Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ELASTIC WOVEN FABRIC
Document Type and Number:
WIPO Patent Application WO/1996/015300
Kind Code:
A2
Abstract:
An improved process for weaving an elastic stretch fabric and the product thereof are provided. The fabric is woven with weft and/or warp yarns that include combination yarns which comprise a partially oriented synthetic crystalline polymer yarn combined with an elastomeric core. The fabric is then stretched, heat set and finished under particular conditions to provide the resultant fabric with an elastic stretch of 18 to 45 % and dimensions about equal to the as-woven dimensions.

Inventors:
HAMILTON CATHY JANE
Application Number:
PCT/US1995/014791
Publication Date:
May 23, 1996
Filing Date:
November 01, 1995
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
DU PONT (US)
International Classes:
D02G3/32; D03D15/56; (IPC1-7): D03D15/08
Domestic Patent References:
WO1995002721A11995-01-26
Foreign References:
EP0046346A21982-02-24
US3357076A1967-12-12
Other References:
DATABASE WPI Week 9524 Derwent Publications Ltd., London, GB; AN 95-183369 XP002001920 & JP,A,07 102 444 (ASAHI KASEI KOGYO) , 18 April 1995
DATABASE WPI Week 8939 Derwent Publications Ltd., London, GB; AN 89-282657 XP002001921 & JP,A,01 207 433 (TEIJIN) , 21 August 1989
Download PDF:
Claims:
I CLAIM:
1. An elastic stretch woven fabric which is the product of a process that comprises the steps of weaving a fabric with warp yarns and weft yarns, wherein at least 5 half of the warp yams or of the weft yarns are combination yarns which comprise an elastomeric strand and a nonelastomeric companion yam, the non elastomeric companion yam being of partially molecularly oriented synthetic organic polymer and the elastic strand having a heat setting temperature that is higher than the heat setting temperature of the nonelastomeric companion yam, o stretching the woven fabric by 25 to 85% in the direction of at least the warp combination yams or the weft combination yarns, heat setting the stretched woven fabric for at least 20 seconds while in the stretched condition at a temperature in the range of 80 to 180°C, said temperature being below the heat setting temperature of the elastomeric strand, and finishing the heattreated fabric in an aqueous bath for at least 1/2 hour at temperature that is no higher than 135°C.
2. An elastic stretch woven fabric in accordance with claim 1 wherein at least all the warp yams or all the weft yams are combination yarns.
3. An elastic stretch woven woven fabric comprising warp yams and weft yams, wherein at least half of the warp yams or at least half of the weft yams are combination yams of elastomeric strand and nonelastomeric companion yam of synthetic organic polymer, the nonelastomeric companion yam exhibiting a repeating pattem evidencing that the fibers of the companion yam were partially oriented when the fabric was woven.
4. An elastic stretch woven fabric in accordance with claim 3 wherein at least all the warp yams or all the weft yams are combination yarns.
5. A elastic stretch woven fabric in accordance with claim 3 or 4 wherein the nonelastomeric companion yam is of poly(ethylene terephthalate) filaments which exhibit a periodicity in dichroic ratio minima along the filament length when subjected to infrared dichroic ratio testing.
6. An elastic stretch woven fabric in accordance with claim 3 or 4 wherein the nonelastomeric companion yam is of poly(hexamethylene adipamide) filaments which exhibit a repeating pattem of light and dark sections along the filament length when subjected to orientedinfiber dyeing testing.
7. An elastic stretch woven fabric in accordance with claim 1, 2, 3 or 4 wherein the elastomeric strand of the combination yam is a spandex and the elastic stretch of the stretch woven fabric in the range of 18 to 45%.
Description:
TITLE Elastic Woven Fabric

REFERENCETORELATEDAPPLICATION

This is a continuation-in-part of Serial No. 08/339,168 filed November 10, 1994.

BACKGROUND OF THE TNVENTΪON

Field of the Invention

This invention relates to a process for making an elastic stretch woven fabric and the product made thereby. More particularly, the invention concerns an improvement in such a process and product. The improvement involves the fabric being woven with a combination yam that comprises an elastomeric yam and a companion yam of partially oriented non-elastomeric polymer. Description of the Prior Art Processes are known for making stretch-woven fabrics. For example, LYCRA® Spandex Fiber Bulletin L-94, "Producing stretch-woven fabrics from core-spun yams containing Lycra® spandex," E. I. du Pont de Nemours & Co. (April 1980) describes the fabric design and construction, weaving, heat-setting and dyeing and finishing of filling-stretch, warp-stretch and two-way stretch woven fabrics. A core-spun yam is a combination yam that is produced by spinning a sheath of "hard" fibers (i.e., conventionally drawn, oriented non-elastomeric fibers, filaments or strands) around a core of elastomeric strand while the elastomeric strand (e.g., spandex) is under tension and elongated to several times its relaxed length. Subsequent release of the tension and contraction of the elastomeric core strand yields a stretchable combination yam. Other processes for making stretchable combination yams are known wherein elastomeric strand is combined with hard fibers, for example, by covering, air-jet entangling, plaiting and the like. However, woven stretch fabrics made with such combination yams, typically have much smaller dimensions than the length and width of the loom on which the fabrics were woven.

Greenwald et al, U. S. Patent 3,357,076, discloses processes in which woven stretch fabrics are made with another kind of elastic combination yam. The combination yam of Greenwald et al is produced by wrapping undrawn synthetic filamentary material around a non-extended, non-heat set, elastomeric core strand. The woven fabric is stretched to draw the undrawn filamentary wrapping of the combination yam. Then, the stretched fabric is at least partially relaxed and heat set in the partially relaxed state. Stretch fabrics made by the

process of Greenwald et al are stated to exhibit a variety of surface effects and a stretch in the range of 10% to 215%.

The one example of Greenwald et al describes a fabric woven to a 45-inch (114-cm) width, stretched at 220°F (104°C) and subsequently treated in 5 three different ways, as follows. In part (1) of the Example, the woven fabric, after having been stretched to a 55-inch (140-cm) width, was relaxed to a 43- inch (109-cm) width and then heat set at 380°F (193°C) in the relaxed condition. The resultant fabric was described as a terry-face fabric having a potential stretch of 40%. In part (2) of the Example, the fabric after having been o stretched to a 110-inch (279-cm) width, was relaxed to a 48-inch ( 122-cm) width and then heat set at 380°F (193°C) in the relaxed condition to yield a terry-face fabric having a 215% potential stretch. In part (3) of the Example, after having been stretched to a 110-inch (279-cm) width, the woven fabric was not relaxed but was heat set at 380°F (193°C) while fully stretched at the 110- 5 inch (279-cm) width to yield a fabric having a knit-deknit appearance and a potential stretch of less than 10%.

The present inventor found that the fabrics of Greenwald et al have certain short-comings. When fabrics such as those produced in parts (1) and (2) of the Greenwald et al Example were further treated under typical finishing o conditions of hot-wet dyeing and scouring at or near a temperature of 100°C, the fabrics shrank considerably and lost most of their potential stretch. With regard to part (3) of the Greenwald et al Example, hot-wet finishing of the heat-set fabric did not improve the inadequate potential stretch of the fabric. In addition, the properties of undrawn fibers, which are required for the filamentary 5 wrapping of the elastic combination yam of the Greenwald et al process, change significantly when stored for different lengths of time. Such changes in the undrawn fibers often make it very difficult to produce yams and fabrics with consistent properties and lead to inferior woven fabrics.

In view of the above-noted shortcomings of the known processes for o making stretch woven fabrics, an object of the present invention is to provide an improved process and a stretch woven fabric therefrom that will overcome or ameliorate at least some of the shortcomings.

SUMMA Y OF THE INVENTION The present invention provides an improved process for preparing a 5 stretch woven fabric. The process is of the type that includes the steps of weaving a fabric with warp yams and weft yams, at least the warp yams or the weft yams being combination yams which comprise an elastomeric strand and a non-elastomeric companion yam, and then stretching, heat setting, and finishing the woven fabric. The improvement comprises the non-elastomeric companion

yam being of partially molecularly oriented synthetic organic polymer, preferably polyester or nylon, and the elastomeric strand having a heat setting temperature that is higher than the heat setting temperature of the non- elastomeric companion yam, stretching the woven fabric by 25 to 85%, preferably by 30 to 60%, in the direction of at least the warp combination yams or the weft combination yams, heat treating the stretched woven fabric, while in the stretched condition for at least 20 seconds, typically for 30 to 90 seconds, preferably 45 to 60 seconds, at a temperature in the range of 80 to 180°C, preferably at least 120°C, said temperature being below the heat setting temperature of the elastomeric strand, and finishing the heat-treated fabric in an aqueous bath for at least 1/2 hour at temperature that is at or near the boiling point of the bath, but at a temperature of no higher than 135°C .

The invention also provides an improved stretch woven fabric made by the process just described. When the companion yarns are of nylon, the companion yams typically exhibit a repeating pattern of light and dark sections along their length when subjected to the oriented-in-fabric dyeing test (described hereinafter). When the companion yams are of polyester, the companion yams typically exhibit a repeating pattern of minima in infrared dichroic ratio (as described hereinafter) along their length.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

The following detailed descriptions illustrate preferred embodiments of the invention. The descriptions are not intended to limit the scope of the invention. The scope is defined by the appended claims.

In describing the invention, various terms are used. As used herein, the term "combination yam" means a yam in which there are dissimilar component yams, in this case, an elastomeric yam and a non-elastomeric companion yam. "Fiber" includes in its meaning staple fibers and continuous filaments. "Partially molecularly oriented" fiber refers to a fiber of synthetic organic crystalline polymer that has substantial molecular orientation but is not fully drawn and can achieve further molecular orientation. Partially oriented fiber yarns suitable for use in the present invention, sometimes referred to herein as "POY", typically have break elongations in the range of 50 to 150%.

"Undrawn fiber" means a fiber that is not drawn, has only a very small amount of molecular orientation and has a break elongation of greater than 150%, typically greater than 200%. In contrast, fully drawn conventional synthetic organic crystalline fiber generally has a break elongation in the range of 15 to

35%. The "weft" is the widthwise yams of a woven fabric and is often referred to in the art as the "filling", "fill" or "woof*. Similarly, the "warp" is the lengthwise yams of a woven fabric and is sometimes referred to in the art as the "ends". The term "spandex" means fiber of a long chain synthetic polymer that 5 comprises at least 85% by weight segmented polyurethane. The term "heat set temperature" refers to the temperature at which the woven fabric of the invention, after having been stretched, is heat treated, for no more than 90 seconds, to stabilize the dimensions of the companion yam. After stretching and heat setting the companion yam has a break elongation to less than 50%. The 0 "heat set temperature" of the elastomeric yam is the lowest temperature at which the elastomeric yam, when held at that temperature under tension in an extended state for 90 seconds, experiences a permanent reduction in denier and an inability to recover its original length upon release of the tension.

The process for preparing a woven stretch fabric in accordance with 5 the present invention includes steps that are known and can be performed in conventional equipment. However, to obtain the advantageous stretch woven fabrics of the invention, the process requires particular starting materials, a specific order of performing the steps and particular conditions for treating the woven fabric. o In " the first step of the improved process of the invention, a fabric is woven with warp yarns and weft yarns. The warp yam and/or the weft yam comprises a combination yam having an elastomeric yam (or strand), preferably of Spandex, and a companion yam (or strand). The companion yam is of non- elastomeric synthetic organic polymeric fibers that are partially molecularly 5 oriented. Polyester or nylon polymers are preferred for the partially oriented polymeric fibers. The elastomeric yam of the combination yam has a heat setting temperature that is higher than the heat setting temperature of the companion strand.

Combination yarns for use in accordance with the process of the o invention can be prepared by various known techniques. The partially molecularly oriented synthetic organic polymer fiber of the companion strand can be combined with the elastomeric yam by operations such as wrapping, covering, core spuming, air-jet intermingling, ήr-jet entangling, plaiting and the like. For use in the present invention, the els omeric yam typically can amount 5 to 2 to 40%, preferably 4 to 10%, of the total weight of the combination yam. Suitable materials for the elastomeric yam include spandex, rubber, thermoplastic polyurethanes, polyetheresters and the like. However, each of these elastic yam materials must have a higher heat setting temperature than that of the companion yam with which it is combined. Spandex (e.g., LYCRA®

spandex, sold by E. I. du Pont de Nemours & Co.) which typically has a break elongation in the range of 250 to 800% and a heat setting temperature in the range of 365 to 400°F (185-204°C) is a preferred elastomeric yam.

Typical synthetic organic polymers suitable for the companion strand 5 of the combination yams include 66-nylon, 6-nylon, polyethylene terephthalate, polybutylene terephthalate, cationic dyeable polyester and the like. The companion strand typically has a heat setting temperature that is in the range of 120 to 180°C, preferably 140 to 180°C.

The heat setting temperature of the elastomeric yam is typically at 0 least 5°C, preferably at least 10°C, higher than that of the non-elastomeric synthetic organic companion yam.

In preparing the combination yams suitable for use in the present invention, the spandex or other elastomeric yam is usually extended by no more than 100% during the combining operation. Typically, the extension is in the 5 range of about 20 to 70%. Sometimes, higher extensions (e.g., 300%) of the spandex or elastomeric yam are employed during the combining operation. In comparison to the typical combination yams suited for use in the present invention, such combinations yarns made with high extension result in final woven fabrics that can be stretched more than the fabrics made with the typical o combination yams used in the process of the present invention; but at a sacrifice in final fabric width.

Various weave patterns are suitable for preparing elastic woven fabrics according to the invention. Preferred fabrics are woven so that the warp is predominantly on one face of the fabric and the weft predominantly on the 5 other face. Twills (e.g., 1x2, 1x3, herringbone, etc.) are particularly preferred. A plain weave is suitable when a fabric having a crepe effect is desired. The elastic combination yam can be used in alternate threadlines of the warp or weft, or in some other regular repeat pattern to provide other special effects (e.g., 6 in/6 out for a seersucker effect). Special fabrics such as corduroy, seersucker o and heavy-weight fabrics, can be woven such that as much as fifty percent or more of the yarns in the direction of subsequent stretching are not combination yams, but are stretchable or drawable yams which do not contain elastomeric yams. Partially oriented yams (POY) are particularly suited for this purpose while non-stretchable "hard" yarns in this type of fabric construction do not 5 permit subsequent processing according to the invention. Also, more than one type or count of the partially oriented yam can be used simultaneously in the same fabric to obtain special styling effects, cross-dyeability, particular hand or surface, etc. When the elastic combination yam is used only in the weft, the warp can be composed of substantially any other yam, such as cotton, nylon,

polyester, wool, rayon, acrylic, etc. Similarly, when the elastic combination yam is used only in the warp, the weft can be composed of substantially any other yam. The invention is particularly useful in preparing stretch denim fabrics. 5 For satisfactory performance in apparel in which the woven stretch fabric of the invention is incorporated, the fabric has an elastic stretch in the range of 18 to 45%, preferably 20 to 35%.

In the stretching step of the process of the invention, the woven fabric is stretched in the direction of the combination yam by 20 to 50% (i.e., to 0 1.2 to 1.5 times its original dimension). For example, when the combination yams are used only in the weft, the stretch can be applied in a tenter frame across the width of the woven fabric (i.e., the weft direction). Similarly, when the combination yams are only in the warp direction, the stretching of the fabric can be applied by a series of draw rolls. When the combination yams are 5 employed in both the warp and the weft, a conventional bi-axial stretching apparatus can be employed. The stretching of the fabric in this manner draws the partially oriented synthetic organic polymeric fibers of the companion yam in the combination yam. The orienting effect of the stretch on the companion yam can be demonstrated by comparing the decitex or birefringence of o companion yam samples removed from the combination yam before and after the stretching step. When fabrics are stretched in accordance with the present process, the companion yam can undergo a reduction in decitex of as much as 30% with an accompanying increase in birefringence. Another convenient method for determining that a partially oriented yam was molecularly oriented 5 further during stretching of a woven fabric of the invention is provided the

"oriented-in-fabric dyeing test" described hereinafter. The stretching step may be performed with the woven fabric wet or dry.

In accordance with the invention, the stretched woven fabric is heat set while the fabric is in the stretched condition. During heat setting, the o stretched fabric is subjected for at least 20 seconds, typically 30 to 90 seconds to a temperature in the range of 120 to 180 °C, but below the heat setting temperature of the elastomeric core of the combination yam. Preferably, the stretched woven fabric is heat set for 40 to 80 seconds at a temperature of at least 140°C. Generally, stretched fabrics of relatively light weight or stretched 5 fabrics or those with higher proportions of synthetic fibers can be heat set more readily (i.e., in less time) than can heavier fabrics or those containing higher proportions of natural fibers such as cotton. Heat-setting can be performed with the stretched woven fabric wet or dry.

If desired, the stretching and heating can be performed simultaneously, with the stretching being applied as the fabric temperature is raised. Usually, when the fabric is hot, less force is needed to stretch the fabric. Alternatively, the stretching and heat-setting can be performed in two or more stages. Stretching can be done in a first stage and heat-setting in a second stage, but the fabric preferably heated during stretching to reduce the forces required to stretch the fabric. Then the temperature can be raised further to heat-set the fabric. When the combination yam used in weaving the fabric has a partially oriented polyester companion yam, a higher temperature is needed in the last stage of a multi-stage drawing procedure than in the first stage because the polyester fibers "remember" the highest temperature to which they were exposed. Accordingly, if the temperature in the last stage were cooler than in an earlier stage, the polyester yam would shrink to the dimensions under which it was stretched in the earlier stage. In contrast, to satisfactorily use companion yams of partially oriented 6-nylon or 6,6-nylon in the process of the invention, one must maintain tension on the fabric until the heat setting is complete; otherwise, unwanted shrinkage of the POY would occur upon premature release of the tension.

The last step in the process of the invention is a finishing step which comprises releasing the fabric from any substantial tension and immersing the fabric for 1/2 to 1 hour in an aqueous bath maintained at a temperature close to or at the atmospheric boiling temperature of the bath, or at a temperature no higher than 135°C when the bath is under pressure (e.g., when dyeing a fabric containing polyester fibers). In the finishing step, various operations can be performed, such as aqueous scouring, dyeing, rinsing and the like. During finishing, the fabric develops its final dimensions and stretch characteristics.

Woven stretch fabrics prepared by the process of the invention typically have a built-in stretch capability in the range of 18 to 45%, preferably in the range of 20 to 35%, and final fabric dimensions that are about the same as the original dimensions of the fabric as woven on the loom.

Test Procedures In the preceding description of the invention and in the examples below, various characteristics are mentioned. Unless indicated otherwise, these characteristics were determined by the following procedures. An Instron Tester equipped with flat rubber-faced pneumatic grips is employed to determine the tensile properties of the yams. Break tenacity, T, and break elongation, E, of non-elastomeric yarns are measured according to test method ASTM D 2256. The break elongation of elastomeric yarns (e.g., spandex) is measured according to the general procedures of test method ASTM

D 2731-72. For the elastomeric yams, a 2-inch (5-cm) gauge length and a zero- to-300%-to zero elongation cycle is used. The samples are cycled five times at a constant elongation rate of 800% per minute. After the fifth cycle the sample is elongated at the same rate to break. Fabric stretch also is measured with an Instron Tester. A 4-inch

(10.2-cm) long, 1-inch (2.54-cm) wide sample is clamped with a 2-inch (5.08- cm) spacing between the clamps. An extension of 50% per minute is applied until a load of 2 lb (0.9 Kg) is reached. At the 2-lb load, the sample length, L, is measured in inches and the % fabric stretch, %S, is calculated by the formula, %S = 100(L - 2)/2 .

To confirm that partially oriented fibers were used for the companion yam of the combination ya with which a fabric was woven, two tests were used, depending on the polymer of the companion yam; (a) and "oriented-in- fabric dyeing test" for nylon 66 companion yams and (b) an "infrared dichroic ratio test" for polyester terephthalate companion yams.

The oriented-in-fabric dyeing test for nylon 66 companion yams is performed as follows. Note that substitution of appropriate dyes, additives and conditions can make the test applicable to other dyeable synthetic crystalline polymeric fibers. In this test, a woven fabric made with combination yarns comprising a nylon 66 companion ya , is subjected to a 15-minute scour at 140°F (60°C) in an aqueous bath containing 0.1 gram/liter of MERPOL® HCS (a nonionic liquid detergent sold by E. I. du Pont de Nemours & Co.) and 0.1 g/1 of ammonia. The fabric is men rinsed thoroughly with clear water. The rinsed fabric is placed in an aqueous bath operating at 80°F (27°C) and containing 5g l of monosodium phosphate and maintained at a pH of 5.0 with phosphoric acid. Based on the weight of the fabric, 1 weight % of Polar Brilliant Blue RAWL dye (sold by Ciba-Geigy Corp.) is added to the bath, the temperature of the bath is raised to 100°C and the fabric is immersed in the bath for 30 minutes to become dyed. Thereafter, a sample of the combination yam is removed from the fabric. Strands of the nylon companion ya are teased from the combination yam. The teased strand samples are examined under 10X magnification. A repeating pattern of light and dark sections are seen along the length of the nylon strand. The pattern corresponds to the repeating pattern of crossings of the warp and weft of the woven fabric and indicates that the companion yam originally was a partially oriented yam.

The following "infrared dichroic ratio test" is used to confirm that partially oriented fibers of poly(ethylene terephthalate) were used for the companion yam of a woven fabric of the invention. The woven fabric is scoured, a combination yam removed from the fabric, and strands of the

poly(ethylene terephthalate) companion yam are teased from the combination yam in the same manner as was done in the above-described "oriented-in-fabric dyeing test". The polyester fiber is then examined with an IR-Plan II microscope having redundant aperturing (about 15μm by lOOμm along the fiber), sold by Spectra Tech, Inc., of Shelton, CT. The sample holder opening at the microscope stage is about 1 cm. The microscope is equipped with a liquid nitrogen-cooled mercury-cadmium telluride narrow band detector and an IR wire grid polarizer. The double-sided interferogram from the microscope is analyzed with a Fourier Transform Infrared Model 1800, sold by Perkin-Elmer of Norwalk, CT). The Jacquinot stop is set at 6 (wide open); the optical path difference velocity, at 3 cm/sec; the gain, on "auto"; and the apodization (mathematical function applied to the interferogram) on "medium Norton-Beer". The single beam system has a range of 4000-700 cm" , a nominal resolution of 4 cm _ l and performs 256 scans in 1.5 minutes. A 1370 cm * CH2 absorption wavelength (or other suitable wavelength) is used. Single polyester fibers are analyzed at 0.5 mm intervals along 1 cm of fiber. A polarized infrared beam is directed onto the fiber and the absorption intensities "A" of the polarization along the fiber axis (the parallel or "pa" direction) and the polarization across the fiber axis (the perpendicular or "pe" direction) are measured. The ratio of the absorption intensities "A" of infrared radiation is the dichroic ratio, DR, which is expressed as follows:

(DR) = (A pa - Ape)/(Ap a + Ape) The filaments are analyzed without distortion by carefully extending or flattening the filaments only enough to hold them across the aperture. The dichroic ratio shows periodic minima along the fiber which correspond in the spacing of the repeating pattern of crossings (weave crimp nodes) of the warp and weft of the woven fabric, indicating that the companion yam was originally a partially oriented yam which had been drawn while in the fabric.

EXAMPLES In the following Examples, samples of the invention are designated with Arabic numerals; comparison samples are designated with upper case letters. Each of the results reported in the Examples are from single measurements. The measurements are believed to be provide representative values, but do not constitute the results of all the runs and tests performed involving the indicated yarns, fibers and components.

The following examples illustrate the invention with the preparation of woven twill fabrics. The wefts of the fabrics were combination yarns that had POY companion yarns (i.e., companion yams of partially oriented crystalline polymer) around an elastomeric core of 40-den (44-dtex) Lycra®

spandex, Type 146C (sold by E. I. du Pont de Nemours & Co.). The specific POY yam that was used is described in each example below, just before the tabulated summary of results of the stretching and heat setting tests that were performed on each sample. Unless noted otherwise, each of the companion yam 5 was a commercial POY yam sold by E. I. du Pont de Nemours & Co.

In preparing the combination yam, the spandex was extended by 50% and combined with the POY companion yam on a Leesona #512 twister (Leesona, Inc. Warwick, RI) operating at a linear speed of about 92 yd min (84 m min) and inserting about 3.5 turns per inch (1.38/cm) of twist into the 0 combination yam.

Each fabric sample was woven on a loom, Model C-4, sold by Crompton & Knowles of Worcester, Massachusetts, with 2916 warp ends of 6.4/1 CC, 830-denier (922-dtex) 100% cotton yam, spaced at 55 warp ends/inch (21.6/cm), and 48 picks per inch (18.9/cm) of combination weft yarns, to 5 produce 1x3 warp-faced twill fabric.

Except in Example 5, as noted below, the stretching and heat treating of the woven fabrics were performed on a Bi-axis Lab Stretcher, sold by T. M. Long Co. of Somerville, New Jersey. The stretcher has a chamber which is equipped with (a) a vacuum mounting device for holding a fabric sample in o place, (b) alligator clamps for grasping and stretching the sample and (c) means for heating the chamber. For each test, a 5.5-inches (14.0-cm) long by 4-inches (10.2-cm) wide fabric sample was cut, with the combination yam in the long direction (i.e., weft or fill direction) of the sample. A 3-inch (7.6-cm) gauge length was marked in the center of the long direction of the fabric for use in 5 determining the actual stretch imposed on the fabric. A square piece of cardboard measuring 4 inches (10.7 cm) long on each side was centered in the middle of the fabric so that an extra 0.75 inch (1.9 cm) of fabric extended beyond each end of the cardboard. The extending edges of the fabric were folded over the edges of the cardboard. The sample was then subjected to o following sequence. The fabric/cardboard combination was placed onto the vacuum mounting apparatus with the fabric side up; vacuum was applied to hold the test sample in place; the apparatus positioned the thusly mounted sample within the opened alligator clamps in the pre-heated chamber; the clamps were activated to grasp the fabric/cardboard on all four sides; the vacuum mounting 5 apparatus was disengaged and moved away; the chamber was closed and reheated for one minute to the desired operating temperature; the sample was then stretched a pre-set amount in the long direction of the sample at 100% per minute (i.e., in the direction of the combination yam of the sample); the clamps and chamber were then opened; the sample fabric was removed from the

chamber; and the sample was then allowed to cool to room temperature while in a relaxed condition. Note that the cardboard always broke during the early stages of sample stretching. Fabrics that were to be stretched and heat set while wet were first soaked for 5 to 15 minutes in room-temperature tap water before being subjected to stretching and heating sequence. In this apparatus, some slippage of the fabric can occur in the stretcher clamps. Also some fabric shrinkage can occur during cooling of the fabric under relaxed conditions. In Example 5, fabric was stretched and heated a large tenter frame.

The heated and stretched fabric was then subjected to a simulated hot-wet finishing procedure, referred to herein as "mock dyeing" in which the fabric was immersed in 100°C boiling water for one hour. The amount of stretch remaining in the fabric after the mock dyeing was measured for each sample. After mock dyeing, each sample of the invention had final dimensions that were about the same as the original dimensions of the fabric as woven. EXAMPLE 1

In this example, fabrics were woven with combination yam that had a companion yam consisting of two ends of 95-den (106-dtex), 34-filament, semi-dull 6,6-nylon POY yam (Type 288 sold by E. I du Pont de Nemours & Co.). The POY yam had a tenacity at break of 3.4 g/den (3.0 dN/tex) and a break elongation of 67%, and was customarily intended to be drawn to 70 den (78 dtex). The samples were subjected to dry and wet stretching and heating tests at different temperatures and different total mechanical stretch in the direction of the weft combination yams, as indicated in Table I below. The table also summarizes the amount of stretch in the woven fabric after being removed from the stretcher and after being exposed to mock dyeing. The tests illustrate suitable conditions for obtaining desirable stretch properties in woven fabrics comprising combination yams that have 66 nylon POY companion yams. The results with comparative Samples A and B also show that excessive mechanical stretching can result in excessive stretch in the fabric after finishing and dyeing.

Table I - Example 1. 6.6-nylon POY

Mechanical tretching % Fabric Stretch After Sampje. Temperature % Stretch Stretching Mock dyeing

Dry 1 140°C 50 20 27

2 160°C 50 24 25

3 180°C 50 26 25

4 160°C 75 32 36

A 160°C 100 42 51

Table I - (continued) Mechanical Stretching % Fabric Stretch After

Sjunpj£ Temperature % Stretch Stretching Mock d eing

Wet 5 140°C 50 20 28 6 160°C 50 23 28

7 180°C 50 22 24

8 160°C 75 43 41 B 160°C 100 55 70

EXAMPLE 2 In this example, fabrics were woven with combination yam that had a companion yam consisting of four ends of 55-dtex, 13-filament, semi-dull 6- nylon POY yam, sold by Nylon de Mexico, S.A., of Monterey N.N., Mexico. This POY yam is customarily intended to be drawn to 44 dtex. The results of the stretching, heating and finishing on the stretch characteristics of the fabrics are summarized in Table II below. The results illustrate the successful use of 6- nylon as a companion yam for the POY component of the elastic combination weft yams (Samples 9-13) and the need to avoid excessive stretching of the fabric during processing (comparative Samples C-E).

Table II - Example 2. -nylon PQY Mechanical Stretching % Fabric stretch After

Sjunp Temperatnre % Stretch Stretching Mock dyeing

Dry 9 160°C 50 nm 33

10 180°C 50 nm 31

C 160°C 100 nm 51 Wet 11 140°C 50 28 36

12 160°C 50 28 35

13 180°C 50 28 34 D 160°C 75 41 60 E 160°C 100 60 60 *nm means no measurement was recorded.

EXAMPLE 3

In this example, fabrics were woven with combination yam that had a coi nanion yam consisting of one end of 265-den (294-dtex), 34-filament, semi 11 DACRON® polyester fiber Type 56 POY yam. This POY yam was made poly(ethylene terephthalate) homopolymer and had a tenacity at break of 2.3 <*'den (2.0 dtex) and a break elongation of 150%. Usually, this POY yam is inter ied to be drawn to 150 den (167 dtex). Table III below summarizes the effects of the stretching, heating and finishing conditions on the stretch characteristics of the fabrics.

Table III - Example 3. polyester homopolymer POY

Mechanical Stretching % Fabric stretch After

Sample Temperature % Stretch Stretching Mock dyeing

Dry 14 140°C 50 22 38 15 180°C 50 22 37

G 180°C 75 35 50 H 180°C 100 49 60 Wet 16 90°C 50 37 18 17 140°C 50 40 21 18 180°C 50 33 18

I 180°C 75 52 42 J 180°C 100 74 56

EXAMPLE 4

In this example, fabrics were woven with combination yam that had a companion yam consisting of one end of 245-den (272-dtex), 34-filament, semi-dull DACRON® polyester fiber Type 92 POY yam. The POY companion yam was made of cation dyeable polyester copolymer and had a tenacity at break of 1.3 g/den (1.1 dtex) and a break elongation of 115%. Usually, this POY yam is intended to be drawn to 150 den (167 dtex). The results of the stretching, heating and finishing conditions on the stretch characteristics of the fabrics are summarized in Table IV below.

Mechanical Stretching % Fabric Stretch After

Sample Temperature % Stretch Stretching Mock dyeing

Dry K 140°C 50 35 47

19 180°C 50 19 24

20 160°C 100 20 36

21 140°C 75 20 37

22 160°C 75 20 28

23 180°C 75 16 33

Wet 24 140°C 50 36 16

25 180°C 50 32 24

26 90°C 75 34 18

27 140°C 75 31 16

28 160°C 75 43 16

29 180°C 75 50 28

30 160°C 100 78 36

EXAMPLE 5

This example illustrates the use of a tenter in the process of the invention. The same fabric as was used in Example 3 was stretched while dry on a five-box tenter frame, each box being 10-feet long (sold by Bruckner 5 Machinery of Spartanburg, South Carolina). To achieve sufficient stretching on this short tenter frame (full-size commercial units typically have 8 to 10 boxes, each of 10-foot length), fabrics samples were stretched in two passes with half the total stretch being imposed in each pass. Fabric Sample 31 was stretched a total of 50%, from 48 inches (122 cm) to 72 inches (183 cm) in width). The 0 fabric experienced a temperature of 140°C for 20 seconds in the first pass and 160°C for 20 seconds in the second pass. Fabric Sample 32 was stretched a total of 38%, from 48 inches (122 cm) to a 66-inch (168-cm) width, at a temperature of 140°C for 20 seconds in the first pass and at 180°C for 15 seconds in the second pass. Each of these fabric samples was allowed to cool 5 while in the stretched condition. As a result of the stretching, the partially oriented companion yam of the combination yam became oriented, as could be seen by elongation and tenacity measurements made on companion yams teased from the fabric. The polyester companion ya from Sample 31, which had been stretched 50%, had a tenacity at break of 1.7 g/den (1.5 dN/tex) and a o break elongation of 15%. The corresponding properties for the polyester companion yam of Sample 32, which had been stretched 38%, were respectively 1.3 g den (1.1 dN/tex) and 29%.

The thusly stretched fabrics were then scoured in six passes through an open width washer (sold by Jawatex A.G. Textilmaschinen, Rorschach, 5 Switzerland). The temperature was increased in each subsequent pass. The fabric entered the first pass at a temperature of 140°F (60°C) and exited the last pass at 210°F (99.8°C).

Fabric stretch was determined by comparing a 20-inch gauge length marked on the woven fabric prior to stretching with the length of the marked 0 gauge length when the final fabric was extended in the POY (weft) direction under a 2-lb/inch (0.36-Kg/cm) load. Before the scouring, neither Sample 31 nor Sample 32 exhibited any fabric stretch. However, after the hot-wet finishing, Samples 31 and 32 respectively exhibited a 33% and 22% fabric stretch. The spandex of the combination yam was not heat set during the 5 heating and stretching step. The spandex relaxed to its original as-woven dimensions in the finishing step. Thus, all the fabric stretch was developed in the hot-wet finishing step.

Polyester companion yam from fabric Sample 31 was analyzed by the "infrared dichroic ratio test" and found to have periodic minima in the

between "weave crimp" nodes in the companion yam. The nodes, measured with a caliper, also were 2.5 mm apart. In addition, two comparison yams were analyzed. For the first comparison yam, a sample of polyester companion yam 5 was removed from the combination yam that was to be woven into fabric

Sample 31. Infrared dichroic ratio analysis of this comparison yam revealed no periodic minima in the dichroic ratio. For the second comparison yam, textured continuous polyester filaments were removed from a commercial woven fabric. The filaments were then analyzed by the infrared dichroic ratio test. No l o periodicity was apparent.