Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
CUTTING TOOL, IN PARTICULAR PARING TOOL, DRILL HEAD, SOLID DRILL HEAD OR BORING HEAD, AND CUTTING MACHINE AND METHOD
Document Type and Number:
WIPO Patent Application WO/2011/038724
Kind Code:
A2
Abstract:
The invention relates to rotationally symmetrical bodies made of metal which must often be provided with central and straight cylindrical holes. Said holes extend, in parts, over the entire length such that a tubular shaped body is produced due to the boring. When it is necessary to produce holes having a depth greater than approximately >10 x larger than the diameter, deep boring machines are used. Based on said boring depth and on construction details, deviations can occur between the boring axis and of the axis of the tool which can result in waste. The invention proposes a drill head or a solid drill head which comprises a directional control element which is used in the deep boring machines.

Inventors:
OSTERTAG ALFRED (DE)
Application Number:
PCT/DE2010/001152
Publication Date:
April 07, 2011
Filing Date:
October 01, 2010
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
FERROLL GMBH (DE)
OSTERTAG ALFRED (DE)
International Classes:
B23B51/00
Foreign References:
DE4401496A11995-08-03
GB2317586A1998-04-01
GB2097303A1982-11-03
DE102005009602B32006-06-22
EP1484126A12004-12-08
JP2003159607A2003-06-03
US20050245178A12005-11-03
Other References:
None
Attorney, Agent or Firm:
KOCH, CARSTEN (DE)
Download PDF:
Claims:
Patentansprüche:

1. Schälwerkzeug, insbesondere zum Herstellen von Exzenterschnecken, gekennzeichnet durch eine Richtungssteuerung.

2. Schälwerkzeug nach Anspruch 1, gekennzeichnet durch einen schwimmenden Stützkörper.

3. Schälwerkzeug nach einem der vorhergehenden Ansprüche, gekennzeichnet durch ein Schälmesser und ein Stellglied, wobei das Stellglied zum definierten Positionieren des Schälmessers eingerichtet ist, sodass die Richtungssteuerung realisiert ist.

4. Schälwerkzeug nach einem der vorhergehenden Ansprüche, gekennzeichnet durch ein Glattwalzelement.

5. Aufbohrkopf, welcher an einer radialen Außenseite ein spanendes Element aufweist, sodass mittels eines Spanabhubes ein Loch definiert vergrößerbar ist, gekennzeichnet durch eine Richtungssteuerung.

6. Aufbohrkopf nach Anspruch 5, dadurch gekennzeichnet, dass die Richtungssteuerung ein Stellglied aufweist.

7. Aufbohrkopf nach einem der Ansprüche 5 oder 6, dadurch gekennzeichnet, dass eine Führungsleiste mittels des Stellgliedes auslenkbar ist und oder ein Verstellen des Stellglieds ein Winkelverstellen des Aufbohrkopfes bewirkt.

8. Vollbohrkopf, welcher stirnseitig in einer Vorschubrichtung ein spanendes Element aufweist, sodass bei einem Vorschub ein Spanabhub erfolgt, gekennzeichnet durch eine Richtungssteuerung mit einem Stellglied, wobei eine Führungs- leiste mittels des Stellgliedes definiert auslenkbar ist und/oder ein Verstellen des Stellglieds eine definierte Winkelverstellung des Aufbohrkopfes bewirkt.

9. Bohrkopf nach einem der Ansprüche 5 bis 8, gekennzeichnet durch einen Werkzeugträger und/oder einen Werkstückträger, in Bezug zu welchen ein Verändern einer Richtung mittels der Richtungssteuerung erfolgt.

10. Bohrkopf nach Anspruch 9, dadurch gekennzeichnet, dass eine Drehmomentaufnahme vorgesehen ist, welche in einem Eingriff mit dem Werkzeugträger steht.

1 1. Spanwerkzeug, insbesondere in Gestalt eines Schälwerkzeugs, Aufbohrkopfs, Vollbohrkopfs oder Bohrkopfs, nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Stellglied in Form eines pneumatisches Stellglieds, hydraulischen Stellglieds oder elektronischen Stellglieds vorgesehen ist.

12. Spanwerkzeug nach Anspruch 11, gekennzeichnet durch einen Abweichdetektor, welcher ein Abweichen des Spanwerkzeuges von einer gewünschten Ausrichtung detektiert.

13. Span Werkzeug nach Anspruch 12, dadurch gekennzeichnet, dass der Abweichdetektor einen Kraftsensor aufweist, welcher insbesondere als ein Zentrifugalkraftsensor ausgestaltet ist.

14. Spanwerkzeug nach Anspruch 12, dadurch gekennzeichnet, dass der Abweichdetektor einen optischen Leitstrahl und einen dem Leitstrahl zugeordneten Detektor aufweist.

15. Spanwerkzeug nach einem der Ansprüche 1 1 bis 14, gekennzeichnet durch einen Regler, in welchem ein Regelalgorithmus hinterlegt ist, wobei der Regler mit dem Abweichdetektor und der Richtungssteuerung verbunden ist, sodass das Abweichen des Spanwerkzeuges zu einem Ausgleichen mittels der Richtungssteuerung führt.

Spanwerkzeug nach einem der Ansprüche 1 1 bis 15, gekennzeichnet durch ein Bohrrohr, wobei das Bohrrohr insbesondere mit dem Werkzeugträger drehfest verbunden ist.

Spanwerkzeug nach Anspruch 16, dadurch gekennzeichnet, dass das Bohrrohr eine stabilisierende Bohrrohrgarnitur aufweist.

Spanwerkzeug nach einem der Ansprüche 1 1 bis 17, dadurch gekennzeichnet, dass der Werkzeugträger und/oder das Bohrrohr und/oder das Spanwerkzeug eine Nachbearbeitungseinrichtung aufweisen, durch welche in einer Maschinenaufspannung eine durch das Spanwerkzeug geschaffene Oberfläche bearbeitbar ist.

Zerspanungsmaschine, insbesondere Tiefbohrmaschine, gekennzeichnet durch ein Schälwerkzeug nach einem der Ansprüche 1 bis 4 und/oder einen Aufbohr- kopf nach einem der Ansprüche 5 bis 7 und/oder einen Vollbohrkopf nach Anspruch 8 und/oder einen Bohrkopf nach einem der Ansprüche 9 und/oder 10 oder ein Spanwerkzeug nach einem der Ansprüche 1 1 bis 18.

Verfahren zum Steuern eines Spanwerkzeuges, dadurch gekennzeichnet, dass ein Verstellen einer Richtung des Spanwerkzeuges durch ein Winkelverstellen und/oder durch ein Auslenken einer Spanwerkzeugsachse erfolgt, insbesondere durch ein Ändern von Führungsleisten.

Verfahren zum Ermitteln einer Abweichung eines Werkzeuges von einer gewünschten Richtung, dadurch gekennzeichnet, dass das Ermitteln der Abweichung durch einen Zentrifugalkraftsensor und/oder durch einen Leitstrahl und zugehörigen Detektor erfolgt. Verfahren zum Steuern eines Werkzeuges entlang einer Rotationsachse, wobei die Rotationsachse mit einer Maschinenrotationsachse übereinstimmt, dadurch gekennzeichnet, dass ein Abweichen des Werkzeuges von der Rotationsachse detektiert und das Werkzeug in eine Richtung zur Rotationsachse gelenkt wird.

Verfahren nach Anspruch 22, dadurch gekennzeichnet, dass das Werkzeug ein Schälwerkzeug nach einem der Ansprüche 1 bis 4 oder ein Aufbohrkopf nach einem der Ansprüche 5 bis 7 oder ein Vollbohrkopf nach Anspruch 8 oder ein Bohrkopf nach einem der Ansprüche 9 oder 10 oder ein Spanwerkzeug nach einem der Ansprüche 1 1 bis 18 ist.

Verfahren zum spanenden Bearbeiten eines insbesondere metallenen Werkstückes, wobei das Verfahren auf einer Zerspanungsmaschine nach Anspruch 19 erfolgt, dadurch gekennzeichnet, dass dem Schälwerkzeug oder dem Aufbohrkopf oder dem Vollbohrkopf oder dem Bohrkopf oder dem Spanwerkzeug und/oder dem Werkstück ein Vorschub und/oder eine Rotation aufgeprägt werden, sodass spanend vom Werkstück abgehoben wird.

Verfahren nach Anspruch 24, dadurch gekennzeichnet, dass das Werkstück in Gegenrotation im Vergleich zu der Rotation des Schälwerkzeuges oder des Aufbohrkopfes oder des Vollbohrkopfes oder des Bohrkopfes oder des Spanwerkzeuges gesetzt wird.

Werkstück, dadurch gekennzeichnet, dass es mit einer Vorrichtung nach einem der Ansprüche 1 bis 19 und/oder nach einem Verfahren nach einem der Ansprüche 20 bis 25 hergestellt ist.

Description:
erkzeug, insbesondere Schälwerkzeug, Aufbohrkopf, Vollbohrkopf oder Bohrkopf, sowie Zerspanungsmaschine und Verfahren

[01] Die Erfindung betrifft ein Schälwerkzeug, insbesondere in Form eines Aufbohrkopfs, eines Vollbohrkopfs, eines Bohrkopfs oder eines Spanwerkzeugs, und eine Zerspanungsmaschine sowie diverse Verfahren zum Steuern von Span Werkzeugen.

[02] Rotationssymmetrische Körper aus metallischen Werkstoffen müssen häufig mit mittig und gerade verlaufenden zylindrischen Bohrungen versehen werden. Diese Bohrung erstreckt sich zum Teil über die gesamte Länge, sodass durch das Bohren ein rohr- förmiger Körper entsteht. Erstreckt sich die Bohrung nicht über die gesamte Länge, wird die Bohrung als Sackloch bezeichnet. Bohrungen mit einer Tiefe von etwa größer 10 x dem Durchmesser werden auf Tiefbohrmaschinen ausgeführt. Die für solche Bohrungen eingesetzten Bauteile erfordern einen exakten und geraden Verlauf.

[03] Zum Durchführen der Bohrung wird ein Bohrkopf auf einem Bohrrohr befestigt, welches sowohl das zum Bohren erforderliche Drehmoment als auch die Vorschubkraft von der Bohrmaschine über das Bohrrohr an den Bohrkopf überträgt. Eingesetzte Bohrmaschinen sind häufig so ausgelegt, dass nur das Bohrrohr und der zugeordnete Bohrkopf oder nur das zu bearbeitende Werkstück oder sowohl der Bohrkopf als auch das Werkstück im Gegenlauf rotieren. Werden Tiefbohrmaschinen eingesetzt, wird im Bezug auf Geradheit der Bohrung die gegenläufige Anordnung bevorzugt. [04] Sowohl diese Maßnahme als auch weitere konstruktive Details an den Werkzeugen des Standes der Technik können jedoch Abweichungen der Bohrachse von der Achse des Werkstückes nicht verhindern. Ein Überschreiten dieser Abweichungen über ein bestimmtes zulässiges Maß führt regelmäßig zu Ausschussproduktion. Allgemeine Größen, die diese Abweichung verursachen können, sind:

BESTÄTIGUNGSKOPIE - Der Durchhang des Bohrrohres durch das Eigengewicht und eine Drillknickung und der dadurch verursachte Fluchtungsfehler des Bohrkopfes. Weiterhin kann sich der Durchhang durch aufgeprägte Schwingungen kontinuierlich verändern,

- unterschiedliche Werkstoffeigenschaften, wie beispielsweise Festigkeit oder Härte,

- und speziell beim Aufbohren erfolgt eine starke Krümmung oder Exzentrizität der vorhandenen Bohrung.

[05] Die erstgenannte Störgröße kann durch das Verwenden einer stabilisierenden Bohrgarnitur beseitigt oder deutlich reduziert werden. Die weiteren Störgrößen sind auf diese Weise jedoch nicht nennenswert zu beeinflussen.

[06] Weiterhin kann das zu verarbeitende Werkstück selbst für eingehende Störgroßen verantwortlich sein. Obwohl die Werkstücke so vorbereitet und aufgespannt werden, dass die beabsichtigte Bohrungsachse mit der Maschinenachse identisch ist, können jedoch Geradheits- und Mittigkeitsfehler des Außendurchmessers dazu führen, dass die Außendurchmesser der Werkstücke nicht zur beabsichtigten Bohrungsachse konzentrisch sind. Dies gilt insbesondere für Werkstoffe, die aus warm gewalzten Rohren mit vergleichsweise großen Fertigungstoleranzen hergestellt werden. Somit scheidet eine Messung des Bohrungsverlaufs mit der Referenz zum Außendurchmesser in den meisten Fällen aus. Für solche Werkstücke ist die Messung des Bohrungsverlaufs erst nach erfolgter Bearbeitung möglich. Auch hier werden Werkstoffe mit unzulässiger Abweichung des Achsensollverlaufes als Ausschuss ausgesondert.

[07] Aufgabe der Erfindung ist es, den Stand der Technik zu verbessern.

[08] In einem ersten Aspekt der Erfindung kann diese Aufgabe durch ein Schälwerkzeug gelöst werden, welches insbesondere zum Herstellen von Exzenterschnecken verwendbar und vorgesehen ist und eine Richtungssteuerung aufweist. [09] Dadurch können Abweichungen beim Erstellen beispielsweise einer Exzenterschnecke über die Richtungssteuerung des Schälwerkzeuges beeinflusst werden.

[10] Begrifflich sei erläutert, dass im Rahmen dieser Anmeldung der Einfachheit halber von„Steuern" gesprochen wird. Dies umfasst jedoch inhaltlich auch ein„Regeln". [11] Damit das Eigengewicht der zu erzeugenden Exzenterschnecke nicht zu einem Durchhängen führt, kann das Schälwerkzeug einen schwimmenden Stützkörper aufweisen.

[12] In einer besonderen Ausprägungsform weist das Schälwerkzeug ein Schälmesser und ein Stellglied auf, wobei eine Positionierung des Schälmessers mittels des Stellglie- des erfolgt, sodass die Richtungssteuerung realisiert ist. Dadurch kann eine einfache Richtungssteuerung für das Schälwerkzeug bereitgestellt werden.

[13] Insbesondere kann das Schälwerkzeug dadurch bereitgestellt werden, dass ein OMEGA-System der Firma ECOROLL, welches einen Schälkopf mit drei schwimmend angeordneten Schälmessern und einen in der Mitte befindlichen ebenfalls schwimmen- den Stützkörper aufweist, so umfunktioniert wird, dass die Schälmesser nicht mehr schwimmend angeordnet sind und rein über die Stellglieder gesteuert werden.

[14] Sowohl hier als auch im weiteren Text ist ein„Stellglied" ein mittels elektronischer oder pneumatischer oder hydraulischer Signale steuerbarer Aktuator, welcher eine Positionsveränderung definiert beeinflussen kann. Im hier vorliegenden Fall der Schäl- messer kann eine Richtungskorrektur durch die Stellglieder radial erfolgen.

[15] Um das mittels Schälwerkzeug spanend bearbeitete Werkstück direkt im An- schluss glattzuwalzen, kann das Schäl Werkzeug ein Glattwalzelement aufweisen. Dabei ist ein Aufweisen schon dadurch gewährleistet, wenn Schälwerkzeug und Glattwalzelement in einer Aufspannung in einer Zerspanungsmaschine auf das Werkstück einwirken können. [16] Um vorgebohrten Werkstücken eine exakte Bohrung aufzuprägen, kann in einem weiteren Aspekt die Aufgabe gelöst werden durch einen Aufbohrkopf, welcher an einer radialen Außenseite ein spanendes Element aufweist, sodass mittels eines Spanabhubes ein Loch definiert vergrößerbar ist, wobei der Aufbohrkopf eine Richtungssteuerung aufweist.

[17] Dabei sei folgendes Begriffliche erläutert.

[18] Ein„Aufbohrkopf ' ist ein Werkzeug für eine Bohrmaschine oder eine Tiefbohrmaschine, welches ein vorgebohrtes Loch auf einen Zieldurchmesser hin vergrößert. [19] Das„spanende Element" kann beispielsweise durch Schneiden gebildet werden, welche sich an einer Außenposition des Bohrkopfes befinden und welche bei einem Vorschub in das vorgebohrte Loch durch den Kontakt mit dem Material des Werkstückes zu einem„Spanabhub" führen.

[20] Um die Richtungssteuerung bei dem Aufbohrkopf zu realisieren, kann der Auf- bohrkopf ein Stellglied aufweisen.

[21] Da der Aufbohrkopf gewöhnlicherweise durch Führungsmittel geführt wird, kann eine einfache Umsetzung der Richtungssteuerung dadurch erfolgen, dass eine Führungsleiste mittels des Stellgliedes definiert auslenkbar ist und/oder das Stellglied ein Winkelverstellen des Aufbohrkopfs bewirkt. [22] Damit auch bei einem spanenden Vorgang im Vollmaterial eine exakte Bohrung realisierbar ist, kann in einem weiteren Aspekt der Erfindung die Aufgabe gelöst werden durch einen Vollbohrkopf, welcher stirnseitig in einer Vorschubrichtung ein spanendes Element aufweist, sodass bei einem Vorschub ein Spanabhub erfolgt, und welcher eine Richtungssteuerung mit einem Stellglied aufweist, wobei eine Führungsleiste mittels des Stellgliedes definiert auslenkabr ist und/oder das Stellglied eine definierte Winkelstellung des Aufbohrkopfes bewirkt.

[23] Auch hier kann das Werkzeug über die Führungsleiste geführt werden.

[24] Bei einem Vollbohrkopf sind die spanenden Elemente in radialer Richtung über den Umfang so verteilt, dass der gesamte Bohrquerschnitt zerspant werden kann.

[25] Weiterhin kann der Vollbohrkopf eine Mittelbohrung aufweisen, damit bei entsprechenden Tiefbohrsystemen der Kühlschmierstoff mit den Spänen gegen die Vorschubrichtung im Zentrum des Werkstückes ausgetragen werden kann.

[26] Der„Vorschub" wird so realisiert, dass bei Rotation des Werkstückes und/oder des Vollbohrkopfes mit einer gewissen Kraft der Vollbohrkopf gegen das Werkstück gepresst wird. Dies führt dazu, dass die spanenden Elemente bei dem Werkstück einen „Spanabhub" hervorrufen.

[27] In einem weiteren Aspekt der Erfindung kann die Aufgabe gelöst werden durch einen Bohrkopf, welcher einen Werkzeugträger aufweist, im Bezug dessen ein Verän- dem eine Richtung mittels der Richtungssteuerung erfolgt.

[28] Somit kann eine Richtungsänderung des Bohrkopfes erfolgen, ohne dass die Lage des Werkzeugträgers verändert werden muss.

[29] Der„Bohrkopf ' kann vor allem als ein Aufbohrkopf oder Vollbohrkopf realisiert sein, sodass„Bohrkopf ' als Oberbegriff zu„Vollbohrkopf ' und„Aufbohrkopf ' zu ver- stehen ist.

[30] Ein„Werkzeugträger" umfasst insbesondere ein Bohrrohr, über welches die Bohrmaschine oder Tiefbohrmaschine mit dem spanenden Element verbunden ist. [31] Damit den spanenden Elementen ein Drehmoment aufprägbar ist, wodurch der eigentliche Spanabhub erfolgt, kann der Bohrkopf eine Drehmomentaufnahme aufweisen, welche in einem Eingriff mit dem Werkzeugträger steht. Somit ist eine Übertragung des Drehmomentes der Bohrmaschine oder Tiefbohrmaschine über den Werkzeugträger zu den spanenden Elementen möglich.

[32] In einem zusätzlichen Aspekt wird die Aufgabe gelöst durch ein Spanwerkzeug, wobei das Stellglied als pneumatisches Stellglied, als hydraulisches Stellglied oder als elektrisches Stellglied ausgestaltet ist. Somit können alternative Stellgliedkonzepte bereit gestellt werden. [33] Ein„Spanwerkzeug" kann sämtliche zuvor beschriebenen Bohrköpfe, Vollbohrköpfe, Aufbohrköpfe oder Schälwerkzeuge umfassen. Hier ist„Spanwerkzeug" als Oberbegriff zu verstehen.

[34] Um eine Abweichung des Spanwerkzeuges von einer vorgegebenen Ausrichtung zu detektieren, kann das Spanwerkzeug einen Abweichdetektor aufweisen, welcher ein Abweichen des Spanwerkzeuges von einer gewünschten Ausrichtung detektiert.

[35] Dieser Abweichdetektor ist die Voraussetzung für einen regelnden oder steuernden Eingriff über das richtungsverstellbare Spanwerkzeug, sodass auch über große Bohrtiefen hinweg eine exakte Ausrichtung gewährleistet werden kann.

[36] Um einen möglichst einfachen Abweichdetektor bereitzustellen, kann dieser einen Kraftsensor aufweisen. Da das zu bearbeitende Werkstück rotiert, können aufgrund des Messens der Kraft die Mittenabweichung von der Maschinenachse aufgrund einer exzentrischen Rotation des Werkstücks detektiert werden. Für den Fall, dass eine exakte Bohrung vorliegt, ist die Kraft gleich Null. Ist eine Exzentrizität vorhanden, dann ist die Kraft größer Null. [37] Sofern das Spanwerkzeug rotiert, ist aufgrund der Exzentrizität die Zentrifugalkraft größer als bei nicht vorhandener Exzentrizität. Somit kann über das Messen der Zentrifugalkraft auf die Exzentrizität des Spanwerkzeuges und somit auf den Verlauf der Bohrung geschlossen werden. In diesem Fall ist der Kraftsensor als Zentrifugalkraft- sensor ausgestaltet.

[38] In einer weiteren Ausgestaltung weist der Abweichdetektor einen Leitstrahl und einen dem Leitstrahl zugeordneten Detektor auf. Weicht das Detektorsignal vom Leitstrahl ab, so kann daraus auch auf ein Abweichen des Spanwerkzeuges geschlossen werden. [39] Um ohne Abzusetzen während des Bohrvorganges eine exakte Bohrung zu gewährleisten, kann das Spanwerkzeug einen Regler aufweisen, in welchem ein Regelalgorithmus hinterlegt ist, wobei der Regler mit dem Abweichdetektor und der Richtungsteuerung verbunden ist, sodass das Abweichen des Span Werkzeuges zu einem Ausgleichen mittels der Richtungssteuerung führt. [40] Im Falle des Zentrifugalkraftsensors wird während des gesamten Bohrprozesses die Zentrifugalkraft kontinuierlich gemessen. Die Regelung ist dabei so ausgelegt, dass der Anteil der Exzentrizität möglichst gering gehalten wird.

[41] An dieser Stelle soll noch einmal ausgeführt werden, dass die Stellglieder auf zwei unterschiedliche Weisen auf das Spanwerkzeug einwirken können. Zum einen kann die exzentrische Lage des Bohrkopfes beispielsweise über die Führungsschienen verändert werden. Auch eine variable Winkelabweichung zwischen der Achse des Bohrrohres und des Bohrkopfes ist möglich.

[42] In einer Ausführungsform weist das Spanwerkzeug ein Bohrrohr auf, wobei das Bohrrohr insbesondere mit dem Werkzeugträger drehfest verbunden ist. Die Vorteile dieser Ausgestaltung wurden bereits ausgeführt. [43] Um die Regelung zu entlasten, kann das Bohrrohr eine stabilisierende Bohrrohr- garnitur aufweisen. Somit können Einflüsse aufgrund des Eigengewichtes des Bohrrohres und des Spanwerkzeuges vermindert werden.

[44] Um die Produktionseffizienz für das herzustellende Werkzeug zu steigern, kön- nen bei dem Spanwerkzeug der Werkzeugträger und/oder das Bohr- und/oder das Spanwerkzeug eine Nachbearbeitungseinrichtung aufweisen, durch welche in einer Maschinenaufspannung eine durch das Spanwerkzeug geschaffene Oberfläche bearbeitbar ist. Eine solche Nachbearbeitungseinrichtung kann insbesondere ein Glattwalzelement sein, welches die Gefügestruktur der durch das Spanen geschaffenen Oberfläche so ver- ändert, dass diese insbesondere haltbarer wird.

[45] In einem weiteren Aspekt kann die Aufgabe gelöst werden durch eine Zerspanungsmaschine, insbesondere Tiefbohrmaschine, welche ein zuvor beschriebenes Schälwerkzeug und/oder einen zuvor beschriebenen Aufbohrkopf und/oder einen zuvor beschrieben Vollbohrkopf und/oder einen zuvor beschriebenen Bohrkopf und/oder ein zuvor beschriebenes Spanwerkzeug aufweist.

[46] Somit kann nicht nur ein Werkzeug bereitgestellt werden, sondern auch eine Zerspanungsmaschine. Eine solche Zerspanungsmaschine kann beispielsweise eine Drehbank oder eine Wirbelmaschine sein.

[47] In einem zusätzlichen Aspekt wird die Aufgabe gelöst durch ein Verfahren zum Steuern eines Spanwerkzeuges, wobei ein Verstellen der Richtung eines Spanwerkzeuges durch ein Winkelverstellen und/oder durch ein Auslenken von Führungsleisten erfolgt.

[48] So können Alternativen für das Richtungsändera eines Spanwerkzeuges bereitgestellt werden. Das Spanwerkzeug ist so zu verstehen, wie es insbesondere bereits zu- vor beschrieben wurde. [49] Das„Winkelverstellen" erfolgt durch eine variable Winkelabweichung, welche beispielsweise zwischen der Achse des Bohrrohrs und des Bohrkopfes erfolgt.

[50] Das Ändern der Führungsachsenleisten führt insbesondere zum Ändern der S pan werkzeugachse . [51] In einem weiteren Aspekt kann die Aufgabe gelöst werden durch ein Verfahren zum Ermitteln einer Abweichung eines Werkzeuges von einer gewünschten Richtung, wobei das Ermitteln der Abweichung durch einen Zentrifugalkraftsensor und/oder durch einen Leitstrahl und zugehörigem Detektor erfolgt.

[52] Dabei wird insbesondere ein gemessener Wert des Zentrifugalkraftsensors be- stimmt und mit einem zu erwartenden Wert verglichen. Ist beispielsweise aufgrund der Exzentrizität der Wert höher als der zu erwartende Wert, liegt eine abweichende Richtung vor, welche durch das Richtungsverstellen des Werkzeugs kompensierbar ist.

[53] Beispielsweise kann der Leitstrahl als Laser ausgebildet sein und der zugehörige Detektor ist ein ortsempfindlicher Lichtdetektor, wie eine CCD-Kamera, oder ein posi- tionsempflindlicher Fotosensor. Trifft der Lichtstrahl nicht mehr den gewünschten Punkt auf dem Detektor, kann anhand des Detektorsignals ermittelt werden, in welche Richtung das Werkzeug abgewichen ist.

[54] Dies ist die Voraussetzung für einen weiteren Aspekt, welcher zum Lösen der Aufgabe führt, bei dem ein Verfahren zum Steuern eines Werkzeugs entlang einer Rota- tionsachse bereitgestellt wird, wobei die Rotationsachse mit einer Maschinenrotationsachse übereinstimmt und eine Abweichung des Werkzeuges von der Rotationsachse detektiert und das Werkzeug in eine Richtung zur Rotationsachse gelenkt wird.

[55] Aufgrund des zuvor bestimmten dargelegten Verfahrens kann das Abweichen von einer Achse bestimmt werden. Anhand dieser Abweichung wird nun steuernd über die Stellglieder beispielsweise auf das Spanwerkzeug eingewirkt, sodass das Spanwerk- zeug sich wieder in Richtung der gewünschten Rotationsachse bewegt. Dies erfolgt insbesondere kontinuierlich, sodass bei einem Erreichen der Rotationsachse die Stellglieder auf die„Null-Position" gesetzt werden.

[56] In einer diesbezüglichen Ausführungsform kann das Werkzeug ein zuvor be- schriebenes Schälwerkzeug, einen zuvor beschriebener Aufbohrkopf, einen zuvor beschriebener Vollbohrkopf, einen zuvor beschriebener Bohrkopf oder ein zuvor beschriebenes Spanwerkzeug sein.

[57] In einem weiteren Aspekt der Erfindung wird die Aufgabe gelöst durch ein Verfahren zum spanenden Bearbeiten eines Werkstückes, wobei das Werkstück insbesonde- re aus Metall besteht und das Verfahren auf einer zuvor beschriebenen Zerspanungsmaschine erfolgt, wobei dem Schälwerkzeug oder dem Aufbohrkopf oder dem Vollbohrkopf oder dem Bohrkopf oder dem Spanwerkzeug und/oder dem Werkstück ein Vorschub und eine Rotation aufgeprägt wird, sodass ein Span vom Werkstück abgehoben wird. [58] Somit kann ein Werkstück bereitgestellt werden, dessen Bohrungen genauer gearbeitet sind und somit für das Werkstück die Ausschusswahrscheinlichkeit verringert ist.

[59] In einer diesbezüglichen Ausprägungsform wird dem Werkstück eine gegenläufige Rotation und im Vergleich zur Rotation des Schälwerkzeuges oder des Aufbohr- kopfes oder des Vollbohrkopfes oder des Bohrkopfes oder des Spanwerkzeuges aufgeprägt.

[60] Somit kann eine höhere Produktivität gewährleistet werden.

[61] In einem weiteren Aspekt der Erfindung kann die Aufgabe gelöst werden durch ein Werkstück, welches durch eine der zuvor beschriebene Verfahren hergestellt ist. Im weiteren wird die Erfindung anhand eines Ausführungsbeispiels unter Bezugnahme zu den Figuren näher erläutert. Dabei zeigen

Fig.1 in einem schematischen Längsschnitt einen Aufbohrkopf,

Fig.2 in einem schematischen Querschnitt den Aufbohrkopf aus Fig. 1 in der

Schnittebene gemäß dortiger Kennzeichnung A-A und

Fig.3 ein Diagramm zur Abhängigkeit der Zentrifugalkraft von einem Rotationswinkel eines Werkstücks für drei Zentrifugalkraftsensoren.

[62] In einer bevorzugten Ausgestaltung eines Bohrkopfes 1 ist dieser über ein Bohr- rohr 5 an eine Tiefbohrmaschine (nicht dargestellt) angekoppelt. Der Bohrkopf 1 weist eine oder mehrere als Wendeschneidplatten ausgeführten Schneiden 1.1 auf. Mindestens zwei verschleißfeste Führungsleisten 1.2 sind an zweckmäßiger Stelle am Umfang des Bohrkopfes 1 angeordnet.

[63] Ein Pfeil 1.7 zeigt die Vorschubrichtung des Werkzeugs 1 an. Die Aufnahme- bohrung des Bohrkopfes 1 ist mit einer Verzahnung oder mit anders gestalteten formschlüssigen Elementen 1.3 zur Drehmomentübertragung ausgerüstet. Diese stehen im Eingriff mit Drehmomente übertragenden Elementen 2.1 eines Mitnehmerflansches 2. Letzterer ist in Vorschubrichtung vorn mit einer sphärischen Fläche 2.2 und in Vorschubrichtungen hinten mit einer sphärischen Fläche 2.4 ausgerüstet. Eine entsprechen- de konkave sphärische Fläche 3.5 befindet sich am hinteren Ende einer Achse 3.4 und kontaktiert die sphärischen Fläche 2.2.

[64] Ein in zwei Hälften geteilter Ring 1.4 umgreift die sphärische Fläche 2.4 des Mitnehmerflansches 2. Er ist mittels Schrauben 1.5 derart nahezu spielfrei mit der Achse 3.4 verschraubt, dass die entstandene Einheit aus Bohrkopf 1, Achse 3.4 und geteil- tem Ring 1.4 gegenüber dem Mitnehmerflansch 2 in allen Richtungen schwenkbar ist. [65] Eine Verdrehung dieser Einheit gegenüber dem Mitnehmerflansch 2 ist jedoch nicht vorgesehen. Die bogenförmigen Mitnehmerelemente 2.1 sowie die sphärischen Flächen 2.2 und 2.3 haben einen gemeinsamen Mittelpunkt 2.1 1. Um diesen Mittelpunkt kann der Bohrkopf 1 in beliebiger Richtung stufenlos um einen variablen Winkel α ge- schwenkt werden. Diese Bewegung führt zu einer Änderung der Bohrrichtung und ist daher eine gewünschte Stellbewegung zur Korrektur des Bohrungsverlaufs.

[66] Alternativ wird die Winkelbeweglichkeit des Bohrkopfes durch andere Ausgestaltungen erreicht. So ist zum Beispiel die Verbindung des Mitnehmerflansches 2 mit dem Bohrkopf 1 über eine Welle mit elastisch biegsamem Bereich möglich. Diese und andere Varianten sind nicht dargestellt.

[67] Drei am Umfang gleichmäßig verteilte elektronische Stellglieder 2.8, wobei in Fig. 1 stellvertretend das Stellglied 2.8.1 dargestellt ist, sind so angeordnet, dass sie den Bohrkopf in der Flucht einer Werkzeugachse 2.9 halten, wenn die Bohrung zentrisch verläuft. Ist wegen auftretender Exzentrizität der Bohrung eine Winkelauslenkung des Bohrkopfes lzur Korrektur erforderlich, verändern die Stellglieder 2.8 die Winkellage des Bohrkopfes 1 um den variablen Auslenkwinkel α zur Werkzeugachse 2.9. Alternativ werden statt der elektronischen Stellglieder 2.8 hydraulische Stellglieder eingesetzt.

[68] Die Steuereinheit besteht aus der Achse 3.4, einem Gehäuse 3.5 und einem darin aufgenommenen konzentrischen Ring 3, wobei der Ring 3 eine Masse aufweist, weiter aus einem elektronischen Regler 4 und aus einer für die Stromversorgung des Reglers 4 erforderlichen Batterie 4.1.

[69] Der konzentrische Ring 3 ist in radialer Richtung allseitig beweglich angeordnet und wird mithilfe von drei Kraftsensoren 3.3 gegenüber der Achse 3.4 abgestützt. Eine nicht dargestellte Verdrehsicherung hält den Ring 3 in einer gleich bleibenden Winkel- läge relativ zur Achse 3.4. Die Steuereinheit ist mittels einer Mutter 3.2 auf der Achse 3.4 befestigt. [70] Zur Verdeutlichung wird auf die Anordnung der Kraftsensoren 3.3 in Figur 2 verwiesen. Die Kraftsensoren sind mit den Nummern 3.3.1 bis 3.3.3 gekennzeichnet.

[71] Der oben beschriebene Bohrkopf 1 ist mittels der Schrauben 2.7 mit einem Werkzeugträger 8 fest und gegen Verdrehung gesichert verschraubt. [72] Der Werkzeugträger 8 ist mit Hilfe eines standardisierten Anschlussgewindes mit dem Bohrrohr 5 verschraubt. Das Bohrrohr 5 überträgt die von der Tiefbohrmaschi- ne erzeugte Vorschubkraft 2.5, welche über dem Mitnehmerflansch 2 auf die Bohrkopfeinheit 8,5,1 übertragen wird. Gleichzeitig nimmt das Bohrrohr 5 bei rotierendem Werkstück die beim Bohrvorgang entstehenden Reaktions-Drehmomente auf. [73] Eine beim Rückzug des Werkzeugs 1 vom Bohrrohr 5 eingeleitete Kraft 2.12 wird über die rückwärtige sphärische Fläche 2.4 auf die Bohrkopfeinheit.

[74] Im Falle eines unerwünschten Bohrungsverlaufes weist die Mittelachse einer Bohrung 6.1 gegenüber einer Mittelachse 7 der Tiefbohrmaschine eine Exzentrizität e auf. Das Werkstück 6 rotiert in Richtung eines Pfeils 6.2 um die Tiefbohrmaschinenach- se 7. Dabei beschreibt eine Werkzeugachse 2.9 einen Orbit 2.10 mit einem Radius e. Die Masse des Rings 3 erzeugt unter dieser Rotation eine Zentrifugalkraft 3.1, die in der dargestellten momentanen Stellung durch einen Teil der Kraftsensoren 3.3.2, 3.3.3 jeweils zur Hälfte aufgenommen wird.

[75] In diesem Zustand wirkt am Sensor 3.3.1 keine Kraft. Während des gesamten Umlaufs verläuft die Richtung der Zentrifugalkraft immer in der radialen Richtung, welche durch die die Verbindungslinie zwischen Tiefbohrmaschinenachse 7 und Werkzeugachse 2.9 gebildet wird.

[76] Das Diagramm der Figur 3 zeigt, in welcher Weise die Zentrifugalkraft 3.1 abhängig vom Rotationswinkel des Werkstücks auf jeweils ein bis zwei der drei Sensoren 3.3 verteilt wird. Die Größe der Zentrifugalkraft hängt von der konstanten Masse des Ringes 3, der konstanten Werkstückdrehzahl sowie von der variablen Exzentrizität e ab.

[77] Die Sensoren 3.3 messen während der Werkstückrotation auf dem synchron verlaufenden Orbit 2.10 sowohl Größe als auch Richtung der Zentrifugalkraft. Beide Grö- ßen sind variabel. Außer der Zentrifugalkraft übt Ring 3 die nach Größe und Richtung konstante Gewichtskraft zum Erdmittelpunkt aus. Diese hat für die Funktion des Werkzeugs keine Bedeutung und wird daher im Regler 4 ausgefiltert.

[78] Die beiden Variablen werden im Regler 4 verarbeitet und als Stellsignale an die Stellglieder 2.8 ausgegeben. Jedem der Stellglieder 2.8.1 bis 2.8.3 (als Referenz ist nur das Stellglied 2.8.1 gezeichnet) ist je ein Sensor 3.3.1 bis 3.3.3 zugeordnet. Um die Exzentrizität e zu reduzieren, bewirkt die Stellbewegung eine Änderung der Bohrrichtung entgegen der Zentrifugalkraft.

[79] Die am Umfang gleichmäßig verteilten Stellglieder 2.8 werden so beaufschlagt, dass die Achse des Bohrkopfes 1 um den Winkel α entgegen der Richtung der Zentrifu- galkraft ausgelenkt wird. Dadurch verändert sich die Bohrrichtung. Nach erfolgter Stellbewegung verläuft die Bohrung entlang der Achse 1.7.1 unter dem Winkel a. Die Größe des Auslenkwinkels wird proportional abhängig von der Größe der Zentrifugalkraft und damit direkt abhängig von der Exzentrizität e geregelt.

[80] Daraus folgt, dass der weitere Bohrfortschritt unter dem momentanen Auslenk- winkel α die Exzentrizität e verkleinert. Entsprechend verringert sich die Zentrifugalkraft. Dadurch wird kontinuierlich der Auslenkwinkel α verkleinert. Bei einer Exzentrizität e von Null werden auch die Zentrifugalkraft und der Auslenkwinkel Null. Die Bohrungsachse stimmt in diesem Fall mit der Maschinenachse überein.

[81] Regelvorgang und Bewegungsabläufe sind im Vorstehenden für den einfachen Fall beschrieben, in welchem nur das Werkstück rotiert und das Werkzeug stationär betrieben wird. Auf Tiefbohrmaschinen, die mit Gegenlauf ausgerüstet sind, werden Anwender im Interesse einer höheren Produktivität auch das Werkzeug gegenläufig rotieren lassen.

[82] Die Richtungssteuerung wird für diese Betriebsart angepasst. Die zur Steuerung des Bohrwerkzeugs entscheidende Zentrifugalkraft 3.1 läuft synchron mit der Werkstückdrehzahl. Sie wird von den Sensoren 3.3. Ibis 3.3.3 kontinuierlich gemessen. Die Relativbewegung des Werkzeugs entgegen der Werkstückrotation führt dazu, dass jeder Sensor 3.3. Ibis 3.3.3 mehrfach pro Werkstückrotation die Wirkrichtung der Zentrifugalkraft durchläuft. Der Bohrkopf 1 wird entgegen der Wirkrichtung der Zentrifugalkraft 3.1 um einen variablen Winkel α ausgelenkt. Dabei bleibt die Richtung des Auslenkwinkels α immer in Übereinstimmung mit der Richtung der umlaufenden Zentrifugalkraft.

[83] Die wesentliche Veränderung ist, dass die 3 Stellglieder bei jeder Werkzeugumdrehung einmal die Richtung des Auslenkwinkels α durchlaufen. Für den Regler 4 be- deute dies eine Erhöhung der Frequenz der Steuerimpulse für die Kraftsensoren 3.3 und die Stellglieder 2.8. Dies wird bei der konstruktiven Auslegung dieser Elemente 3.3, 2.8 und des Reglers 4 technisch umgesetzt.

[84] In einer alternativen Ausgestaltung sind die Stellglieder 2.8 zwischen Bohrkopf 1 und Führungsleisten 1.2 angeordnet. Diese Ausgestaltung ist zeichnerisch nicht darge- stellt. Eine Winkelbeweglichkeit des Bohrkopfes 1 gegenüber dem Werkzeug ist bei dieser Ausgestaltung nicht erforderlich. Stattdessen sind die Führungsleisten 1.2 in radialer Richtung beweglich. Die Steuerbewegung erfolgt in diesem Fall durch die Auslenkung der Führungsleisten 1.2 in radialer Richtung.

[85] Die Erfindung wird beispielsweise auf Vollbohrwerkzeuge angewendet. In die- sem Fall ist der Bohrkopf 1 so ausgestaltet, dass die Steuereinheit in Vorschubrichtung hinter dem Bohrkopf 1 angeordnet ist und dass die Schneiden in radialer Richtung und über den Umfang verteilt sind, sodass mit dieser Anordnung der gesamte Bohrungsquerschnitt zerspant wird. Außerdem ist die Steuereinheit konstruktiv mit einer durchgehenden Mittelbohrung versehen, damit entsprechend dem Tiefbohrmaschinensystem der Kühlschmierstoff mit den Spänen gegen die Vorschubrichtung im Zentrum des Werk- zeugs ausgetragen werden.

[86] Die Richtungssteuerung wird alternativ in einzelne oder mit Glattwalzwerkzeugen kombinierte Schälwerkzeuge eingebaut. In eine Umsetzung wird hierzu ein OMEGA-System der Firma ECOROLL mit drei schwimmend angeordneten Schälmessern und einem in der Mitte befindlichen ebenfalls schwimmenden Stützkörper ange- passt. Dabei sind die Stellglieder so angeordnet, dass die Schälmesser nicht mehr frei schwimmen und zur Richtungskorrektur durch die Stellglieder radial ausgelenkt werden.

Bezugszeichenliste:

1 Bohrkopf

1.1 Schneiden

1.2 Führungsleisten

1.3 Elemente zur Drehmomentübertragung

1.4 geteilter Ring

1.5 Schrauben

1.6 sphärische Räche

1.7 Pfeil für Vorschubrichtung

2 Mitnehmerflansch

2.1 Mitnehmerelemente

2.2 sphärische Fläche

2.4 sphärische Fläche

2.5 Vorschubkraft

2.6 Gehäuse

2.7 Schrauben

2.8 Stellglieder

2.9 Werkzeugachse

2.10 Orbit der Werkzeugachse (2.9) 2.1 1 Mittelpunkt der sphärischen Flächen

3 konzentrischer Ring (Masse)

3.1 Zentrifugalkraft (Messgröße)

3.2 Mutter

3.3 Kraftsensoren (3.3.1 bis 3.3.3) 3.4 Achse

3.5 Gehäuse

4 Regler Batterie

Bohrrohr

Werkstück

Mittelachse der Bohrung

Pfeil für Werkstückrotation

Tiefbohrmaschinenachse

Werkzeugträger oder Folgewerkzeug