Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
FOAMS BASED ON THERMOPLASTIC ELASTOMERS
Document Type and Number:
WIPO Patent Application WO/2019/202098
Kind Code:
A1
Abstract:
The present invention relates to particle foams of thermoplastic polyurethane and polypropylene, molded parts produced therefrom, to methods for producing the particle foams and molded parts, and to the use of the molded parts for shoe midsoles, shoe insoles, combined soles, cushioning elements for shoes, bicycle saddles, bicycle tires, damping elements, upholstery, mattresses, supports, handles, protective films, in components in automobile interiors and automobile exteriors, in balls and sport devices or as a floor covering.

Inventors:
POESELT, Elmar (Elastogranstraße 60, Lemfoerde, 49448, DE)
GUTMANN, Peter (Carl-Bosch-Strasse 38, Ludwigshafen, 67056, DE)
RAPP, Florian Tobias (Carl-Bosch-Strasse 38, Ludwigshafen, 67056, DE)
PRISSOK, Frank (Elastogranstraße 60, Lemfoerde, 49448, DE)
Application Number:
EP2019/060135
Publication Date:
October 24, 2019
Filing Date:
April 18, 2019
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BASF SE (Carl-Bosch-Str. 38, Ludwigshafen am Rhein, 67056, DE)
International Classes:
C08J9/00; A43B13/04; C08J9/18; C08J9/232; C08L75/04
Domestic Patent References:
WO2010010010A12010-01-28
WO1994020568A11994-09-15
WO2007082838A12007-07-26
WO2017030835A12017-02-23
WO2013153190A12013-10-17
WO2010010010A12010-01-28
WO2007082838A12007-07-26
WO2014150122A22014-09-25
WO2014150124A12014-09-25
WO2016146537A12016-09-22
WO2016146537A12016-09-22
WO1994020568A11994-09-15
WO2017030835A12017-02-23
WO2010010010A12010-01-28
WO2014150122A22014-09-25
Foreign References:
DE102011108744A12013-01-31
EP2017079049W2017-11-13
EP1979401A12008-10-15
US20150337102A12015-11-26
EP2872309A12015-05-20
EP3053732A12016-08-10
US20150337102A12015-11-26
Other References:
"Plastics Additives Handbook", 2001, HANSER PUBLISHERS, pages: S98 - S136
"Kunststoff-Taschenbuch", 1998, HANSER-VERLAG
"Plastics Additives Handbook", vol. 1, 2001, HANSER PUBLISHERS, pages: S98 - S136
"Kunststoff-Handbuch", vol. 4, 1996, article "Polystyrol"
Attorney, Agent or Firm:
ALTMANN STÖSSEL DICK PATENTANWÄLTE PARTG MBB (Dr. Andreas Altmann, Dudenstraße 46, Mannheim, 68167, DE)
Download PDF:
Claims:
Patentansprüche

1. Partikelschaum aus einer Zusammensetzung (Z) umfassend

a) 60 - 90 Gew. % thermoplastisches Polyurethan als Komponente I

b) 10 - 40 Gew-% Polypropylen als Komponenten II,

wobei die Summe der Komponenten I und II sich zu 100 Gew-% ergibt.

2. Partikelschaum nach Anspruch 1 , umfassend

a)65 - 80 Gew. % thermoplastisches Polyurethan als Komponente I

b)20 - 35 Gew-% Polypropylen als Komponenten II,

wobei die Summe der Komponenten I und II sich zu 100 Gew-% ergibt.

3. Partikelschaum gemäß einem der Ansprüche 1 bis 2, wobei der mittlere Durchmesser der Partikelschäume zwischen 0,2 und 20 mm liegt.

4. Verfahren zur Herstellung eines Formkörpers aus Partikelschäumen nach einem der An- sprüche 1 bis 3, umfassend

i. Bereitstellen einer erfindungsgemäßen Zusammensetzung (Z);

ii. Imprägnierung der Zusammensetzung mit einem Treibmittel unter Druck;

iii. Expandieren der Zusammensetzung mittels Druckabfall.

5. Formkörper aus Partikelschaum gemäß einem der Ansprüche 1 bis 4.

6. Formkörper aus Partikelschaum gemäß einem der Ansprüche 1 bis 4, dadurch gekenn- zeichnet, dass die Zugfestigkeit des Formkörpers oberhalb 600 kPa liegt.

7. Formkörper nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass die die Reißdehnung über 100% liegt.

8. Formkörper nach Anspruch 5, 6 oder 7, dadurch gekennzeichnet, dass die Druckspan- nung bei 10% Stauchung oberhalb von 15kPa liegt.

9. Formkörper gemäß einem der Ansprüche 5 bis 8 dadurch gekennzeichnet, dass die Dich- te des Formkörpers zwischen 75 bis 375 kg/m3 liegt.

10. Formkörper gemäß einem der Ansprüche 5 bis 9, dadurch gekennzeichnet, dass die Rückprallelastizität des Formkörpers oberhalb von 55 % liegt.

1 1. Formkörper gemäß einem der Ansprüche 5 bis 9, wobei der Formkörper eine Zwischen- sohle, ein Einleger oder ein Polsterelement für Schuhe ist, wobei der Schuh ein Straßen- schuh, Sportschuh, Sandale, Stiefel oder Sicherheitsschuh ist.

12. Verfahren zur Herstellung eines Formkörpers gemäß einem der Ansprüche 5 bis 9 umfas- send

(i) Einbringen der Partikelschäume in eine entsprechende Form,

(ii) Fusionierung der Partikelschäume aus Schritt (i).

13. Schuh, enthaltend einen Formkörper gemäß einem der Ansprüche 5 bis 9.

14. Verwendung eines Partikelschaums nach einem der Ansprüche 1 bis 3 oder eines Parti kelschaums erhalten gemäß einem Verfahren gemäß Anspruch 4, für die Herstellung ei- nes Formkörpers nach einem der Ansprüche 5 bis 9 für Schuhzwischensohlen, Schuhein- legesohlen, Schuhkombisohlen, Polsterelemente für Schuhe, Fahrradsätteln, Fahrradrei- fen, Dämpfungselementen, Polsterungen, Matratzen, Unterlagen, Griffen, Schutzfolien, in Bauteilen im Automobilinnen- und -außenbereich, in Bällen und Sportgeräten oder als Bo- denbelag.

15. Verwendung nach Anspruch 14 für Schuhzwischensohlen, Schuheinlegesohlen, Schuh- kombisohlen, Polsterelemente für Schuhe.

Description:
Schaumstoffe auf Basis thermoplastischer Elastomere

Beschreibung

Partikelschäume (oder Partikelschaumstoffe, Partikelschaum) sowie daraus hergestellte Form- körper auf Basis von thermoplastischem Polyurethan oder andern Elastomeren sind bekannt (z.B. WO 94/20568, WO 2007/082838 A1 , WO2017030835, WO 2013/153190 A1

WO2010010010) und vielfältig einsetzbar.

Partikelschaum oder Partikelschaumstoff im Sinne der vorliegenden Erfindung bezeichnet einen Schaumstoff in Form eines Partikels, wobei der mittlere Durchmesser des Partikelschaums zwi- schen 0,2 bis 20, bevorzugt 0,5 bis 15 und insbesondere zwischen 1 bis 12 mm liegt. Bei nicht kugelförmigen, z.B. länglichen oder zylinderförmigen Partikelschaum ist mit Durchmesser die längste Abmessung gemeint.

Grundsätzlich besteht Bedarf an Partikelschäumen mit einer verbesserten Verarbeitbarkeit zu den entsprechenden Formkörpern bei möglichst niedrigen Temperaturen unter Erhaltung vor- teilhafter mechanischer Eigenschaften. Dies ist insbesondere bei den derzeit gängigen Verfah- ren zur Verschweißung relevant, bei welchen der Energieeintrag zur Verschweißung der Parti kelschäume durch ein Hilfsmedium wie zum Beispiel Wasserdampf eintragen, da hier eine bes- sere Verklebung erreicht wird und gleichzeitig eine Schädigung des Materials oder der

Schaumstruktur so reduziert wird.

Eine ausreichende Verklebung bzw. Verschweißung der Partikelschäume ist insofern essentiell, um vorteilhafte mechanischen Eigenschaften des aus dem Partikelschaum hergestellten Form- teils zu erhalten. Bei einer ungenügenden Verklebung bzw. Verschweißung der Schaumpartikel können dessen Eigenschaften nicht im vollen Umfang genutzt werden, wodurch insgesamt die mechanischen Eigenschaften des erhaltenen Formteils negativ beeinflusst werden. Ähnliches gilt bei einer Schwächung des Formkörpers. Hier sind die mechanischen Eigenschaften an den geschwächten Stellen unvorteilhaft mit dem gleichen Ergebnis wie oben erwähnt.

Vorteilhafte mechanische Eigenschaften sind im Hinblick auf die gedachten Anwendungen zu verstehen. Die für den Gegenstand der vorliegenden Erfindung im Vordergrund stehende An- wendung ist die Anwendung im Schuhbereich, wobei die Partikelschäume für Formkörper für Bestandteile des Schuhs verwendet werden können, bei denen eine Dämpfung und/oder Pols- terung relevant ist, wie z.B. Zwischensohlen und Einleger.

So besteht für die oben genannten Anwendungen im Schuh bzw. Sportschuhbereich Bedarf, nicht nur vorteilhafte Zug- und Biegeeigenschaften der aus den Partikelschäumen hergestellten Formkörper zu erhalten, sondern auch Formkörper hersteilen zu können, die für die spezielle Anwendung vorteilhafte Rückprallelastizität sowie Kompressionseigenschaften bei einer mög- lichst geringen Dichte aufweisen. Hierbei stehen Dichte und Kompressionseigenschaft im Zu- sammenhang, da die Kompressionseigenschaft ein Maß für die minimal erreichbare Dichte in einem Formteil um den Anforderungen der Anwendung ist.

So wird ein Formkörper aus Partikelschaum mit geringen Kompressionseigenschaften grundle- gend eine höhere Dichte und somit mehr Material benötigen als ein Formkörper aus Partikel schaum mit hohen Kompressionseigenschaften um am Ende ähnliche Eigenschaften zu gene- rieren. Über diesen Zusammenhang ist auch die Einsetzbarkeit eines Partikelschaums für spe- zifische Anwendungen gegeben. Hierbei sind für Anwendungen im Schuhbereich insbesondere Partikelschäume vorteilhaft, bei denen die Kompressionseigenschaften der aus den Partikel schäumen hergestellten Formkörper bei geringer Krafteinwirkung eher niedrig sind, und in dem Bereich, in dem der Schuh getragen wird, eine für den Träger ausreichende Deformation auf- weisen.

Ein weiteres Problem ist, dass bei großtechnischer Produktion von Partikelschaum über Extru- sion ein möglichst hoher Durchsatz an Material erstrebenswert ist, um die erforderlichen Men- gen in möglichst geringer Zeit zu produzieren. Hierbei führt aber eine zu schnelle Prozessierung des Materials zu minderwertigem Material bis hin zu Instabilität und/oder Kollabierung der erhal- tenen Partikelschäume. Demnach besteht weiterhin Bedarf Partikelschäume bereitzustellen, bei denen die Herstellzeit möglichst gering ist.

Eine der vorliegenden Erfindung zugrundeliegende Aufgabe war es daher, entsprechend geeig- nete Partikelschäume bereitzustellen.

Die Aufgabe wurde gelöst durch die Bereitstellung von Partikelschaum aus einer Zusammen- setzung (Z) umfassend

a) 60 - 90 Gew. % thermoplastisches Polyurethan als Komponente I

b) 10 - 40 Gew-% Polypropylen als Komponenten II,

wobei die Summe der Komponenten I und II sich zu 100 Gew-% ergibt.

Die als Komponente I eingesetzten thermoplastischen Polyurethane sind hinlänglich bekannt. Die Herstellung erfolgt durch Umsetzung von (a) Isocyanaten mit (b) gegenüber Isocyanaten reaktiven Verbindungen beispielsweise Polyolen, mit einem zahlenmittleren Molekulargewicht von 500 g /mol bis 100000 g /mol (b1 ) und gegebenenfalls Kettenverlängerungsmitteln mit ei- nem Molekulargewicht von 50 g /mol bis 499 g /mol (b2) gegebenenfalls in Gegenwart von (c) Katalysatoren und/oder (d) üblichen Hilfsstoffen und/oder Zusatzstoffen.

Bevorzugt im Rahmen der vorliegenden Erfindung sind thermoplastische Polyurethane erhält lich durch Umsetzung von (a) Isocyanaten mit (b) gegenüber Isocyanaten reaktiven Verbindun- gen beispielsweise Polyolen (b1), mit einem zahlenmittleren Molekulargewicht von 500 g /mol bis 100000 g /mol und einem Kettenverlängerungsmittel (b2) mit einem Molekulargewicht von 50 g /mol bis 499 g /mol gegebenenfalls in Gegenwart von (c) Katalysatoren und/oder (d) übli- chen Hilfsstoffen und/oder Zusatzstoffen. Die Komponenten (a) Isocyanat, (b) gegenüber Isocyanaten reaktive Verbindungen beispiels- weise Polyolen (b1 ), und gegebenenfalls Kettenverlängerungsmittel (b2) werden einzeln oder zusammen auch als Aufbaukomponenten angesprochen. Die Aufbaukomponenten einschließ- lich des Katalysators und/oder der üblichen Hilfsstoffe und/oder Zusatzstoffe werden auch Ein- satzstoffe genannt.

Zur Einstellung von Härte und Schmelzindex der thermoplastischen Polyurethane können die eingesetzten Mengen der Aufbaukomponenten (b) in ihren molaren Verhältnissen variiert wer- den, wobei die Härte und die Schmelzviskosität mit zunehmendem Gehalt an Kettenverlänge- rungsmittel in der Komponente (b) ansteigt, während der Schmelzindex bei konstantem Moleku- largewicht des TPUs abnimmt.

Zur Herstellung der thermoplastischen Polyurethane werden die Aufbaukomponenten (a), (b), wobei (b) in einer bevorzugten Ausführungsform auch Kettenverlängerungsmittel enthält, in Ge- genwart eines Katalysators (c) und gegebenenfalls Hilfsmitteln und/ oder Zusatzstoffen in sol- chen Mengen zur Reaktion gebracht, dass das Äquivalenzverhältnis von NCO-Gruppen der Diisocyanate (a) zur Summe der Hydroxylgruppen der Komponente b) im Bereich von 1 zu 0,8 bis 1 zu 1 ,3 liegt.

Eine weitere Größe, die dieses Verhältnis beschreibt, ist die Kennzahl. Die Kennzahl ist defi- niert durch das Verhältnis der insgesamt bei der Umsetzung eingesetzten Isocyanatgruppen zu den Isocyanat-reaktiven Gruppen, also insbesondere den reaktiven Gruppen der Polyolkompo- nente und dem Kettenverlängerer. Bei einer Kennzahl von 1000 kommt auf eine Isocyanatgrup- pe ein aktives Wasserstoffatom. Bei Kennzahlen über 1000 liegen mehr Isocyanatgruppen als Isocyanat-reaktiven Gruppen vor.

Hierbei entspricht ein Äquivalenzverhältnis von 1 zu 0.8 einer Kennzahl von 1250 (KZ 1000 = 1 zu 1 ) und ein Verhältnis von 1 zu 1 ,3 einer Kennzahl von 770.

In einer bevorzugten Ausführungsform liegt die Kennzahl bei der Umsetzung der oben genann- ten Komponenten im Bereich von 965 bis 1 110, bevorzugt im Bereich von 970 bis 1 110, beson- ders bevorzugt im Bereich von 980 bis 1030 sowie ganz besonders bevorzugt im Bereich von 985 bis 1010 besonders bevorzugt.

Vorzugsweise werden erfindungsgemäß thermoplastische Polyurethane hergestellt, bei denen das thermoplastische Polyurethan ein gewichtsmittleres Molekulargewicht (M w ) von mindestens 60.000 g/mol, bevorzugt von mindestens 80.000 g/mol und insbesondere größer als 100.000 g/mol aufweist. Die Obergrenze für das gewichtsmittlere Molekulargewicht der thermoplasti- schen Polyurethane wird in aller Regel durch die Verarbeitbarkeit wie auch das gewünschte Eigenschaftsspektrum bestimmt. Bevorzugt liegt das zahlenmittlere Molekulargewicht der ther- moplastischen Polyurethane zwischen 80.000 und 300.000 g/mol. Bei den vorstehend für das thermoplastische Polyurethan wie auch für die Aufbaukomponenten (a) und (b) angegebenen mittleren Molekulargewichten handelt es sich um die mittels Gelpermeationschromatographie (z.B. nach DIN 55672-1 , März 2016 oder analog messbar) bestimmten Gewichtsmittel. Als organische Isocyanate (a) können aliphatische, cycloaliphatische, araliphatische und/oder aromatische Isocyanate eingesetzt werden.

Als aliphatische Diisocyanate werden übliche aliphatische und/oder cycloaliphatische Diisocya- nate eingesetzt, beispielsweise Tri-, Tetra-, Penta-, Hexa-, Hepta- und/oder Oktamethylendiiso- cyanat, 2-Methylpentamethylen-1 ,5-diisocyanat, 2-Ethyltetramethylen-1 ,4-diisocyanat, Hexa- methylen-1 ,6-diisocyanat (HDI), Pentamethylen-1 ,5-diisocyanat, Butylen-1 ,4-diisocyanat, Trime- thylhexamethylen-1 ,6-diisocyanat, 1 -lsocyanato-3,3,5-trimethyl-5-isocyanatomethyl-cyclohexan (Isophoron-diisocyanat, IPDI), 1 ,4- und/oder 1 ,3-Bis(isocyanatomethyl)cyclohexan (HXDI), 1 ,4- Cyclohexandiisocyanat, 1-Methyl-2,4- und/oder 1-Methyl-2,6-cyclohexandiisocyanat, 4,4’-, 2,4’- und/oder 2,2’-Methylendicyclohexyldiisocyanat (H12MDI).

Geeignete aromatische Diisocyanate sind insbesondere 1 ,5-Naphthylendiisocyanat (NDI), 2,4- und/oder 2,6-Toluylendiisocyanat (TDI), 3,3,‘-Dimethyl-4,4‘-Diisocyanato-Diphenyl (TODI), p- Phenylendiisocyanat (PDI), Diphenylethan-4,4‘-diisoyanat (EDI), Methylendiphenyldiisocyanat (MDI) wobei unter dem Begriff MDI 2,2'-, 2,4'- und/oder 4,4'-Diphenylmethandiisocyanat ver- standen wird, 3,3'-Dimethyl-diphenyl-diisocyanat, 1 ,2-Diphenylethandiisocyanat und/oder Phe- nylendiisocyanat oder H12MDI (4,4'-Methylene dicyclohexyl diisocyanate).

Grundsätzlich können auch Mischungen eingesetzt werden. Beispiele für Mischungen sind Mi- schungen, die neben 4,4‘-Methylendiphenyldiisocyanat und mindestens ein weiteres Methylen- diphenyldiisocyanat enthält. Hierbei bezeichnet der Begriff Methylendiphenyldiisocyanat 2,2'-, 2,4'- und/oder 4,4'-Diphenylmethandiisocyanat oder ein Gemisch aus zwei oder drei Isomeren. Somit kann z.B. als weiteres Isocyanat 2,2'- oder 2,4'-Diphenylmethandiisocyanat eingesetzt werden oder ein Gemisch aus zwei oder drei Isomeren. In dieser Ausführungsform kann die Polyisocyanatzusammensetzung auch weitere, der oben genannten Polyisocyanate enthalten.

Weitere Beispiele für Mischungen sind Polyisocyanatzusammensetzungen enthaltend

4,4 -MDI und 2,4 -MDI, oder

4,4‘-MDI und 3,3,‘-Dimethyl-4,4‘-Diisocyanato-Diphenyl (TODI) oder

4,4‘-MDI und H12MDI (4,4'-Methylene dicyclohexyl diisocyanate oder

4,4‘-MDI und TDI; oder

4,4‘-MDI und 1 ,5-Naphthylendiisocyanat (NDI).

Erfindungsgemäß können auch drei oder mehr Isocyanate eingesetzt werden. Üblicherweise enthält die Polyisocyanatzusammensetzung 4,4‘-MDI in einer Menge von 2 bis 50% bezogen auf die gesamte Polyisocyanatzusammensetzung und das weitere Isocyanat in einer Menge von 3 bis 20% bezogen auf die gesamte Polyisocyanatzusammensetzung.

Weiter können auch Vernetzer eingesetzt werden, beispielsweise die zuvor genannten höher- funktionellen Polyisocyanate oder Polyole oder auch andere höherfunktionale Moleküle mit mehreren gegenüber Isocyanaten reaktiven funktionellen Gruppen. Ebenso ist es im Rahmen der vorliegenden Erfindung möglich, eine Vernetzung der Produkte durch einen Überschuss der eingesetzten Isocyanatgruppen im Verhältnis zu den Hydroxylgruppen zu erreichen. Beispiele für höherfunktionelle Isocyanate sind Triisocyanate, z. B. Triphenylmethan-4,4',4"-triisocyant sowie Isocyanurate, weiterhin die Cyanurate der vorgenannten Diisocyanate, sowie die durch partielle Umsetzung von Diisocyanaten mit Wasser erhältlichen Oligomere, z. B. die Biurethe der vorgenannten Diisocyanate, ferner Oligomere, die durch gezielte Umsetzung von semiblo- ckierten Diisocyanaten mit Polyolen, die im Mittel mehr als zwei und vorzugsweise drei oder mehr Hydroxy-Gruppen aufweisen, erhältlich sind.

Hierbei sollte Menge an Vernetzer, d.h. höherfunktionellen Isocyanate und höherfunktionellen Polyolen (b) nicht 3 Gew-%, vorzugsweise 1 Gew-% bezogen auf die Gesamtmischung der Komponenten (a) bis (d) überschreiten.

Weiterhin kann die Polyisocyanatzusammensetzung auch ein oder mehrere Lösungsmittel ent- halten. Geeignete Lösungsmittel sind dem Fachmann bekannt. Geeignet sind beispielsweise nicht reaktive Lösungsmittel wie Ethylacetat, Methylethylketon und Kohlenwasserstoffe.

Als gegenüber Isocyanaten reaktive Verbindungen (b1 ) sind bevorzugt solche mit einem Mole- kulargewicht zwischen 500 g/mol und 8000 g/mol, weiter bevorzugt 500 g/mol bis 5000 g/mol, insbesondere 500 g/mol bis 3000 g/mol.

Die gegenüber Isocyanat reaktive Verbindung (b) hat im statistischen Mittel mindestens 1 ,8 und höchstens 2,2, vorzugsweise 2, zerewitinow aktive Wasserstoffatome, diese Anzahl wird auch als Funktionalität der gegenüber Isocyanat reaktiven Verbindung (b) bezeichnet und gibt die aus einer Stoffmenge theoretisch auf ein Molekül heruntergerechnete Menge der mit Isocyanat reaktiven Gruppen des Moleküls an.

Die gegenüber Isocyanat reaktive Verbindung ist vorzugsweise im Wesentlichen linear und ist eine gegenüber Isocyanat reaktive Substanz oder eine Mischung verschiedener Substanzen, wobei dann die Mischung die genannte Anforderung erfüllt.

Das Verhältnis der Komponenten b1) und b2) wird so variiert, dass der gewünschte Hartseg- mentanteil erhalten wird, wobei dieser sich gemäß der in der PCT/EP2017/079049 offenbarten Formel berechnen lässt.

Hierbei ist ein Hartsegmentanteil unter 60%, vorzugsweise unter 40%, besonders bevorzugt unter 25 % geeignet.

Bevorzugt besitzt die gegenüber Isocyanat reaktive Verbindung (b1 ) eine reaktive Gruppe aus- gewählt aus der Hydroxylgruppe, der Aminogruppe, der Mercaptogruppe oder der Carbonsäu- regruppe. Bevorzugt handelt es sich um die Hydroxylgruppe und ganz besonders bevorzugt um primäre Hydrolxylgruppen. Besonders bevorzugt ist die gegenüber Isocyanat reaktive Verbin- dung (b) ausgewählt aus der Gruppe der Polyesteroie, der Polyetheroie oder der Polycarbonat- diole, die auch unter dem Begriff "Polyole” zusammengefaßt werden. Erfindungsgemäß sind Homopolymere wie beispielsweise Polyetheroie geeignet, Polyesteroie, Polycarbonat(diol)e, Polysiloxandiole, Polybutadienediole, aber auch Blockcopolymere sowie Hybrid Polyole wie z.B. Poly(ester/amid). Bevorzugte Polyetheroie sind erfindungsgemäß Po- lyethylenglykole, Polypropylenglykole, Polytetramethylenglykol (PTHF), Polytrimethylenglykol. Bevorzugte Polyesterpolyole sind Polyadipate, Polybernsteinsäureester und Polycaprolactone.

Gemäß einer weiteren Ausführungsform betrifft die vorliegende Erfindung auch ein thermoplas- tisches Polyurethan wie zuvor beschrieben, wobei die Polyolzusammensetzung ein Polyol aus- gewählt aus der Gruppe bestehend aus Polyetheroien, Polyesteroien, Polycaprolactonen und Polycarbonaten enthält.

Geeignete Blockcopolymere sind beispielsweise solche, die Ether und Esterblöcke aufweisen, wie beispielsweise Polycaprolacton mit Polyethylenoxid oder Polypropylenoxid-Endblöcken o- der auch Polyether mit Polycaprolactonendblöcken. Bevorzugte Polyetheroie sind erfindungs- gemäß Polyethyleneglykole, Polypropylenglykole, Polytetramethylenglykol (PTHF) und Polytri methylenglykol. Weiterhin bevorzugt ist Polycaprolacton.

Gemäß einer besonders bevorzugten Ausführungsform weist das eingesetzte Polyol ein Mole- kulargewicht Mn im Bereich von 500 g/mol bis 4000 g/mol auf, bevorzugt im Bereich von 500 g/mol bis 3000 g/mol.

Demgemäß betrifft die vorliegende Erfindung gemäß einer weiteren Ausführungsform ein ther- moplastisches Polyurethan wie zuvor beschrieben, wobei mindestens ein in der Polyolzusam- mensetzung enthaltenes Polyol ein Molekulargewicht Mn im Bereich von 500 g/mol bis 4000 g/mol aufweist.

Erfindungsgemäß können auch Mischungen verschiedener Polyole eingesetzt werden.

Gemäß einer Ausführungsform der vorliegenden Erfindung wird zur Herstellung des thermo- plastischen Polyurethans mindestens eine Polyolzusammensetzung eingesetzt, die mindestens Polytetrahydrofuran enthält. Erfindungsgemäß kann die Polyolzusammensetzung neben Poly- tetrahydrofuran auch weitere Polyole enthalten.

Erfindungsgemäß sind beispielsweise als weitere Polyole Polyether geeignet, aber auch Poly- ester, Blockcopolymere sowie Hybrid Polyole wie z.B. Poly(ester/amid). Geeignete Blockcopo- lymere sind beispielsweise solche, die Ether und Esterblöcke aufweisen, wie beispielsweise Polycaprolacton mit Polyethylenoxid oder Polypropylenoxid-Endblöcken oder auch Polyether mit Polycaprolactonendblöcken. Bevorzugte Polyetheroie sind erfindungsgemäß Polyethyl- eneglykole, Polypropylenglykole. Weiterhin bevorzugt ist als weiteres Polyol Polycaprolacton.

Geeignete Polyole sind beispielsweise Polyetheroie wie Polytrimethylenoxid oder Polytetrame- thylenoxid. Demgemäß betrifft die vorliegende Erfindung gemäß einer weiteren Ausführungsform ein ther- moplastisches Polyurethan wie zuvor beschrieben, wobei die Polyolzusammensetzung mindes- tens ein Polytetrahydrofuran und mindestens ein weiteres Polyol ausgewählt aus der Gruppe bestehend aus einem weiteren Polytetramethylenoxid (PTHF), Polyethylenglykol, Polypropy- lenglykol und Polycaprolacton enthält.

Gemäß einer besonders bevorzugten Ausführungsform weist das Polytetrahydrofuran ein zah- lenmittleres Molekulargewicht Mn im Bereich von 500 g/mol bis 5000 g/mol auf, weiter bevor- zugt im Bereich von 550 bis 2500 g/mol, besonders bevorzugt im Bereich von 650 bis 2000 g/mol und ganz bevorzugt im Bereich von 650 bis 1400 g/mol.

Die Zusammensetzung der Polyolzusammensetzung kann im Rahmen der vorliegenden Erfin- dung in weiten Bereichen variieren. Beispielsweise kann der Gehalt an dem ersten Polyol, be- vorzugt an Polytetrahydrofuran im Bereich von 15 % bis 85 % liegen, bevorzugt im Bereich von 20 % bis 80 %, weiter bevorzugt im Bereich von 25 % bis 75 %.

Erfindungsgemäß kann die Polyolzusammensetzung auch ein Lösungsmittel enthalten. Geeig- nete Lösungsmittel sind dem Fachmann an sich bekannt.

Sofern Polytetrahydrofuran eingesetzt wird, liegt das zahlenmittlere Molekulargewicht Mn des Polytetrahydrofurans beispielsweise im Bereich von 500 g/mol bis 5000 g/mol, bevorzugt im Bereich von 500 bis 3000 g/mol. Weiter bevorzugt liegt das zahlenmittlere Molekulargewicht Mn des Polytetrahydrofurans im Bereich von 500 bis 1400 g/mol.

Hierbei lässt sich das zahlenmittlere Molekulargewicht Mn wie oben erwähnt über Gelpermati- onschromatographie bestimmen.

Gemäß einer weiteren Ausführungsform betrifft die vorliegende Erfindung auch ein thermoplas- tisches Polyurethan wie zuvor beschrieben, wobei die Polyolzusammensetzung ein Polyol aus- gewählt aus der Gruppe bestehend aus Polytetrahydrofuranen mit einem zahlenmittleren Mole- kulargewicht Mn im Bereich von 500 g/mol bis 5000 g/mol enthält.

Erfindungsgemäß können auch Mischungen verschiedener Polytetrahydrofurane eingesetzt werden, d.h. Mischungen aus Polytetrahydrofuranen mit unterschiedlichen Molekulargewichten.

Als Kettenverlängerungsmittel (b2) werden bevorzugt aliphatische, araliphatische, aromatische und/oder cycloaliphatische Verbindungen mit einem Molekulargewicht von 50 g/mol bis 499 g/mol eingesetzt, bevorzugt mit 2 mit Isocyanat reaktiven Verbindungen, die auch als funktionel- le Gruppen bezeichnet werden. Bevorzugte Kettenverlängerer sind Diamine und/oder Alkandio- le, weiter bevorzugt Alkandiole mit 2 bis 10 Kohlenstoffatomen, bevorzugt mit 3 bis

8 Kohlenstoffatomen im Alkylenrest, die weiter bevorzugt nur primäre Hydroxylgruppen haben. In bevorzugten Ausführungsformen werden Kettenverlängerungsmittel (c) eingesetzt, dies sind bevorzugt aliphatische, araliphatische, aromatische und/oder cycloaliphatische Verbindungen mit einem Molekulargewicht von 50 g/mol bis 499 g/mol, bevorzugt mit 2 mit Isocyanat reaktiven Gruppen, die auch als funktionelle Gruppen bezeichnet werden. Bevorzugt ist der Kettenverlän- gerer mindestens ein Kettenverlängerer ausgewählt aus der Gruppe bestehend aus 1 ,2- Ethylenglycol, 1 ,2-Propandiol, 1 ,3-Propandiol, 1 ,4-Butandiol, 2,3-Butandiol, 1 ,5-Pentandiol, 1 ,6- Hexandiol, Diethylenglykol, Dipropylenglykol, 1 ,4-Cyclohexandiol, 1 ,4-Dimethanolcyclohexan, Neopentylglykol und Hydroquinone Bis (beta-hydroxyethyl) Ether (HQEE). Besonders geeignet sind Kettenverlängerer ausgewählt aus der Gruppe bestehend aus 1 ,2-Ethandiol, 1 ,3- Propandiol, 1 ,4-Butandiol und 1 ,6-Hexandiol sowie Mischungen der vorstehend genannten Kettenverlängerer. Beispiele für spezifische Kettenverlängerer und Mischungen sind unter an- derem in der PCT/EP2017/079049 offenbart

In bevorzugten Ausführungsformen werden mit den Aufbaukomponenten Katalysatoren (c) ein- gesetzt. Dies sind insbesondere Katalysatoren, die die Reaktion zwischen den NCO-Gruppen der Isocyanate (a) und den Hydroxylgruppen der gegenüber Isocyanaten reaktiven Verbindung (b) und, sofern eingesetzt, dem Kettenverlängerungsmittel beschleunigen.

Weiterhin geeignete Katalysatoren sind beispielsweise organische Metallverbindungen ausge- wählt aus der Gruppe bestehend aus Zinn-, Titan-, Zirkonium-, Hafnium-, Bismut-, Zink-, Alumi- nium- und Eisenorganylen, wie beispielsweise Zinnorganylverbindungen, bevorzugt Zinndialkyle wie Dimethylzinn oder Diethylzinn, oder Zinnorganylverbindungen aliphatischer Carbonsäuren, bevorzugt Zinndiacetat, Zinndilaurat, Dibutylzinndiacetat, Dibutylzinndilaurat, Bismuthverbin- dungen, wie Bismuthalkylverbindungen oder ähnliche, oder Eisenverbindungen, bevorzugt Ei- sen-(MI)-acetylacetonat oder die Metallsalze der Carbonsäuren wie z.B. Zinn-ll-isooctoat, Zinn- dioctoat, Titansäureester oder Bismut-(lll)-neodecanoat. Besonderes bevorzugte Katalysatoren sind Zinndioctoat, Wismutdecanoat und Titansäureester. Der Katalysator (d) wird bevorzugt in Mengen von 0,0001 bis 0,1 Gew.-Teilen pro 100 Gew.-Teile der mit Isocyanaten reaktiven Ver- bindung (b) eingesetzt. Neben Katalysatoren (c) können den Aufbaukomponenten (a) bis (b) auch übliche Hilfsstoffe (d) hinzugefügt werden. Genannt seien beispielsweise oberflächenakti- ve Substanzen, Füllstoffe, Flammschutzmittel, Keimbildungsmittel, Oxidationsstabilisatoren, Gleit- und Entformungshilfen, Farbstoffe und Pigmente, gegebenenfalls Stabilisatoren, bevor- zugt gegen Hydrolyse, Licht, Hitze oder Verfärbung, anorganische und/oder organische Füllstof- fe, Verstärkungsmittel und/oder Weichmacher.

Geeignete Farbstoffe und Pigmente sind weiter unten aufgeführt.

Stabilisatoren im Sinne der vorliegenden Erfindung sind Additive, die einen Kunststoff oder eine Kunststoffmischung gegen schädliche Umwelteinflüsse schützen. Beispiele sind primäre und sekundäre Antioxidantien, sterisch gehinderte Phenole, gehinderte Amin-Lichtstabilisatoren (Hindered Amine Light Stabilizer), UV-Absorber, Hydrolyseschutzmittel, Quencher und Flamm- schutzmittel. Beispiele für kommerzielle Stabilisatoren sind gegeben in Plastics Additives Hand- book, 5th Edition, H. Zweifel, ed., Hanser Publishers, München, 2001 ([1]), S.98-S136. Die Herstellung der thermoplastischen Polyurethane kann nach den bekannten Verfahren dis- kontinuierlich oder kontinuierlich, beispielsweise mit Reaktionsextrudern oder dem Bandverfah- ren nach dem„one-shot“- oder dem Prepolymer-Verfahren, bevorzugt nach dem„one-shot“- Verfahren erfolgen. Bei dem„one-shot“-Verfahren werden die zur Reaktion kommenden Kom- ponenten (a), (b), in bevorzugten Ausführungsformen auch das Kettenverlängerungsmittel in der Komponente (b), (c) und/oder (d) nacheinander oder gleichzeitig miteinander vermischt, wobei die Polymerisationsreaktion unmittelbar einsetzt. Das TPU kann im Anschluss direkt gra- nuliert oder durch Extrusion in Linsengranulat umkonvektioniert werden. In diesem Schritt ist es möglich weitere Zusatzmittel oder andere Polymere miteinzuarbeiten.

Beim Extruderverfahren werden die Aufbaukomponenten (a), (b) sowie in bevorzugten Ausfüh- rungsformen auch (c), (d) und/oder (e) einzeln oder als Gemisch in den Extruder eingeführt und, bevorzugt bei Temperaturen von 100°C bis 280°C, vorzugsweise 140°C bis 250°C, zur Reaktion gebracht. Das erhaltene Polyurethan wird extrudiert, abgekühlt und granuliert oder direkt über eine Unterwassergranulierung als Linsengranulat granuliert.

In einem bevorzugten Verfahren wird in einem ersten Schritt ein thermoplastisches Polyurethan aus den Aufbaukomponenten Isocanat (a), mit Isocyanat reaktive Verbindung (b) inklusive Kettenverlänger sowie in bevorzugten Ausführungsformen die weiteren Einsatzstoffe (c) und/oder (d) hergestellt und in einem zweiten Extrusionsschritt die Zusatzstoffe oder Hilfstoffe eingearbeitet.

Bevorzugt wird ein Zweiwellenextruder verwendet, da der Zweiwellenextruder zwangsfördernd arbeitet und so eine präzisere Einstellung der Temperatur und Ausstoßmenge auf dem Extruder möglich ist. Weiterhin kann die Herstellung und Expansion eines TPUs in einem Reaktionsext- ruder in einem Schritt bzw. über einen Tandemextruder nach dem Fachmann bekannten Me- thoden erfolgen.

Unter der als Komponente II genannten Polyolefinen ist Homopolypropylen zu verstehen.

Geeignet sind sowohl mit Ziegler- als auch mit Metallocen-Katalysatoren hergestellte Polyole- fine.

Der Kristallitschmelzpunkt (DIN EN ISO 1 1357-1/3, Februar 2017/April 2013, W Peakschmelz- temperatur) der erfindungsgemäß einsetzbaren Polyolefine liegt im Allgemeinen zwischen 90 und 170 °C.

Erfindungsgemäß können auch herkömmliche Produkte verwendet werden wie Moplen

HP400H, Moplen HP2636, Moplen HP2619, Moplen HP501 L, Daploy WB135HMS, Daploy WB140HMS oder SABIC® PP 48M10.

Wie oben ausgeführt, umfasst die Zusammensetzung Z

10 - 40 Gew-% Polypropylen als Komponenten II,

wobei die Summe der Komponenten I und II sich zu 100 Gew-% ergibt. Bevorzugt umfasst die Zusammensetzung Z

65 - 80 Gew. % thermoplastisches Polyurethan als Komponente I

20 - 35 Gew-% Polypropylen als Komponenten II,

wobei die Summe der Komponenten I und II sich zu 100 Gew-% ergibt.

Besonders bevorzugt umfasst die Zusammensetzung Z

70 - 80 Gew. % thermoplastisches Polyurethan als Komponente I

20 - 30 Gew-% Polypropylen als Komponenten II,

wobei die Summe der Komponenten I und II sich zu 100 Gew-% ergibt.

Die für die Herstellung des Partikelschaums benötigte, nicht expandierte Ausgangsmaterial, die Zusammensetzung Z, wird in an sich bekannter Weise aus den einzelnen thermoplastischen Elastomeren (TPE-1 ) und (TPE-2) sowie gegebenenfalls weiteren Komponenten hergestellt. Geeignete Verfahren sind beispielsweise übliche Mischverfahren in einem Kneter oder einem Extruder.

Die für die Herstellung des Partikelschaums benötigte, nicht expandierte Polymermischung der Zusammensetzung Z wird in bekannter Weise aus den Einzelkomponenten sowie gegebenfalls weiteren Komponenten wie beispielsweise Verarbeitungshilfsmittel, Stabilisatoren, Verträglich- keitsvermittler oder Pigmenten hergestellt. Geeignete Verfahren sind beispielsweise übliche Mischverfahren mit Hilfe eines Kneters, kontinuierlich oder diskontinuierlich, oder einem Extru- der wie beispielsweise einem gleichläufigen Doppelschneckenextruder.

Im Falle von Verträglichkeitsvermittlern oder Hilfsstoffen wie zum Beispiel Stabilisatoren können diese auch bei der Herstellung des der Komponenten in diese bereits eingearbeitet werden. Üblicherweise werden die einzelnen Komponenten vor dem Mischverfahren zusammengege- ben oder in den Apparat der das Mischen übernimmt eindosiert. Im Falle eines Extruders wer- den die Komponenten alle in den Einzug dosiert und gemeinsam in den Extruder gefördert oder einzelne Komponenten über eine Seitendosierung zugegeben (normalerweise nicht bei Schäu- men da dazu dieser Teil des Extruders nicht dicht ist).

Die Verarbeitung erfolgt bei einer Temperatur bei welcher die Komponenten in einem plastifi- zierten Zustand vorliegen. Die Temperatur hängt von den Erweichungs- bzw. Schmelzberei- chen der Komponenten ab, muss jedoch unterhalb der Zersetzungstemperatur jeder Kompone- te liegen. Additive wie Pigmente oder Füllstoffe oder weitere der oben genannten üblichen Hilfsstoffe (d) werden nicht mit aufgeschmolzen, sondern im festen Zustand eingearbeitet.

Hierbei sind weitere Ausführungsformen nach gängigen Methoden möglich, wobei die bei der Herstellung der Ausgangsmaterialien verwendeten Prozesse mit in die Herstellung direkt einbe- zogen werden können. So wäre es z.B. möglich im Falle des Bandverfahrens, direkt am Ende des Bandes, bei dem das Material in einen Extruder eingespeist wird, um Linsengranulat zu erhalten, das zweite Elastomer (TPE-2) sowie Füllstoffe oder Farbstoffe einzubringen. In diesem Schritt können einiger der oben genannten üblichen Hilfsstoffe (d) der Mischung hin zugefügt werden.

Die erfindungsgemäßen Partikelschäume weisen in der Regel eine Schüttdichte von 50 g/l bis 200 g/l, bevorzugt 60 g/l bis 180 g/l, besonders bevorzugt 80 g/l bis 150 g/l. Die Schüttdichte wird analog der DIN ISO 697 gemessen, wobei bei der Bestimmung der obigen Werte im Un- terschied zur Norm anstelle eines Gefäßes mit 0,5 I Volumen ein Gefäß mit 10 I Volumen ver- wendet wird, da speziell bei den Schaumpartikeln mit niedriger Dichte und großer Masse eine Messung mit nur 0,5 I Volumen zu ungenau ist.

Wie oben ausgeführt, liegt der Durchmesser der Partikelschäume zwischen 0,5 bis 30; bevor- zugt 1 bis 15 und insbesondere zwischen 3 bis 12 mm. Bei nicht kugelförmigen, z.B. länglichen oder Zylinder förmigen Partikelschaum ist mit Durchmesser die längste Abmessung gemeint:

Die Herstellung der Partikelschäume kann nach den gängigen im Stand der Technik bekannten Verfahren erfolgen durch

i. Bereitstellen einer erfindungsgemäßen Zusammensetzung (Z);

ii. Imprägnierung der Zusammensetzung mit einem Treibmittel unter Druck;

iii. Expandieren der Zusammensetzung mittels Druckabfall.

Die Treibmittelmenge beträgt bevorzugt 0,1 bis 40, insbesondere 0,5 bis 35 und besonders be- vorzugt 1 bis 30 Gew.-Teile, bezogen auf 100 Gew.-Teile der eingesetzten Menge der Zusam- mensetzung (Z).

Eine Ausführungsform des oben genannten Verfahren umfasst

i. Bereitstellen einer erfindungsgemäßen Zusammensetzung (Z) in Form eines Granula- tes;

ii. Imprägnierung des Granulates mit einem Treibmittel unter Druck;

iii. Expandieren des Granulates mittels Druckabfall.

Eine weitere Ausführungsform des oben genannten Verfahrens umfasst einen weiteren Schritt: i. Bereitstellen einer erfindungsgemäßen Zusammensetzung (Z) in Form eines Granula- tes;

ii. Imprägnierung des Granulates mit einem Treibmittel unter Druck;

iii. Reduzierung des Drucks auf Normaldruck ohne das Granulat aufzuschäumen, ggf. durch vorherige Reduzierung der Temperatur

iv. Schäumen des Granulates durch eine Temperaturerhöhung.

Bevorzugt weist das Granulat hierbei einen durchschnittlichen minimalen Durchmesser von 0,2 - 10 mm auf (bestimmt über 3D Evaluierung des Granulates, z.B. über dynamic image analysis mit der Verwendung einer optischen Messapparatur mit Namen PartAn 3D von Microtrac).

Die einzelnen Granulate haben in der Regel eine mittlere Masse im Bereich von 0,1 bis 50 mg, bevorzugt im Bereich von 4 bis 40 mg und besonders bevorzugt im Bereich von 7 bis 32 mg. Diese mittlere Masse der Granulate (Partikelgewicht) wird als arithmetisches Mittel durch 3- maliges Wiegen von jeweils 10 Granulatpartikeln bestimmt.

Eine Ausführungsform des oben genannten Verfahrens umfasst die Impregänierung des Granu- lates mit einem Treibmittel unter Druck und anschließende Expansion des Granulates in Schritt (ii) und (iii): ii. Imprägnierung des Granulates in Gegenwart eines Treibmittels unter Druck bei erhöh- ten Temperaturen in einem geeigneten, geschlossenen Reaktionsgefäß (z.B. Autokla- ven)

iii. schlagartiges Entspannen ohne Abkühlung.

Hierbei kann die Imprägnierung in Schritt ii) in Gegenwart in Gegenwart von Wasser sowie opti- onal Suspensionshilfsmitteln erfolgen oder nur in Anwesenheit des Treibmittels und Abwesen- heit von Wasser.

Geeignete Suspensionshilfsmittel sind z.B. wasserunlösliche anorganische Stabilisatoren, wie Tricalciumphosphat, Magnesiumpyrophosphat, Metallcarbonate; ferner Polyvinylalkohol und Tenside, wie Natriumdodecylarylsulfonat. Sie werden üblicherweise in Mengen von 0,05 bis 10 Gew.-%, bezogen auf die erfindungsgemäße Zusammensetzung, verwendet.

Die Imprägniertemperaturen liegen in Abhängigkeit von dem gewählten Druck im Bereich von 100-200°C, wobei der Druck in dem Reaktionsgefäß zwischen 2- 150 bar, bevorzugt zwischen 5 und 100 bar, besonders bevorzugt zwischen 20 und 60 bar beträgt, die Imprägnierdauer be- tragt im allgemeinen 0,5 bis 10 Stunden.

Die Durchführung des Verfahrens in Suspension ist dem Fachmann bekannt und z.B. ausführ- lich in der W02007/082838 beschrieben.

Bei der Durchführung des Verfahrens in Abwesenheit des Treibmittels ist darauf zu achten, dass die Aggregation des Polymergranulates vermieden wird.

Geeignete Treibmittel für die Durchführung des Verfahrens in einem geeigneten geschlossenen Reaktionsgefäß sind z.B. organische Flüssigkeiten und Gase, die bei den Verarbeitungsbedin- gungen in einem gasförmigen Zustand vorliegen, wie Kohlenwasserstoffe oder anorganische Gase oder Gemische aus organischen Flüssigkeiten bzw. Gasen und anorganischen Gasen, wobei diese ebenfalls kombiniert werden können.

Geeignete Kohlenwasserstoffe sind beispielsweise halogenierte oder nicht halogenierte, gesät- tigte oder ungesättigte aliphatische Kohlenwasserstoffe, vorzugsweise nicht halogenierte, ge- sättigte oder ungesättigte aliphatische Kohlenwasserstoffe. Bevorzugte organische Treibmittel sind gesättigte, aliphatische Kohlenwasserstoffe, insbesondere solche mit 3 bis 8 C-Atomen wie beispielsweise Butan oder Pentan. Geeignete anorganische Gase sind Stickstoff, Luft, Ammoniak oder Kohlendioxid, vorzugsweise Stickstoff oder Kohlendioxid oder Mischungen aus den vorstehend genannten Gasen.

In einer weiteren Ausführungsform umfasst die Imprägnierung des Granulates mit einem Treib- mittel unter Druck Verfahren und anschließende Expansion des Granulates in Schritt (ii) und (iii):

ii. Imprägnierung des Granulates in Gegenwart eines Treibmittels unter Druck bei erhöh- ten Temperaturen in einem Extruder

iii. Granulierung der aus dem Extruder austretenden Masse unter Bedingungen, die un- kontrolliertes Aufschäumen verhindern:

Geeignete Treibmittel in dieser Verfahrensvariante sind flüchtige organische Verbindungen mit einem Siedepunkt bei Normaldruck 1013 mbar 35 von -25 bis 150, insbesondere -10 bis 125°C. Gut geeignet sind Kohlenwasserstoffe (bevorzugt halogenfrei), insbesondere C4-10-Alkane, beispielsweise die Isomere des Butans, Pentans, Hexans, Heptans und Octans, besonders be- vorzugt iso-Pentan. Weitere mögliche Treibmittel sind außerdem sterisch anspruchsvollere Ver- bindungen wie Alkohole, Ketone, Ester, Ether und organische Carbonate.

Hierbei wird die Zusammensetzung im Schritt (ii) in einem Extruder unter Aufschmelzen mit dem Treibmittel unter Druck vermischt, welches dem Extruder zugeführt wird. Die treibmittelhal- tige Mischung wird unter Druck, vorzugsweise mit moderat kontrolliertem Gegendruck (z.B. Un- terwassergranulierung) ausgepresst und granuliert. Hierbei schäumt der Schmelzstrang auf und man erhält durch Granulierung die Partikelschäume.

Die Durchführung des Verfahrens via Extrusion ist dem Fachmann bekannt und z.B. ausführlich in der W02007/082838 sowie der WO 2013/153190 A1 beschrieben.

Als Extruder kommen alle üblichen Schneckenmaschinen in Betracht, insbesondere Einschne- cken- und Doppelschneckenextruder (z.B. Typ ZSK von Fa. Werner & Pfleiderer), Co-Kneter, Kombiplast-Maschinen, MPC-Knetmischer, FCM-Mischer, KEX-Knetschneckenextruder und Scherwalzenextruder, wie sie z.B. in Saechtling (Hg.), Kunststoff-Taschenbuch, 27. Auflage, Hanser-Verlag München 1998, Kap. 3.2.1 und 3.2.4, beschrieben sind. Der Extruder wird übli- cherweise bei einer Temperatur betrieben, bei der die Zusammensetzung (Z1 ) als Schmelze vorliegt, beispielsweise bei 120°C bis 250°C, insbesondere 150 bis 210°C und einem Druck nach der Zugabe des Treibmittels von 40 bis 200 bar, bevorzugt 60 bis 150 bar, besonders be- vorzugt 80 bis 120 bar um eine Homogenisierung des Treibmittels mit der Schmelze zu gewähr- leisten.

Hierbei kann die Durchführung in einem Extruder oder einer Anordnung aus einem oder mehre- ren Extrudern erfolgen. So können beispielsweise in einem ersten Extruder die Komponenten aufgeschmolzen und geblendet werden sowie ein Treibmittel injiziert werden. Im zweiten Extru- der wird die imprägnierte Schmelze homogenisiert und die Temperatur und oder der Druck ein- gestellt. Werden beispielsweise drei Extruder miteinander kombiniert, kann ebenfalls das vermi- sehen der Komponenten sowie die Injizierung des Treibmittels auf zwei unterschiedliche Ver- fahrensteile aufgeteilt werden. Wird wie bevorzugt nur ein Extruder verwendet, so werden alle Prozessschritte, aufschmelzen, vermischen, Injektion des Treibmittels, Homogenisierung und Einstellen der Temperatur und oder des Drucks in einem Extruder durchgeführt.

Alternativ kann nach den in W02014150122 oder W02014150124 A1 beschriebenen Metho- den aus dem Granulat direkt der entsprechende, ggf. sogar schon gefärbte Partikelschaum dadurch hergestellt werden, dass das entsprechende Granulat mit einer superkritischen Flüs- sigkeit durchtränkt wird, aus der superkritische Flüssigkeit entfernt wird gefolgt von

(i) Eintauchen des Artikels in einem erhitzten Fluidum oder

(ii) Bestrahlen des Artikels mit energetische Strahlung (z.B. Infrarot- oder Mikrowellenbestrah- lung).

Geeignete superkritische Flüssigkeiten sind z.B. die in der W02014150122 oder beschrieben, z.B. Kohlendioxid, Stickstoffdioxid, Ethan, Ethylen, Sauerstoff oder Stickstoff vorzugsweise Koh- lendioxid oder Stickstoff.

Die superkritische Flüssigkeit kann hierbei auch eine polare Flüssigkeit mit einem Hildebrand- Löslichkeitsparameter gleich oder größer als 9 MPa-1/2 enthalten.

Hierbei kann das superkritischen Fluidums oder das erhitzten Fluidums auch einen Farbstoff enthalten, wodurch ein gefärbter, geschäumter Artikel erhalten wird.

Weiterer Gegenstand der vorliegenden Erfindung ist ein Formkörper hergestellt aus den erfin- dungsgemäßen Partikelschäumen.

Die Herstellung der entsprechenden Formkörper kann nach dem Fachmann bekannten Metho- den erfolgen.

Ein hierbei bevorzugtes Verfahren zur Herstellung eines Schaumstoffformteils umfasst die fol genden Schritte:

(i) Einbringen der erfindungsgemäßen Partikelschäume in einer entsprechenden Form,

(ii) Fusionierung der erfindungsgemäßen Partikelschäume aus Schritt (i).

Die Fusionierung in Schritt (ii) erfolgt vorzugsweise in einer geschlossenen Form, wobei die Fusionierung durch Wasserdampf, Heißluft (wie z.B. in der EP1979401 B1 beschrieben) oder energetische Strahlung (Mikrowellen oder Radiowellen) erfolgen kann.

Die Temperatur bei dem Fusionieren des Partikelschaumes liegt bevorzugt unterhalb oder nahe an der Schmelztemperatur des Polymers aus dem der Partikelschaum hergestellt wurde. Für die gängigen Polymere liegt demnach die Temperatur zur Fusionierung des Partikelschaumes zwischen 100°C und 180°C, bevorzugt zwischen 120 und 150 °C. Hierbei können Temperaturprofile / Verweilzeiten individuell ermittelt werden, z.B. in Analogie zu den in der US20150337102 oder EP2872309B1 beschriebenen Verfahren.

Die Verschweißung über energetische Strahlung erfolgt im Allgemeinen im Frequenzbereich von Mikrowellen oder Radiowellen, ggf. in Gegenwart von Wasser oder anderen polaren Flüs- sigkeiten, wie z.B. polare Gruppen aufweisende, mikrowellenabsorbierende Kohlenwasserstoffe (wie z.B. Ester von Carbonsäuren und Diolen oder Triolen oder Glycole und flüssige Polyethyl- enegklycole) und kann in Analogie zu den in der EP3053732A oder W016146537 beschriebe- nen Verfahren erfolgen.

Für die Verschweißung mit hochfrequenter elektromagnetischer Strahlung können die Partikel schäume vorzugsweise mit einer polaren Flüssigkeit benetzt werden, die geeignet ist, die Strah- lung zu absorbieren, beispielsweise in Anteilen von 0,1 bis 10 Gew.-%, bevorzugt in Anteilen von 1 bis 6 Gew.-%, bezogen auf die eingesetzten Partikelschäume. Die Verschweißung mit hochfrequenter elektromagnetischer Strahlung der Partikelschäume kann im Rahmen der vor- liegenden Erfindung auch ohne die Verwendung einer polaren Flüssigkeit erreicht werden. Das thermische Verbinden der Schaumstoffpartikel erfolgt beispielsweise in einer Form mittels hoch- frequenter elektromagnetischer Strahlung, insbesondere mittels Mikrowellen. Als hochfrequent wird elektromagnetische Strahlung mit Frequenzen von mindestens 20 MHz, beispielsweise von mindestens 100 MHz verstanden. In der Regel wird elektromagnetische Strahlung im Fre- quenzbereich zwischen 20 MHz und 300 GHz verwendet, beispielsweise zwischen 100 MHz und 300 GHz. Bevorzugt werden Mikrowellen im Frequenzbereich zwischen 0,5 und 100 GHz, besonders bevorzugt 0,8 bis 10 GHz und Bestrahlungszeiten zwischen 0,1 bis 15 Minuten ver- wendet. Bevorzugt wird der Frequenzbereich der Mikrowelle auf das Absorptionsverhalten der polaren Flüssigkeit angepasst oder umgekehrt die polare Flüssigkeit anhand des Absorptions- verhaltens entsprechend dem Frequenzbereich des verwendeten Mikrowellengerätes ausge- wählt. Geeignete Verfahren sind beispielsweise beschrieben in WO 2016/146537A1.

Wie oben ausgeführt, kann der Partikelschaum auch Farbstoffe enthalten. Hierbei kann die Zu- gabe von Farbstoffen über verschiedene Wege erfolgen.

In einer Ausführungsform können die hergestellten Partikelschäume nach Herstellung gefärbt werden. Hierbei werden die entsprechenden Partikelschäume mit einer einen Farbstoff enthal- tenen Trägerflüssigkeit kontaktiert, wobei die Trägerflüssigkeit (TF) eine Polarität aufweist, die geeignet ist, dass eine Sorption der Trägerflüssigkeit in den Partikelschaum erfolgt. Die Durch- führung kann in Analogie zu den in der EP Anmeldung mit der Anmeldenummer 17198591.4 beschriebenen Methoden erfolgen.

Geeignete Farbstoffe sind zum Beispiel anorganische oder organische Pigmente. Geeignete natürliche oder synthetische anorganische Pigmente sind zum Beispiel Ruß, Graphit, Titanoxi- de, Eisenoxide, Zirkonoxide, Kobaltoxidverbindungen, Chromoxidverbindungen, Kupferoxidver- bindungen. Geeignete organischen Pigmente sind zum Beispiel Azopigmente und polycyclische Pigmente. In einer weiteren Ausführungsform kann die Farbe bei der Herstellung des Partikelschaums zugegeben werden. Beispielsweise kann der Farbstoff bei der Herstellung des Partikelschaums über Extrusion in den Extruder hinzugefügt werden.

Alternativ kann bereits gefärbtes Material als Ausgangsmaterial für die Herstellung des Partikel schaums verwendet werden, welches extrudiert oder - im geschlossenen Gefäß nach den oben genannten Verfahren expandiert wird.

Weiterhin kann bei dem in der W02014150122 beschriebenen Verfahren die superkritische Flüssigkeit oder die erhitzte Flüssigkeit einen Farbstoff enthalten.

Wie oben ausgeführt, haben die erfindungsgemäßen Formteile vorteilhafte Eigenschaften für die oben genannten Anwendungen im Schuh bzw. Sportschuhbereich Bedarf.

Hierbei sind die Zug- und Kompressionseigenschaften der aus den Partikelschäumen herge- stellten Formkörper dadurch gekennzeichnet, dass die Zugfestigkeit oberhalb 600 kPa liegt (DIN EN ISO 1798, April 2008), die Reißdehnung oberhalb von 100 % liegt (DIN EN ISO 1798, April 2008) und die Druckspannung oberhalb von 15 kPa bei 10 % Stauchung liegt (analog DIN EN ISO 844, November 2014; die Abweichung zur Norm liegt in der Höhe der Probe mit 20 mm anstatt von 50 mm und somit der Anpassung der Prüfgeschwindigkeit auf 2 mm/min).

Die Rückprallelastizität der aus den Partikelschäumen hergestellten Formkörper liegt oberhalb von 55 % (analog DIN 53512, April 2000; die Abweichung zur Norm ist die Prüfkörperhöhe wel- che 12 mm betragen sollte, bei diesem Test jedoch mit 20 mm durchgeführt wird um ein„durch- schlagen“ der Probe und ein Messen des Untergrunds zu vermeiden).

Wie oben ausgeführt, stehen Dichte und Kompressionseigenschaften der hergestellten Form- körper in einem Zusammenhang. Vorteilhaft liegt die Dichte der hergestellten Formteile zwi- schen 75 bis 375 kg/m 3 , vorzugsweise zwischen 100 bis 300 kg/m 3 , besonders bevorzugt zwi- schen 150 bis 200 kg/m 3 (DIN EN ISO 845, Oktober 2009).

Das Verhältnis der Dichte des Formteils zu der Schüttdichte der erfindungsgemäßen Partikel schäume beträgt dabei im Allgemeinen zwischen 1 ,5 und 2,5, bevorzugt bei 1 ,8 bis 2,0.

Gegenstand der Erfindung ist weiterhin die Verwendung eines erfindungsgemäßen Partikel schaums für die Herstellung eines Formkörpers für Schuhzwischensohlen, Schuheinlegesohlen, Schuhkombisohlen, Fahrradsätteln, Fahrradreifen, Dämpfungselementen, Polsterungen, Mat- ratzen, Unterlagen, Griffen, Schutzfolien, in Bauteilen im Automobilinnen- und -außenbereich, in Bällen und Sportgeräten oder als Bodenbelag, insbesondere für Sportflächen, Leichtathletiklauf- bahnen, Sporthallen, Kinderspielplätze und Gehwegen. Bevorzugt ist die Verwendung eines erfindungsgemäßen Partikelschaums für die Herstellung eines Formkörpers für Schuhzwischensohlen, Schuheinlegesohlen, Schuhkombisohlen oder Polsterelement für Schuhe. Hierbei ist der Schuh vorzugsweise ein Straßenschuh, Sportschuh, Sandale, Stiefel oder Sicherheitsschuh, besonders bevorzugt ein Sportschuh.

Weiterer Gegenstand der vorliegenden Erfindung ist demnach auch ein Formkörper, wobei der Formkörper eine Schuhkombisohle für Schuhe ist, vorzugsweise für Straßenschuhe, Sport- schuhe, Sandale, Stiefel oder Sicherheitsschuhe, besonders bevorzugt Sportschuhe.

Weiterer Gegenstand der vorliegenden Erfindung ist demnach auch ein Formkörper, wobei der Formkörper eine Zwischensohle für Schuhe ist, vorzugsweise für Straßenschuhe, Sportschuhe, Sandale, Stiefel oder Sicherheitsschuhe, besonders bevorzugt Sportschuhe.

Weiterer Gegenstand der vorliegenden Erfindung ist demnach auch ein Formkörper, wobei der Formkörper ein Einleger für Schuhe ist, vorzugsweise für Straßenschuhe, Sportschuhe, Sanda- le, Stiefel oder Sicherheitsschuhe, besonders bevorzugt Sportschuhe.

Weiterer Gegenstand der vorliegenden Erfindung ist demnach auch ein Formkörper, wobei der Formkörper ein Polsterelement für Schuhe ist, vorzugsweise für Straßenschuhe, Sportschuhe, Sandale, Stiefel oder Sicherheitsschuhe, besonders bevorzugt Sportschuhe.

Hierbei kann das Polsterelement z.B. Fersenbereich oder Vorderfußbereich verwendet werden. Weiterer Gegenstand der vorliegenden Erfindung ist daher auch ein Schuh, in dem der erfin- dungsgemäße Formkörper als Mittelsohle, Zwischensohle oder Polsterung im z.B. Fersenbe- reich, Vorderfußbereich verwendet wird, wobei der Schuh vorzugsweise ein Straßenschuh, Sportschuh, Sandale, Stiefel oder Sicherheitsschuh ist, besonders bevorzugt ein Sportschuh ist.

Im Folgenden sind beispielhafte Ausführungsformen der vorliegenden Erfindung aufgeführt, wobei diese die vorliegende Erfindung nicht einschränken. Insbesondere umfasst die vorliegen- de Erfindung auch solche Ausführungsformen, die sich aus den im Folgenden angegebenen Rückbezügen und damit Kombinationen ergeben:

1. Partikelschaum aus einer Zusammensetzung (Z) umfassend

a) 60 - 90 Gew. % thermoplastisches Polyurethan als Komponente I

b) 10 - 40 Gew-% Polypropylen als Komponenten II,

wobei die Summe der Komponenten I und II sich zu 100 Gew-% ergibt.

2. Partikelschaum nach Anspruch 1 , umfassend

a) 65 - 80 Gew. % thermoplastisches Polyurethan als Komponente I

b) 20 - 35 Gew-% Polypropylen als Komponenten II,

wobei die Summe der Komponenten I und II sich zu 100 Gew-% ergibt.

3. Partikelschaum nach Ausführungsform 1 , umfassend a) 70 - 80 Gew. % thermoplastisches Polyurethan als Komponente I b) 20 - 30 Gew-% Polypropylen als Komponenten II,

wobei die Summe der Komponenten I und II sich zu 100 Gew-% ergibt.

4. Partikelschaum gemäß einer der Ausführungsformen 1 bis 3, wobei der mittlere Durch- messer der Partikelschäume 0,2 bis 20 liegt.

5. Partikelschaum gemäß einer der Ausführungsformen 1 bis 3, wobei der mittlere Durch- messer der Partikelschäume zwischen 0,5 bis 15 mm liegt.

6. Partikelschaum gemäß einer der Ausführungsformen 1 bis 3, wobei der mittlere Durch- messer der Partikelschäume zwischen 1 bis 12 mm liegt.

7. Verfahren zur Herstellung eines Formkörpers aus Partikelschäumen nach einer der Aus- führungsformen 1 bis 6, umfassend

i. Bereitstellen einer erfindungsgemäßen Zusammensetzung (Z);

ii. Imprägnierung der Zusammensetzung mit einem Treibmittel unter Druck;

iii. Expandieren der Zusammensetzung mittels Druckabfall.

8. Formkörper aus Partikelschaum gemäß einer der Ausführungsformen 1 bis 6.

9. Formkörper aus Partikelschaum gemäß einer der Ausführungsformen 1 bis 6, dadurch gekennzeichnet, dass die Zugfestigkeit des Formkörpers oberhalb 600 kPa liegt.

10. Formkörper nach Ausführungsform 8 oder 9, dadurch gekennzeichnet, dass die die Reiß- dehnung über 100% liegt.

1 1. Formkörper nach Ausführungsform 8, 9 oder 10, dadurch gekennzeichnet, dass die

Druckspannung bei10% Stauchung oberhalb von 15kPa liegt.

12. Formkörper gemäß einer der Ausführungsformen 8 bis 1 1 , dadurch gekennzeichnet, dass die Dichte des Formkörpers zwischen 75 bis 375 kg/m 3 liegt.

13. Formkörper gemäß einer der Ausführungsformen 8 bis 12, dadurch gekennzeichnet, dass die Dichte des Formkörpers zwischen 100 bis 300 kg/m 3 liegt.

14. Formkörper gemäß einer der Ausführungsformen 8 bis 13, dadurch gekennzeichnet, dass die Dichte des Formkörpers zwischen 150 bis 200 kg/m 3 liegt.

15. Formkörper gemäß einer der Ausführungsformen 8 bis 14, dadurch gekennzeichnet, dass die Rückprallelastizität des Formkörper oberhalb von 55 % liegt. 16. Formkörper gemäß einer der Ausführungsformen 8 bis 15, dadurch gekennzeichnet, dass das Verhältnis der Dichte des Formteils zu der Schüttdichte des Partikelschaustoffs zwi- schen 1 ,5 und 2,5 liegt.

17. Formkörper aus Partikelschaum gemäß einer der Ausführungsformen 8 bis 16, dadurch gekennzeichnet, dass das Verhältnis der Dichte des Formteils zu der Schüttdichte des Partikelschaustoffs zwischen 1 ,8 bis 2,0 liegt.

18. Formkörper gemäß einer der Ausführungsformen 8 bis 17, wobei der Formkörper eine Zwischensohle für Schuhe ist.

19. Formkörper gemäß einer der Ausführungsformen 8 bis 17, wobei der Formkörper ein Ein- leger für Schuhe ist.

20. Formkörper gemäß einer der Ausführungsformen 8 bis 17, wobei der Formkörper ein Polsterelement für Schuhe ist.

21.Formkörper gemäß einer der Ausführungsformen 8 bis 17, wobei der Schuh ein Straßen- schuh, Sportschuh, Sandale, Stiefel oder Sicherheitsschuh ist.

22. Formkörper gemäß einer der Ausführungsformen 8 bis 17, wobei der Schuh ein Sport- schuh ist.

23. Verfahren zur Herstellung eines Formkörpers gemäß einer der Ausführungsformen 8 bis 17 umfassend

(i) Einbringen der Partikelschäume in eine entsprechende Form,

(ii) Fusionierung der Partikelschäume aus Schritt (i).

24. Verfahren nach Anspruch 23, dadurch gekennzeichnet, dass die Fusionierung in Schritt (ii) in einer geschlossenen Form erfolgt.

25. Verfahren nach Anspruch 23 oder 24, dadurch gekennzeichnet, dass die Fusionierung in Schritt (ii) mittels Wasserdampf, Heißluft oder energetische Strahlung erfolgt.

26. Schuh, enthaltend einen Formkörper gemäß einer der Ausführungsformen 8 bis 17.

27. Schuh nach Ausführungsform 26, dadurch gekennzeichnet, dass der Schuh ein Straßen- schuh, Sportschuh, Sandale, Stiefel oder Sicherheitsschuh ist.

28. Schuh nach Ausführungsform 26, dadurch gekennzeichnet, dass der Schuh ein Sport- schuh ist. Verwendung eines Partikelschaums nach einer der Ausführungsformen 1 bis 6 für die Herstellung eines Formkörpers nach einer der Ausführungsformen 8 bis 17 für Schuhzwi- schensohlen, Schuheinlegesohlen, Schuhkombisohlen, Polsterelemente für Schuhe, Fahrradsätteln, Fahrradreifen, Dämpfungselementen, Polsterungen, Matratzen, Unterla- gen, Griffen, Schutzfolien, in Bauteilen im Automobilinnen- und -außenbereich, in Bällen und Sportgeräten oder als Bodenbelag. Verwendung nach Ausführungsform 29 für Schuhzwischensohlen, Schuheinlegesohlen, Schuhkombisohlen, Polsterelemente für Schuhe.

Verwendung nach Ausführungsform 30, wobei der Schuh ein Sportschuh ist.

Zitierte Literatur

WO 94/20568 A1

WO 2007/082838 A1 ,

W02 017/030835 A1

WO 2013/153190 A1

WO 2010/010010 A1

PCT/EP2017/079049

Plastics Additives Handbook, 5th Edition, H. Zweifel, ed., Hanser Publishers, München, 2001 ([1]), S.98-S136

Kunststoff-Handbuch Vol. 4, "Polystyrol", Becker/Braun (1996)

Saechtling (Hg.), Kunststoff-Taschenbuch, 27. Auflage, Hanser-Verlag München 1998, Kapitel 3.2.1 und 3.2.4

WO 2014/150122 A1

WO 2014/150124 A1

EP 1979401 B1

US 2015/0337102 A1

EP 2872309 B1

EP 3053732 A

WO 2016/146537 A1