorrichtung jeweils an einem Messrohr angeordnet sind, wobei mindestens eine Magnetvorrichtung dazu eingerichtet ist, durch Messrohrschwingungen relativ zu mindestens einer Spulenvorrichtung bewegt zu werden, wobei Querschnittsflächen der Spulen gleich und parallel zueinander sind und in einer Projektion aufeinander einen Überlapp von mindestens 90% bezüglich ihrer Flächenmaße aufweisen, wobei einander zugewandte Seiten der Spulen jeweils eine erste Stirnfläche definieren, wobei die ersten Stirnflächen einen Spulenabstand definieren, wobei ein Verhältnis Querschnittsfläche zu einem Quadrat des Spulenabstands beispielsweise größer ist als 10, und insbesondere größer ist als 30 und bevorzugt größer ist als 100, wobei die Spulen jeweils ein inneres, der jeweils anderen Spule zugewandtes Ende und ein äußeres, der jeweils anderen Spule abgewandtes Ende aufweisen, und wobei die Spulen jeweils einen Windungssinn aufweisen, wobei einem gegenläufigen Windungssinn der beiden Spulen ein negativer Windungskoeffizient zugeordnet ist, und wobei einem gleichläufigen Windungssinn der beiden Spulen ein positiver Windungskoeffizient zugeordnet ist, wobei das Vorzeichen des Windungskoeffizienten ein erstes Vorzeichen ist, wobei die Spulen über ihre Enden miteinander in Reihe geschaltet sind, wobei einer Verschaltung der Spulen über beide inneren Enden oder über beide äußeren Enden ein positiver

Schaltungskoeffizient zugeordnet ist, wobei einer Verschaltung der Spulen über ein inneres Ende und ein äußeres Ende ein negativer Schaltungskoeffizient zugeordnet ist, wobei das Vorzeichen des Schaltungskoeffizienten ein zweites Vorzeichen ist, wobei ein Produkt aus erstem Vorzeichen, zweitem Vorzeichen negativ ist, wobei der mindestens eine Permanentmagnet dazu eingerichtet ist, im Bereich der Spulen ein inhomogenes Magnetfeld mit einer senkrecht zu den Querschnittsflächen der Spulen stehenden Feldkomponente zu erzeugen.

Der Kern der Erfindung ist, dass magnetische Störfelder, welche in einiger Entfernung zum Sensor in der Messrohrwandung aufgrund der Schwingungen der Messrohre in einem externen Magnetfeld durch Wirbelströme entstehen, Wechselfelder sind und in einer ersten Näherung in Spulen unabhängig von ihrem Bewegungszustand elektrische Spannungen induzieren, wobei ein Einfluss einer Relativbewegung der Spulen bezüglich der Störfelder bei einer für Coriolis-Messaufnehmer typische kinetische Randbedingungen vernachlässigbar sind. Durch eine erfindungsgemäße Verschaltung der Spulen unter Berücksichtigung der Windungssinne werden die in den Spulen induzierten elektrischen Spannungen subtrahiert und somit in sehr guter Näherung ausgelöscht.

Spannungen, welche durch mindestens einen Permanentmagnet des Sensors in Spulen des Sensors induziert werden, sind hingegen direkt abhängig von einer Relativbewegung der Spulen zum entsprechenden Permanentmagnet, wobei bei Vorhandensein einer Magnetvorrichtung eine Messspannung in mindestens einer Spule induziert wird und bei der erfindungsgemäßen

Verschaltung keine Auslöschung erfährt, und wobei bei Vorhandensein zweier Magnetvorrichtungen die in den Spulen induzierten Messspannungen aufgrund der erfindungsgemäßen Verschaltung und Anordnung addiert werden.

Durch eine erfindungsgemäße Verschaltung und Ausgestaltung der Spulen kann also die Wirkung der durch Wirbelströme erzeugten Störfelder auf die Spulen stark verringert werden, und gleichzeitig die durch die Magnetvorrichtungen induzierten Messspannungen addiert werden.

Eine direkt in den durch die Messrohre mitbewegten Spulen durch das externe Magnetfeld induzierte Spannung ist aus messtechnischer Sicht auch bei Coriolis-Messaufnehmern gemäß dem Stand der Technik unproblematisch, da sie in Phase zur durch die Magnetvorrichtungen induzierten Messspannung ist und keinen Durchfluss-Messfehler bewirkt.

Es hat sich dabei gezeigt, dass ein Nullpunktsfehler bei einem Coriolis-Messaufnehmer mit einem erfindungsgemäßen Sensor gegenüber den bekannten Coriolis-Messaufnehmern um einen Faktor größer als 10 verbessert werden kann. Der Nullpunktsfehler ist gegeben durch einen gemessenen Durchfluss bei tatsächlichem Nulldurchfluss.

Die Querschnittsfläche der Spulen bezieht sich dabei jeweils auf eine durch eine äußere Windung umfasste Fläche.

In einer Ausgestaltung weist der mindestens eine Permanentmagnet eine zu den Spulensystemen gerichtete zweite Stirnfläche auf, welche parallel zu den Querschnittsflächen der Spulen verläuft, wobei eine Größe der zweiten Stirnfläche um höchstens 50% von einer Größe der ersten Stirnfläche abweicht.

Damit ist ein Mindestmaß an Inhomogenität des durch den mindestens einen Permanentmagnet erzeugten Magnetfelds sichergestellt.

In einer Ausgestaltung weist die zweite Stirnfläche einen Maximalabstand zu einer Außenfläche einer nächsten Spule auf, wobei der Maximalabstand kleiner ist als 5 Spulenabstände und insbesondere kleiner als 3

Spulenabstände und bevorzugt kleiner als 1.5 Spulenabstände, und/oder wobei der Maximalabstand kleiner ist als 5 mm und insbesondere kleiner als 3 mm und bevorzugt kleiner als 1 .5 mm.

Auf diese Weise ist eine ausreichende induktive Wirkung des mindestens einen Permanentmagnets sichergestellt.

In einer Ausgestaltung sind entweder die Windungssinne gegenläufig, und die Spulen über beide inneren Enden oder über beide äußeren Enden elektrisch verbunden, oder wobei die Windungssinne gleichläufig sind und die Spulen über ein inneres Ende und ein äußeres Ende elektrisch verbunden sind.

In einer Ausgestaltung ist eine erste Magnetvorrichtung an einem ersten Messrohr eines

Messrohrpaars angeordnet und dazu eingerichtet ist, den Schwingungsbewegungen des ersten Messrohrs zu folgen, wobei der Permanentmagnet dazu eingerichtet ist, ein Magnetfeld mit einer senkrecht zur Mittenebene stehenden Feldkomponente zu erzeugen, wobei eine erste Spulenvorrichtung am ersten Messrohr des Messrohrpaars angeordnet ist, und wobei eine zweite Spulenvorrichtung an einem zweiten Messrohr des Messrohrpaars angeordnet ist, wobei die Spulenvorrichtungen dazu eingerichtet sind, den Schwingungsbewegungen des jeweiligen Messrohrs zu folgen, wobei auf die jeweilige Mittenebene projizierte Querschnitte des Permanentmagnets sowie der Spulen überlappen, und wobei eine am ersten Messrohr angeordnete Spule insbesondere zwischen Permanentmagnet und einer an einem zweiten Messrohr des Messrohrpaars angeordnete Spule angeordnet ist.

In einer Ausgestaltung weist der Sensor eine zweite Magnetvorrichtung mit einem

Permanentmagnet auf, wobei die zweite Magnetvorrichtung am zweiten Messrohr des

Messrohrpaars angeordnet und dazu eingerichtet ist, den Schwingungsbewegungen des zweiten Messrohrs zu folgen, wobei der Permanentmagnet dazu eingerichtet ist, ein Magnetfeld senkrecht zur Mittenebene entgegengesetzt zum Magnetfeld der ersten Magnetvorrichtung zu erzeugen, wobei auf die jeweilige Mittenebene projizierte Querschnitte des Permanentmagnets sowie der Spulen überlappen, und wobei die am zweiten Messrohr angeordnete Spule insbesondere zwischen dem Permanentmagnet der zweiten Magnetvorrichtung und der Spule der ersten Spulenvorrichtung angeordnet ist.

Das durch die beiden einzelnen Magnetfelder zusammengesetzte Magnetfeld ist somit im Bereich der Spulen stark inhomogen. In einer Ausgestaltung ist eine erste Magnetvorrichtung an einem ersten Messrohr eines

Messrohrpaars angeordnet und dazu eingerichtet, den Schwingungsbewegungen des ersten Messrohrs zu folgen, wobei der Permanentmagnet dazu eingerichtet ist, ein Magnetfeld mit einer parallel zur Mittenebene verlaufenden Feldkomponente zu erzeugen, wobei eine erste Spulenvorrichtung am ersten Messrohr des Messrohrpaars angeordnet ist, und wobei eine zweite Spulenvorrichtung an einem zweiten Messrohr des Messrohrpaars angeordnet ist, oder wobei eine erste Spulenvorrichtung und eine zweite Spulenvorrichtung an einem zweiten Messrohr des Messrohrpaars angeordnet sind, wobei die Spulenvorrichtungen dazu eingerichtet sind, den Schwingungsbewegungen des jeweiligen Messrohrs zu folgen. In einer Ausgestaltung ist eine zweite Magnetvorrichtung mit einem Permanentmagnet vorgesehen, wobei der Permanentmagnet der zweiten Magnetvorrichtung entgegengesetzt zum

Permanentmagnet der ersten Magnetvorrichtung orientiert ist, wobei in einer Projektion auf die Mittenebene die Spulen zwischen den Permanentmagneten angeordnet sind. In einer Ausgestaltung ist die zweite Magnetvorrichtung am ersten Messrohr angeordnet und dazu eingerichtet, den Schwingungsbewegungen des ersten Messrohrs zu folgen, wobei die erste Spulenvorrichtung am zweiten Messrohr angeordnet ist, oder wobei die zweite Magnetvorrichtung am zweien Messrohr angeordnet und dazu eingerichtet ist, den Schwingungsbewegungen des zweiten Messrohrs zu folgen, wobei die erste Spulenvorrichtung am ersten Messrohr angeordnet ist.

In einer Ausgestaltung weist der Sensor zwei Anschlussdrähte eingerichtet zur Verbindung mit einer elektronischen Mess-/Betriebsschaltung auf, welche jeweils mit einem Spulenende verbunden sind, wobei die Anschlussdrähte elektrisch isoliert sind und zusammengeführt werden, wobei die

Anschlussdrähte nach Zusammenführen insbesondere verdrillt sind, oder wobei die Anschlussdrähte zu einer Platine mit elektrisch leitfähigen Leiterbahnen geführt sind, welche Leiterbahnen zumindest in einem Kontaktbereich Anschlussdraht - Leiterbahn parallel geführt sind und einen Abstand zueinander aufweisen, welcher kleiner ist als zwei Leiterbahnbreiten.

In einer Ausgestaltung ist die Reihenschaltung der Spulen mittels eines elektrisch leitfähigen Verbindungsdrahts oder über eine Platine mit einer elektrisch leitfähigen Leiterbahn hergestellt, wobei die Spulen mit der Leiterbahn mittels elektrisch leitfähiger Verbindungsdrähte verbunden sind.

In einer Ausgestaltung ist eine Querschnittsfläche der Spulen kleiner als 1000 Quadratmillimeter, und insbesondere kleiner als 500 Quadratmillimeter und bevorzugt kleiner als 300

Quadratmillimeter, und/oder wobei eine Querschnittsfläche der Permanentmagnete kleiner ist als 1000

Quadratmillimeter, und insbesondere kleiner als 500 Quadratmillimeter und bevorzugt kleiner als 300 Quadratmillimeter.

Ein erfindungsgemäßes Coriolismessgerät zum Messen eines Massedurchflusses oder einer Dichte eines durch Messrohre des Coriolis-Messaufnehmers strömenden Mediums umfasst: einen erfindungsgemäßen Coriolis-Messaufnehmer; eine elektronische Mess-/Betriebsschaltung eingerichtet zum Betreiben des mindestens einen Erregers und der Sensoren und zum Bereitstellen von Messwerten des Massedurchflusses oder der Dichte des Mediums; ein Elektronikgehäuse zum Behausen der elektronischen Mess-/Betriebsschaltung. Im Folgenden wird die Erfindung anhand von Ausführungsbeispielen beschrieben.

Fig. 1 beschreibt einen Aufbau eines beispielhaften Coriolis-Messgeräts mit einem beispielhaften Coriolis-Messaufnehmer; und Figs. 2 a) und 2 b) beschreiben jeweils eine Anordnung eines erfindungsgemäßen

beispielhaften Sensors an einem Messrohrpaar; Figs. 3 a) bis c) skizzieren beispielhafte Anordnungen und Ausgestaltungen von

Spulenvorrichtungen und Magnetvorrichtungen zueinander;

Fig. 4 a) und b) skizzieren weitere beispielhafte erfindungsgemäße Sensoranordnungen; und Figs. 5 a) und b) skizzieren Orientierung und Verbindung von Spulen von Spulenanordnungen; und Fig. 6 zeigt beispielhafte Anbindungen eines Sensors an eine Platine. Fig. 1 skizziert den Aufbau eines beispielhaften Coriolis-Messgeräts 1 mit einem beispielhaften Coriolis-Messaufnehmer 10, wobei der Coriolis-Messaufnehmer zwei Messrohre 1 1 mit jeweils einem Einlauf 1 1.1 und einem Auslauf 1 1.2, einen Trägerkörper 12 zum Tragen der Messrohre, einen Erreger 13, und zwei Sensoren 15 aufweist. Der Erreger ist dazu eingerichtet, die beiden Messrohre senkrecht zu einer jeweils durch die bogenförmig ausgestalteten Messrohre definierten Messrohrlängsebene zum Schwingen anzuregen. Die Sensoren sind dazu eingerichtet, die den Messrohren aufgeprägte Schwingung zu erfassen.

Der Coriolis-Messaufnehmer ist mit einem Elektronikgehäuse 80 des Coriolis-Messgeräts verbunden, welches dazu eingerichtet ist, eine elektronische Mess-/Betriebsschaltung 77 zu behausen, welche Mess-/Betriebsschaltung dazu eingerichtet ist, den Erreger sowie die Sensoren zu betrieben und auf Basis von mittels der Sensoren gemessenen Schwingungseigenschaften des Messrohrs Durchflussmesswerte und/oder Dichtemesswerte zu ermitteln und bereitzustellen. Der Erreger sowie die Sensoren sind mittels elektrischer Verbindungen 19 mit der elektronischen Mess- /Betriebsschaltung verbunden. Die elektrischen Verbindungen 19 können jeweils durch

Kabelführungen zusammengefasst sein.

Ein erfindungsgemäßes Coriolis-Messgerät ist nicht auf das Vorhandensein zweier Messrohre beschränkt. So kann die Erfindung beispielsweise auch bei einem Vierrohr-Messgerät umgesetzt werden.

Fig. 2 a) zeigt eine beispielhafte schematische Anordnung eines erfindungsgemäßen Sensors mit einer ersten Magnetvorrichtung 15.1 mit einem Permanentmagnet 15.3 an einem ersten Messrohr 1 1 .1 und einer ersten Spulenvorrichtung 16.1 , welche am ersten Messrohr angeordnet ist und einer zweiten Spulenvorrichtung 16.2, welche an einem zweiten Messrohr 1 1.2 angeordnet ist. Die Messrohre sind dazu eingerichtet senkrecht zu einer Mittenebene 18 gegeneinander zu schwingen, so dass die erste Magnetvorrichtung in der zweiten Spulenvorrichtung eine elektrische Spannung in einer Spule 16.3 der zweiten Spulenvorrichtung induziert, welche Spannung Bestimmung von Durchflussmesswerten herangezogen werden kann. Die erste Spulenvorrichtung und die erste Magnetvorrichtung sind dabei relativ zueinander unbeweglich angeordnet, so dass keine Induktion einer elektrischen Spannung in der Spule der ersten Spulenvorrichtung durch die erste

Magnetvorrichtung stattfindet. Auf die jeweilige Mittenebene 18 projizierte Querschnitte von Permanentmagnet der Magnetvorrichtung sowie der Spulen der Spulenvorrichtungen überlappen sich gegenseitig zumindest teilweise.

Ein externes Magnetfeld, beispielsweise durch technische oder medizinische Geräte hervorgerufen, ruft bei schwingenden Messrohren Wirbelströme in der Messrohrwandung hervor, welche in den Spulen der Spulenvorrichtungen eine Messspannung verfälschende, phasenverschobene

Störspannungen induzieren. Erfindungsgemäß werden die Spule der ersten Spulenvorrichtung und die Spule der zweiten Magnetvorrichtung derart in Reihe geschaltet und mit jeweils einem

Windungssinn ausgestattet, (siehe Figs. 5 a) und b)), dass sich die Störspannungen der Spulen gegenseitig aufheben, so dass in sehr guter Näherung die in der Spule der zweiten

Spulenvorrichtung induzierte Messspannung verbleibt.

Fig. 2 b) zeigt eine weitere beispielhafte schematische Anordnung eines Sensors, wobei im

Unterschied zur in Fig. 2 a) gezeigten Ausgestaltung des Sensors eine zweite Magnetvorrichtung 15.2 vorgesehen ist, welche am zweiten Messrohr angeordnet ist. Die zweite Spulenvorrichtung und die zweite Magnetvorrichtung sind dabei relativ zueinander unbeweglich angeordnet, so dass keine Induktion einer elektrischen Spannung in der Spule der zweiten Spulenvorrichtung durch die zweite Magnetvorrichtung stattfindet. Im Unterschied zur in Fig. 2 a) gezeigten Ausgestaltung findet bei Schwingen der Messrohre auch eine Induktion einer Messspannung in der Spule der ersten

Spulenvorrichtung statt, da ein Permanentmagnet 15.3 der zweiten Magnetvorrichtung in der Spule der ersten Spulenvorrichtung 16.1.

Bei einer Reihenschaltung der Spule gemäß Figs. 5 a) oder b) heben sich Störspannungen auf und die in den Spulen induzierten Messsignale verstärken sich. Die Permanentmagnete sind dabei antiparallel zueinander orientiert, so dass die zwischen den Permanentmagneten angeordneten Spulen ein stark inhomogenes Magnetfeld erfahren.

Mittels des erfindungsgemäßen Sensors kann somit auf eine sehr einfache Weise der Einfluss von Störmagneten oder externen Magnetfeldern stark reduziert werden, ohne auf elektronische

Korrekturmaßnahmen zurückgreifen zu müssen. Es hat sich gezeigt, dass ein Nullpunktfehler (berechneter Durchfluss bei Nulldurchfluss) des Coriolis-Messgeräts auf unter 10% des

Nullpunktfehlers eines Coriolis-Messgeräts ohne erfindungsgemäßen Sensor reduziert werden kann.

Einander zugewandte Seiten der Spulen definieren jeweils eine erste Stirnfläche 16.33, wobei die ersten Stirnflächen einen Spulenabstand definieren, wobei ein Verhältnis Querschnittsfläche zu einem Quadrat des Spulenabstands größer ist als 10, und insbesondere größer ist als 30 und bevorzugt größer ist als 100. Dadurch ist eine räumliche Nähe der Spulen gegeben, so dass sie bei erfindungsgemäßer Verschaltung in sehr guter Näherung ausschließlich lokale, inhomogene Magnetfelder erfassen können.

Figs. 3 a) bis 3 c) skizzieren verschiedene beispielhafte Ausgestaltungen von Spulenvorrichtungen und Magnetvorrichtungen eines Sensors mit zwei Magnetvorrichtungen wie in Fig. 2 a) und Fig. 2 b) gezeigt, wobei die Pfeile eine Bewegungsrichtung von Messrohren andeuten.

Bei Fig. 3 a) skizziert einen Sensor, bei welchem jeweils ein Permanentmagnet im Inneren einer zugehörigen Spule angeordnet ist. Die Spule kann dabei eine Wickelspule sein. Die Spule kann aber auch eine gesinterte Spule, insbesondere eine LTCC-Spule sein. Ein Zentralbereich kann dabei frei von Windungen und/oder Sintermaterial sein.

Figs. 3 b) und c) skizzieren Sensoren, bei welchen Spule und zugehöriger Permanentmagnet hintereinander angeordnet sind. Vorteilhafterweise sind die Permanentmagnete wie in Fig. 3 b) gezeigt entgegengesetzt zur in Fig. 3 c) gezeigten Variante auf jeweils einer Rückseite einer Spulenvorrichtung angeordnet, so dass eine magnetische Abstoßung zwischen den

Permanentmagneten verringert ist.

Fig. 4 a) zeigt eine weitere beispielhafte Anordnung eines erfindungsgemäßen Sensors wobei eine erste Magnetvorrichtung 15.1 und eine zweite Magnetvorrichtung 15.2 an einem ersten Messrohr 1 1 .1 und eine erste Spulenvorrichtung 16.1 und eine zweite Spulenvorrichtung 16.2 an einem zweiten Messrohr 11.2 befestigt sind, wobei die Projektionen der Spulen zwischen den Projektionen der Permanentmagnete angeordnet sind. Wie in Figs. 2 a) und b) gezeigt, sind die Messrohre dazu eingerichtet, senkrecht bezüglich der Mittenebene 18 zu schwingen, wie durch die horizontalen Pfeile angedeutet. Im Unterschied zur in Figs. 2 a) und b) gezeigten Ausgestaltung sind die Permanentmagnete dazu eingerichtet, Magnetfelder parallel zur Mittenebene und entgegengesetzt zueinander zu erzeugen, wobei die Spulen bzw. Spulenvorrichtungen bei Schwingen der Messrohre in senkrecht zum durch beide Permanentmagnete erzeugten Magnetfeld bewegt werden.

Fig. 4 b) zeigt eine weitere beispielhafte Anordnung eines erfindungsgemäßen Sensors wobei im Unterschied zur in Fig. 4 a) gezeigten Variante jeweils eine Spulenvorrichtung und eine

Magnetvorrichtung an jeweils einem Messrohr angeordnet ist.

Die in Figs. 2 a) bis 4 b) gezeigten Spulenvorrichtungen weisen jeweils eine konvexe Einhüllende auf, wobei idealerweise ein Abstand der konvexen Einhüllenden entlang von Spulenlängsachsen in Ruhestellung der Messrohre kleiner ist als 3 Millimeter, und insbesondere kleiner als 2 Millimeter und bevorzugt kleiner ist als 1.5 Millimeter. So können in den Spulen Messspannungen besser und wirksamer induziert werden.

Die Befestigung der Spulenvorrichtungen sowie der Magnetvorrichtungen an den jeweiligen Messrohren kann dabei direkt oder beispielsweise über eine Halterung (nicht gezeigt) erfolgen. Für den Fachmann ist es eine Standardaufgabe, eine Befestigungsweise auszuwählen.

Um eine Masse des Sensors zu minimieren, damit er auf die Messrohrschwingungen einen nur vernachlässigbaren Einfluss hat, ist eine Querschnittsfläche der Spulen kleiner ist als 1000

Quadratmillimeter, und insbesondere kleiner als 500 Quadratmillimeter und bevorzugt kleiner als 300 Quadratmillimeter, und/oder eine Querschnittsfläche der Permanentmagnete ist kleiner als 1000 Quadratmillimeter, und insbesondere kleiner als 500 Quadratmillimeter und bevorzugt kleiner als 300 Quadratmillimeter. Entsprechend der in Figs. 2 a) und b) gezeigten Ausgestaltungen können bei den in Figs. 4 a) und b) gezeigten Ausgestaltungen auch jeweils nur eine Magnetvorrichtung angeordnet sein.

Figs. 5 a) und 5 b) skizzieren jeweils eine erfindungsgemäße Reihenschaltung der Spulen zueinander anhand von beispielhaften Spulen und Permanentmagneten.

Das aufgrund von Messrohrschwingungen veränderliche Magnetfeld eines Permanentmagnets 15.3 der ersten/zweiten Magnetvorrichtung im Bezugssystem einer Spule der zweiten/ersten

Spulenvorrichtung induziert in der Spule eine elektrische Spannung gemäß dem Faraday'schen Induktionsgesetz, wobei Elektronen eine Kraft senkrecht zu einer Ausrichtung des Magnetfelds erfahren. Da das Magnetfeld der ersten Magnetvorrichtung zwischen den Magnetvorrichtungen entgegengesetzt zum Magnetfeld der zweiten Magnetvorrichtung ist, ist die Kraft auf Elektronen in der Spule der ersten Spulenvorrichtung entgegengesetzt zur Kraft auf Elektronen in der Spule der zweiten Spulenvorrichtung. Um eine Messspannungsaddition der in den Spulen erzeugten

Messspannungen zu erhalten, müssen bei an verschiedenen Messrohren angeordneten Spulen entweder Windungssinne der Spulen entgegengesetzt sein und die Spulen über beide inneren Spulenenden 16.31 (siehe Fig. 5 b)) oder über beide äußeren Enden elektrisch verbunden sein, oder Windungssinne müssen gleich sein und die Spulen über ein inneres Ende und ein äußeres Ende elektrisch verbunden (Fig. 5 a).

Der Kern der Erfindung ist also, dass magnetische Störfelder, welche größtenteils in einiger Entfernung zum Sensor entstehen in sehr guter Näherung bei beiden Spulensystemen eines Sensors einen gleichen Feldgradienten aufweisen und somit durch die beanspruchte Verschaltung der Spulen in ihrer induktiven Wirkung destruktiv interferieren.

Die Kompensation der Störspannungen funktioniert bei einem Sensor mit zwei Spulenvorrichtungen und einer Magnetvorrichtung auf gleiche Weise.

Die Spulen können dabei wie in Figs. 5 a) und 5 b) gezeigt mittels eines elektrisch leitfähigen Verbindungsdrahts 14.2 verbunden sein.

Fig. 6 skizziert einen beispielhaften Anschluss des Sensors an eine Platine 17, wobei

Anschlussdrähte 14.1 zum Anschließen der Spulen an eine elektronische Mess-/Betriebsschaltung zu jeweils einer elektrisch leitfähigen Leiterbahn 17.1 der Platine geführt. Die Leiterbahnen werden zusammengeführt und verlaufen dann parallel zueinander. So kann eine magnetische Schleife verkleinert werden. Die Reihenschaltung der Spulen kann dabei wie hier gezeigt anders als in Figs. 5 a) und 5 b) gezeigt über eine elektrisch leitfähige Leiterbahn 17.1 sichergestellt sein. Mittels einer elektrischen Verbindung 19 können die Messspannungen dann zur elektronischen Mess- /Betriebsschaltung geführt werden. Alternativ zur Platine können die Anschlussdrähte auch verdrillt werden, um eine magnetische Schleife zu verkleinern.

Bezugszeichenliste

1 Coriolis-Messgerät

10 Coriolis-Messaufnehmer

1 1 Messrohr

1 1 .1 erstes Messrohr

1 1 .2 zweites Messrohr

12 Trägerkörper

13 Erreger

14 Sensor

14.1 Anschlussdrähte

14.2 Verbindungsdraht

15 Magnetvorrichtung

15.1 erste Magnetvorrichtung

15.2 zweite Magnetvorrichtung 15.3 Permanentmagnet

15.31 zweite Stirnfläche

16 Spulenvorrichtung

16.1 erste Spulenvorrichtung

16.2 zweite Spulenvorrichtung 16.3 Spule

16.31 inneres Spulendende

16.32 äußeres Spulenende

16.33 erste Stirnfläche

17 Platine 17.1 elektrisch leitfähige Leiterbahn

18 Mittenebene

19 elektrische Verbindung

77 elektronische Mess-/Betriebsschaltung 80 Elektronikgehäuse