Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
FOOTED PLASTIC BOTTLE
Document Type and Number:
WIPO Patent Application WO/1999/039895
Kind Code:
A1
Abstract:
A process for forming a footed plastic container (30), comprising the steps of providing a preform (10) having a neck portion (12) with an open top end, and elongated cylindrical body portion (14) with inner walls (20) and outer walls (22) and a lower end (16), wherein the lower end includes a plurality of thickened portions (24); providing a blow mold (34) in the shape of a footed container (30) having an elongated sidewall (35), wherein the blow mold includes a plurality of separate container foot forming cavities (38); inserting the preform (10) into the blow mold (34); placing each of the thickened portions (24) in a predetermined position relative to the foot forming cavities (38); and stretch blow molding the preform (10), and displacing material from each of the thickened portions (24) into one of the foot forming cavities (38) to form the plastic container (30).

Inventors:
VALYI EMERY I
Application Number:
PCT/US1998/002294
Publication Date:
August 12, 1999
Filing Date:
February 03, 1998
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
PEPSICO INC (US)
International Classes:
B29C49/00; B29C49/06; (IPC1-7): B29C49/08; B65D1/02
Foreign References:
US5160059A1992-11-03
US5116565A1992-05-26
US5064080A1991-11-12
US5198248A1993-03-30
US5282526A1994-02-01
US5614148A1997-03-25
US5498152A1996-03-12
US5205434A1993-04-27
US4950514A1990-08-21
Attorney, Agent or Firm:
Bachman, Robert H. (900 Chapel Street New Haven, CT, US)
Download PDF:
Claims:
WHAT IS CLAIMED IS:
1. A process for forming a footed plastic container (30), comprising the steps of: providing a preform (10) having a neck portion (12) with an open top end and an elongated cylindrical body portion (14) including a lower end (16), said body portion having an inner (20) and outer wall (22), wherein said lower end includes a plurality of thickened portions (24); providing a blow mold (34) having a cavity in the shape of a footed container (30) having an elongated sidewall (35) and a plurality of individual foot forming cavities (38); inserting said preform (10) into said blow mold (34); placing each of said thickened portions (24) in a predetermined position relative to one of said foot forming cavities (38); and stretch blowing said elongated body portion (14) to said elongated side walls (35), blow molding said preform (10), and displacing material from each of said thickened portions (24) into one of said foot forming cavities (38).
2. The process according to claim 1, further comprising the step of adjusting the placement of said preform (10) to acquire a predetermined position of said thickened portions (24) relative to said foot forming cavities (38).
3. The process according to claim 1, wherein said preform (10) includes means for positioning said thickened portions (24), and further comprising the step of: providing sensing means (32) for positioning said thickened portions (24) and thereby placing said thickened portions (24) relative to said foot forming cavities (38).
4. The process according to claim 2, wherein said preform (10) includes locating means (32) and said blow mold includes means (40) for engaging said locating means (32) such that each of said thickened portions (24) corresponds with said one of said foot cavities (38), further comprising the step of: engaging said locating means (32) with said means (41) for engaging.
5. A system for producing a footed plastic container (30), comprising: a preform (10) having a neck portion (12) with an open top end and an elongated cylindrical body portion (14) including a lower end (16), said body portion having an inner (20) and outer wall (22), wherein said lower end includes a plurality of thickened portions (24); a blow mold (34) having a cavity formed in the shape of said footed container (30) having an elongated side wall (35) and a plurality of individual foot forming cavities (38) adapted to receive said preform (10); means for placing said preform into a predetermined position with reference to said blow mold (34) such that each of said plurality of thickened portions (24) of said preform (10) corresponds to one of said plurality of individual foot forming cavities (38) of said blow mold (34); wherein upon blowing said preform (10) into said blow mold (34), each of said thickened portions (24) provides the material to be blown into one of said foot forming cavities (38).
6. The system according to claim 5, wherein each thickened portion (24) has a thickness defined between said inner (20) and outer walls (22) and said cylindrical body portion (14) has a thickness, wherein said thickness of each of said thickened portions (24) is substantially equal to said thickness of said cylindrical body portion (14).
7. The system according to claim 5, wherein said preform (10) includes a position indicator (32) and said means for positioning comprises means for sensing (40) said position indicator, wherein upon sensing said position indicator said preform (10) is in a predetermined position.
8. The system according to claim 7, wherein said means for positioning further includes means for rotating (42) said preform (10) and stopping said rotation by interaction of said position indicator (32) and said means for sensing (40), wherein said means for rotating (42) is in communication with said means for sensing (40) such that when said position indicator is sensed, said means for rotating stops.
9. The system according to claim 8, wherein said preform (10) further includes a neck portion (12), said position indicator (32) comprising a locating means positioned in said neck, wherein said locating means is adapted to be sensed by said means for sensing (40).
10. The system according to claim 9, wherein said locating means is a notch.
11. The system according to claim 9, wherein said neck portion includes a support ring (31) and said locating means is on said support ring.
12. The system according to claim 5, wherein said preform (10) includes a position indicator (32) and said means for positioning comprises means for engaging (41) said position indicator, wherein upon engaging said position indicator said preform (10) is in said predetermined position.
13. A blow molded plastic container (30) comprising a body having a neck portion (50), a generally cylindrical side wall portion (52) having a first wall thickness and a bottom structure (54), said bottom structure comprising: a central portion (56); a plurality of indented areas (60) defined in said bottom structure (54), wherein said indented areas (60) extend from said central portion (56) toward said sidewall (52); and a plurality of molded feet (58) having a second wall thickness and depending from said side wall portion (52) and surrounding said central portion (56), wherein each of said plurality of feet (58) is defined by one of said indented areas (60) positioned on each side thereof and said second wall thickness is substantially equal to the thickness of said first wall thickness.
14. The container according to claim 13, wherein said second wall thickness is greater than the thickness of said first wall thickness. AMENDED CLAIMS [received by the International Bureau on 14. August. 1998 (14.08.98); original claims 19 amended; remaining claims unchanged (3 pages)] 1. A process for forming a footed plastic container (30), comprising the steps of: providing a preform (10) having a neck portion (12) with an open top end and an elongated cylindrical body portion (14) including a lower end (16), said body portion having an inner (20) and outer wall (22), wherein said lower end includes a plurality of thickened portions (24) separated by portions of lesser thickness; providing a blow mold (34) having a cavity in the shape of a footed container (30) having an elongated sidewall (35) and a plurality of individual foot forming cavities (38); inserting said preform (10) into said blow mold (34); placing each of said thickened portions (24) in a predetermined position relative to one of said foot forming cavities (38); and stretching said elongated body portion (14) and blow molding said preform (10) to form a blow molded container (30) having an elongated side wall (52) and footed portions (58) separated by indented areas between the footed portions, including displacing material from each of said thickened portions (24) into corresponding ones of said foot forming cavities (38) and displacing the portions of lesser thickness into respective ones of said indented areas between the footed portions so that said thickened portions (24) form substantially the entire container footed portions (58) including side walls of the footed portions wherein the thickened portion prevent overstretching of material in the footed portions (58) so that the wall thickness of the footed portions (58) is at least equal to the wall thickness of elongated side wall (52) of the container (30).
15. 2 The process according to claim 1, further comprising the step of adjusting the placement of said preform (10) to acquire a predetermined position of said thickened portions (24) relative to said foot forming cavities (38).
16. 3 The process according to claim 1, wherein said preform (10) includes means for positioning said thickened portions (24), and further comprising the step of: sensing and positioning said means (32) for positioning said thickened portions (24) and thereby placing said thickened portions (24) relative to said foot forming cavities (38) such that each of said thickened portions (24) corresponds to one of said foot forming cavities (38).
17. 4 The process according to claim 2, wherein said preform (10) includes means (32) for positioning said thickened portions (24) and said blow mold includes sensing means (41) for sensing and positioning said means (32) for positioning: engaging said sensing means (41) with said means (32) for positioning such that each of said thickened portions (24) corresponds with one of said foot forming cavities (38).
18. 5 The process according to claim 3, further including the step of rotating the preform (10) and stopping said rotation by interaction of a sensing means and said means for positioning.
19. 6 The process according to claim 5, including the step of providing said means (32) for positioning on the preform (10) neck portion and sensing the means (32) for positioning by the sensing means (41).
20. 7 The process according to claim 6, including the step of placing said means (32) for positioning on a supper ring (31) located on the neck portion.
21. 8 The process according to claim 1, including the step of providing each of said thickened portions (24) with terminal ends and interconnecting said terminal ends with sections of reduced thickness.
22. 9 The process according to claim 8, including the step of forming said sections of reduced thickness as scalloped shaped sections (29).
Description:
TITLE: FOOTED PLASTIC BOTTLE BACKGROUND OF THE INVENTION This invention is directed to plastic containers, and more particularly, to plastic containers and a process for forming the containers having molded feet, wherein the thickness of the wall of the container forming the molded feet is preferably thicker than the cylindrical sidewalls of the container.

Footed plastic containers have been developed for giving containers additional stability so that they may stand erect.

The footed containers are generally characterized by a base having several downwardly extending protrusions, in the form of feet, upon which the bottom may rest on a surface in the upright position. While this construction provides stability, it is not favorable for several reasons.

During the manufacture of the footed containers, preforms must be stretched and blown in a blow molding operation. The material forming the wall of the container becomes thinner as it is expanded from its original position as the preform wall. As the wall thins during expansion via blowing, it also cools and as it cools, it becomes increasingly difficult to deform, thereby requiring high pressure for continuing the deforming of the preforms. Moreover, by the time feet are formed by blowing, which is typically after the main cylindrical body of the bottle has been blown into contact with the mold, the deforming wall may have a temperature much lower than best suited for orientation. Accordingly, the feet of the container may become overstretched, resulting in increased brittleness and the likelihood of stress cracking of the bottle in the footed area while in service. These shortfalls hold true for most containers having footed bottoms. However, the degree to which

problems are experienced, depends on the specific geometry of the feet.

The origin of the aforementioned problems is in the specific design of the preforms which are used to form the footed containers. Typically, the preforms used are in the shape of a test tube having an annular cross section in the regions that are to form the body and base of the bottle, wherein the thickness of the annular cross-section is dependent on the axial location of the section. The portion of the preform that is adapted to be blown into the feet is also annular. As a result, the thickness of the container walls will tend to be greater than the thickness at the deepest region of the feet. This occurs because the thickness at the annular cross-sections of the preform for all sections to be molded are substantially the same yet the amount of expansion required in the area to be blown into the feet is greater. The following patents are directed to preforms and containers, some of which have feet and all of which suffer from the shortfalls described above.

U. S. Patent 3,598,270 discloses one of the first footed containers and is entitled"Bottom End Structure for Plastic Containers". The patent discloses a blow molded plastic container having a tubular body terminating at a generally hemispherical outwardly convexed bottom wall with a lowermost polar portion. The bottom wall is interrupted by a plurality of downwardly projecting wall portions defining hollow legs with adjacent legs being spaced from each other by meridian wall portions of the bottom wall. At least two of the meridian wall

portions are disposed in generally diametrically opposed relationship and the two meridian walls have a common parison weld along an arc of a radius equal to that of the hemispherical bottom wall. The hollow legs terminate in feet having radially inwardly directed apex wall portions. The apex wall portions and at least two meridian wall portions merge at the polar portion. The preform used for forming the container described is essentially as described above, wherein the thickness of the walls of the preform are substantially uniform regardless of the portion of the container to which the walls are to be blown. As discussed above, this causes the resulting footed container to have substantially overstretched feet.

U. S. Patent 4,978,015 to Walker discloses another footed container for pressurized fluids. It has a generally cylindrical sidewall portion and a bottom structure which comprises a central portion, a plurality of ribs extending downwardly from the sidewall portion to the central portion, and a plurality of feet extending below the central portion from the sidewall portion. The ribs are defined by an upper curvilinear surface and, in cross-section, are substantially U-shaped having a relatively tight radius. The upper surfaces of the ribs lie on a generally hemispherical curvature in the interior of the container. Each foot is positioned between two ribs and has a pair of ribs defining end walls connected to and continuous with the ribs on each side of the curvilinear outer wall. The curvilinear outer wall is connected to and continuous with the sidewall portion. A generally horizontal base surface is joined to the outer wall and a generally vertical first inner surface

forms a lip extending upwardly from the base surface. A second inner surface extends from the lip of the central portion. As can be seen from the figures, the feet portions of the Walker container have substantially the same thickness as the cylindrical sidewall portions. Accordingly, the Walker container suffers from the same shortfalls discussed above.

U. S. Patent 4,885,197 to Strassheimer discloses a plastic preform for forming blow molded non-footed plastic bottles. The plastic preform includes a tubular body portion having an inside wall face and a bottom structure, the tubular body portion adjacent the bottom structure and extending into the bottom structure has a plurality of flat faces with terminal portions thereof. Scalloped-shaped segments are provided for connecting the terminal portions of each flat face so as to initiate deformation of the preform at the scalloped-shaped segments, prior to deformation of the flat faces. As shown in Figures 4 and 6 of this patent, the preform is used for forming a container having a continuous peripheral seating ring with alternating thicker and thinner portions upon which the bottle rests which surrounds a generally concave central portion. In order to secure stability in such a design, the thickness of the base is made greater than in footed bottles if stability is to be obtained and wobbling avoided.

There exists, therefore, a need for a footed container and a process for forming the same wherein a uniform wall thickness of the base is obtained by forming the feet from preform walls having greater thickness than the preform walls used to form the

rest of the base, i. e., by varying the corresponding cross sectional thickness of the preform.

SUMMARY OF THE INVENTION The primary object of this invention is to provide a footed container and a process for making the same which eliminates the shortfalls of the prior art footed containers.

Another object of this invention is to provide a footed container having thickened walls in the foot forming areas for greater stability and wherein the walls have improved material properties.

Still another object of this invention is to provide a process for forming a footed container having thickened walls in the footed area from a preform having thickened segments in a base area which are adapted to be blown into the container feet.

Yet another object of this invention is to provide a process for forming footed containers using preforms having improved geometries compared to currently available processes.

The foregoing objects are attained through the process of the present invention for forming a footed plastic container, which comprises the steps of providing a preform having a neck portion with an open top end, an elongated cylindrical body portion with inner and outer walls and a lower end. The inner wall at the lower end of the preform includes a plurality of thickened portions and the process further includes providing a blow mold having a cavity in the shape of a footed container having an elongated sidewall, wherein said blow mold includes a plurality of individual container foot forming cavities;

inserting the preform into the blow mold; positioning the foot forming cavities with respect to the preform so as to enable the thickened portions to provide the desired wall thickness of the feet; and stretch blowing the elongated body portion into the elongated side wall, blow molding the preform and displacing material from each of the thickened portions into one of the foot cavities.

The details of the present invention are set out in the following description and drawings wherein like reference characters depict like elements.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an elevational and cross-sectional view of a preform used to form a footed container via a process of the present invention, FIG. 2 is a cross-sectional view taken along line 2-2 of FIG. 1 showing a plurality of thickened areas which are adapted to correspond to foot-forming cavities of a mold and form container feet; FIG. 3 is an elevational view of a blow mold with the preform of FIG. 1 positioned therein such that the thickened areas for forming the thickened feet of the footed container determine the wall thickness produced in the foot-forming cavities of a mold; FIG. 4 is an overhead view of FIG. 3 showing a preform positioning mechanism;

FIG. 5 is an elevational view of a footed container formed from the preform of FIG. 1, mold of FIG. 3 and the process of the present invention; and FIG. 6 is a elevational and partially cross-sectional view of the footed container shown in FIG. 5.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT Referring now to the drawings in detail, there is shown in FIG. 1, an elevational and cross-sectional view of a preform 10 used for forming the footed container of the present invention.

Preform 10 includes an upper neck portion 12 having an open top end, an intermediate elongated cylindrical body portion 14, and a lower cylindrical end 16 having a closed end 18.

Preform 10, a more detailed description of which is incorporated herein with reference to U. S. Patent No. 4,885,197 to Strassheimer issued December 5,1989, has an inner wall 20 and an outer wall 22. The design of the inner wall 20, as shown in FIG. 2, at lower end 16 is important to forming the footed container of the present invention shown in FIGS. 5 and 6, and discussed below.

FIG. 2 shows a cross-sectional view of preform 10 taken along line 2-2 of FIG. 1. As shown in FIG. 2, the inner wall 20 of preform 10 at the lower end 16 is preferably comprised of a plurality of thickened portions 24 defined between flat faces 26, having terminal ends 28, and outer wall 22. Each terminal end 28 of each flat face 26 is preferably separated from the terminal ends of the other flat faces via a scalloped-shaped

segment 29. Scalloped-shaped segments 29 are provided to permit initiating deformation in the preform in sequence between segments 29 and flat faces 26 during blow molding of preform 10 into a container 30 (shown in FIGS. 5 and 6).

Also, preform 10 preferably has a support ring 31 with a notch 32 or other mechanical, optical or electrical sensing index, as shown in FIG. 4, in the peripheral edge thereof as a position indicator for engagement with or for sensing by a positioning mechanism the purpose and nature of which are discussed below.

Blow mold 34, shown in FIG. 3, has a cavity which is designed in the shape of container 30 shown in FIGS. 5 and 6.

Blow mold 34 includes an elongated side wall 35 and a bottom portion 36 having a plurality of foot forming cavities 38.

As is common practice, the preform is heated to the temperature appropriate for blow molding as by means of radiant heaters and is rotated by conventional means (not shown) in front of said heaters to obtain uniform distribution of heat.

Upon completion of heating, radiation is stopped and the preform is placed into the blow mold. In the present case, said placement must accord with the position of the foot forming cavities so that the thickened portions of the preform are appropriately positioned in relation thereto, e. g., the thickened portions are preferably offset sideways from the feet.

Since they are thick, they remain hot and therefore stretch first into the feet. The position of the location sensor such as notch 32 may be monitored by corresponding conventional means, and the rotation stopped in the desired position before

placing the preform into the mold. The blow mold itself may include such alignment means. For example, referring to FIG. 4, blow mold 34 includes a positioning mechanism 40 positioned on upper surface 39 thereof. Positioning mechanism 40 is adapted to a sense locating means as notch 32, such that when notch 32 is sensed, preform 10 is in the desired alignment with blow mold 34.

Positioning mechanism 40 may be in the form of a sensor 41 co-acting with a rotating mechanism 42. While preform 10 is being rotated by rotating mechanism 42, sensor 41 senses the periphery of ring 31, by suitable means, e. g., a mechanical detent, or a light beam. When notch 32 is sensed on the periphery, sensor 41 signals the rotating mechanism 42 to stop rotating preform 10.

When notch 32 is sensed, flat faces 26 are placed into a predetermined position adjacent foot-forming cavities 38 of blow mold 34. Each of flat faces 26 is positioned so as to supply the necessary amount of plastic into one of foot-forming cavities 38 of blow mold 34 such that upon blowing and stretching of preform 10, each thickened portion 24 of preform 10 corresponding with a face 26 and extending outwardly toward outer wall 22 between scalloped-shaped segments 29 of intermediate body portion 14, supplied material for a foot made in one foot-forming cavity 38.

The notch and positioning mechanisms discussed above are but an example for aligning the preform with blow mold such that the thickened portion are properly positioned relative to the

foot-forming cavities of mold. Other techniques or designs known in the art can be used to accomplish the same purpose.

The thickened portions 24 of preform 10, as indicated by flat faces 26, are stretched into foot-forming cavities 38 allowing for increased molding material for the formation of the feet of container 30. This process allows for decreased brittleness and overstretching and increased elasticity of the material stretch-blown into the foot-forming cavities. That is, because thickened portions 24 defined by flat faces 26 are relatively thick, they retain heat, avoid premature cooling and facilitate flow of material into the feet, thereby minimizing subsequent overstretching and brittleness.

The resulting container 30 as shown in FIGS. 5 and 6 includes a neck portion 50, an intermediate cylindrical side wall 52, a shoulder portion 53 between the neck and sidewall, and a bottom portion 54 having a central portion 56 and a plurality of feet 58 depending from side wall 52 and separated by indented areas 60. As shown in FIG. 6, the wall thickness A of feet 58 is at least equal to the wall thickness B of intermediate cylindrical side wall 52. This increased thickness results from thickened portions 24 defined by the material between flat faces 26 and outer wall 22 of preform 10, as shown in FIGS. 1 and 2, being stretch blow molded into foot-forming cavities 38 of mold 34, as discussed above for FIG. 3. The initially thicker portions 24 between scalloped-shaped segments 29 supply material for the relatively thickened walls for feet 58.

In forming container 30, and referring to FIGS. 1-4, preform 10 is placed into blow mold 34. Notch 32 or other desired alignment means, as on the support ring 31 of preform 10 may be aligned with the blow mold as provided above via positioning mechanism 40. Once notch 32 is sensed or engaged, preform 10 is aligned in the correct position for blowing. That is, thickened portions 24 defined between flat faces 26 and outer wall 22 and between scalloped-shaped segments 29 are individually positioned in relation to foot-forming cavities 38 of blow mold 34 such that upon stretching preforms 10 into blow mold 34, the thickened portions contribute most of the material that is displaced into the foot-forming cavities 38. The next step in the process is to stretch blow mold preform 10 into the container form of blow mold 34 thereby forming container 30 having feet 58 which are at least substantially equal in wall thickness to the wall thickness of the rest of the container.

In accordance with the above, the desired distribution of material is maintained during the blow molding of feet 58 of bottom portion 54 of container 30 via thickened portions 24 of preform 10, preventing the possibility of overstretching the material and causing it to become brittle. As a result, a container 30 is blown that has walls of sufficient thickness comprising feet 58. With the aforementioned process, a simpler preform geometry can be used for forming the footed containers in comparison with currently available techniques.

The primary advantage of this invention is that a footed container and process for making the same is provided which eliminates the shortfalls of footed containers according to the

prior art. Another advantage of this invention is that a plastic footed container is provided having walls of sufficient thickness in the foot forming areas for achieving greater container stability and for improved materials properties such that overstretching of material in the area of the footed portions is prevented. Still another advantage of this invention is that a process is provided for forming a footed container having relatively thickened walls from a preform having thickened segments.

It is to be understood that the invention is not limited to the illustrations described and shown herein, which are deemed to be merely illustrative of the best modes of carrying out the invention, and which are susceptible of modification of form, size, arrangement of parts and details of operation. The invention rather is intended to encompass all such modifications which are within its spirit and scope as defined by the claims.