Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
FELINE LEUKEMIA VIRUS VACCINE
Document Type and Number:
WIPO Patent Application WO/1985/002625
Kind Code:
A1
Abstract:
Polypeptides that are synthesized or expressed directly in microorganisms, include an amino acid sequence that is homologous to at least a portion of gp70 envelope protein of FELV, and are immunogens that elicit or prime a humoral response in cats and immunize cats against FeLV infection. The microbially produced polypeptides are exemplified by a group of E. coli-expressed fusion proteins that comprise a portion of the trp leader peptide and a portion of the trp E protein fused to various portions of a subgroup B gp70 envelope protein. The synthesized polypeptides are exemplified by polypeptides that are homologous to segments of the hydrophilic domains of the gp70 protein.

Inventors:
NUNBERG JACK H (US)
Application Number:
PCT/US1984/001963
Publication Date:
June 20, 1985
Filing Date:
November 29, 1984
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
CETUS CORP (US)
International Classes:
A61K39/12; A61K39/21; A61K39/385; A61P31/12; C07K14/00; C07K14/15; C07K14/705; C07K19/00; C12N1/20; C12N1/21; C12N15/00; C12N15/09; C12P21/02; A61K38/00; C12R1/19; (IPC1-7): C12N15/00; A61K39/21; A61K39/385; C07K7/08; C07K15/00; C12N1/20; C12P21/02
Foreign References:
EP0036776A21981-09-30
EP0030728A21981-06-24
FR2445338A11980-07-25
Other References:
Proc. Natl. Acad. Sci. USA, Vol. 81, June 1984; J.H. NUNBERG et al.: "Method to Map Antigenic Determinants Recognized by Monoclonal Antibodies: Localization of a Determinant of Virus Neutralization on the Feline Leukemiae Virus Envelope Protein gp70", pages 3675-3679, see the entire document
Journal of Virology, Vol. 46, No. 3, June 1983; J.H. ELDER et al.: "Nucleotide Sequence of the Envelope Gene of Gardner-Arnstein Feline Leukemiae Virus B Reveals Unique Sequence Homologies with a Murine Mink Cell Focus-Forming Virus", pages 871-880 see the entire document (cited in the application)
CHEMICAL ABSTRACTS, Vol. 81, No. 5, August 5, 1974 (Columbus, Ohio, US) O. JARRET: "Antigenic Determinants Shared by Polypeptides of Feline Leukemia Virus", see page 316, Abstract No. 24077d, & Bibl. Haematol. (Basel) 1971 (Pub. 1973), 39, 810-12
Biological Abstracts, Vol. 67, 1979 (US) R.A. SALERNO et al.: "Feline Leukemia Virus Envelope Glycoprotein Vaccine: Preparation and Evaluation of Immunizing Potency in Guinea Pig and Cat", see Abstract 48970, & J. Natl. Cancer Inst. 61(6): 1487-1494. 1978
Download PDF:
Claims:
Claims-
1. A microbially produced polypeptide comprising an amino acid sequence that is homologous to at least a portion of the amino acid sequence of gp70 envelope protein of feline leukemia virus and is an immunogen that primes or elicits a humoral response in cats and is useful for immunizing cats against feline leukemia virus infection.
2. ,.
3. The polypeptide of claim 1 wherein the gp70 envelope protein is from FeLV subgroup B.
4. The polypeptide of claim 2 wherein the gp70 envelope protein is from feline leukemia virus strain GA or strain ST.
5. The polypeptide of claim 2 wherein the amino acid sequence is homologous to at least a substantial portion of at least one of the hydrophilic domains of the gp70 protein that occur between about amino acids 210 and 250 and between about amino acids 415 and 450 of the gρ85 molecules.
6. The polypeptide of claim 1 wherein the portion of the amino acid sequence of gp70 envelope protein is (a) met gly pro asn leu val leu pro asp gin lys pro pro ser; (b) asp gin lys pro pro ser arg gin ser gin ile glu; (c) pro glu tyr val tyr thr his phe asp lys thr val arg leu; or (d) asp lys thr val arg leu arg arg glu pro ile ser leu.
7. The polypeptide of claim 5 wherein the amino acid sequence is repeated in the polypeptide.
8. An E. coli produced fusion protein comprising: (a) a portion of the E. coli tryptophan leader peptide and a portion of the tryptophan E protein fused ■ to (b) an amino acid sequence that is homologous to least a portion of the amino acid sequence of gp70 envelope protein of feline leukemia virus, said fusion protein being an immunogen that primes or elicits a humoral response in cats and is useful for immunizing cats against feline leukemia virus infection.
9. The fusion protein of claim 7 wherein the gp70 envelope protein is from subgroup B.
10. The fusion protein of claim 8 wherein the gp70 envelope protein is from feline leukemia virus strain GA or strain ST.
11. The fusion protein of claim 8 wherein the amino acid sequence is homologous to a substantial portion of at least one of the hydrophilic domains of gp70 protein that occur between about amino acids 210 and 250 and between about amino acids 415 and 450 of the gp85 protein. CMPI .
12. The fusion protein of claim 7 wherein the portion of the amino acid sequence of gp70 envelope protein is (a) met gly pro asn leu val leu pro asp gin lys pro pro ser; (b) asp gin lys pro pro ser arg gin ser gin ile glu; (c) pro glu tyr val tyr thr his phe asp lys thr val arg leu; or (d) asp lys thr val arg leu arg arg glu pro ile ser leu.
13. The fusion protein of claim 7 wherein the protein is the product of expression of the plasmid ptGAΔAval, ptGAΔApal, or pt9:319.
14. _.
15. An expression plasmid useful in producing the fusion protein of claim 8 selected from the group consisting of ptGAΔAval, ptGAΔApal, or pt9:319. **4« E.
16. coli transformed with an expression vehicle of claim 13 and progeny thereof.
17. A process for preparing a fusion protein that is useful as a feline leukemia virus vaccine comprising: (a) growing the E. coli of claim 14; (b) lysing said E. coli; (c) removing endotoxins from the lysate; and (d) reducing the lysate with a reducing agent that cleaves disulfide bonds.
18. A feline leukemia virus vaccine comprising an immunogenic amount of the polypeptide of claim 1 combined with an adjuvant.
19. A feline leukemia virus vaccine comprising an immunogenic amount of the fusion protein of claim 12 combined with an adjuvant.
20. A method of preventing feline leukemia virus infection in a cat comprising vaccinating the cat with the vaccine of claim 16.
21. The method of claim 18 wherein the vaccination is followed by a boost inoculation of killed FeLV virus or a subinfectious amount of live FeLV virus.
22. A method of preventing feline leukemia virus infection in a cat comprising vaccinating the cat with the vaccine of claim 17.
23. The method of claim 20 wherein the vaccination is followed by a boost inoculation of killed FeLV virus or a subinfectious amount of live FeLV virus.
24. A conjugate of: (a) a polypeptide having an amino acid sequence that is homologous to at least a substantial portion of at least one of the hydrophilic domains of the gρ70 protein that occur between about amino acid 210 and 250 and between about amino acids 415 and 450 of the gp85 molecule coupled to (b) a carrier protein.
25. The conjugate of claim 22 wherein the polypeptide comprises the amino acid sequence (a) H cys asp lys thr val arg leu arg arg glu pro ile ser leu OH; (b) H cys pro glu tyr val tyr thr his phe asp lys thr val arg leu OH; (c) H cys met gly pro asn leu val leu pro asp glu lys pro pro ser OH; or (d) H asp gin lys pro pro ser arg glu ser gin ile glu cys ser OH.
26. A polypeptide of the formula (a) H cys asp lys thr val arg leu arg arg glu pro ile ser leu OH; (b) H cys pro glu tyr val tyr thr his phe asp lys thr vai arg leu OH; (c) H cys met gly pro asn leu val leu pro asp glu lys pro pro ser OH; or (d) H asp gin lys pro pro ser arg glu ser gin ile glu cys ser OH.
27. A feline leukemia virus vaccine comprising an immunogenic amount of the conjugate of claim 22 and an adjuvant.
28. A feline leukemia virus vaccine comprising an immunogenic amount of the conjugate of claim 23 and an adjuvant.
29. A method of preventing feline leukemia virus infection in a cat comprising vaccinating the cat with the vaccine of claim 25.
30. A method of preventing feline leukemia virus infection in a cat comprising vaccinating the cat with the vaccine of claim 26.
Description:
FELINE LEUKEMIA VIRUS VACCINE

Desc iotion

Technical Field

This invention is in the fields of protein chemistry, reco binant DNA technology, " and im unoprevention of viral diseases. More particularly, it relates to novel proteins that are useful as feline leu eπria virus (FeLV) vaccines.

Background Art FeLV

FeLVs are a group of contagious oncogenic RNA viruses that cause both neoplastic and ' non-neoplastic diseases in cats. FeLV infections are the main cause of disease-related deaths in cats. During FeLV replication, a DNA copy of the viral RNA genome is made and ' inserted into the DNA of infected cells. The integrated FeLV DNA codes for the replication of more virus which is shed from infected cells. By recombining with the host's genes, to generate feline sarcoma virus. (FeSV), the virus can cause cell transf ormacion.

The FeLV genome is a 60-70S single stranded RNA consisting of a gag gene that encodes the internal viral proteins, a pol gene that codes for the viral RNA dependent DNA poly erase (reverse transcriptase) , and an eπv gene that encodes the viral envelope proteins gρ70

OMPI

and pl5E. Viral interference and neutralization tests have shown that there are three subgroups of envelope

__ antigens (designated A, B and C) that are similar but distinct from each other and give rise to the three recognized FeLV subgroups (also designated A, B and C) .

The fate of a cat that is exposed to FeLV will depend upon its immune response to the FeLV— articularly to the FeLV envelope antigens. Studies have shown that about 40. of the exposed population produce high titers of anti-FeLV envelope antibodies and become immune, about 30% do not respond adequately and become persistently infected, and about 30% are neither infected nor immunized but remain susceptible. The fact that a significant portion of the exposed population acquires natural immunity has led investigators to try a variety of materials as vaccines against FeLV. Inactivated virus was found to be ineffective except at high doses. Puri¬ fied gp70 was also reported to be generally ineffective as a vaccine. Killed tumor cells have been reported to be successful in preventing leukemia but not virerrtia. A soluble tumor cell antigen obtained from the tissue cul¬ ture medium of an FeLV transformed cell line (FL-74) was also tried and found effective in preventing the induc¬ tion of FeLV virus infection. Microbially Produced Vaccines

Science (1981) 214:1125-1123 and British patent application GB 2103622 A describe microbially-produced polypeptides that are useful as foot-and-mouth disease (FMDV) vaccines. Complementary DNA (cDNA) fragments were prepared from the portion of the FMDV genome that codes for the capsid protein VP 3 . These cDNA inserts were incorporated into a bacterial plasmid containing a tryp- tophan (trp) promoter and the recombinant plasmid was used to transform competent E. coli. The recombinant

OMPI

bacteria expressed a fusion protein composed of a polypeptide encoded by the trp leader and a portion of the trp E gene and a polypeptide encoded by the AP3 insert. The fusion protein was purified and tested in vitro and _in vivo for its ability to bind anti-VP3 antibodies and its ability to prevent FMDV infection in livestock. Science (1981) 219:614-620 describes the synthesis of a surface protein of rabies virus via expression in recombinant E. coli of a gene derived from the rabies virus genome. Vaccination Procedure

Emini, et al. Nature (1981) 304:699-703 report • that a low subinfectious and subprotective dose of live poliovirus can be used to potentiate the immune response to synthetic- peptides derived from poliovirus. It appears as if the initial synthetic vaccine "primes" the immune system and that the subsequent viral boost allows the initially-primed immune response to manifest itself in a potent humoral response. Other investigators have reported similar findings using microbially produced (recombinant) vaccines. These include poliovirus and hepatitis B (prime with reco binant/boost with live virus) and foot-and-mouth disease virus (prime with recombinant/boost with killed virus).

Disclosure of the Invention The present invention concerns polypeptides that comprise an amino acid sequence that defines an antigenic determinant of FeLV and that are useful as immunogens for eliciting or priming a humoral response in cats and immunizing cats against FeLV infection. These polypeptides may be made by (1) direct expression in microorganisms of recombinant DNA that includes an FeLV env DNA sequence that codes for such an amino acid

sequence or (2) conventional polypeptide synthesis procedures in the case of small polypeptides. The immunogenic properties of these polypeptides are unexpected since the prior art reports that purified gp70 protein was not an effective FeLV vaccine. The microbially produced polypeptides of the invention comprise an amino acid sequence that is homologous to at least a portion of the amino acid sequence of gp70 envelope protein of FeLV and are immuno¬ gens that elicit or prime a humoral response in cats and immunize cats against FeLV infection. One group of such polypeptides are E_-_c_ol_i-produced fusion proteins comprising a portion of the trp leader peptide and a portion of the trp E protein fused to a portion of the gp70 envelope protein of feline leukemia virus that

_ defines an antigenic determinant. Polypeptides of this group were made by isolating fragments of the env gene from available olecularly cloned FeLV DNA sequences, or synthesizing env gene fragments, incorporating the fragments into a replicable plasmid that uses the E. coli trp LE' sequence to direct expression of E. coli with the plasmid, and growing the resulting transformants in an appropriate bacterial culture medium. The polypeptide may be worked up from the E. coli cells by lysing the cells, removing Ξ. coli endotoxins from the lysate, and reducing the lysate with a reducing agent that cleaves disulfide bonds. It may be desirable to subsequently reoxidize the material.

Portions of the gp70 protein that have been identified as being immunogenic may be synthesized by standard polypeptide synthesis techniques and coupled to a carrier protein to produce effective FeLV immunogens.

The polypeptide or polypeptide-carrier protein conjugate is combined with an appropriate adjuvant and a

OMPI

parenteral vehicle for use as a vaccine. Cats may be immunized against FeLV by administering immunogenic amounts of these vaccines to the cats parenterally. The are preferably employed to prime an immune response and are followed with boosts of killed virus or subinfectiou amounts of live virus.

Brief Descriotion of the Drawinαs

In the drawings:

Fig.1 is adiagram ' of the plasmid pKHRl which is the source of the FeLV-B env gene used in the 0 examples.

Fig. 2 is a diagram of the FeLV genome including an exploded view of the env gene showing the restriction sites used in making the expression plasmid described in the examples. 5 Fig. 3 is the nucleotide sequence of -the coding strand of the env gene of the Gardner-Arnstein (GA) strain of FeLV, and the amino acid sequence deduced theref om.

Fig. 4 is a diagram of the structure of the - expression system for the trp LE'-FeLV fusion proteins described in the examples.

Fig. 5 is a flow chart of the procedure for making the intermediate plasmid ptGA.

Fig. 6 is a diagram of the plasmid ptrpLΞ'. Fig. 7 is the nucleotide sequence that codes for the trpLE' polypeptide and the deduced amino acid sequence of that polypeptide.

Fig. 8 is the nucleotide sequence and deduced amino acid sequence at the trpLE'/gp70 junction in the plasmid ptGA.

Fig. 9 is a flow chart of the procedure for . making the plasmid ptGAΔAval.

Fig. 10 is a flow chart of the procedure for making the plasmid ptGAΔApal.

Fig. 11 is a flow chart of the procedure for identifying an antigenic determinant of the gp70 molecule. F g- 12 is the nucleotide sequence and deduced amino acid sequence of the antigenic domain identified by the procedure of Fig. 11.

Fig. 13 is a flow chart of the procedure for making the plasmid pt9:3-19. Fig. 14 is an electrophoretogram of the SDS-

PAGE analyses of the protein products of ptGAΔAval, ptGAΔApal, and pt9:3-19.

Modes for Carrying Out the Invention

The microbially produced polypeptiides of the invention are distinct from the naturally occurring FeLV envelope proteins in several respects. Althougn a substantial portion or all of. he polypeptides will be homologous to the sequence of a naturally occurring FeLV gp70 protein, in most instances it will comprise only a fraction of the amino acid sequence of the natural gp 0 protein. The polypeptides may also include a portion of the pl5E protein. Also, since the homologous sequence is produced by microorganisms, it will not be processed (i.e., glycosylated) as natural gp70. Embodiments that are fusion proteins, such as the trp LE*-gp70 fusion proteins include amino acid sequences that are foreign to natural gρ70. The secondary and tertiary structures of such polypeptides may be different from native gp70 because of the lack of glycosylation or the presence of the foreign amino acid sequences. These differences may be reflected in immunological differences.

A preferred group of fusion polypeptides are polypeptides that include a segment of amino acids that is homologous to all or a substantial portion of at least one of the hydrophilic domains of the gp70 protein that occur between about amino acids 210 and 250 and at the gp70-ρl5E junction, i.e., at between about amino acids 415 and 450 of the gp85 protein, with counting beginning at the presumed start of the gp85 molecule.

A particularly preferred group of polypeptides are those that include one or more iterations of one of the following amino acid sequences (amino acid numbering begins with the presumed start of the gρ85 molecule of FeLV-B.)

(a) met gly pro asn leu val leu pro asp gin lys pro pro ser (this sequence occurs at amino acids 213-226 of the gp70 protein of GA FeLV-B);

(b) asp gin lys pro pro ser arg gin ser gin ile glu (this sequence occurs at amino acids 221-232 of the gp70 protein of GA FeLV-B); (c) pro glu tyr val tyr thr his phe asp lys thr val arg leu (this sequence occurs at amino acids 417-430 of the gp70 protein of ST FeLV-B); and

(d) asp lys thr val arg leu arg arg glu pro ile ser leu (this sequence occurs at amino acids 425-437 of the gρ85 protein of ST FeLV-B, i.e., the last eight amino acids of the gp70 protein and the first five amino acids of the ρl5E protein) .

As an alternative to the preferred microbially produced fusion polypeptides, the above described seg- merits or sequences (one or more iterations) may be synthesized and coupled to an appropriate protein carrier to produce an effective FeLV immunogen. Cysteines may be added to the segment or sequence to provide coupling sites. Lerner, et al, PNAS (1981) 78:3403-3407, describe

procedures for coupling small polypeptides to carrier proteins to produce immunogens. Other coupling procedures are described by Church, W. R., et al, PNAS (USA) (1983) 8J3_:255, O'Sullivan, M. J. and Marks, V. Methods in Eπzymology (1981) 7_3_:147-166, and Erlanger, B. F. Methods in Eπzymoloqy (1980) 7_ :85-104. Examples of carrier proteins that may be used are keyhole limpet he ocyanin, ovaibu in, porcine thyroglobulin, and bovine serum albumin. Coupling agents for preparing conjugates of the polypeptide and carrier protein include conventional crosslinking agents that are used to couple proteins sucn as aldehydes (e.g., glutaraldehyde), bis- diazotized benzadine, carbodiimides, succinimides, and i idates.

The invention is herein specifically exemplified with reference to FeLV strains GA -and ST (the nucleotide and deduced amino acid sequences of the env genes of these strains are reported by applicant in J Virol (1984) _4_9_:63Q), expression of fusion proteins of trpLΞ* and FeLV-GA gp70 sequences by E. coli transformants, and synthesis of conjugates of antigenic polypeptides homologous to g?7G or gρ70-p!5E junction sequences and carrier proteins. It will be appreciated, however, that the invention is intended to encompass polypeptides that include sequences that are homologous to gp70 or gρ70-p!5E sequences of other FeLV strains and subgroups, fusion proteins in which the gρ70 sequence is fused to a polypeptide derived from expression of DNA other than the trpLΞ' sequence, and expression of the polypeptides by transformable microorganisms other than E. coli, such as other bacteria and yeasts or viruses, using vectors that can replicate and express heterologous gene sequences in these organisms. Accordingly, the following examples are offered by way of illustration and

are not intended to limit the invention in any manner. Abbreviations used in the examples are: DTT, dithiothreitol; ATP, adenosine triphosphate; dTTP, deoxythy idine triphosphate; SDS, sodium dodecyl sulfate; SDS-PAGE, sodium sulfate- polyacrylamide gel electrophoresis; EDTA, ethylenediamine tetraacetic acid; Ac, acetate; BSA, bovine serum albumin; ELISA, enzyme linked immunosorbent assay; DEAE, diethylaminoethyl; ABTS, 2,2'-azino-di-(3-ethylbenzthiazoline sulfonic acid); HF, hydrofluoric acid.

Examples

General Procedures

All enzymes involved in the manipulation of nucleic acids were obtained from either New England Biolaos- or Bethesda Research Labs or were prepared following the manufacturer's recommended procedures. The conditions used for digestion and ligation of DNA, isolation of DNA fragments following gel electrophoresis, as well as transformation of bacterial hosts and selec¬ tion, are standard procedures well known to those skilled in the art of recombinant DNA. These, and other molecu¬ lar cloning techniques utilized in practicing the present invention can be found in Maniatis et al, "Molecular Cloning: A Laboratory Manual," Cold Spring Harbor Laboratory (1982). Digestions of DNA with restriction endonucleases are, unless otherwise stated, to completion and require 1-5 units enzy e/μg DNA for 30-60 min at 37°C Some digestions are purposefully partial, in that fewer than all sites on each molecule are digested. These are generally done at 0.05-0.5 units enzyme/μg DNA for 10-60 min at 37°C.

Ligations utilizing T4 DNA ligase are performed in 66 mM Tris-HCl, pH 7.6, 6.6 mM M Cl2' 10 mM DTT containing either 0.1 M ATP and 0.01-0.05 Weiss units ligase/20 ul reaction, for ligation of sticky ends, or 1.0 M ATP and 1.0-5.0 Weiss units ligase/20 yl reaction, for ligation of blunt ends. Reactions are performed at 14°C for 6-12 hr. Inter olecular reactions require 20-150 g/ml vector DNA for sticky-end ligation, and 100- 200 yg/ml vector DNA for blunt-end ligation. A 1-20-fold excess is maintained in insert DNA over vector DNA.

Intramolecular reactions require 10-20 yg/ml vector DNA.

Molecular Cloning and Characterization of GA-FeLV-B

The molecularly cloned GA-FeLV-B provirus was obtained in the form of recomoinant DNA molecule in- phage lamcda as described by Mullins, et al, J Virol (1981) 38:683. To summarize, human genomic DNA from ceils infected with GA-FeLV-3 was digested with EcoRI and molecularly cloned in lambda phage Charon 4A. -One such molecularly cloned provirus (lam-bda HF60) was additional- ly shown, by the authors, to be infectious when intro¬ duced into dog D-170 cells by transfection (Mullins, et al, ibid). The EcoRI fragment of larnoάa HF60 containing the entire proviral sequence, and flanking human sequence into whic the virus has integrated, was subsequently molecularly cloned in o the unique EcoRI site of the bacterial plasmid pKC7 (Rao and Rogers, Gene (1979) 7:79) and the resulting plasmid, designated pKHRl (A. Roach and N. Davidson) is shown in Fig. 1. The orientation of the molecularly cloned provirus was determined relative to the viral RNA genome as described by Mullins, et al, Nucl Acids Res (1980) 8:3287.

Fig. 2 depicts the env gene of FeLV and the locations of the sequences that encode the gp70 and pl5E

proteins. The env gene encodes a gρ85 precurso protein which is transported to the cell membrane of infected cells, and whic is cleaved, on virus budding, to the mature viral envelope proteins gp70 and pl5E. The gp70 protein is involved in the specific binding of virus to 5 cell receptors, to establish infection, and is known to contain the major antigenic determinants involved in the production of a virus-neutralizing antibody response to infection.

In order to locate the FeLV env gene, the 0 nucleotide sequence of the 3' portion of the molecularly cloned GA-FeLV-B virus was determined. Standard DNA sequencing methods and strategies were employed (see Maxam and Gilbert, Meth Enz (1980) 65:499; Sanger, et al, PNAS (1977) 74:5463; Messing, et a 1 , Nucl Acids Res 5 (1981) 309). The nucleotide sequence of the GA-FeLV-

B env gene and LTR regions, as well as the deduced amino acid sequence of the env gene product, is shown in Fig. 3. Protein sequence ho ology to known murine leukemia virus p70 and pl5E allowed correlation of the respective 0 FeLV proteins with the nucleotide sequence obtained. The sequences are identical to those determined by Elder, J. H. and Mullins, J. I., J Viroloαy (1983) 46;871-880.

Construction of ptGA Intermediate

Bacterial plasmids directing the expression of '5 FeLV env antigens contain several elements involved in the- expression of a fusion protein including FeLV anti¬ gens. With reference to Fig. 4, regions I and II contain, respectively, sequences of the E. coli tryptophan promoter/operator/ ribosome binding site and 0 . sequences encoding the E. coli trp LE ' protein (derived from E. coli trp Δ LE 1413, Miozzari, et al, J , Bact (1978) 133:1457 modified so as to introduce an EcoRI site

OMPI

*' „ .iPO

at the C-terminus of the protein-coding region). This trpLE r expression system has been previously described fay Kleid, et al (Science (1981) 214:1125 and European patent application no. 81301227.5). The nucleotide sequence of trpLE' is presented in Fig. 7. Region IV contains DNA . sequences encoding the various regions of the FeLV env protein. Region III is derived from a synthetic oligo- nucleotide linker which, if necessary, is used to fuse the trpLE ' and FeLV sequences so as to maintain the translational reading frame throughout the entire fused protein.

The bacterial plasmid constructs described here, ptGAΔAval, ptGAΔApal, and pt9:3-l-9, encode such fusion proteins containing various regions of FeLV gp70. These plasmids were constructed through an intermediate plasmid ptGA containing sequences of the entire FeLV gp85 precursor protein fused to trpLE' as diagrammed in Fig. 5. This strategy takes advantage of a Ball restriction site found at the signal peptide/gρ70 junction of the FeLV env gene. The plasmid pKHRl was partially digested with Ball (0.1-1.0 units/yg DNA, 10-60 min, 37°C) and then digested to completion with EcoRI (1-5 units/yg DNA, 30-60 min, 37°C). The desired 2.8 kb fragment, containing sequences from the Bail site at the signal peptide/gp70 junction 3'-ward through gp85 sequences, and terminating at the EcoRI site in human sequence flanking the 3' end of the provirus, was isolated by electrophoresis in agarose gels. This fragment was molecularly cloned into the 2.9 kb Ball-EcoRI fragment of the vector pBR322 containing the ampicillin resistance gene. The vector fragment had been isolated by electrophoresis in agarose gels following complete digestin with Ball and EcoRI (Ball: 1-5 units/yg DNA, 30-60 min, 37°C; EcoRI: as above). The ligation

mixture containing the above pBR322 and FeLV gp85 fragments (T4 DNA ligase: 1-20-fold excess FeLV fragment over vector fragment, 10-100 yg/ml vector fragment, 66 mM

Tris-HCl pH 7.6, 6.6 mM MgCl2' 10 mM D ? T ' °* 1 mM ATP ' 0.01-0.05 Weiss units/20 μl reaction, 14°C for 4-12 hr . for first step ligation of sticky end EcoRI site; dilute to 10-20 yg/ml vector in above buffer containing 1 mM ATP and 1.0-5.0 Weiss units ligase/20 μl reaction and incubate 14°C for 12 hr for second step, intramolecular blunt-end ligation of Ball ends) was then used to transform E. coli K12 strain MM294 to ampicillin resistance. Derived plas ids were tested for •regeneration of EcoRI and Ball restriction sites. One such plasmid is designated pGAenv (Fig. 5, part 1). In order to allow molecular cloning of the entire gp85 sequences in the proper reading frame at the Ecol site of the trpLE' expression vector, a synthetic oligonucleotide adapter was used. The nucleotide sequence of the synthetic oligo-nucleotide in the plasmid pSYC 79 is shown in Fig. 5, part 2. Polylinkers, containing BamHI, Smal/Xmal, EcoRI sites flank two copies of a synthetic E. coli lac gene operator sequence. Plasmids containing the adaptor result in the induction of the bacterial host lac operon, and consequently colonies of these cells show a blue phenotype on X-gal plates. The use of this adaptor in the construction of the ptGA plasmid is shown in Fig. 5, part 2. The plasmid pSYC 79 was digested with Xmal, to cleave the polylinker, and the site was then filled in with Pol I (Klenow frag¬ ment) (Xmal: 1-5 units/yg, 30-60 min, 37°C; Klenow enzyme: repair reaction performed as described in

Maniatis, et al, supra, pg. 394). The resulting small, blunt-ended adaptor fragment was purified by polyacryl- amide gel electrophoresis. The plasmid pGAenv was

OMPI

partially digested w i th Ball ( above) and l igated to the pur ified adaptor fragment (T4 DNA ligase: intermolecular

A blunt-end ligation performed as above (intramolecular) but at 200 yg/ml vector and 20-100-fold excess adaptor). This material was used to transform E. coli K12 MM294 to ampicillin resistance and blue phenotype on X-gal plates. Resulting plasmids were analyzed with EcoRI, to demon¬ strate insertion at the desired Ball site, and with Haelll, to confirm proper fusion at the adaptor/Ball site junction. The latter was confirmed by DNA sequencing of the junction. One such plasmid is designated pGAenv-lac (Fig. 5, part 2).

The resulting 2.8 kb EcoRI fragment of pGAenv- lac containing adapted FeLV gp85 sequences was isolated by electrophoresis following digestion with EcoRI (as above), and was ligated (T4 DNA ligase: sticky-end ligation as above) to ptrpLE' which had also been digested with EcoRI (as above). The plasmid ptrpLE' contains sequences of the S. coli trp Δ LE 1413 operon from the PvuII site 285 bp upstream of the trpLE' gene ATG codon to the EcoRI site generated at the C- terminus of the LE' gene (the trp A LE 1413 sequence is described in European patent application no. 81301227.5). This PvuII-EcoRI fragment had- been molecularly cloned into the PvuII-EcoRI fragment of p8R322. The resulting plasmid, shown in Fig. 6, confers ampicillin resistance and encodes the trpLE' protein fragment. Fig. 7 shows the nucleotide sequence of the LE' gene and the deduced amino acid sequence. The ligation mixture containing the ptrpLE' vector and the 2.8 kb FeLV gρ85 fragment was used to transform E. coli

K12 MM294 to ampicillin resistance and white phenotype on X-gal plates. Resulting plasmids were analyzed witn EcoRI, to confirm regeneration of sites, and with Hindlll

plus PvuII, to determine- the orientation of the inserted EcoRI fragment. One plasmid, containing an insert in the proper orientation, is designated ptGA. This plasmid, shown in Fig. 5, part 3, contains the FeLV gp85 sequences fused, in the proper reading frame, to the trpLE' expression vector. The nucleotide sequence and deduced amino acid sequence at the trpLE'/gp70 junction in ptGA are shown in Fig. 8. This plasmid was used as an intermediate in subsequent constructions of the plasmids ptGAΔAval, ptGAΔApa, and pt9:3-19.

Construction of ptGAΛAval

The ptGAΔAval plasmid encodes- a trpLE' fusion protein containing approx. 240 amino acids derived from the C-terminal half of FeLV gp70 and the N-terminal region of pl5E. This plasmid was derived from. ptGA as outlined in Fig. 9, through an intermediate construction ptGA Ball-Hindlll in which sequences of ptGA between the unique Ball site, in sequences encoding p!5E, and the unique HindiII site, in sequences flanking the 3'-end of the integrated FeLV provirus in pKHRl, were deleted. ptGA Ball-Hindlll was constructed as follows. ptGA was digested with Ball and Hiπdlll and the HindIII sites repaired with Klenow fragment, as described above. This material was then ligated (T4 ligase: intramolecular blunt-end conditions as above) and used to transform E. coli to ampicillin resistance. Plasmids of resultant colonies were screened to ensure deletion of .1.0 kb from the 2.8 kb EcoRI fragment containing the FeLV sequences. Translation terminates at an adventitious termination codon in sequences distal to the Hindlll site. This plasmid, ptGA Ball-Hindlll, was then used to generate ptGAΔAval.

The plasmid was digested to completion with Aval (Aval: 1-5 units/μg DNA, 30-60 min, 37 β C) and partially digested with EcoRI (EcoRI: 0.05-0.2 units/μg DNA, 10-30 min, 37°C). The ends were repaired with Klenow fragment and the approximately 4 kb Aval-partial EcoRI fragment isolated by gel electrophoresis. This was then allowed to recircularize (T4 DNA ligase: intramolecular blunt-end conditions as above) and used to transform E. coli to ampicillin resistance. Plasmids of derived colonies were screened for regeneration of the EcoRI site at the ligation site at the trpLE'-FeLV sequence junction.. The translational reading frame is - maintained across this junction. This plasmid is designated ptGAΔAval.

Construction of tGA^Apal The plasmid ptGAΔApal encodes a trpLE' fusion protein containing approx.120 amino acids of gp70 derived from amino acids 176-293 of the env gene product. This plasmid was derived from ptGA as diagrammed in Fig. 10 through an intermediate construction ptGA Rsal in which gp70 encoding sequences distal to the Rsal site at amino acid 293-294 have been deleted. ptGA Rsal was constructed as follows (Fig. 10, part 1). ptGA was digested to completion with S al (Smal: 1-5 units/yg DNA, 30-60 min, 37°C) and then partially digested with EcoRI (EcoRI: 0.05-0.2 units/yg DNA, 10-30 min, 37°C) and the approximately 3.4 kb vector fragment isolated. The plasmid ptGA was also digested to completion with EcoRI (EcoRI: 1-5 units/yg DNA, 30-60 min, 37°C) and with Rsal (Rsal: 1-5 units/yg DNA, 30-60 min, 37°C) and the 780 bp EcoRI-Rsal fragment containing sequences encoding the amino terminal half of gρ70 isolated. This fragment was ligated to the vector (T4 ligase: two step

GMPΓ

process; intermolecular sticky end, plus intramolecular blunt end) and the mixture was used to transform E. coli

_• to ampicillin resistance. Resulting plasmids were screened, using EcoRI, and the desired, plasmid is indicated ptGAΔRsal. The plasmid ptGAΔApal is derived from ptGAΔRsal by deletion of sequences encoding the amino terminus of gp70 to the Apal site at sequences encoding amino acid 174-175 of gρ70. ptGAΔApal was constructed as follows (Fig. 10,- part 2): the plasmid ptGA Rsal was partially digested with EcoRI (EcoRI: 0.05-0.2 units/ug DNA, 10-30 min, 37°C) and the sticky ends repaired with DNA polymerase I (Klenow fragment) in the presence of nucleotide triphosphates, as described above). This material was then digested to completion with Aval (Aval: 1-5 units/yg DNA, 30-60 min, 37°C) to isolate- the 3.7 kb vector fragments. This same plasmid, ptGAΔRsal, was also digested to completion with. Apal (Apal: 1-5 units/μg DNA, 30-60 min, 37°C) and the sticky ends repaired as above. The isolated 280 bp Apal-Aval fragment was then ligated to the vector, in a two step process as above, and the mixture used to transform E. coli to ampicillin resistance. Transformants were screened for regeneration of the EcoRI site at the EcoRI/repair-A-pal/repair junction, as well as for expression of antigen. Proper ligation of the repaired EcoRI and the Apal sites results in the in-frame fusion of trpLE' and FeLV sequences. The desired plasmid is designated ptGAΔApal.

Construction of pt9:3-19

The plasmid pt9:3-19 encodes a trpLE' fusion protein containing 14 amino acids of gp70 that comprise an antigenic domain of the FeLV env antigen. The location of this domain was determined by mapping the virus with a

-fiUiU/.,}

OMH

virus neutralizing monoclonal antibody as follows: Hybrido as secreting antibodies directed against the complex of gp70 'and pl5E proteins of FL-74 FeLV (prepared as described by Schneider, J., et al, J Virology (1980) 33:597-605) were derived from spleen cells from mice immunized with gp70/pl5E complex as described by Lutz, H., et al, J Immun Methods (1983) 5_6_:209-220. Samples of these monoclonal antibodies were obtained from Dr. Niels Petersen, Department of Medicine, OC Davis School of Veterinary Medicine. Several monoclonal antibodies were examined for the ability to neutralize FeLV in a focus- forming assay using CCC cl.81 (S+,L-) cells. One gρ70 monoclonal antibody, designated cl.25, was able to neutralize all viruses tested, of all FeLV subgroups, w *_ith the exception of the FL-74 FeLV-B. This antibody was used to determine the site on the gρ70 molecule involved in virus neutralization by this monoclonal antibody.

The procedure used to locate this site is shown in Fig. 11. pKHRl was digested with Xhol and EcoRI. The 3.1 kb XhoI-EcoRI fragment of this plasmid, containing the entire 2.0 kb of envelope-encoding sequences, was isolated and digested with DNasel, in the presence of Mn++, to a mass average molecular weight of approximately 500-700 bp as judged from EtBr-staining of analytic agarose gels. This corresponds to a number average molecular weight of approximately 100 bp, based on analysis of end-labelled fragments. Fragments were made blunt-ended by treatment with DNA polymerase I (Klenow fragment) in the presence of nucleotide triphosphates and ligated to an excess of 32p-ι a belled synthetic EcoRI linker (5 '-^ 2 P-GGAATTCC). Following digestion with EcoRI, to generate sticky-ends, fragments were fractionated on cellulose (CF-11, Whatman) to remove

linker monomers and residual triphosphates. This material was then molecularly cloned into the EcoRI site encoding amino acids 1004-1005 (Glu-Phe) of the 0 - galactosidase gene in phage Charon 16. The Charon 16 phage DNA had previously been digested with EcoRI, and - the 5' ends dephosphorylated using bacterial alkaline phosphatase to maximize insertion frequency. EcoRI- digested phage DNA and E_c_oRI-adapted fragment DNA were ligated and the ligation mix packaged _in vitro as described by Sternberg, N., et al. Gene (1977) l_:255-280. Approximately 30,000 independent plaques were derived; roughly 10% contained inserts as judged by Ln situ plaque hybridization using, as probe, the original XhoI-EcoRI FeLV fragment. Staining patterns of plaques grown on plates containing X-gal were also indicative of insertion frequency; phage containing inserts within the .

2-galactosidase gene produced either white plaques, or plaques showing a faint blue ring at the plaque margin. Ten percent of this library was amplified and used in immunoscreening. In order to assess the ability to detect expression in E. coli of a 3-galactosidase fusion protein containing the antigenic determinant recognized by cl.25, a recombinant phage, Charon 16:GA, was constructed in which sequences encoding the entire mature FeLV gρ85 were fused, in frame, to the EcoRI site of Charon 16. Using a synthetic polylinker, the Ball site at sequences encoding the envelope signal peρtide/gp85 junction was adapted to create an EcoRI site as described above (ptGA) and to allow an in-frame fusion with the EcoRI site of β-galactosidase. Uncloned phage from this experiment were screened for expression of the cl.25 determinant. Purification of phage identified by the antibody was followed both by repeated immunoscreening and by staining

with X-gal. Purified phage were shown to contain the expected FeLV sequences, in the expected orientation, and

A were further shown to produce a fusion protein detectable by cl.25 in Western analysis, see below.

Initial immunoscreeπs of the random DNA fragment library were performed at a plaque density of approximately 1Q3 per 100 mm plate. Using the simplest of assumptions, this corresponds, in this experiment, to an expectation of one immune-reactive plaque per two plates. This expectation was realized in these initial screens; 11 immune-reactive plaques were chosen for purification by repeated immunoscreens. Of the initial 11 plaques chosen for examination, all But one gave consistently reliable signals allowing purification. X-gal staining patterns were again useful in this proce- dure. Purified phage were homogeneous as judged by immune-reactivity and X-gal staining.

DNA was isolated from immune-reactive phage and the structure of these recombinant phage examined by restriction endoπuclease analysis. Phage DNAs were digested with EcoRI, to liberate the insert fragment(s), and DNA polymerase I (Klenow fragment) was used to label the EcoRI ends using dTTP and 32?-dATP. Polyacrylamide gel analysis showed all immune-reactive isolates to be identical; all contained one unique 50 bp EcoRI fragment. This finding is in keeping with estimates derived from consideration of the complexity of the amplified library used in screening.

To expedite DNA sequence analysis of the 50 bp fragment involved in immune-reactivity, a region of the phase DNA containing the EcoRI insertion site of Charon

16:9-3 was subcloned into the plasmid pUC13 (Vieira, J. and Messing, J., unpublished, Bethesda Research Labs catalog (1983). A fragment spanning the region from the

unique SstI site encoding amino acids of the β-galactosidase gene (Fig. 12), through the EcoRI site, t a PstI site located beyond the lac operon fragment of Charon 16. DNA sequence analysis was performed using the chemical sequencing procedures of Maxa and Gilbert; sequence was read from the PvulI site directly 3' of the EcoRI cloning site. Sequence analysis demonstrates an insert of 43 bp of the GA-FeLV envelope gene flanked by synthetic EcoRI linker sequences. This represents nucleotides 635-678 of the region of the env gene encoding gp70 and is present so as to give rise to an in- frame fusion protein with both upstream, and downstream, β-galactosidase sequences. The sequence of the encoded gp70 fragment (amino acids 213-226 of gρ70) is shown in Figure 12. The capital letters in the sequences denote the FeLV sequences. The dagger symool in the-λ Charon 16:9-3 nucleotide sequence indicates a T *- C mutation. The antigenic determinant recognized by cl.25 is contained within this 14 amino acid region.

This 50 bp EcoRI fragment was molecularly cloned into the EcoRI site of ptrpLE' to obtain expression of the antigenic determinant as a fusion protein with trpLE 1 as shown in Figure 13. The subcloning plasmid pUC13:9-3 was digested to completion with EcoRI (EcoRI: 1-5 units/μg DNA, 30-60 min, 37°C) , to liberate the EcoRI-fragment, and with Haelll (Haelll: 1-5 units/μg DNA, 30-60 min, 37°C) , to inactivate the pUC13 vector. This mixture was then ligated (T4 ligase: intermolecular sticky end) to ptrpLE 1 which had previously been digested to completion with EcoRI and used to transform E. coli to ampicillin resistance.

Transfor ants were screened for expression of the cl.25 determinant by immunologic analysis of expressed proteins (as described below) using cl.25 to detect antigen.

Several isolates were found to contain an antigenic fusion protein of a size indicative of one inserted EcoRI fragment; one isolate, pt9:3-19, was found to contain two inserts and to be highly antigenic.

Samples of E. coli K12 strain MM294-1 transformed with the plasmids ptGAΔAval, ptGAΔApal, and pt9:3-19 were deposited at the American Type Culture Collection (ATCC), 12301 Parklawn Drive, Rockville, Maryland. Their deposit date and accession numbers are listed below. Sample Deposit Date ATCC Accession No ptGAΔAval 2 December 1983 ^ 39528 . ptGAΔApal 2 December 1983 -- 39529 pt9:3-19 2 December 1983 39530

These deposits were made under the Budapest Treaty and will be maintained and made available in accordance with the provisions thereof.

Cultivation

E. coli containing trpLE' fusion plasmids are typically grown under non-inducing conditions in M9 minimal medium (Maniatis, et al, supra) plus glucose

(0.2%), 1 yg/ml Bl, Casamino Acids (0.5%, charcoal treated) tryptophan (100 yg/ml) and ampicillin (50 yg/ml). E. coli cells are induced to express trpLE' fusion proteins in a variety of ways including a) washing growing cells into medium above lacking tryptophan, b) washing growing cells into medium above containing a limiting tryptophan, e.g., 2-5 yg/ml, or c) allowing culture to deplete tryptophan supplies by growth, e.g., in fermenter. In some cases, cells are found to be partially induced in the presence of tryptophan. * Furthermore, these cells often contained a larger proportion of undegraded fusion protein than under

OMPI

induced conditions. Similar results are often obtained in overnight cultures in rich medium.

A

Detection of trpLE 1 Fusion Protein

Induction of trpLE'-FeLV fusion protein, by any of the methods above, results in the appearance of highly refractile particles within cells carrying the plasmid. These particles are visible in the microscope, using phase optics (1250x), and are characteristic of the synthesis of LE' fusion proteins.

Characterization of Expressed Protein

Protein products of cells containing plasmids were analyzed by SDS-PAGE (Laemmli U.K., Nature (1970) 227:680). Ceils grown under induced, or non-induced conditions, were sonicated and boiled in sample buffer prior to electrophoresis. Figure 14 shows a gel, stained with Coomassie Blue, of protein products from cells containing "the ptGAΔAval, ptGAΔApal and pt9:3-19 plasmids. The ptGAΔAval plasmid encodes the expected 46 kd protein; smaller degradation products are observed. The ptGAΔApal plasmid encodes a 36 kd protein; smaller degradation -products are observed. The pt9:3-19 plasmid encodes a 25 kd fusion protein.

These protein products were analyzed immunologically by Western analysis, using modifications of a method first described by Towbin, et al, PNAS (1979) 76:4350. Proteins are resolved by SDS-PAGE, and the pattern is then transferred electrophoretically to a solid support, e.g., CNBr-activated paper. This paper is then reacted with specific antibodies, e.g., antibodies to FeLV gp70, and protein bands reacting with antibody are visualized, e.g., using 125ι-labelled Staph aureus protein A (Ivarie and Jones, Anal Biochem (1979) 97:24).

Using either cl.25 or goat anti-FeLV gp70 antibody, it was confirmed that the protein products observed in Fig. 14 contain FeLV gp70 protein sequences.

Purification of FeLV Antigen

Refractile particles from induced cells containing ptGA were purified by centrifugation. Cells were resuspended in buffer containing 50 mM Tris-HCl, pH 8.0, 5 mM EDTA, 150 mM NaCl and 0.2% NP-40 and sonicated. The lysate was subjected to low speed centrifugation; the pellet, containing predominantly particles of FeLV antigen, was washed by several subsequent cycles of

. resuspension, sonication, and centrifugation. The final product can be resuspended in buffer, or can be solubilized with 1% SDS, in the presence or absence of r ' educing agent. Antigen was also prepared from solubilized whole cell lysates. Induced cells are sonicated in buffer containing 50 mM Tris-HCl pH 7, 10 mM EDTA, 50 mM DTT and 2% SDS. Lysates are heated briefly (100°C/5 min) to fully denature the protein, and insoluble debris is removed by centrifugation. This lysate is then

fractionated by gel filtration chromatography (Sephacryl S-200 in buffer containing 50 mM NaOAc, pH 5.5, 0.5 mM EDTA, 2 mM DTT and 0.1% SDS) and all fractions 20 kd pooled and concentrated. Prior to immunization, all SDS containing samples are dialyzed to a final SDS concentration of 0.1%. Once solubilized in higher % SDS, the proteins are soluble in 0.1% SDS.

Approximately 0.1-20 mg protein is compounded with an appropriate adjuvant (complete Freuπd's, incomplete Freund's, aluminum hydroxide, or a synthetic adjuvant), and used to inoculate cats.

Synthesis of gp70 and gp70-p!5E Junction Sequences and Coupling to Carrier Proteins

The following polypeptides were synthesized using a SAM II automatic peptide synthesizer (Biosearch, Inc., San Rafael, CA)

Peptide I H - cys asp lys thr val arg leu arg arg glu pro ile ser leu - OH

Peptide II H - cys pro glu tyr val tyr thr his phe asp lys thr val arg leu - OH

Peptide III H - cys met gly pro asn leu val leu pro-asp gin lys pro pro ser - OH Peptide IV

H - asp gin lys pro pro ser arg gin ser gin ile glu cys ser - OH

Conjugates of these polypeptides and bovine serum albumin, keyhole limpet hemocyanin or porcine thyroglobulin were made as follows. Eleven mg of N- maleimido-6-aminocaproyl-2 '-nitro-4 '-sulfonic acid sodium salt is added to a solution of 22 mg of carrier protein in 6 ml of 0.1 M phosphate, pH 7.5. After 15 min the solution is chromatographed on a Sephadex G-25 column in 0.1 M phosphate, pH 6. Protein-containing fractions are pooled and treated with . 18 mg of the polypeptide. The reaction is allowed to proceed overnight, the solution is dialyzed against 61 H2O, chromatographed on a Sephadex G- 50 column in 0.01 N NH4OH, lyσphilized and analysed. Approximately 0.1-20 mg of each conjugate is compounded with an adjuvant for use in vaccinating test animals.

OMPI

The above described fusion proteins and peptide-carrier protein conjugates are tested as FeLV vaccines in cats and guinea pigs as follows.

Cat Trials: Immunogenic ity and Efficacy Immunogenicity may be evaluated by determining the presence of aπti-gp70 antibodies and FeLV neutralizing antibodies in the serum of cats vaccinated with the polypeptides. Immunoprotection may be evaluated by observing the effects of FeLV on the vaccinated cats. The following procedures are used in these evaluations.

Young FeLV-free cats are used. Prior to _ vaccination the cats are bled on day 0 and approximately 2 ml serum is collected as pre— vaccination control. The prescribed dose of polypeptide preparation is injected intramuscularly into the lateral thigh muscles. The cats are vaccinated on days 0, 21, and 42 and bled on days 7, 14, 21, 28, 35, and 42, to obtain test sera.

Immunogenicity was determined by an ELISA measurement of anti-FeLV gp70 antibodies as follows: . Immulon II microtiter plates (Dynatech) are coated with purified FeLV gp70 for 3 hr at 37°C. 50 ng protein per well in 100 yl coating buffer (0.1M Na2Cθ3, 0.02% aN3* pH 9.6) are used. Plates are then stored overnight at 4°C, and are stable for several weeks. Plates are washed 3X with ELISA wash (0.15 M NaCl, 0.05% Tween 20) and

100 l experimental cat sera is diluted (usually 1:50) in buffer 3 (buffer 3 = 0.15 M NaCl, 0.001 M EDTA, 0.05 M Tris-HCl, pH 7.4, 0.05% Tween 20) was added to gp70 coated wells and incubated one hr at 37°C. Plates are washed 3X with ELISA wash, then reacted 45 min at 37 β C with 100 μl/well of a 1:200 dilution in buffer 3 of rabbit anti-cat antibody conjugated to horseradish peroxidase.

Plates are washed 3X with ELISA wash, then reacted with 100 μl of substrate solution (5 ml 0.05 M citric acid, pH 4, + 20 /tl 27.45 mg/ml ABTS + 20 yl 2% H2O2 until signal to background color development is adequate. The reaction is stopped with 0.2 M HF and the optical density at 405 nm is determined.

Virus neutralizing antibody in cat sera is determined by a focus-forming assay as follows. Clone 81 cells contain a defective murine sarcoma virus genome. Upon infection of the cell with FeLV, the non-defective FeLV allows for expression of the sarcoma virus, and thus the appearance of a transformed cell phenotype. As transformed cells accumulate locally, a., focus develops. The procedure used is from Fischinger, et al, J Virol (1974) 1_4_:177-179. Tissue culture disnes are seeded on day -1 with 2 x 10 5 CCC clone 81 (S+L-) cells in 5 ml McCoys 5A medium supplemented with 15% heat-inactivated fetal bovine serum and 50 yg/ml gentamycin. Dishes are incubated at 37°C in a 5% C0 2 humidified incubator. On day 0 cells are treated with 1 ml DEAE-dextran (25 yg/ml in media) for one hr at 37°C. Cells are washed IX with 2ml media. Washed, treated cells are infected with a small volume (0.2-0.5 ml) of dilutions of the virus- containing stock in duplicate, for 60 min at 37°C, with intermittent rocking. Media (5 ml) is added to the dishes, and incubation continued at 37°C. The media is changed on day 1, day 4, day 8, and day 12. Foci are counted on days 10-14.

The presence of virus neutralizing antibodies is determined from the reduction in infectious virus titer upon incubation of a known amount of virus with cat serum, in the presence, or absence, of exogenous complement. The procedure is as follows. CCC clone 81 (S+L-) cells are seeded in 60 mm tissue culture dishes at

2 x 10 5 cells per dish in 5 ml media on day -1, and incubated at 37°C in a 5% CO2 humidified incubator. Serum samples are heat inactivated at 56°C for 60 min. 100 ul Aliquots of the sera are ser ially diluted in media in quadruplicate. To all sample dilutions 100 yl of stock virus, diluted to contain 50-100 focus inducing units (FIU), are added. To duplicate wells of virus- antibody mixtures 50 yl of a 1:10 dilution of rabbit complement 1:50 final dilution, is added. These reactions are incubated 60 min at 37°C. The 81 cells are treated with 1 ml DEAE-dextran (25 ug/ l in media) for 60 min at 37°C, washed lx with 2 ml media, then infected with the virus-antibody mixtures for 60 min -at 37°C with intermittent rocking. Media (5 ml) is added and the disne are incubated at 37°C for 10-14 days with media changes on day 1, day 4, day 8, and day 12. Foci are counted, and the neutralizing titer of the serum sample determined as the serum dilution which causes a 50% reduction of the input virus FIU titer.

Immunoprotection is measured by an ELISA assay for persistent vire ia in FeLV challenged vaccinates.

The procedure is as follows. Following the appearance of substantial anti-gp70 titers, the cats are challenged' with a subcutaneous injection of 5 x 10^ live FF 64/ST- FeSV transformed feline fibroblasts. Viremia is measured weekly by an ELISA that measures levels of FeLV core protein p27 by the use of several mouse monoclonal antibodies which recognize the protein. (Lutz, H., et al, supra) .

Catching antibody (a pool of IgG fractions from several mouse monoclonal anti-p27 antibodies) was diluted to 5 yg/ml in coating buffer (0.1 M Na 2 Cθ3, 0.02% a 3, pH 9.6). Add 100 μl to each well of Immulon II microtiter plates (Dynatech) and incubate 3 hr at 37°C,

then overnight at 4°C. Wash the coated plates 3X with ELISA wash (0.15 M NaCl, 0.05% Tween 20) and IX with distilled water. Seal and store at -20 β C. Samples are diluted 1:4 in buffer 3 containing 0.13% Tween 20. Add BSA to 0.1% after pH adjustment. Add 100 1 of diluted sample to duplicate wells of the coated, washed plates.

Include a standard curve of purified p27, 0-50 ng/well, in 100 yl of buffer 3 + 0.1% Tween 20. Incubate for 60 min at 37°C. Wash the plates 3X with ELISA wash. Dilute the conjugated antibody (a pool of two mouse anti-FeLV p27 antibodies conjugated to horseradish peroxidase) as determined for the particular conjugate, and add 100 yl to each well. Incubate 30-60 min at 37°C. Wash the plates 3X with ELISA wash. Add 100 μl substrate solution (5 ml 0.05 M citric acid ' , pH 4 + 20 yl 27.45 mg/ml ABTS +- 20 μl 2% H2Q2'' to eac h well, and incubate at room temperature until the signal, to background ratio is adequate. Stop the reaction with 100 μl 0.2 M HF, and determine the optical density at 405 nm. The p27 concen¬ tration can be determined from the standard curve. The protein products described in the examples may be evaluated for immunogenicity and immunoprotective activity by the above tests and shown to be effective vaccines against FeLV infection.

Guinea Pig Trials: Immunogenicity and Efficacy Guinea pigs (350-400 g, 3 animals per group) were vaccinated as follows:

Day 0: vaccination — injected IM with 0.2 mg conjugate in complete Freund's adjuvant or 0.4 mg fusion protein in incomplete Freund's adjuvant

Day 14: incremental boost — injected with 0.2 mg conjugate in incomplete Freund's adjuvant or

0.4 mg fusion protein in incomplete Freund's adjuvant

Day 28: final boost -- injected with "10 ml equivalent" inactivated virus prepared as follows. FF64/280 feline fibroblast cells infected with Snyder-Theilen (ST) FeLV were grown to confluent onolayer in standard medium (Modified Eagle's Medium, L15) plus 10% fetal calf serum (FCS). The FCS was then withdrawn and replaced with medium alone. Supernatant was collected after 24-48 h and concentrated approximately 200-fold by ultraf iltration. Formaldehyde to 0.6% by weight was added to inactivate the virus. Aliouots (0.05 ml) of concentrate were diluted and then prepared with incomplete Freund's adjuvant for use as final boosts.

Test sera are taken from the guinea pigs two weeKS after each injection. Immunogenicity tests on the sera for antibodies to gp7Q and peptides I, II, III, and IV were made using the ELISA procedure described above.

Virus neutralizing tests were also made on the guinea pig sera using the focus forming assay described above as well as complement-dependent antibody mediated cytotoxicity (C'DAC) tests according to Terasaki, P. I., and McClelland, J. D., Nature (1964) 204:998-1000. The C'DAC test used rabbit complement and FL74 (FeLV infected) cat cells as target cells for serum antibody binding and complement cytotoxicity.

The results of these tests are tabulated below. Except where indicated otherwise results not in parentheses are on sera taken after the initial vaccination. Results in parentheses are on sera taken after the killed virus injection.

CMPI

Irmxino gen i city C'OPC Virus Neutrali¬ zation

10

nd = not determined +, ++ = significant antibody titer/cytoxicity/virus neutralization - = no significant titer/cytotoxicity/virus neutralization

The results of the immunogenicity tests show L5 that all the vaccines produce antibodies to gρ70 and that the killed virus injection produces a significant increase in anti-gρ70 response. (Controls, vaccinated with saline/ adjuvant, and boosted with killed virus failed to show a large response after a single boost.) A 20 correlative increase was ooserved in the complement- dependent cytotoxicity after the killed virus boost.

The polypeptides of the invention are used for active immunization of cats against FeLV. For such use the polypeptides will usually be formulated with 5 pharmaceutically acceptable liquid vehicles for parenteral injection such as- saline. Ringer's solution, dextrose solution, and Hank's solution. As used herein to describe such vehicles, the term "pharmaceutically acceptable" means that the vehicle is nontoxic, generally 0 inert, and does not affect the functionality of the active ingredients adversely. Preferably the formulation will contain one or more adjuvants (compounds capable of potentiating the desired immune response) such as the

OMPI IPO

commonly used water and oil emulsions (e.g., Freund's adjuvants), alum (potassium aluminum sulfate), aluminum hydroxide, calcium phosphate, and synthetic polynucleotides. The dose and dosage regimen used in the vaccinations may vary depending upon the age and weight of the animal, the mode of parenteral administration, and the presence of adjuvants in the formulation. Individual doses will usually be in the range of about 0.1 to 10 mg polypeptide. As indicated the vaccine injections are preferably used to prime the immune response and are followed by injection with killed virus or subinfectious amounts of live virus. The vaccination will typically be followed by booster inoculations periodically through the first year of life and beyond. As used herein the term "immunogenic amount" is intended to encompass such doses. * The vaccine may be administered by any parenteral route (intravenously, intraarterially, intraperitoneally, subcutaneously, intradermally, intramuscularly, or intrathecally). It will preferably be administered subcutaneously or intramuscularly. Modifications of the above described modes for carrying the invention that are obvious to those of skill in the fields of protein chemistry, immunology, recombinant DNA technology, and/or veterinary medicine are intended to be within the scope of the following claims .

O raHx!