Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
IMPLANT COMPRISING A CALCIUM SALT-CONTAINING COMPOSITE POWDER HAVING MICROSTRUCTRED PARTICLES
Document Type and Number:
WIPO Patent Application WO/2018/046238
Kind Code:
A1
Abstract:
The invention relates to an implant comprising a composite powder having microstructured particles, obtained by a method in which large particles are joined to small particles, wherein the large particles have an average particle diameter in the range from 10 µm to 10 mm, the large particles comprise at least one polymer, the small particles are arranged on the surface of the large particles and/or distributed non-homogenously within the large particles, the small particles comprise a calcium salt, the small particles have an average particle size in the range from 0.01 µm to 1.0 mm, wherein the particles of the composite powder have an average particle size (d50) in the range from 10 µm to less than 200 µm, and the fine-grain proportion of the composite powder is less than 50% by volume. The subject of the invention is therefore further implants obtained by selective laser sintering of a composition comprising a composite powder, in particular as an implant for applications in the area of neuro-surgery, oral, jaw, face, neck and ear surgery, and in hand, foot, thorax, rib, and shoulder surgery.

Inventors:
REINAUER FRANK (DE)
LUGER SIEGMUND (DE)
VUCAK MARIJAN (DE)
Application Number:
PCT/EP2017/070491
Publication Date:
March 15, 2018
Filing Date:
August 11, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
KARL LEIBINGER MEDIZINTECHNIK GMBH & CO KG (DE)
International Classes:
A61L27/44; A61K6/838; A61K6/884; A61K6/891; C01F11/18; C08J3/12; C08J3/20; C08L67/02; C08L67/04; C09C1/00; C09C1/02
Domestic Patent References:
WO2012126600A22012-09-27
WO2012013349A22012-02-02
WO2006050119A22006-05-11
WO2012126600A22012-09-27
WO2008122358A22008-10-16
Foreign References:
CN102247624A2011-11-23
JPS6283029A1987-04-16
DE4244254A11993-07-01
EP0922488A21999-06-16
US6403219B12002-06-11
EP0523372A11993-01-20
Other References:
"Römpp-Lexikon Chemie / Hrsg. Jürgen Falbe; Manfred Regitz. Bearb. Von Eckard Amelingmeier", vol. 2, 1997, THIEME
"Organikum", 1988, VEB DEUTSCHER VERLAG DER WISSENSCHAFTEN, article "Ausschütteln von Lösungen bzw. Suspensionen", pages: 56 - 57
Attorney, Agent or Firm:
WINTER BRANDL FÜRNISS HÜBNER RÖSS KAISER POLTE - PARTNERSCHAFT MBB (DE)
Download PDF:
Claims:
Patentansprüche:

1 . Implantat, enthaltend Verbundpulver mit mikrostrukturierten Teilchen, erhalten durch ein Verfahren, bei welchem man große Teilchen mit kleinen Teilchen verbindet, wobei

- die großen Teilchen einen mittleren Teilchendurchmesser im Bereich von 10 m bis 10 mm aufweisen,

- die großen Teilchen mindestens ein Polymer umfassen,

- die kleinen Teilchen auf der Oberfläche der großen Teilchen angeordnet und/oder inhomogen innerhalb der großen Teilchen verteilt sind,

- die kleinen Teilchen ein Calciumsalz umfassen,

- die kleinen Teilchen eine mittlere Teilchengröße im Bereich von 0,01 μιτι bis 1 ,0 mm aufweisen,

dadurch gekennzeichnet, dass

die Teilchen des Verbundpulvers eine mittlere Teilchengröße dso im Bereich von 10 μιτι bis kleiner 200 μιτι aufweisen und der Feinkornanteil des

Verbundpulvers kleiner 50 Vol.-% ist.

2. Implantat nach Anspruch 1 , dadurch gekennzeichnet, dass die Teilchen des Verbundpulvers eine Teilchengröße d9o von kleiner 350 μιτι aufweisen.

3. Implantat nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die

Teilchen des Verbundpulvers eine mittlere Teilchengröße dso im Bereich von 20 μιτι bis kleiner 150 μιτι aufweisen.

4. Implantat nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Teilchen des Verbundpulvers ein Verhältnis d2o/dso kleiner 100% aufweisen und/oder dass das Calciumsalz einen Aspekt Ratio kleiner 5 aufweist und/oder dass das Calciumsalz kugelförmiges

Calciumcarbonat umfasst und/oder dass das Calciumsalz Calciumphosphat umfasst.

5. Implantat nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die großen Teilchen mindestens ein thermoplastisches Polymer umfassen.

6. Implantat nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die großen Teilchen mindestens ein resorbierbares Polymer umfassen.

7. Implantat nach Anspruch 6, dadurch gekennzeichnet, dass das resorbierbare Polymer eine inhärente Viskosität, gemessen in Chloroform bei 25°C, 0,1 % Polymerkonzentration, im Bereich von 0,3 dl/g bis 8,0 dl/g aufweist.

8. Implantat nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die großen Teilchen Poly-D-, Poly-L- und/oder Poly- D,L-milchsäure umfassen.

9. Implantat nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die großen Teilchen mindestens einen resorbierbaren Polyester mit einem Zahlenmittel des Molekulargewichts im Bereich von 500 g/mol bis 1 .000.000 g/mol umfassen.

10. Implantat nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die großen Teilchen mindestens ein Polyamid umfassen.

1 1 . Implantat nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die großen Teilchen mindestens ein Polyurethan umfassen.

12. Implantat nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Gewichtsanteil des Calciumsalzes-Teilchen, bezogen auf das Gesamtgewicht des Verbundpulvers, mindestens 0,1 Gew.- % beträgt.

13. Implantat nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Verbundpulver, bezogen auf das Gesamtgewicht des Verbundpulvers, 40,0 Gew.-% bis 80,0 Gew.-% PLLA und 20,0 Gew.-% bis 60,0 Gew.-% Calciumcarbonat-Teilchen umfassen.

14. Implantat nach mindestens einem der Ansprüche 1 bis 13, erhalten durch selektives Lasersintern einer Zusammensetzung, umfassend ein

Verbundpulver.

Description:
Implantat mit Calciumsalz-enthaltendem Verbundpulver mit

mikrostrukturierten Teilchen

Die vorliegende Erfindung betrifft ein Implantat mit Calciumsalz-enthaltendem Verbundpulver, erhalten durch selektives Lasersintern, insbesondere Implantate für Anwendungen im Bereich der Neuro-, Mund-, Kiefer-, Gesichts-, Hals-, Nasen- und Ohrenchirurgie sowie der Hand-, Fuß-, Thorax-, Rippen- und

Schulterchirurgie.

Die Erfindung betrifft nicht die Herstellung des Ausgangsstoffes für das Implantat und nicht die Verwendung für andere Zwecke als die Herstellung eines Implantats, insbesondere eines, vorbereitet für Anwendungen im Bereich der Neuro-, Mund-, Kiefer-, Gesichts-, Hals-, Nasen- und Ohrenchirurgie sowie der Hand-, Fuß-, Thorax-, Rippen- und Schulterchirurgie.

Calciumcarbonat, CaCO3, ist ein Calcium-Salz der Kohlensäure, das heutzutage in vielen Bereichen des täglichen Lebens Anwendung findet. So wird es

insbesondere als Additiv oder Modifizierungsmittel in Papier, Farben,

Kunststoffen, Tinten, Klebstoffen und Pharmazeutika eingesetzt. In Kunststoffen dient Calciumcarbonat vorrangig als Füllstoff, um das vergleichsweise teure Polymer zu ersetzen.

Auch Verbundwerkstoffe (Kompositwerkstoffe) sind bereits bekannt und

bezeichnen einen Werkstoff aus zwei oder mehr verbundenen Materialien, der andere Werkstoffeigenschaften als seine einzelnen Komponenten besitzt. Für die Eigenschaften der Verbundwerkstoffe sind die stofflichen Eigenschaften und die Geometrie der Komponenten von Bedeutung. Insbesondere spielen oft

Größeneffekte eine Rolle. Die Verbindung erfolgt in der Regel durch Stoff- oder Formschluss oder eine Kombination von beidem.

Weiterhin sind auch mikrostrukturierte Verbundteilchen, enthaltend Calciumsalze, insbesondere Calciumcarbonat, an sich schon bekannt.

So offenbart WO 2012/126600 A2 mikrostruktierte Verbundteilchen, erhältlich durch ein Verfahren, bei welchem man große Teilchen mit kleinen Teilchen verbindet, wobei

- die großen Teilchen einen mittleren Teilchendurchmesser im Bereich von 0,1 μιτι bis 10 mm aufweisen,

- der mittlere Teilchendurchmesser der kleinen Teilchen höchstens 1/10 des

mittleren Teilchendurchmessers der großen Teilchen ist, - die großen Teilchen mindestens ein Polymer umfassen,

- die kleinen Teilchen Calciumcarbonat umfassen,

- die kleinen Teilchen auf der Oberfläche der großen Teilchen angeordnet

und/oder inhomogen innerhalb der großen Teilchen verteilt sind,

wobei die kleinen Teilchen gefällte Calciumcarbonat-Teilchen mit einer mittleren Teilchengröße im Bereich von 0,01 μιτι bis 1 ,0 mm umfassen.

Weiterhin beschreibt WO 2012/126600 A2 mikrostruktierte Verbundteilchen, erhältlich durch ein Verfahren, bei welchem man große Teilchen mit kleinen Teilchen verbindet, wobei

- die großen Teilchen einen mittleren Teilchendurchmesser im Bereich von 0,1 μιτι bis 10 mm aufweisen,

- der mittlere Teilchendurchmesser der kleinen Teilchen höchstens 1/10 des

mittleren Teilchendurchmessers der großen Teilchen ist,

- die großen Teilchen mindestens ein Polymer umfassen,

- die kleinen Teilchen mindestens ein Calciumsalz umfassen,

- die kleinen Teilchen auf der Oberfläche der großen Teilchen angeordnet

und/oder inhomogen innerhalb der großen Teilchen verteilt sind,

wobei die großen Teilchen mindestens einen resorbierbaren Polyester mit einem Zahlenmittel des Molekulargewichts im Bereich von 500 g/mol bis 1 .000.000 g/mol umfassen.

Die in der WO 2012/126600 A2 gezeigten Verbundteilchen sollen sich vor allem als Additiv, insbesondere als Polymeradditiv, als Zusatzsatzstoff oder

Ausgangsmaterial für die Herstellung von Bauteilen, für Anwendungen in der Medizintechnik und/oder in der Mikrotechnik und/oder für die Herstellung von geschäumten Gegenständen eignen. Das Verfahren des selektiven Lasersintern (SLM-Verfahren) wird in der Druckschrift u. a. erwähnt.

Allerdings sind besser geeignete Materialien für selektives Lasersintern

wünschenswert. Ein Nachteil der Verbundteilchen der WO 2012/126600 A2 ist insbesondere ihre schlechte Rieselfähigkeit, die auch durch die Verwendung von Rieselhilfsmitteln nur teilweise reduziert werden kann. Vor allem für die

Herstellung von Implantaten sind Zusätze von derartigen Rieselhilfsmitteln nicht vorteilhaft, da sie in der Regel die Eigenschaften des resultierenden Implantats, insbesondere seine Bioverträglichkeit und Bioabbaubarkeit, nachteilig

beeinflussen. Weiterhin ist wegen der schlechten Rieselfähigkeit der Transport in der Lasersinteranlage erschwert. Bei der Herstellung von Bauteilen durch Lasersintern unter Verwendung der Materialien der WO 2012/126600 A2 treten folgende zusätzliche Probleme auf. Die Sinterung von gemahlenen Verbundteilchen ist zwar durchführbar, aber die Oberflächengüte und Oberflächenbeschaffenheit sowie die Bauteildichte der resultierenden Bauteile ist nicht voll befriedigend. Wünschenswert wären insbesondere ein besseres Schrumpfverhalten und eine verbesserte

Dimensionsstabilität der resultierenden Bauteile sowie ein besseres

Wärmeleitverhalten außerhalb des laserbehandelten Bereichs. Darüber hinaus wäre ein effizienteres Herstellungsverfahren von Bauteilen wünschenswert.

Insbesondere ist eine Verbesserung für Implantate, insbesondere für den Bereich der Neuro-, Mund-, Kiefer-, Gesichts-, Hals-, Nasen- und Ohrenchirurgie sowie der Hand-, Fuß-, Thorax-, Rippen- und Schulterchirurgie wünschenswert.

Vor diesem Hintergrund ist es die Aufgabe der vorliegenden Erfindung, ein besseres Implantat als bisher zur Verfügung zu stellen. Insbesondere sollte ein Material mit verbesserten Lasersintereigenschaften für ein Implantat verwendet werden, welches insbesondere eine verbesserte Rieselfähigkeit besitzt, beim Lasersintern die Herstellung von Bauteilen mit verbesserter Oberflächengüte und Oberflächenbeschaffenheit sowie verbesserter Bauteildichte ermöglicht und insbesondere besseres Schrumpfverhalten und eine verbesserte

Dimensionsstabilität der resultierenden Bauteile sowie ein besseres

Wärmeleitverhalten außerhalb des laserbehandelten Bereichs zeigt.

Zusätzlich wird ein effizienteres Herstellungsverfahren solcher Implantate gewünscht.

Gelöst werden diese sowie weitere nicht konkret genannten Aufgaben, die sich aus den obigen Zusammenhängen direkt ableiten lassen, durch die Bereitstellung eines Implantats aus einem Verbundpulvers mit allen Merkmalen des

vorliegenden Anspruchs 1 . Die auf Anspruch 1 rückbezogenen Unteransprüche beschreiben besonders zweckmäßige Varianten. Der Verwendungsanspruch betrifft eine besonders zweckmäßige Anwendung des erfindungsgemäßen

Verbundpulvers zur Herstellung eines Implantats, insbesondere für den Bereich der Neuro-, Mund-, Kiefer-, Gesichts-, Hals-, Nasen- und Ohrenchirurgie sowie der Hand-, Fuß-, Thorax-, Rippen- und Schulterchirurgie. Weiterhin wird ein

besonders vorteilhaftes Implantat unter Schutz gestellt, das durch selektives Lasersintern einer Zusammensetzung erhalten ist, welche ein besagtes

Verbundpulver enthält, und insbesondere ausgestaltet ist als Implantat für

Anwendungen im Bereich der Neuro-, Mund-, Kiefer-, Gesichts-, Hals-, Nasen- und Ohrenchirurgie sowie der Hand-, Fuß-, Thorax-, Rippen- und

Schulterchirurgie. Durch die Bereitstellung eines Verbundpulvers mit mikrostrukturierten Teilchen, erhältlich durch ein Verfahren, bei welchem man große Teilchen mit kleinen Teilchen verbindet, wobei

- die großen Teilchen einen mittleren Teilchendurchmesser im Bereich von 10 μιτι bis 10 mm aufweisen,

- die großen Teilchen mindestens ein Polymer umfassen,

- die kleinen Teilchen auf der Oberfläche der großen Teilchen angeordnet

und/oder inhomogen innerhalb der großen Teilchen verteilt sind,

- die kleinen Teilchen ein Calciumsalz umfassen,

- die kleinen Teilchen eine mittlere Teilchengröße im Bereich von 0,01 μιτι bis 1 ,0 mm aufweisen,

wobei die Teilchen des Verbundpulvers eine mittlere Teilchengröße dso im Bereich von 10 μιτι bis kleiner 200 μιτι aufweisen und der Feinkornanteil des

Verbundpulvers kleiner 50 Vol.-% ist, gelingt es auf nicht ohne weiteres

vorhersehbare Weise ein Calciumsalz-enthaltendes Verbundpulver mit

mikrostrukturierten Teilchen mit verbesserten Eigenschaften zugänglich zu machen, welche insbesondere zur Anwendung in Lasersinterverfahren

hervorragend geeignet sind. Das erfindungsgemäße Verbundpulver besitzt eine verbesserte Rieselfähigkeit, ermöglicht beim Lasersintern die Herstellung von Bauteilen mit verbesserter Oberflächengüte und Oberflächenbeschaffenheit sowie verbesserter Bauteildichte. Gleichzeitig zeigen die resultierenden Bauteile insbesondere ein besseres Schrumpfverhalten und eine verbesserte

Dimensionsstabilität. Weiterhin ist ein besseres Wärmeleitverhalten außerhalb des laserbehandelten Bereichs festzustellen.

Darüber hinaus erlaubt das besagte Verbundpulver eine effizientere Herstellung von Implantaten, insbesondere nach dem Lasersinterverfahren. Der Schmelzefluß der unter Verwendung des erfindungsgemäßen Verbundpulvers erhältlichen Schmelze ist deutlich erhöht (verbessert). Das erfindungsgemäße Verbundpulver ist im Vergleich mit herkömmlichen Materialien insbesondere nach dem SLM- Verfahren besser verarbeitbar und ermöglicht einen deutlich besseren

Schichtaufbau im SLM-Verfahren. Die unter Verwendung des erfindungsgemäßen Verbundpulvers nach dem SLM Verfahren erhältlichen Bauteile zeichnen sich durch eine extrem hohe Qualität aus und weisen im Vergleich mit Bauteilen, die unter Verwendung herkömmlicher Materialien nach dem SLM Verfahren hergestellt wurden, deutlich weniger Fehlstellen, eine höhere Bauteildichte, vorzugsweise größer 95%, insbesondere größer 97%, sowie eine geringere Porosität auf. Gleichzeitig ist der Gehalt an Abbauprodukten in den resultierenden Bauteilen deutlich geringer und die Zellverträglichkeit der Bauteile extrem hoch. Auch die übrigen Eigenschaften der auf diese Weise erhältlichen Implantate sind exzellent. Die Implantate weisen sehr gute mechanische Eigenschaften sowie eine sehr gute pH-Stabilität auf. Gleichzeitig ist die Bioverträglichkeit der

Implantate deutlich verbessert. Vergleichbare Implantate sind unter Verwendung der reinen Polymere nicht erhältlich, zumal entsprechende Polymerpulver, die nach dem SLM-Verfahren verarbeitet werden könnten, nicht bekannt sind.

Ein weiterer Vorteil der vorliegenden Erfindung ist darin zu sehen, dass die Eigenschaften des besagten Verbundpulvers, insbesondere die

Fließeigenschaften des Verbundpulvers, durch die Einsatzmengen und die

Eigenschaften der großen Teilchen und der kleinen Teilchen, insbesondere durch die Eigenschaften des Calciumsalzes, vor allem durch die Partikelgröße der Calciumsalz-Teilchen, sowie durch die Menge der Calciumsalzes-Teilchen gezielt gesteuert und eingestellt werden können. Darüber hinaus können durch

Klassierung des Verbundpulvers insbesondere der Calciumsalz-Gehalt, vor allem der Calciumcarbonat-Gehalt, des Verbundpulvers und die Fließeigenschaften des Verbundpulvers verändert und dem jeweiligen Anwendungszweck gezielt angepasst werden.

Insbesondere in Kombination mit Polylactid als Polymer ergeben sich

erfindungsgemäß die folgenden Vorteile.

Unter Verwendung des besagten Verbundpulvers können abbaubare Implantate mit steuerbarer Resorptionskinetik und einstellbaren mechanischen Eigenschaften erzeugt werden. Polylactide, welche vorzugsweise im Verbundpulver enthalten sind, sind biodeg radierbare Polymere auf Basis von Milchsäure. Im Organismus werden Polylactide durch Hydrolyse abgebaut. Calciumsalze, insbesondere Calciumphosphat und Calciumcarbonat, sind mineralische Werkstoffe auf Basis von Calcium und werden im Körper durch den natürlichen Regenerationsprozess des Knochens abgebaut. Calciumcarbonat besitzt die besonders vorteilhafte Eigenschaft, das für Knochenzellen mitunter toxische acide Milieu beim Abbau der Polylactide zu puffern. Im Vergleich zu Calciumphosphat (pH 4) puffert

Calciumcarbonat bereits bei einem pH-Wert von ca. 7, d. h. nahe dem

physiologischen Wert von 7,4. Über die Molekülkettenlänge und die chemische Zusammensetzung des Polymers, insbesondere des Polylactides, kann die Zeit bis zur vollständigen Degradation angepasst werden. Ähnliches ist für die mechanischen Eigenschaften des Polymers möglich. Das besagte Verbundpulver kann mit Hilfe des generativen Fertigungsverfahrens Selective Laser Melting (SLM) zu Implantatstrukturen verarbeitet werden. Hierbei ist eine gezielte Anpassung von Werkstoff und Fertigungsverfahren aneinander und an die medizinischen Erfordernisse möglich. Die Nutzung der generativen Fertigung und der damit einhergehenden Geometriefreiheit bietet die Möglichkeit, das Implantat mit einer den Wünschen des Chirurgen entsprechenden, inneren und offenen Porenstruktur zu versehen, die eine durchgängige Versorgung des Implantates gewährleistet. Darüber hinaus können generativ individuell

angepasste Implantate, wie für die Versorgung von großflächigen

Knochendefekten im Gesichts- und Schädelbereich benötigt, schnell und wirtschaftlich hergestellt werden. Der Vorteil des erfindungsgemäßen

Verbundpulvers für die Verarbeitung mittels SLM besteht insbesondere darin, dass das Polymer durch die Laserstrahlung bei relativ niedrigen Temperaturen, bevorzugt kleiner 300 °C, geschmolzen werden kann und die Calciumsalz- Teilchen, insbesondere die Calciumcarbonat-Teilchen, bei diesen Temperaturen thermisch stabil bleiben. Durch maßgeschneiderte Synthese des besagten

Verbundpulvers können somit die Calciumsalz-Teilchen, insbesondere die

Calciumcarbonat-Teilchen, ohne thermische Schädigung durch die Laserstrahlung homogen im gesamten Volumen des Implantats in einer Matrix aus Polylactid eingebettet werden. Die Festigkeit des Implantats wird zum einen durch die Polylactid-Matrix bestimmt und zum anderen durch die Morphologie der

Calciumsalz-Teilchen, insbesondere der Calciumcarbonat-Teilchen, sowie bevorzugt auch durch das Mischungsverhältnis der verwendeten Komponenten. Die Implantate sind zudem bioaktiv, da sie über die Werkstoffauswahl und die anschließende Beschichtung mit einem wachstumsstimulierenden Protein

(rhBMP-2) das umgebende Knochengewebe aktiv zum Knochenaufbau und Ersatz der Gerüststruktur (Implantat) anregen.

Die wesentlichen Vorteile der mittels SLM generativ gefertigten Implantate aus dem besagten Verbundpulver sind insbesondere:

o Mit der Verwendung biodegradierbarer, osteokonduktiver Werkstoffe wird das Durchwachsen des Implantats mit Knochen aktiv stimuliert und auch bei großflächigen Defekten die komplette Degradation bei vollständiger

Knochenneubildung im zu versorgenden Knochendefekt erreicht. Durch die interkonnektierende Porenstruktur kann die BMP-Beschichtung im gesamten „Volumen" des Implantats aktiv wirken.

o Einsprossung Knochengewebe: Das Einbringen einer geeigneten Porenstruktur begünstigt das Einsprossen neuen Knochengewebes in das Implantat. Mit dem generativen Fertigungsprozess kann eine definierte Porenstruktur

reproduzierbar in die Bauteile eingebracht werden. o Die vorgeschlagene Lösung bietet weiterhin den Vorteil, medizinische

Komplikationen von Langzeitimplantaten bestmöglich zu verhindern, das Wohlbefinden des Patienten durch die Vermeidung eines permanenten

Fremdkörpergefühls bestmöglich zu steigern und - vor allem bei Kindern und Jugendlichen - ein„mitwachsendes" Implantat bestmöglich zu realisieren. o Optimale Pufferung: Durch die Verwendung von Calciumsalzen, insbesondere von Calciumcarbonat, wird die acide Degradation des Werkstoffs Polylactid bereits früh, insbesondere bei einem pH-Wert von ca. 7, gepuffert, so dass das entstehende acide Milieu in der Umgebung des Implantats und damit eine inflammatorische oder zytotoxische Wirkung vermieden werden kann. Darüber hinaus werden Degradationsprozesse des Polymers, insbesondere des

Milchsäurepolymers, bestmöglich unterdrückt.

o Große Festigkeit: Durch den SLM Prozess wird ein vollständiger

Schmelzverbund und damit eine große Bauteildichte und -festigkeit erzeugt, wodurch auch großflächige Defekte mit individuell angepassten Implantate aus einem biodegradierbaren Werkstoff und offener Porenstruktur versorgt werden können.

Gegenstand der vorliegenden Erfindung ist dementsprechend ein Verbundpulver mit mikrostrukturierten Teilchen (Kompositpulver) in einem Implantat, wobei das Verbundpulver durch ein Verfahren erhältlich ist, bei welchem man große Teilchen mit kleinen Teilchen verbindet.

Als Mikrostruktur werden in der vorliegenden Erfindung die mikroskopischen Eigenschaften eines Materials bezeichnet. Dazu gehören unter anderem die auflösbare Feinstruktur und das Gefüge. Bei Flüssigkeiten sowie Gasen sind diese nicht vorhanden. Hier befinden sich die einzelnen Atome oder Moleküle in einem ungeordneten Zustand. Amorphe Festkörper weisen zumeist eine strukturelle Nahordnung im Bereich der Nachbaratome auf, jedoch keine

Fernordnung. Kristalline Festkörper hingegen weisen nicht nur im Nahbereich, sondern auch im Fernbereich eine geordnete Gitterstruktur auf.

Im Rahmen der vorliegenden Erfindung umfassen die großen Teilchen

mindestens ein Polymer, welches grundsätzlich keinen weiteren Beschränkungen unterliegt. Es handelt sich jedoch bevorzugt um ein thermoplastisches Polymer, zweckmäßigerweise ein Biopolymer, ein Kautschuk, insbesondere Naturkautschuk oder Synthesekautschuk, und/oder ein Polyurethan.

Der Begriff„thermoplastisches Polymer" bezeichnet in diesem Zusammenhang einen Kunststoff, der sich in einem bestimmten Temperaturbereich, bevorzugt im Bereich von 25°C bis 350°C, (thermoplastisch) verformen lässt. Dieser Vorgang ist reversibel, das heißt er kann durch Abkühlung und Wiedererwärmung bis in den schmelzflüssigen Zustand beliebig oft wiederholt werden, solange nicht durch Überhitzung die sogenannte thermische Zersetzung des Materials einsetzt. Darin unterscheiden sich thermoplastische Polymere von den Duroplasten und

Elastomeren.

Der Begriff„Biopolymer" bezeichnet einen Werkstoff, der aus biogenen Rohstoffen (nachwachsenden Rohstoffen) besteht und/oder biologisch abbaubar ist

(biogenes und/oder biologisch abbaubares Polymer). Unter diesen Begriff fallen also biobasierte Biopolymere, die biologisch abbaubar oder auch nicht biologisch abbaubar sind, sowie erdölbasierte Polymere, die biologisch abbaubar sind. Damit erfolgt eine Abgrenzung von den konventionellen, erdölbasierten Werkstoffen bzw. Kunststoffen, die nicht biologisch abbaubar sind, wie z. B. Polyethylen (PE), Polypropylen (PP) und Polyvinylchlorid (PVC).

Der Begriff„Kautschuk" bezeichnet ein hochmolekulares, unvernetztes polymeres Material mit gummi-elastischen Eigenschaften bei Raumtemperatur (25°C). Bei höheren Temperaturen oder unter Einfluss von Verformungskräften zeigt ein Kautschuk ein zunehmendes viskoses Fließen und ermöglicht so sein Umformen unter geeigneten Bedingungen.

Gummi-elastisches Verhalten ist durch einen relativ geringen Schermodul mit einer eher geringen Temperaturabhängigkeit gekennzeichnet. Es wird durch Entropieänderungen verursacht. Durch Verstecken wird das gummi-elastische Material in eine geordnetere Konfiguration gezwungen, die zu einer

Entropieabnahme führt. Nach Entfernung der Kraft kehren die Polymere daher wieder in ihre Ursprungsposition zurück und die Entropie erhöht sich wieder.

Der Begriff„Polyurethan" (PU, DIN-Kurzzeichen: PUR) bezeichnet einen

Kunststoff oder ein Kunstharz, welcher oder welches aus der

Polyadditionsreaktion von Diolen oder Polyolen mit Polyisocyanaten entsteht. Charakteristisch für ein Polyurethan ist die Urethan-Gruppe.

Im Rahmen der vorliegenden Erfindung werden thermoplastische Polymere besonders bevorzugt eingesetzt. Besonders geeignete Polymere schließen dabei die folgenden Polymere ein: Acrylnitril-Ethylen-Propylen-(Dien)-Styrol-Copolymer, Acrylnitril-Methacrylat-Copolymer, Acrylnitril-Methylmethacrylat-Copolymer, Acrylnitril-chloriertes Polyethylen-Styrol-Copolymer, Acrylnitril-Butadien-Styrol- Copolymer, Acrylnitril-Ethylen-Propylen-Styrol-Copolymer, aromatische Polyester, Acrylnitril-Styrol-Acrylester-Copolymer, Butadien-Styrol-Copolymer, Celluloseacetat, Celluloseacetobutyrat, Celluloseacetopropionat, hydrierte

Cellulose, Carboxymethylcellulose, Cellulosenitrat, Cellulosepropionat,

Cellulosetriacetat, Polyvinylchlorid, Ethylen-Acrylsäure-Copolymer, Ethylen- Butylacrylat-Copolymer, Ethylen-Chlortrifluorethylen-Copolymer, Ethylen- Ethylacrylat-Copolymer, Ethylen-Methacryat-Copolymer, Ethylen-Methacrylsäure- Copolymer, Ethylen-Tetrafluorethylen-Copolymer, Ethylen-Vinylalkohol- Copolymer, Ethylen-Buten-Copolymer, Ethylcellulose, Polystyrol,

Polyfluorethylenpropylen, Methylmethacrylat-Acrylnitril-Butadien-Styrol- Copolymer, Methylnnethacrylat-Butadien-Styrol-Copolynner, Methylcellulose, Polyamid 1 1 , Polyamid 12, Polyamid 46, Polyamid 6, Polyamid 6-3-T, Polyamid 6- Terephthalsäure-Copolymer, Polyamid 66, Polyamid 69, Polyamid 610, Polyamid 612, Polyamid 61, Polyamid MXD 6, Polyamid PDA-T, Polyamid, Polyarylether, Polyaryletherketon, Polyamidimid, Polyarylamid, Polyaminobismaleinimid,

Polyarylate, Polybuten-1 , Polybutylacrylat, Polybenzimidazol, Polybismaleinimid, Polyoxadiazobenzimidazol, Polybutylenterephthalat, Polycarbonat,

Polychlortrifluorethylen, Polyethylen, Polyestercarbonat, Polyaryletherketon, Polyetheretherketon, Polyetherimid, Polyetherketon, Polyethylenoxid,

Polyarylethersulfon, Polyethylenterephthalat, Polyimid, Polyisobutylen,

Polyisocyanurat, Polyimidsulfon, Polymethacrylimid, Polymethacrylat, Poly-4- methylpenten-1 , Polyacetal, Polypropylen, Polyphenylenoxid, Polypropylenoxid, Polyphenylensulfid, Polyphenylensulfon, Polystyrol, Polysulfon,

Polytetrafluroethylen, Polyurethan, Polyvinylacetat, Polyvinylalkohol,

Polyvinylbutyral, Polyvinylchlorid, Polyvinylidenchlorid, Polyvinylidenfluorid, Polyvinylfluorid, Polyvinylmethylether, Polyvinylpyrrolidon, Styrol-Butadien- Copolymer, Styrol-Isopren-Copolymer, Styrol-Maleinsäureanhydrid-Copolymer, Styrol-Maleinsäureanhydrid-Butadien-Copolymer, Styrol-Methylmethacrylat- Copolymer, Styrol-Methylstyrol-Copolymer, Styrol-Acrylnitril-Copolymer,

Vinylchlorid-Ethylen-Copolymer, Vinylchlorid-Methacrylat-Copolymer, Vinylchlorid- Maleinsäureanhydrid-Copolymer, Vinylchlorid-Maleinimid-Copolymer, Vinylchlorid- Methylmethacrylat-Copolymer, Vinylchlorid-Octylacrylat-Copolymer, Vinylchlorid- Vinylacetat-Copolymer, Vinylchlorid-Vinylidenchlorid-Copolymer und Vinylchlorid- Vinylidenchlorid-Acrylnitril-Copolymer.

Weiterhin ist auch die Verwendung von folgenden Kautschuken besonders vorteilhaft: natürlich vorkommendes Polyisopren, insbesondere cis-1 ,4- Polyisopren (Naturkautschuk; NR) und trans-1 ,4-Polyisopren (Guttapercha), vor allem Naturkautschuk; Nitrilkautschuk (Copolymer von Butadien und Acrylnitril; Poly(acrylnitril-co-1 ,3-butadien; NBR; so genannter Buna N-Kautschuk);

Butadienkautschuk (Polybutadien; BR); Acrylkautschuk (Polyacrylkautschuk; ACM, ABR); Fluorkautschuk (FPM); Styrol-Butadien-Kautschuk (Copolymer von Styrol und Butadien; SBR); Styrol-Isopren-Butadien-Kautschuk (Copolymer von Styrol, Isopren und Butadien; SIBR); Polybutadien; synthetischer

Isoprenkautschuk (Polyisopren; IR); Ethylen-Propylen-Kautschuk (Copolymer von Ethylen und Propylen; EPM); Ethylen-Propylen-Dien-Kautschuk (Terpolymer von Ethylen, Propylen und einer Dien-Komponente; EPDM); Butylkautschuk

(Copolymer von Isobutylen und Isopren; HR); Ethylen-Vinylacetat-Kautschuk (Copolymer von Ethylen und Vinylacetat; EVM); Ethylen-Methylacrylat-Kautschuk (Copolymer von Ethylen und Methylacrylat; AEM); Epoxidkautschuk, wie

Polychlormethyloxiran (Epichlorhydrinpolymer; CO), Ethylenoxid (Oxiran) - Chlormethyloxiran (Epichlorhydrinpolymer; ECO), Epichlorhydrin - Ethylenoxid - Allylglycidyletherterpolymer (GECO), Epichlorhydrin - Allylglycidylethercopolymer (GCO) und Propylenoxid - Allylglycidylethercopolymer (GPO); Polynorbornen- Kautschuk (Polymer von Bicyclo[2.2.1 ]hept-2-en (2-Norbornen); PNR);

Polyalkenylen (Polymer von Cycloolefinen); Siliconkautschuk (Q), wie

Siliconkautschuk nur mit Methylsubstituenten an der Polymerkette (MQ; z. B. Dimethylpolysiloxan), Siliconkautschuk mit Methylvinyl- und

Vinylsubstituentengruppen an der Polymerkette (VMQ), Siliconkautschuk mit Phenyl- und Methylsubstituenten an der Polymerkette (PMQ), Siliconkautschuk mit Fluor- und Methylgruppen an der Polymerkette (FMQ), Siliconkautschuk mit Fluor-, Methyl- und Vinylsubstituenten an der Polymerkette (FVMQ);

Polyurethankautschuk; Thiokolkautschuk; Halogenbutylkautschuk, wie

Brombutylkautschuk (BIIR) und Chlorbutylkautschuk (CNR); Chlorpolyethylen (CM); Chlorsulfonylpolyethylen (CSM); hydrierter Nitrilkautschuk (HNBR); und Polyphosphazen.

Besonders bevorzugte Nitrilkautschuke schließen statistische Terpolymere von Acrylnitril, Butadien und einer Ca rboxyl säure, wie Methacrylsäure, ein. In diesem Zusammenhang umfasst der Nitrilkautschuk vorzugsweise, bezogen auf das Gesamtgewicht des Polymers, die folgenden Hauptkomponenten: 15,0 Gew.-% bis 42,0 Gew.-% Acrylnitrilpolymer; 1 ,0 Gew.-% bis 10,0 Gew.-% Carbonsäure und der Rest ist überwiegend Butadien (z. B. 38,0 Gew.-% bis 75,0 Gew.-%). Typischerweise ist die Zusammensetzung: 20,0 Gew.-% bis 40,0 Gew.-%

Acrylnitrilpolymer, 3,0 Gew.-% bis 8,0 Gew.-% Carbonsäure und 40,0 Gew.-% bis 65,0 Gew.-% oder 67,0 Gew.-% sind Butadien. Besonders bevorzugte

Nitrilkautschuke schließen ein Terpolymer von Acrylonitril, Butadien und einer Carbonsäure ein, bei welchem der Acrylnitrilgehalt kleiner als 35,0 Gew.-% ist und der Carbonsäuregehalt kleiner als 10,0 Gew.-% ist, wobei der Butadiengehalt dem verbleibenden Rest entspricht. Noch mehr bevorzugte Nitrilkautschuke können folgende Mengen umfassen: 20,0 Gew.-% bis 30,0 Gew.-% Acrylnitrilpolymer, 4,0 Gew.-% bis 6,0 Gew.-% Carbonsäure und der Rest ist überwiegend Butadien.

Der Einsatz von Stickstoff-haltigen Polymeren, insbesondere von Polyamiden, ist im Rahmen der vorliegenden Erfindung besonders günstig. Besonders bevorzugt werden Polyamid 1 1 , Polyamid 12, Polyamid 46, Polyamid 6, Polyamid 6-3-T, Polyamid 6-Terephthalsäure-Copolymer, Polyamid 66, Polyamid 69, Polyamid 610, Polyamid 612, Polyamid 61, Polyamid MXD 6 und/oder Polyamid PDA-T, insbesondere Polyamid 12.

Darüber hinaus sind auch ultrahochmolekulare Polyethylene (UHMWPE) für die Zwecke der vorliegenden Erfindung besonders vorteilhaft, insbesondere solche, die eine mittleren Molmasse größer 1000 kg/mol, bevorzugt größer 2000 kg/mol, besonders bevorzugt größer 3000 kg/mol, insbesondere größer 5000 kg/mol aufweisen. Dabei ist das mittlere Molekulargewicht günstigerweise höchstens 10000 kg/mol. Die Dichte besonders geeigneter ultrahochmolekularer

Polyethylene liegt im Bereich von 0,94-0,99 g/cm 3 . Die Kristallinität besonders geeigneter ultrahochmolekularer Polyethylene liegt im Bereich von 50% bis 90%. Die Zugfestigkeit besonders geeigneter ultrahochmolekularer Polyethylene liegt im Bereich von 30N/mm 2 bis 50N/mm 2 . Das Zug-E-Modul besonders geeigneter ultrahochmolekularer Polyethylene liegt im Bereich von 800 N/mm 2 bis

2700N/mm 2 . Der Schmelzbereich besonders geeigneter ultrahochmolekularer Polyethylene liegt im Bereich von 135°C bis 155°C.

Weiterhin ist auch die Verwendung von resorbierbaren Polymeren besonders zweckmäßig. Unter dem Begriff„Resorption" (lat. resorbere =„aufsaugen") versteht man die Stoffaufnahme in biologischen Systemen, insbesondere in den menschlichen Organismus. Vorliegend von Interesse sind insbesondere solche Materialien, die für die Herstellung von resorbierbaren Implantaten verwendet werden können.

Erfindungsgemäß besonders bevorzugte, resorbierbare Polymere umfassen Wiederholungseinheiten der Milchsäure, der Hydroxybuttersäure und/oder der Glycolsäure, bevorzugt der Milchsäure und/oder der Glycolsäure, insbesondere der Milchsäure. Polymilchsäuren werden dabei besonders bevorzugt.

Unter„Polymilchsäure" (Polylactiden) werden hier Polymere verstanden, die aus Milchsäureeinheiten aufgebaut sind. Solche Polymilchsäuren werden

üblicherweise durch Kondensation von Milchsäuren hergestellt, werden aber auch bei der ringöffnenden Polymerisation von Lactiden unter geeigneten Bedingungen erhalten.

Erfindungsgemäß besonders geeignete, resorbierbare Polymere schließen Poly(glycolid-co-L-lactid), Poly(L-lactid), Poly(L-lactid-co-s-caprolacton), Poly(L- lactid-co-glycolid), Poly(L-lactid-co-D,L-lactid), Poly(D,L-lactid-co-glycolid) sowie Poly(dioxanon), ein, wobei Milchsäurepolymere, insbesondere Poly-D-, Poly-L- oder Poly-D, L-milchsäuren, vor allem Poly-L-milchsäuren (PLLA) und Poly-D, L- milchsäuren, erfindungsgemäß ganz besonders bevorzugt werden, wobei insbesondere die Verwendung von Poly-L-milchsäuren (PLLA) ganz besonders vorteilhaft ist.

Erfindungsgemäß weist Poly-L-milchsäure (PLLA) vorzugsweise die folgende Struktur auf

wobei n eine ganze Zahl, vorzugsweise größer 10, ist.

Pol -D, L-milchsäure weist vorzugsweise die folgende Struktur auf

wobei n eine ganze Zahl, vorzugsweise größer 10, ist.

Für die Zwecke der vorliegenden Erfindung geeignete Milchsäurepolymere sind beispielsweise von der Firma Evonik Nutrition & Care GmbH unter den

Handelsnamen Resomer ® GL 903, Resomer ® L 206 S, Resomer ® L 207 S, Resomer ® R 208 G, Resomer ® L 209 S, Resomer ® L 210, Resomer ® L 210 S, Resomer ® LC 703 S, Resomer ® LG 824 S, Resomer ® LG 855 S, Resomer ® LG 857 S, Resomer ® LR 704 S, Resomer ® LR 706 S, Resomer ® LR 708, Resomer ® LR 927 S, Resomer ® RG 509 S und Resomer ® X 206 S kommerziell erhältlich.

Für die Zwecke der vorliegenden Erfindung besonders vorteilhafte, resorbierbare Polymere, bevorzugt handelt es sich hierbei um resorbierbare Polyester, vorzugsweise um Milchsäurepolymere, besonders bevorzugt um Poly-D-, Poly-L- oder Poly-D,L-milchsäuren, insbesondere um Poly-L-milchsäuren, haben ein Zahlenmittel des Molekulargewichts (Mn), vorzugsweise bestimmt durch

Gelpermeationschromatographie gegen engverteilte Polystyrol-Standards oder durch Endgruppentitration, größer 500 g/mol, bevorzugt größer 1 .000 g/mol, besonders bevorzugt größer 5.000 g/mol, zweckmäßigerweise größer 10.000 g/mol, insbesondere größer 25.000 g/mol. Andererseits ist das Zahlenmittel bevorzugter resorbierbarer Polymere kleiner 1 .000.000 g/mol,

zweckmäßigerweise kleiner 500.000 g/mol, günstigerweise kleiner 100.000 g/mol, insbesondere höchstens 50.000 g/mol. Ein Zahlenmittel des Molekulargewichts im Bereich von 500 g/mol bis 50.000 g/mol hat sich im Rahmen der vorliegenden Erfindung ganz besonders bewährt.

Das Gewichtsmittel des Molekulargewichts (Mw) bevorzugter resorbierbarer Polymere, vorzugsweise handelt es sich hierbei um resorbierbare Polyester, günstigerweise um Milchsäurepolymere, besonders bevorzugt um Poly-D-, Poly-L- oder Poly-D, L-milchsäuren, insbesondere um Poly-L-milchsäuren, vorzugsweise bestimmt durch Gelpermeationschromatographie gegen engverteilte Polystyrol- Standards, liegt vorzugsweise im Bereich von 750 g/mol bis 5.000.000 g/mol, bevorzugt im Bereich von 750 g/mol bis 1 .000.000 g/mol, besonders bevorzugt im Bereich von 750 g/mol bis 500.000 g/mol, insbesondere im Bereich von 750 g/mol bis 250.000 g/mol, und die Polydispersität dieser Polymere ist günstigerweise im Bereich von 1 ,5 bis 5.

Die inhärente Viskosität besonders geeigneter, resorbierbarer Polymere, bevorzugt handelt es sich hierbei um Milchsäurepolymere, besonders bevorzugt um Poly-D-, Poly-L- oder Poly-D, L-milchsäuren, insbesondere um Poly-L- milchsäuren, gemessen in Chloroform bei 25°C, 0,1 % Polymerkonzentration, liegt im Bereich von 0,3 dl/g bis 8,0 dl/g, bevorzugt im Bereich von 0,5 dl/g bis 7,0 dl/g, besonders bevorzugt im Bereich von 0,8 dl/g bis 2,0 dl/g, insbesondere im Bereich von 0,8 dl/g bis 1 ,2 dl/g.

Weiterhin ist die inhärente Viskosität besonders geeigneter, resorbierbarer Polymere, bevorzugt handelt es sich hierbei um Milchsäurepolymere, besonders bevorzugt um Poly-D-, Poly-L- oder Poly-D, L-milchsäuren, insbesondere um Poly- L-milchsäuren, gemessen in Hexafluor-2-propanol bei 30°C, 0,1 %

Polymerkonzentration, im Bereich von 1 ,0 dl/g bis 2,6 dl/g, insbesondere im Bereich von 1 ,3 dl/g bis 2,3 dl/g.

Im Rahmen der vorliegenden Erfindung sind darüber hinaus Polymere,

günstigerweise thermoplastische Polymere, bevorzugt Milchsäurepolymere, besonders bevorzugt Poly-D-, Poly-L- oder Poly-D,L-milchsäuren, insbesondere Poly-L-milchsäuren, mit einer Glasübergangstemperatur größer 20°C,

günstigerweise größer 25°C, bevorzugt größer 30°C, besonders bevorzugt größer 35°C, insbesondere größer 40°C, äußerst vorteilhaft. Im Rahmen einer ganz besonders bevorzugten Ausführungsform der vorliegenden Erfindung liegt die Glasübergangstemperatur des Polymers im Bereich von 35°C bis 70°C, günstigerweise im Bereich von 55°C bis 65°C, insbesondere im Bereich von 60°C bis 65°C.

Weiterhin sind Polymere, günstigerweise thermoplastische Polymere, bevorzugt Milchsäurepolymere, besonders bevorzugt Poly-D-, Poly-L- oder Poly-D, L- milchsäuren, insbesondere Poly-L-milchsäuren, besonders geeignet, die eine Schmelztemperatur größer 50°C, günstigerweise von mindestens 60°C, bevorzugt von größer 150°C, besonders bevorzugt im Bereich von 130°C bis 210°C, insbesondere im Bereich von 175°C bis 195°C, aufweisen.

Dabei wird die Glastemperatur und die Schmelztemperatur des Polymers vorzugsweise mittels Dynamische Differenzkalorimet e (Differential Scanning Calorimetry; kurz DSC) ermittelt. Ganz besonders bewährt hat sich in diesem Zusammenhang die folgende Vorgehensweise:

Durchführung der DSC-Messung unter Stickstoff auf einem Mettler-Toledo DSC 30S. Die Eichung erfolgt vorzugsweise mit Indium. Die Messungen werden vorzugsweise unter trockenem, Sauerstoff-freien Stickstoff

(Strömungsgeschwindigkeit: vorzugsweise 40 ml/min) durchgeführt. Das

Probengewicht wird vorzugsweise zwischen 15 mg und 20 mg gewählt. Die Proben werden zunächst von 0°C auf vorzugsweise eine Temperatur oberhalb der Schmelztemperatur des zu untersuchenden Polymers erwärmt, dann auf 0°C abgekühlt und ein zweites Mal von 0°C auf die genannte Temperatur mit einer Heizrate von 10°C/min erwärmt.

Ganz besonders bevorzugt als thermoplastische Polymere werden Polyamide, UHMWPE sowie resorbierbare Polymere, vor allem resorbierbare Polyester, wie Polybuttersäure, Polyglykolsäure (PGA), Milchsäurepolymere (PLA) und

Milchsäurecopolymere, wobei sich Milchsäurepolymere und

Milchsäurecopolymere, insbesondere Poly-L-Iactid, Poly-D, L-Iactid, Copolymere von D,L-PLA und PGA, erfindungsgemäß ganz besonders bewährt haben.

Für die Ziele der vorliegenden Erfindung sind insbesondere die folgenden

Polymere ganz besonders geeignet: 1 ) Poly-L-Iactid (PLLA), bevorzugt mit einer inhärenten Viskosität im Bereich von 0,5 dl/g bis 2,5 dl/g, günstigerweise im Bereich von 0,8 dl/g bis 2,0 dl/g, insbesondere im Bereich von 0,8 dl/g bis 1 ,2 dl/g (jeweils gemessen 0,1 % in Chloroform bei 25°C), bevorzugt mit einer Glasübergangstemperatur im

Bereich von 60°C bis 65°C, weiterhin bevorzugt mit einer Schmelztemperatur im Bereich von 180°C bis 185°C, darüber hinaus bevorzugt Ester-terminiert;

2) Poly(D,L-lactid), bevorzugt mit einer inhärenten Viskosität im Bereich von 1 ,0 dl/g bis 3,0 dl/g, günstigerweise im Bereich von 1 ,5 dl/g bis 2,5 dl/g,

insbesondere im Bereich von 1 ,8-2, 2 dl/g (jeweils gemessen 0,1 % in Chloroform bei 25°C), bevorzugt mit einer Glasübergangstemperatur im Bereich von 55°C bis 60°C,

wobei die besten Ergebnisse unter Verwendung eines Poly-L-Iactids erzielt werden, welches bevorzugt eine inhärenten Viskosität im Bereich von 0,5 dl/g bis 2,5 dl/g, günstigerweise im Bereich von 0,8 dl/g bis 2,0 dl/g, insbesondere im Bereich von 0,8 dl/g bis 1 ,2 dl/g aufweist (jeweils gemessen 0,1 % in Chloroform bei 25°C), bevorzugt eine Glasübergangstemperatur im Bereich von 60°C bis 65°C hat, weiterhin bevorzugt eine Schmelztemperatur im Bereich von 180°C bis 185°C aufweist und darüber hinaus bevorzugt Ester-terminiert ist.

Im Rahmen der vorliegenden Erfindung umfassen die für die Herstellung des besagten Verbundpulvers einsetzbaren kleinen Teilchen mindestens ein

Calciumsalz. Besonders geeignete Calciumsalze umfassen Calciumphosphate, insbesondere Cas(PO4)2, CaHPO4, Ca(H 2 PO4) 2 und/oder Ca5(PO4)s(OH), und Calciumcarbonat, insbesondere gefällte Calciumcarbonat-Teilchen. Dabei haben sich für die Zwecke der vorliegenden Erfindung Calciumcarbonate als ganz besonders vorteilhaft erweisen.

Die Form des Calciumsalzes, bevorzugt des Calciumcarbonats, insbesondere der gefällten Calciumcarbonat-Teilchen, unterliegt dabei keinen weiteren

Beschränkungen und kann auf den konkreten Anwendungszweck abgestimmt werden. Bevorzugt werden jedoch skalenoedrische, rhomboedrische,

nadeiförmige, plättchenförmige oder kugelförmige (sphärische) Teilchen eingesetzt.

Im Rahmen einer ganz besonders bevorzugten Ausführungsform der vorliegenden Erfindung werden kugelförmige, gefällte Calciumcarbonat-Teilchen verwendet, da diese normalerweise ein isotropes Eigenschaftsprofil aufweisen.

Dementsprechend zeichnen sich die Teilchen des resultierenden Verbundpulvers zweckmäßigerweise ebenfalls durch ein möglichst isotropes Eigenschaftsprofil aus. Erfindungsgemäß umfasst der Begriff„Calciumcarbonat-Teilchen" auch

Fragmente (Bruchstücke) von Teilchen, die beispielsweise durch Mahlen des Calciumcarbonats erhältlich sind. Der Anteil der Fragmente, insbesondere von Kugelfragmenten, ist jedoch vorzugsweise kleiner 95%, bevorzugt kleiner 75%, besonders bevorzugt kleiner 50%, insbesondere kleiner 25%, jeweils bezogen auf die Gesamtmenge an vorzugsweise gefälltem Calciumcarbonat.

Das Aspekt Ratio (Seitenverhältnis) des Calciumsalzes, bevorzugt des

Calciumcarbonats, insbesondere der gefällten Calciumcarbonat-Teilchen ist vorzugsweise kleiner 5, bevorzugt kleiner 4, besonders bevorzugt kleiner 3, günstigerweise kleiner 2, noch mehr bevorzugt kleiner 1 ,5, ganz besonders bevorzugt im Bereich von 1 ,0 bis 1 ,25, vorzugsweise kleiner 1 ,1 , insbesondere kleiner 1 ,05.

Das Aspekt Ratio (Seitenverhältnis) des Calciumsalzes, bevorzugt des

Calciumcarbonats, insbesondere der gefällten Calciumcarbonat-Teilchen bezeichnet in diesem Zusammenhang den Quotienten aus maximalem und minimalem Teilchendurchmesser. Es wird vorzugsweise mittels

elektronenmikroskopischer Aufnahmen als Mittelwert (Zahlenmittel) ermittelt. In diesem Zusammenhang werden für kugelförmige Calciumcarbonat-Teilchen vorzugsweise nur Teilchen mit einer Teilchengröße im Bereich von 0,1 μιτι bis 40,0 μιτι, insbesondere im Bereich von 0,1 μιτι bis 30,0 μιτι, berücksichtigt. Für rhomboedrische Calciumsalz-Teilchen, insbesondere für rhomboedrische

Calciumcarbonat-Teilchen, werden vorzugsweise nur Teilchen mit einer

Teilchengröße im Bereich von 0,1 μιτι bis 30,0 μιτι, insbesondere im Bereich von 0,1 μιτι bis 20,0 μιτι, berücksichtigt. Für andere Calciumsalz-Teilchen,

insbesondere für Calciumcarbonat-Teilchen, werden vorzugsweise nur Teilchen mit einer Teilchengröße im Bereich von 0,1 μιτι bis 2,0 μιτι berücksichtigt.

Weiterhin weisen vorzugsweise mindestens 90 %, günstigerweise mindestens 95 % aller Teilchen, ein Aspekt Ratio (Seitenverhältnis) kleiner 5, bevorzugt kleiner 4, besonders bevorzugt kleiner 3, günstigerweise kleiner 2, noch mehr bevorzugt kleiner 1 ,5, ganz besonders bevorzugt im Bereich von 1 ,0 bis 1 ,25, vorzugsweise kleiner 1 ,1 , insbesondere kleiner 1 ,05, auf.

Ganz besonders günstig sind weiterhin kugelförmige Calciumcarbonat-Teilchen.

Erfindungsgemäß liegen die Calciumsalz-Teilchen, insbesondere die

vorzugsweise kugelförmigen Calciumcarbonat-Teilchen, zweckmäßigerweise überwiegend einzelteilig vor. Weiterhin werden kleinere Abweichungen von der perfekten Teilchenform, insbesondere von der perfekten Kugelform, akzeptiert, solange die Eigenschaften der Teilchen nicht grundlegend verändert werden. So kann die Oberfläche der Teilchen gelegentliche Fehlstellen oder zusätzliche Ablagerungen aufweisen.

Im Rahmen einer besonders bevorzugten Variante der vorliegenden Erfindung sind die Calciumsalz-Teilchen, bevorzugt die Calciumcarbonat-Teilchen, insbesondere die gefällten Calciumcarbonat-Teilchen, vorzugsweise kugelförmig und im Wesentlichen amorph. Der Begriff„amorph" bezeichnet an dieser Stelle solche Calciumsalz-Modifikationen, bei welchen die Atome zumindest teilweise keine geordneten Strukturen, sondern ein unregelmäßiges Muster ausbilden und daher nur über eine Nahordnung, nicht aber über eine Fernordnung verfügen. Hiervon zu unterscheiden sind kristalline Modifikationen des Calciumsalzes, wie z. B. Calcit, Vaterit und Aragonit, bei welchen die Atome sowohl eine Nah- als auch eine Fernordnung aufweisen.

Im Rahmen dieser bevorzugten Variante der vorliegenden Erfindung wird die Gegenwart von kristallinen Bestandteilen jedoch nicht kategorisch

ausgeschlossen. Vorzugsweise ist der Anteil von kristallinen Calciumsalzen, insbesondere von kristallinem Calciumcarbonat, jedoch kleiner 50 Gew.-%, besonders bevorzugt kleiner 30 Gew.-%, ganz besonders bevorzugt kleiner 15 Gew.-%, insbesondere kleiner 10 Gew.-%. Im Rahmen einer besonders

bevorzugten Variante der vorliegenden Erfindung ist der Anteil von kristallinen Calciumsalzen, insbesondere von kristallinem Calciumcarbonat, kleiner 8,0 Gew.- %, bevorzugt kleiner 6,0 Gew.-%, zweckmäßigerweise kleiner 4,0 Gew.-%, besonders bevorzugt kleiner 2,0 Gew.-%, ganz besonders bevorzugt kleiner 1 ,0 Gew.-%, insbesondere kleiner 0,5 Gew.-% , jeweils bezogen auf das

Gesamtgewicht des Calciumsalzes.

Für die Ermittlung der amorphen und der kristallinen Anteile hat sich die

Röntgenbeugung mit einem internen Standard, vorzugsweise Quarz, in

Verbindung mit einer Rietveld-Verfeinerung ganz besonders bewährt.

Im Rahmen dieser bevorzugten Ausführungsform der vorliegenden Erfindung werden die Calciumsalz-Teilchen, bevorzugt die vorzugsweise amorphen

Calciumcarbonat-Teilchen, günstigerweise durch mindestens eine Substanz, insbesondere mindestens eine grenzflächenaktive Substanz, stabilisiert, die vorzugsweise auf der Oberfläche der Calciumsalz-Teilchen, insbesondere auf der Oberfläche der vorzugsweise kugelförmigen Calciumcarbonat-Teilchen, angeordnet ist.„Grenzflächenaktive Substanzen" bezeichnen im Sinne der vorliegenden Erfindung zweckmäßigerweise organische Verbindungen, die sich aus ihrer Lösung an Grenzflächen (Wasser/Calciumsalz-Teilchen, bevorzugt Calciumcarbonat-Teilchen) stark anreichern und dadurch die

Oberflächenspannung, vorzugsweise gemessen bei 25°C, herabsetzen. Für weitere Details wird auf die Fachliteratur, insbesondere auf Römpp-Lexikon Chemie / Hrsg. Jürgen Falbe; Manfred Regitz. Bearb. Von Eckard Amelingmeier; Stuttgart, New York; Thieme; Band 2: Cm-G; 10. Auflage (1997); Stichwort:

„grenzflächenaktive Stoffe", verwiesen.

Vorzugsweise weist die Substanz, insbesondere die grenzflächenaktive Substanz, eine Molmasse größer 100 g/mol, bevorzugt größer 125 g/mol, insbesondere größer 150 g/mol, auf und genügt der Formel R-X n .

Der Rest R steht dabei für einen mindestens 1 , vorzugsweise mindestens 2, bevorzugt mindestens 4, besonders bevorzugt mindestens 6, insbesondere mindestens 8, Kohlenstoffatome umfassenden Rest, vorzugsweise für einen aliphatischen oder cycloaliphatischen Rest, der ggf. weitere Reste X umfassen kann und der ggf. eine oder mehrere Etherverknüpfungen aufweisen kann.

Der Rest X steht für eine Gruppe, die mindestens ein Sauerstoffatom sowie mindestens ein Kohlenstoffatom, Schwefelatom, Phosphoratom und/oder

Stickstoffatom, bevorzugt mindestens ein Phosphoratom und/oder mindestens ein Kohlenstoffatom, umfasst. Besonders bevorzugt werden die folgenden Gruppen:

Carbonsäuregruppen -COOH,

Carboxylatgruppen -COO " ,

Sulfonsäuregruppen -SO3H,

Sulfonatgruppen ~SO3 " ,

Hydrogensulfatgruppen -OSO3H,

Sulfatgruppen -OSO3 " ,

Phosphonsäuregruppen -PO3H2,

Phosphonatgruppen -PO3H " , -PO3 2" ,

Aminogruppen ~NR 1 R 2 sowie

Ammoniumgruppen ~N + R 1 R 2 R 3 ,

insbesondere Carbonsäuregruppen, Carboxylatgruppen, Phosphonsäuregruppen und Phosphonatgruppen. Die Reste R 1 , R 2 und R 3 stehen in diesem Zusammenhang unabhängig

voneinander für Wasserstoff oder eine Alkylgruppe mit 1 bis 5 Kohlenstoffatomen. Einer der Reste R 1 , R 2 und R 3 kann auch ein Rest R sein.

Bevorzugte Gegenionen für die vorstehend genannten Anionen sind

Metallkationen, insbesondere Alkalimetallkationen, bevorzugt Na + und K + , sowie Ammoniumionen.

Bevorzugte Gegenionen für die vorstehend genannten Kationen sind

Hydroxylionen, Hydrogencarbonationen, Carbonationen, Hydrogensulfationen, Sulfationen und Halogenidionen, insbesondere Chlorid- und Bromidionen. n steht für eine vorzugsweise ganze Zahl im Bereich von 1 bis 20, bevorzugt im Bereich von 1 bis 10, insbesondere im Bereich von 1 bis 5.

Für die Zwecke der vorliegenden Erfindung besonders geeignete Substanzen umfassen Alkylcarbonsäuren, Alkylcarboxylate, Alkylsulfonsäuren, Alkylsulfonate, Alkylsulfate, Alkylethersulfate mit vorzugsweise 1 bis 4

Ethylenglykolethereinheiten, Fettalkoholethoxylate mit vorzugsweise 2 bis 20 Ethylenglykolethereinheiten, Alkylphenolethoxylate, ggf. substituierte

Alkylphosphonsäuren, ggf. substituierte Alkylphosphonate, Sorbitanfettsaureester, Alkylpolyglucoside, N-Methylglucamide, Homo- und Copolymere der Acrylsäure sowie deren entsprechenden Salzformen und Blockcopolymere.

Eine erste Gruppe ganz besonders vorteilhafter Substanzen sind ggf. substituierte Alkylphosphonsäuren, insbesondere Amino-tri-(methylenphosphonsäure), 1 - Hydroxyethylen-(1 ,1 -diphosphonsäure), Ethylendiamin-tetra- (methylenphosphonsäure), Hexamethylendiamin-tetra-(methylenphosphonsäure), Diethylentriamin-penta-(methylenphosphonsäure), sowie ggf. substituierte

Alkylphosphonate, insbesondere der vorstehend genannten Säuren. Diese Verbindungen sind als multifunktionelle Sequestriermittel für Metallionen und Steininhibitoren bekannt.

Weiterhin haben sich auch Homo- und Copolymere, bevorzugt Homopolymere, der Acrylsäure sowie deren entsprechenden Salzformen besonders bewährt, insbesondere solche, die ein Gewichtsmittel des Molekulargewichts im Bereich von 1 .000 g/mol - 10.000 g/mol aufweisen. Ferner ist die Verwendung von Blockcopolymeren, bevorzugt von doppelhydrophilen Blockcopolymeren, insbesondere von Polyethylenoxid oder

Polypropylenoxid, besonders günstig.

Der Anteil der vorzugsweise grenzflächenaktiven Substanzen kann prinzipiell frei gewählt und für die jeweilige Anwendung gezielt eingestellt werden. Er liegt jedoch vorzugsweise im Bereich von 0,1 Gew.-% bis 5,0 Gew.-%, insbesondere im Bereich von 0,3 Gew.-% bis 1 ,0 Gew.-%, bezogen auf den Calciumsalz-Gehalt, insbesondere den CaCO3-Gehalt, der Teilchen.

Die Herstellung der vorzugsweise kugelförmigen, vorzugsweise amorphen

Calciumsalz-Teilchen, insbesondere der Calciumcarbonat-Teilchen, kann auf an sich bekannte Weise z. B. durch Hydrolyse von Dialkylcarbonat oder von

Alkylencarbonat in einer Calcium-Kationen umfassenden Lösung erfolgen.

Die Herstellung von nicht-stabilisierten, kugelförmigen Calciumcarbonat-Teilchen wird beispielsweise in der Patentanmeldung WO 2008/122358 im Detail beschrieben, deren Offenbarung, insbesondere bzgl. besonders zweckmäßiger Varianten der Herstellung derartiger nicht-stabilisierter, kugelförmiger

Calciumcarbonat-Teilchen, hiermit explizit durch Bezugnahme mit aufgenommen wird.

Die Hydrolyse des Dialkylcarbonats oder des Alkylencarbonats wird

zweckmäßigerweise in Gegenwart eines Hydroxids durchgeführt.

Für die Zwecke der vorliegenden Erfindung bevorzugte Substanzen, die Ca 2+ - lonen umfassen, sind Calciumhalogenide, bevorzugt CaC , CaBr2, insbesondere CaC , sowie Calciumhydroxid. Im Rahmen einer ersten besonders bevorzugten Ausführungsform der vorliegenden Erfindung wird CaCl2 eingesetzt. In einer weiteren besonders bevorzugten Ausführungsform der vorliegenden Erfindung wird Ca(OH)2 verwendet.

Im Rahmen einer ersten besonders bevorzugten Ausführungsform der

vorliegenden Erfindung wird ein Dialkylcarbonat eingesetzt. Besonders geeignete Dialkylcarbonate umfassen 3 bis 20, bevorzugt 3 bis 9, Kohlenstoffatome, insbesondere Dimethylcarbonat, Diethylcarbonat, Di-n-propylcarbonat, Di-iso- propylcarbonat, Di-n-butylcarbonat, Di-sec-butylcarbonat und Di-tert- butylcarbonat, wobei Dimethylcarbonat in diesem Zusammenhang ganz

besonders bevorzugt wird. In einer weiteren besonders bevorzugten Ausführungsform der vorliegenden Erfindung wird ein Alkylencarbonat zur Reaktion gebracht. Besonders

zweckmäßige Alkylencarbonate umfassen 3 bis 20, bevorzugt 3 bis 9, besonders bevorzugt 3 bis 6, Kohlenstoffatome und schließen insbesondere solche

Verbindungen ein, die einen Ring aus 3 bis 8, bevorzugt 4 bis 6, insbesondere 5, Atomen, mit vorzugsweise 2 Sauerstoffatomen und ansonsten Kohlenstoffatomen, umfassen. Propylencarbonat (4-Methyl-1 ,3-dioxolan) hat sich in diesem

Zusammenhang ganz besonders bewährt.

Als Hydroxid haben sich Alkalimetallhydroxide, insbesondere NaOH, und

Calciumhydroxid, als besonders geeignet erwiesen. Im Rahmen einer ersten besonders bevorzugten Ausführungsform der vorliegenden Erfindung wird NaOH eingesetzt. Im Rahmen einer weiteren besonders bevorzugten Ausführungsform der vorliegenden Erfindung wird Ca(OH)2 verwendet.

Weiterhin ist das molare Verhältnis von Ca 2+ , bevorzugt von Calciumchlorid, zu OH " , bevorzugt Alkalimetallhydroxid, in der Reaktionsmischung vorzugsweise größer 0,5 : 1 und besonders bevorzugt im Bereich von >0,5 : 1 bis 1 : 1 , insbesondere im Bereich von 0,6 : 1 bis 0,9 : 1 .

Das molare Verhältnis von Ca 2+ , bevorzugt von Calciumchlorid, zu Dialkylcarbonat und/oder Alkylencarbonat in der Reaktionsmischung liegt günstigerweise im Bereich von 0,9 : 1 ,5 bis 1 ,1 : 1 , besonders bevorzugt im Bereich von 0,95 : 1 bis 1 : 0,95. Im Rahmen einer ganz besonders zweckmäßigen Variante der

vorliegenden Erfindung werden das Dialkylcarbonat und/oder das Alkylencarbonat und das Ca 2+ , insbesondere das Calciumchlorid, äquimolar eingesetzt.

Im Rahmen einer ersten ganz besonders bevorzugten Variante der vorliegenden Erfindung wird nicht Ca(OH)2 als OH " -Quelle verwendet. Die Komponenten für die Umsetzung setzt man dabei günstigerweise in folgenden Konzentrationen ein: a) Ca 2+ : >10 mmol/l bis 50 mmol/l, bevorzugt 15 mmol/l bis 45 mmol/l, insbesondere 17 mmol/l bis 35 mmol/l;

b) Dialkylcarbonat und/oder

Alkylencarbonat: >10 mmol/l bis 50 mmol/l, bevorzugt 15 mmol/l bis 45 mmol/l, insbesondere 17 mmol/l bis 35 mmol/l;

c) OH " : 20 mmol/l bis 100 mmol/l, bevorzugt 20 mmol/l bis 50 mmol/l, besonders bevorzugt 25 mmol/l bis 45 mmol/1, insbesondere 28 mmol/1 bis 35 mmol/1.

Die jeweiligen Konzentrationsangaben beziehen sich dabei auf die

Konzentrationen der genannten Komponenten in der Reaktionsmischung.

Im Rahmen einer weiteren ganz besonders bevorzugten Variante der

vorliegenden Erfindung wird Ca(OH)2, bevorzugt Kalkmilch, insbesondere gesättigte Kalkmilch, als OH " -Quelle verwendet. Die Komponenten für die

Umsetzung setzt man dabei günstigerweise in folgenden Konzentrationen ein: a) Ca(OH)2: >5 mmol/1 bis 25 mmol/1, bevorzugt 7,5 mmol/1 bis 22,5 mmol/1, insbesondere 8,5 mmol/1 bis 15,5 mmol/l;

b) Dialkylcarbonat und/oder

Alkylencarbonat: >5 mmol/l bis 25 mmol/l, bevorzugt 7,5 mmol/l bis 22,5 mmol/l, insbesondere 8,5 mmol/l bis 15,5 mmol/l.

Die jeweiligen Konzentrationsangaben beziehen sich dabei auf die

Konzentrationen der genannten Komponenten in der Reaktionsmischung.

Die Reaktion der Komponenten wird vorzugsweise bei einer Temperatur im

Bereich von 15°C bis 30°C durchgeführt.

Die konkrete Größe der Calciumsalz-Teilchen, insbesondere der

Calciumcarbonat-Teilchen, kann auf an sich bekannte Weise über die

Übersättigung gesteuert werden.

Die Calciumsalz-Teilchen, insbesondere die Calciumcarbonat-Teilchen, fallen unter den oben genannten Bedingungen aus der Reaktionsmischung aus.

Die Stabilisierung der vorzugsweise amorphen Calciumsalz-Teilchen,

insbesondere der vorzugsweise amorphen Calciumcarbonat-Teilchen, erfolgt zweckmäßigerweise durch Zugabe der vorzugsweise grenzflächenaktiven

Substanz zu der Reaktionsmischung.

Diese Zugabe der Substanz sollte dabei erst nach Beginn der Reaktion zur Bildung der Calciumsalz-Teilchen, insbesondere der Calciumcarbonat-Teilchen, d. h. erst nach Zugabe der Edukte, vorzugsweise frühestens 1 Minute, bevorzugt frühestens 2 Minuten, zweckmäßigerweise frühestens 3 Minuten, besonders bevorzugt frühestens 4 Minute, insbesondere frühestens 5 Minuten, nach Mischen der Edukte erfolgen. Weiterhin sollte der Zeitpunkt der Zugabe so gewählt werden, dass die vorzugsweise grenzflächenaktive Substanz kurz vor dem Ende der Fällung und möglichst kurz vor dem Beginn der Umwandlung des vorzugsweise amorphen Calciumsalzes, insbesondere des amorphen Calciumcarbonats, in eine kristalline Modifikationen zuzugeben wird, da sich auf diese Weise die Ausbeute und die Reinheit der„stabilisierten, kugelförmigen, amorphen Calciumsalz- Teilchen" maximieren lässt. Erfolgt die Zugabe der vorzugsweise

grenzflächenaktiven Substanz früher, so wird in der Regel ein bimodales Produkt erhalten, dass neben den gewünschten, stabilisierten, kugelförmigen, amorphen Calciumsalz-Teilchen ultrafeine, amorphe Calciumsalz-Teilchen als Nebenprodukt umfasst. Erfolgt die Zugabe der vorzugsweise grenzflächenaktiven Substanz später, so setzt bereits die Umwandlung der gewünschten„stabilisierten

Calciumsalz-Teilchen" in kristalline Modifikationen ein.

Aus diesem Grund wird die vorzugsweise grenzflächenaktive Substanz

vorzugsweise bei einem pH-Wert kleiner gleich 1 1 ,5, bevorzugt kleiner gleich 1 1 ,3, insbesondere kleiner gleich 1 1 ,0, zugegeben. Besonders günstig ist eine Zugabe bei einem pH-Wert im Bereich von 1 1 ,5 bis 10,0, bevorzugt im Bereich von 1 1 ,3 bis 10,5, insbesondere im Bereich von 1 1 ,0 bis 10,8, jeweils gemessen bei der Reaktionstemperatur, vorzugsweise bei 25°C.

Die resultierenden, stabilisierten, vorzugsweise kugelförmigen, amorphen

Calciumsalz-Teilchen können auf an sich bekannte Weise, z. B. durch

Zentrifugation, entwässert und getrocknet werden. Ein Waschen mit Aceton und/oder eine Trocknung im Vakuumtrockenschrank ist nicht mehr unbedingt erforderlich.

Durch Trocknung der sind aus den„stabilisierten Calciumsalz-Teilchen"

„Calciumsalz-Teilchen mit geringem Strukturwassergehalt", insbesondere „Calciumcarbonat-Teilchen mit geringem Strukturwassergehalt", erhältlich.

Für die Zwecke der vorliegenden Erfindung werden die erhaltenen Calciumsalz- Teilchen vorzugsweise derart getrocknet, dass sie den gewünschten

Restwassergehalt aufweisen. Hierfür hat sich eine Vorgehensweise besonders bewährt, bei welcher man die Calciumsalz-Teilchen vorzugsweise zunächst bei einer Temperatur bis zu 150°C vortrocknet und anschließend die Calciumsalz- Teilchen vorzugsweise bei einer Temperatur im Bereich von größer 150°C bis 250°C, bevorzugt im Bereich von 170°C bis 230°C, besonders bevorzugt im Bereich von 180°C bis 220°C, insbesondere im Bereich von 190°C bis 210°C, trocknet. Die Trocknung erfolgt vorzugsweise im Umlufttrockenschrank. Dabei werden die Calciumsalz-Teilchen zweckmäßigerweise mindestens 3 h, besonders bevorzugt mindestens 6 h, insbesondere mindestens 20 h getrocknet.

Im Rahmen einer weiteren besonders bevorzugten Variante der vorliegenden Erfindung sind die Calciumsalz-Teilchen, insbesondere die vorzugsweise gefällten Calciumcarbonat-Teilchen, im Wesentlichen kristallin, insbesondere im

Wesentlichen calcitisch. Im Rahmen dieser bevorzugten Variante der

vorliegenden Erfindung wird die Gegenwart von anderen, insbesondere von amorphen Bestandteilen jedoch nicht kategorisch ausgeschlossen. Vorzugsweise ist der Anteil von anderen nicht-kristallinen Calciumsalzmodifikationen,

insbesondere von nicht-kristallinen Calciumcarbonatmodifikationen, jedoch kleiner 50 Gew.-%, besonders bevorzugt kleiner 30 Gew.-%, ganz besonders bevorzugt kleiner 15 Gew.-%, insbesondere kleiner 10 Gew.-%. Weiterhin ist der Anteil von nicht-calcitischen Calciumcarbonatmodifikationen vorzugsweise kleiner 50 Gew.- %, besonders bevorzugt kleiner 30 Gew.-%, ganz besonders bevorzugt kleiner 15 Gew.-%, insbesondere kleiner 10 Gew.-%.

Für die Ermittlung der amorphen und der kristallinen Anteile hat sich die

Röntgenbeugung mit einem internen Standard, vorzugsweise Aluminiumoxid, in Verbindung mit einer Rietveld-Verfeinerung ganz besonders bewährt.

Der mittlere Durchmesser der kleinen Teilchen ist im Bereich von 0,01 μιτι bis 1 ,0 mm, bevorzugt im Bereich von 0,05 μιτι bis 50,0 μητι, insbesondere im Bereich von 2,5 μιτι bis 30,0 μιτι.

Im Rahmen einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung ist der mittlere Durchmesser der kleinen Teilchen größer 3,0 μητι, vorzugsweise größer 4,0 μητι, zweckmäßigerweise größer 5,0 μητι,

zweckmäßigerweise größer 6,0 μητι, bevorzugt größer 7,0 μητι, besonders bevorzugt größer 8,0 μητι, noch mehr bevorzugt größer 9,0 μητι, ganz besonders bevorzugt größer 10,0 μητι, noch mehr bevorzugt größer 1 1 ,0 μητι, vor allem größer 12,0 μιτι, insbesondere größer 13,0 μιτι.

Für kleine Teilchen umfassend skalenoedrische Calciumsalz-Teilchen,

insbesondere skalenoedrische Calciumcarbonat-Teilchen, ist der mittlere

Durchmesser der kleinen Teilchen günstigerweise im Bereich von 0,05 μιτι bis 5,0 μιτι, bevorzugt im Bereich von 0,05 μιτι bis 2,0 μητι, vorzugsweise kleiner 1 ,75 μητι, besonders bevorzugt kleiner 1 ,5 μητι, insbesondere kleiner 1 ,2 μιτι. Weiterhin ist der mittlere Teilchendurchmesser in diesem Fall günstigerweise größer 0,1 μιτι, vorzugsweise größer 0,2 μιτι, insbesondere größer 0,3 μιτι.

Weiterhin haben sich auch kleine Teilchen umfassend skalenoedrische

Calciumsalz-Teilchen, insbesondere skalenoedrische Calciumcarbonat-Teilchen, besonders bewährt, die einen mittleren Durchmesser der kleinen Teilchen günstigerweise im Bereich von 1 ,0 μιτι bis 5,0 μιτι, vorzugsweise kleiner 4,5 μιτι, besonders bevorzugt kleiner 4,0 μιτι, insbesondere kleiner 3,5 μιτι, aufweisen. Weiterhin ist der mittlere Teilchendurchmesser in diesem Fall günstigerweise größer 1 ,5 μιτι, vorzugsweise größer 2,0 μιτι, insbesondere größer 3,0 μιτι.

Für kleine Teilchen umfassend rhomboedrische Calciumsalz-Teilchen,

insbesondere rhomboedrische Calciumcarbonat-Teilchen, ist der mittlere

Durchmesser der kleinen Teilchen günstigerweise im Bereich von 0,05 μιτι bis 30,0 μιτι, bevorzugt im Bereich von 0,05 μιτι bis 2,0 μιτι, vorzugsweise kleiner 1 ,75 μιτι, besonders bevorzugt kleiner 1 ,5 μιτι, insbesondere kleiner 1 ,2 μιτι. Weiterhin ist der mittlere Teilchendurchmesser in diesem Fall günstigerweise größer 0,1 μιτι, vorzugsweise größer 0,2 μιτι, insbesondere größer 0,3 μιτι.

Weiterhin haben sich auch kleine Teilchen umfassend rhomboedrische

Calciumsalz-Teilchen, insbesondere rhomboedrische Calciumcarbonat-Teilchen, besonders bewährt, die einen mittleren Durchmesser günstigerweise im Bereich von 1 ,0 μιτι bis 30,0 μιτι, bevorzugt im Bereich von 1 ,0 μιτι bis 20,0 μιτι,

vorzugsweise kleiner 18,0 μιτι, besonders bevorzugt kleiner 16,0 μιτι,

insbesondere kleiner 14,0 μιτι, aufweisen. Weiterhin ist der mittlere

Teilchendurchmesser in diesem Fall günstigerweise größer 2,5 μιτι, vorzugsweise größer 4,0 μιτι, insbesondere größer 6,0 μιτι.

Für kleine Teilchen umfassend nadeiförmige Calciumsalz-Teilchen, insbesondere nadeiförmige Calciumcarbonat-Teilchen, ist der mittlere Durchmesser der kleinen Teilchen günstigerweise im Bereich von 0,05 μιτι bis 2,0 μιτι, vorzugsweise kleiner 1 ,5 μιτι, besonders bevorzugt kleiner 1 ,0 μιτι, insbesondere kleiner 0,75 μιτι.

Weiterhin ist der mittlere Teilchendurchmesser in diesem Fall günstigerweise größer 0,1 μιτι, vorzugsweise größer 0,2 μιτι, insbesondere größer 0,3 μιτι.

Für kleine Teilchen umfassend nadeiförmige Calciumsalz-Teilchen, insbesondere nadeiförmige Calciumcarbonat-Teilchen, ist das Aspekt Ratio der Teilchen vorzugsweise größer 2, bevorzugt größer 5, besonders bevorzugt größer 10, insbesondere größer 20. Weiterhin ist die Länge der Nadeln vorzugsweise im Bereich von 0,1 μηη bis 100,0 μητι, bevorzugt im Bereich von 0,3 μιτι bis 85,0 μιτι, insbesondere im Bereich von 0,5 μιτι bis 70,0 μιτι.

Für kleine Teilchen umfassend plättchenförmige Calciumsalz-Teilchen,

insbesondere plättchenförmige Calciumcarbonat-Teilchen, ist der mittlere

Durchmesser der kleinen Teilchen günstigerweise im Bereich von 0,05 μιτι bis 2,0 μιτι, vorzugsweise kleiner 1 ,75 μιτι, besonders bevorzugt kleiner 1 ,5 μιτι, insbesondere kleiner 1 ,2 μιτι. Weiterhin ist der mittlere Teilchendurchmesser in diesem Fall günstigerweise größer 0,1 μιτι, vorzugsweise größer 0,2 μιτι, insbesondere größer 0,3 μιτι.

Für kleine Teilchen umfassend sphärolithische (kugelförmige) Calciumcarbonat- Teilchen ist der mittlere Durchmesser der kleinen Teilchen zweckmäßigerweise größer 2,5 μιτι, günstigerweise größer 3,0 μιτι, bevorzugt größer 4,0 μιτι, besonders bevorzugt größer 5,0 μιτι, insbesondere größer 6,0 μιτι. Weiterhin ist der mittlere Teilchendurchmesser zweckmäßigerweise kleiner 30,0 μιτι, günstigerweise kleiner 20,0 μιτι, bevorzugt kleiner 18,0 μιτι, besonders bevorzugt kleiner 16,0 μιτι, insbesondere kleiner 14,0 μιτι.

Die vorstehend genannten mittleren Teilchengrößen der kleinen Teilchen werden im Rahmen der vorliegenden Erfindung zweckmäßigerweise durch Auswertung von Rasterelektronenmikroskop-Aufnahmen (REM-Aufnahmen) ermittelt, wobei vorzugsweise nur Teilchen mit einer Größe von mindestens 0,01 μιτι

berücksichtigt werden und ein Zahlenmittel über vorzugsweise mindestens 20, besonders bevorzugt mindestens 40 Teilchen gebildet wird. Weiterhin haben sich auch Sedimentationsanalyseverfahren, vor allem für kleine Teilchen umfassend nadeiförmige Calciumsalz-Teilchen, insbesondere nadeiförmige Calciumcarbonat- Teilchen, besonders bewährt, wobei in diesem Zusammenhang die Verwendung eines Sedigraphs 5100 (Micromeritics GmbH) besonders vorteilhaft ist.

Bei kleinen Teilchen umfassend nicht-kugelförmige Calciumsalz-Teilchen, insbesondere nicht-kugelförmige Calciumcarbonat-Teilchen, wird vorzugsweise auf die kugeläquivalente Teilchengröße abgestellt.

Die Größenverteilung der kleine Teilchen umfassend Calciumsalz-Teilchen, insbesondere Calciumcarbonat-Teilchen, ist vergleichsweise eng und

vorzugsweise derart, dass mindestens 90,0 Gew.-% aller kleinen Teilchen einen Teilchendurchmesser im Bereich von mittlerer Teilchendurchmesser -50 %, bevorzugt im Bereich von mittlerer Teilchendurchmesser -40 %, insbesondere im Bereich von mittlerer Teilchendurchmesser -30 %, bis mittlerer Teilchendurchmesser +70 %, bevorzugt mittlerer Teilchendurchmesser +60 %, insbesondere mittlerer Teilchendurchmesser +50 %, aufweisen. Dabei wird die Größenverteilung vorzugsweise mittels Rastertunnelmikroskopie ermittelt.

Der Formfaktor der kleinen Teilchen, vorliegend definiert als der Quotient aus minimalem Teilchendurchmesser und maximalem Teilchendurchmesser, ist zweckmäßigerweise für mindestens 90 %, günstigerweise für mindestens 95 % aller Teilchen größer 0,90, besonders bevorzugt größer 0,95. In diesem

Zusammenhang werden für kleine Teilchen umfassend kugelförmige

Calciumcarbonat-Teilchen vorzugsweise nur Teilchen mit einer Teilchengröße im Bereich von 0,1 μιτι bis 30,0 μιτι berücksichtigt. Für kleine Teilchen umfassend rhomboedrische Calciumsalz-Teilchen, insbesondere rhomboedrische

Calciumcarbonat-Teilchen, werden vorzugsweise nur Teilchen mit einer

Teilchengröße im Bereich von 0,1 μιτι bis 20,0 μιτι berücksichtigt. Für kleine Teilchen umfassend andere Calciumsalz-Teilchen, insbesondere andere

Calciumcarbonat-Teilchen, werden vorzugsweise nur Teilchen mit einer

Teilchengröße im Bereich von 0,1 μιτι bis 2,0 μιτι berücksichtigt.

Die Calciumsalz-Teilchen, insbesondere die Calciumcarbonat-Teilchen, zeichnen sich günstigerweise weiterhin durch einen vergleichsweise geringen Wassergehalt aus. Sie weisen, bezogen auf ihr Gesamtgewicht, zweckmäßigerweise einen Wassergehalt (Restfeuchte bei 200°C) von höchstens 5,0 Gew.-%, vorzugsweise von höchstens 2,5 Gew.-%, bevorzugt von höchstens 1 ,0 Gew.-%, besonders bevorzugt von höchstens 0,5 Gew.-%, noch mehr bevorzugt kleiner 0,4 Gew.-%, zweckmäßigerweise kleiner 0,3 Gew.-%, günstigerweise kleiner 0,2 Gew.-%, insbesondere im Bereich von >0,1 Gew.-% bis <0,2 Gew.-%, auf.

Im Rahmen der vorliegenden Erfindung wird der Wassergehalt der Calciumsalz- Teilchen, insbesondere der Calciumcarbonat-Teilchen, vorzugsweise mittels Thermogravimetrie oder mittels eines Infrarotschnelltrockners, z. B. MA35 oder MA45 der Firma Sartorius oder Halogen-Feuchtigkeitsmessgerät HB43 der Firma Mettler, ermittelt, wobei die Messung vorzugsweise unter Stickstoff (Stickstoff- Durchflußmenge bevorzugt 20 ml/min) und zweckmäßigerweise über den

Temperaturbereich von 40°C oder niedriger bis 250°C oder höher durchgeführt wird. Weiterhin erfolgt die Messung vorzugsweise bei einer Heizrate von

10°C/min.

Die spezifische Oberfläche der Calciumsalz-Teilchen, insbesondere der

Calciumcarbonat-Teilchen, liegt vorzugsweise im Bereich von 0,1 m 2 /g bis 100 m 2 /g, besonders bevorzugt im Bereich von 0,1 m 2 /g bis 20,0 m 2 /g, insbesondere im Bereich von 4,0 m 2 /g bis 12,0 m 2 /g. Für rhomboedrische Calciumsalz-Teilchen, insbesondere für rhomboedrische Calciumcarbonat-Teilchen, ist die spezifische Oberfläche im Rahmen einer besonders bevorzugten Variante der vorliegenden Erfindung kleiner 1 ,0 m 2 /g, bevorzugt kleiner 0,75 m 2 /g, insbesondere kleiner 0,5 m 2 /g, wobei der mittlere Durchmesser der rhomboedrischen Calciumsalz-Teilchen, insbesondere der rhomboedrischen Calciumcarbonat-Teilchen, günstigerweise größer 2,5 μιτι, vorzugsweise größer 4,0 μιτι, insbesondere größer 6,0 μιτι, ist.

Für kugelförmige Calciumcarbonat-Teilchen ist die spezifische Oberfläche im Rahmen einer besonders bevorzugten Variante der vorliegenden Erfindung kleiner 3,0 m 2 /g, bevorzugt kleiner 2,0 m 2 /g, insbesondere kleiner 1 ,5 m 2 /g.

Weiterhin ist die spezifische Oberfläche in diesem Fall günstigerweise größer 0,25 m 2 /g, vorzugsweise größer 0,5 m 2 /g, insbesondere größer 0,75 m 2 /g.

Ganz besonders bevorzugt werden in diesem Zusammenhang Calciumsalz- Teilchen, insbesondere Calciumcarbonat-Teilchen, deren spezifische Oberfläche während einer Trocknung relativ konstant bleibt und sich vorzugsweise um maximal 200 %, bevorzugt um maximal 150 %, insbesondere um maximal 100 %, jeweils bezogen auf den Ausgangswert, ändert.

Die Basizität der Calciumsalz-Teilchen, insbesondere der Calciumcarbonat- Teilchen, ist vergleichsweise gering. Ihr pH-Wert, gemessen nach EN ISO 787-9, ist vorzugsweise kleiner 1 1 ,5, bevorzugt kleiner 1 1 ,0, insbesondere kleiner 10,5.

Die Herstellung der vorzugsweise kugelförmigen Calciumcarbonat-Teilchen kann durch Carbonatisierung einer wässrigen Calciumhydroxid (Ca(OH)2)-Suspension erfolgen. Hierzu wird zweckmäßigerweise CO2 oder ein CO2-haltiges Gasgemisch in eine Calciumhydroxid-Suspension geleitet.

Besonders bewährt hat sich eine Vorgehensweise, bei welcher man

a. eine wässrige Calciumhydroxid-Suspension vorlegt,

b. in die Suspension aus Schritt a. Kohlendioxid oder eine Kohlendioxid-haltige Gasmischung einleitet und

c. die entstehenden Calciumcarbonat-Teilchen abtrennt,

wobei man weiterhin 0,3 Gew.-% bis 0,7 Gew.-%, bevorzugt 0,4 Gew.-% bis 0,6 Gew.-%, insbesondere 0,45 Gew.-% bis 0,55 Gew.-%, mindestens einer

Aminotrialkylenphosphonsäure zugibt.

Die Konzentration der Calciumhydroxid-Suspension unterliegt keinen besonderen Beschränkungen. Besonders günstig ist jedoch eine Konzentrationen im Bereich von 1 g CaO/l bis 100 g CaO/l, bevorzugt im Bereich von 10 g CaO/l bis 90 g CaO/l, insbesondere im Bereich von 50 g CaO/l bis 80 g CaO/l.

Als Aminotrialkylenphosphonsäure gibt man vorzugsweise

Aminotrimethylenphosphonsäure, Aminotriethylenphosphonsäure,

Aminotripropylenphosphonsäure und/oder Aminotributylenphosphonsäure, insbesondere Aminotrimethylenphosphonsäure, zu.

Über die Menge an eingeleitetem CO2 kann der Umsatz der Reaktion gesteuert werden. Jedoch führt man die Einleitung des Kohlendioxids oder der

Kohlendioxid-haltigen Gasmischung vorzugsweise solange durch, bis die

Reaktionsmischung einen pH-Wert kleiner 9, bevorzugt kleiner e, insbesondere kleiner 7,5, aufweist.

Weiterhin leitet man das Kohlendioxid oder die Kohlendioxid-haltige Gasmischung zweckmäßigerweise mit einer Gasdurchflußmenge im Bereich von 0,02 I CO2 / (h * g Ca(OH) 2 ) bis 2,0 I CO2 / (h * g Ca(OH) 2 ), bevorzugt im Bereich von 0,04 I CO2 / (h * g Ca(OH)2) bis 1 ,0 I CO2 / (h * g Ca(OH)2), besonders bevorzugt im Bereich von 0,08 I CO2 / (h * g Ca(OH) 2 ) bis 0,4 I CO2 / (h * g Ca(OH) 2 ), insbesondere im Bereich von 0,12 I CO2 / (h * g Ca(OH) 2 ) bis 0,2 I CO2 / (h * g Ca(OH) 2 ), in die

Calciumhydroxid-Suspension ein.

Im Übrigen erfolgt die Umsetzung der Calciumhydroxid-Suspension mit dem Kohlendioxid oder der Kohlendioxid-haltigen Gasmischung vorzugsweise bei einer Temperatur kleiner 25°C, bevorzugt kleiner 20°C, insbesondere kleiner 15°C. Andererseits ist die Reaktionstemperatur vorzugsweise größer 0°C, bevorzugt größer 5°C, insbesondere größer 7°C.

Die Zugabe der mindestens einen Aminotrialkylenphosphonsäure erfolgt zweckmäßigerweise im Verlauf der Reaktion, bevorzugt nach einem abrupten Abfall des Leitwerts der Reaktionsmischung. Zweckmäßigerweise wird die mindestens eine Aminotrialkylenphosphonsäure zugegeben, sobald die

Leitfähigkeit der Reaktionsmischung um mehr als 0,5 mS/cm/min absinkt. Die Abnahme des Leitwerts der Reaktionsmischung beträgt dabei vorzugsweise mindestens 0,25 mS/cm innerhalb von 30 Sekunden, insbesondere mindestens 0,5 mS/cm innerhalb von 60 Sekunden. Im Rahmen einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung erfolgt die Zugabe der mindestens einen Aminotrialkylenphosphonsäure am Ende der Fällung des basischen

Calciumcarbonats (BCC; 2CaCO3 * Ca(OH)2 * nH 2 O). Die Calciumcarbonat-Teilchen fallen unter den oben genannten Bedingungen aus der Reaktionsmischung aus und können auf an sich bekannte Weise abgetrennt und getrocknet werden.

Im Rahmen einer bevorzugten Ausführungsform der vorliegenden Erfindung enthält das erfindungsgemäß im Implantat eingesetzte Verbundpulver eine Mischung umfassend Calciumcarbonat und weitere Calciumsalze, insbesondere Calciumphosphate, insbesondere Ca3(PO4)2, CaHPO4, Ca(H2PO4)2 und/oder Ca5(PO4)3(OH). Das Gewichtsverhältnis von Calciumcarbonat zu

Calciumphosphat liegt dabei vorzugsweise im Bereich von 99:1 bis 1 :99, insbesondere im Bereich von 50:50 bis 99:1 .

Im Rahmen einer bevorzugten Ausführungsform der vorliegenden Erfindung umfassen die kleinen Teilchen inhibierende Calciumcarbonat-Teilchen.

„Inhibierende Calciumcarbonat-Teilchen" bezeichnen in diesem Zusammenhang Calciumcarbonat-Teilchen, die als Additiv in Polymeren den säurekatalysierten Abbau des Polymers im Vergleich mit demselben Polymer ohne Additiv verlangsamen, im besten Fall vollständig unterdrücken.

Zweckmäßigerweise sind die kleinen Teilchen durch ein Verfahren erhältlich, bei welchem man Calciumcarbonat-Teilchen mit einer Zusammensetzung

beschichtet, die, jeweils bezogen auf ihr Gesamtgewicht, eine Mischung von mindestens 0,1 Gew.-% mindestens eines Calcium-Komplexbildners und/oder mindestens einer konjugierten Base, die ein Alkalimetall- oder Calciumsalz einer schwachen Säure ist, gemeinsam mit mindestens 0,1 Gew.-% mindestens einer schwachen Säure umfasst.

Die Anionen des Calcium-Komplexbildners und der konjugierten Base können im Rahmen dieser Ausführungsform gleich sein, obgleich dies keine zwingende Voraussetzung ist.

Als Calciunn-Konnplexbildner haben sich Natriumphosphate, d.h. Natriumsalze von Phosphorsäuren, insbesondere Natriumsalze von Orthophosphorsäure,

Metaphosphorsäure und Polyphosphorsäure, als ganz besonders vorteilhaft erwiesen. Bevorzugte Natriumphosphate umfassen Natriumorthophosphate, wie primäres Natriumdihydrogenphosphat NaH2PO4, sekundäres

Natnumdihydrogenphosphat Na2HPO4 und tertiäres Trinatriumphosphat Na3PO4; Natriumisopolyphosphate, wie Tetranatriumdiphosphat (Natriumpyrophosphat) Na4P2O7, Pentanatriumtriphosphat (Natriumtripolyphosphat) NasPsO-io; sowie höhermolekulare Natriumphosphate, wie Natriummetaphosphate und Natriumpolyphosphate, wie Schmelz- oder Glühphosphate, Grahamsches Salz (ungefähre Zusammensetzung Na2O*P2Os, gelegentlich auch als

Natriumhexametaphosphat bezeichnet), Kurrolsches Salz und Maddrellsches Salz. Ganz besonders bevorzugt wird erfindungsgemäß

Natriumhexametaphosphat verwendet. Die Verwendung von den vorstehend genannten Phosphaten ist insbesondere in einem Verbundpulver für Implantate besonders vorteilhaft, da in diesem Fall die Phosphate den Knochenbau

zusätzlich fördern.

Weitere geeignete Calcium-Komplexbildner schließen gemeinsame mehrzähnige, chelatbildende Liganden ein, insbesondere Ethylendiamintetraessigsäure (EDTA), Triethylentetramin, Diethylentriamin, o-Phenanthrolin, Oxalsäure und Mischungen davon.

Für die Zwecke der vorliegenden Erfindung besonders geeignete schwache Säuren weisen einen pKs-Wert, gemessen bei 25°C, größer 1 ,0, bevorzugt größer 1 ,5, insbesondere größer 2,0, auf. Gleichzeitig ist der pKs-Wert geeigneter schwacher Säuren, gemessen bei 25°C, vorzugsweise kleiner 20,0, bevorzugt kleiner 10,0, besonders bevorzugt kleiner 5,0, zweckmäßigerweise kleiner 4,0, insbesondere kleiner 3,0. Erfindungsgemäß ganz besonders geeignete schwache Säuren umfassen Phosphorsäure, Metaphosphorsäure, Hexametaphosphorsäure, Zitronensäure, Borsäure, schweflige Säure, Essigsäure und Mischungen davon. Phosphorsäure wird als schwache Säure ganz besonders bevorzugt eingesetzt.

Erfindungsgemäß bevorzugte konjugierte Basen schließen insbesondere Natriumoder Calciumsalze der vorstehend genannten schwachen Säuren ein, wobei Natriumhexametaphosphat ganz besonders bevorzugt wird.

Die Herstellung der inhibierenden Calciumcarbonat-Teilchen kann auf an sich bekannte Weise durch Beschichten von Calciumcarbonat-Teilchen mit einer Zusammensetzung erfolgen, die mindestens einen Calcium-Komplexbildner und/oder mindestens eine konjugierte Base, die ein Alkalimetall- oder Calciumsalz einer schwachen Säure ist, gemeinsam mit mindestens einer schwachen Säure umfasst.

Zweckmäßigerweise wird eine wässrige Suspension der zu beschichtenden Calciumcarbonat-Teilchen vorgelegt, die, bezogen auf ihr Gesamtgewicht, günstigerweise einen Gehalt von Calciumcarbonat-Teilchen im Bereich von 1 ,0 Gew.-% bis 80,0 Gew.-%, bevorzugt im Bereich von 5,0 Gew.-% bis 50,0 Gew.-%, insbesondere im Bereich von 10,0 Gew.-% bis 25,0 Gew.-%, aufweist. Die Beschichtung der Calciumcarbonat-Teilchen erfolgt günstigerweise durch Zugabe der genannten Substanzen in Reinform oder in wässriger Lösung, wobei sich wässrige Lösungen der genannten Komponenten erfindungsgemäß als ganz besonders vorteilhaft erwiesen haben, um eine möglichst homogene

Beschichtung der Calciumcarbonat-Teilchen zu erreichen.

Weiterhin ist es im Rahmen der vorliegenden Erfindung besonders günstig, den Calciunn-Konnplexbildner und/oder die konjugierte Base, die ein Alkalimetall- oder Calciumsalz einer schwachen Säure ist, vor der schwachen Säure zuzugeben.

Der Calcium-Komplexbildner oder die konjugierte Base wird vorzugsweise in einer Menge im Bereich von 0,1 Gew.-Teile bis 25,0 Gew.-Teile, bevorzugt im Bereich von 0,5 Gew.-Teile bis 10,0 Gew.-Teile, insbesondere im Bereich von 1 ,0 Gew.- Teile bis 5,0 Gew.-Teile, jeweils bezogen auf 100 Gew.-Teile der zu

beschichtenden Calciumcarbonat-Teilchen, verwendet. Dabei wird die Menge des Calcium-Komplexbildners oder der konjugierten Base zweckmäßigerweise derart gewählt, dass eine vollständige Beschichtung der Oberfläche der

Calciumcarbonat-Teilchen mit dem Calcium-Komplexbildner der konjugierten Base erreicht wird.

Die schwache Säure wird vorzugsweise in einer Menge im Bereich von 0,1 Gew.- Teile bis 30,0 Gew.-Teile, bevorzugt im Bereich von 0,5 Gew.-Teile bis 15,0 Gew.- Teile, besonders bevorzugt im Bereich von 1 ,0 Gew.-Teile bis 10,0 Gew.-Teile, insbesondere im Bereich von 4,0 Gew.-Teile bis 8,0 Gew.-Teile, jeweils bezogen auf 100 Gew.-Teile der zu beschichtenden Calciumcarbonat-Teilchen, eingesetzt.

Die auf diese Weise erhältlichen inhibierenden Calciumcarbonat-Teilchen sind in einer mäßig sauren Umgebung stabil, wobei diese Fähigkeit auf eine

Pufferwirkung durch den absorbierten oder umgesetzten Calcium-Komplexbildner oder der konjugierten Base auf der Oberfläche der Calciumcarbonat-Teilchen und die schwachen Säure in Lösung zurückgeführt wird, wobei die Aufbringung des Calcium-Komplexbildners und/oder der konjugierte Base auf der Oberfläche der Calciumcarbonat-Teilchen wiederum die Löslichkeit der Oberfläche der

Calciumcarbonat-Teilchens herabsetzt und somit die Calciumcarbonat-Teilchen stabilisiert, ohne dass die Lehre der vorliegenden Erfindung an diese Theorie gebunden sein soll.

Das besagte Verbundpulver ist durch ein Verfahren erhältlich, bei welchem man große Teilchen mit kleinen Teilchen verbindet, wobei - die großen Teilchen einen mittleren Teilchendurchmesser im Bereich von 10 μιτι bis 10 mm, bevorzugt im Bereich von 20 μιτι bis 10 mm, besonders bevorzugt im Bereich von 30 μιτι bis 2,0 mm, insbesondere im Bereich von 60,0 μιτι bis 500,0 μιτι, aufweisen,

- der mittlere Teilchendurchmesser der kleinen Teilchen vorzugsweise höchstens 1/5, bevorzugt höchstens 1/10, besonders bevorzugt höchstens 1/20, insbesondere höchstens 1/1000, des mittleren Teilchendurchmessers der großen Teilchen ist.

Dabei sind die kleinen Teilchen auf der Oberfläche der großen Teilchen

angeordnet und/oder inhomogen innerhalb der großen Teilchen verteilt.

Insbesondere für resorbierbare Polymere und für UHMWPE werden allerdings hervorragende Ergebnisse erzielt, wenn die kleinen Teilchen auf der Oberfläche der großen Teilchen angeordnet sind und diese vorzugsweise nicht vollständig bedecken.

Eine„inhomogene" Verteilung der kleinen Teilchen oder Fragmente davon innerhalb der großen Teilchen bedeutet hier eine nicht homogene (gleichmäßige) Verteilung der kleinen Teilchen oder Fragmente davon innerhalb der großen Teilchen. Vorzugsweise gibt es innerhalb der Teilchen des Verbundpulvers mindestens einen ersten Bereich, der mindestens zwei, vorzugsweise mindestens drei, bevorzugt mindestens vier, insbesondere mindestens fünf kleine Teilchen oder Fragmente davon umfasst, und mindestens einen anderen Bereich innerhalb der Teilchen des Verbundpulvers, der zwar das gleiche Volumen und die gleiche Form wie der erste Bereich aufweist, aber eine andere Anzahl von kleinen

Teilchen umfasst.

Im Rahmen einer bevorzugte Ausführungsform der vorliegenden Erfindung ist das Gewichtsverhältnis Polymer, insbesondere Polyamid, zu Calciumsalz, bevorzugt zu Calciumcarbonat, insbesondere zu gefälltem Calciumcarbonat, im

Teilcheninneren größer als das Gewichtsverhältnis Polymer, insbesondere Polyamid, zu Calciumsalz, bevorzugt zu Calciumcarbonat, insbesondere zu gefälltem Calciumcarbonat, im Außenbereich der Teilchen. Zweckmäßigerweise ist das Gewichtsverhältnis Polymer, insbesondere Polyamid, zu Calciumsalz, bevorzugt zu Calciumcarbonat, insbesondere zu gefälltem Calciumcarbonat, im Teilcheninneren größer 50:50, bevorzugt größer 60:40, günstigerweise größer 70:30, besonders bevorzugt größer 80:20, noch mehr bevorzugt größer 90:10, ganz besonders bevorzugt größer 95:5, insbesondere größer 99:1 . Weiterhin ist das Gewichtsverhältnis Calciumsalz, bevorzugt Calciumcarbonat, insbesondere gefälltes Calciumcarbonat, zu Polymer, insbesondere Polyamid, im Außenbereich der Teilchen, bevorzugt im Vorzugsaußenbereich der Teilchen, größer 50:50, bevorzugt größer 60:40, günstigerweise größer 70:30, besonders bevorzugt größer 80:20, noch mehr bevorzugt größer 90:10, ganz besonders bevorzugt größer 95:5, insbesondere größer 99:1 .

Im Rahmen einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung sind die kleinen Teilchen auf der Oberfläche der großen Teilchen angeordnet und bedecken die großen Teilchen vorzugsweise nicht vollständig. . Zweckmäßigerweise sind mindestens 0,1 %, bevorzugt mindestens 5,0 %, insbesondere 50,0 %, der Oberfläche der großen Teilchen nicht mit den

Calciumsalz-Teilchen, insbesondere nicht mit den vorzugsweise kugelförmigen Calciumcarbonat-Teilchen, beschichtet. Verstärkt wird dieser Effekt vorzugsweise durch die Lücken zwischen einzelnen Calciumsalz-Teilchen, insbesondere zwischen einzelnen Calciumcarbonat-Teilchen, die vorzugsweise vorliegen und zur Ausbildung von entsprechenden Mikrokanälen für fluide Substanzen, insbesondere für eine Schmelze des Polymers der großen Teilchen, führen. Diese Struktur ist insbesondere für Anwendungen des Verbundpulvers in

Lasersinterverfahren vorteilhaft, da hierdurch ein gleichmäßiges und schnelles Aufschmelzen des im Verbundpulver enthaltenden Polymers, bevorzugt des thermoplastischen Polymers, besonders bevorzugt des resorbierbaren Polymers, insbesondere des Milchsäurepolymers, sichergestellt wird.

Das besagte Verbundpulver ist durch eine spezielle Teilchengrößenverteilung gekennzeichnet. Zum einen weisen die Teilchen des Verbundpulvers eine mittlere Teilchengröße dso im Bereich von 10 μιτι bis kleiner 200 μιτι, bevorzugt im Bereich von 20 μιτι bis kleiner 200 μιτι, besonders bevorzugt im Bereich von 20 μιτι bis kleiner 150 μιτι, günstigerweise im Bereich von 20 μιτι bis kleiner 100 μιτι, insbesondere im Bereich von 35 μιτι bis kleiner 70 μιτι, auf.

Weiterhin ist der Feinkornanteil des Verbundpulvers kleiner 50,0 Vol.-%, bevorzugt kleiner 45,0 Vol.-%, besonders bevorzugt kleiner 40,0 Vol.-%, noch mehr bevorzugt kleiner 20,0 Vol.-%, günstigerweise kleiner 15,0 Vol.-%, zweckmäßigerweise kleiner 10,0 Vol.-%, insbesondere kleiner 5,0 Vol.-%. Dabei bezeichnet der Feinkornanteil erfindungsgemäß den Anteil der kleinsten

Partikelpopulation bei einer bi- oder multimodalen Korngrößenverteilung bezogen auf die Gesamtmenge bei der Summenverteilungskurve. Bei einer unimodalen (monodispersen) Korngrößenverteilung wird der Feinkornanteil erfindungsgemäß als 0,0 Vol.-% definiert. Berücksichtigt werden in diesem Zusammenhang alle im Produkt vorliegenden Partikel inklusive nicht verbundenes Ausgangsmaterial, insbesondere kleine Teilchen im Sinne der Erfindung sowie Bruchstücke oder Fragmente der großen und/oder der kleinen Teilchen im Sinne der Erfindung.

Für Verbundpulver mit einer mittleren Teilchengröße dso im Bereich von größer 40 μιτι bis kleiner 200 μιτι ist der Feinkornanteil vorzugsweise derart, dass der Anteil von Teilchen im Produkt mit einer Teilchengröße kleiner 20 μιτι vorzugsweise kleiner 50,0 Vol.-%, bevorzugt kleiner 45,0 Vol.-%, besonders bevorzugt kleiner 40,0 Vol.-%, noch mehr bevorzugt kleiner 20,0 Vol.-%, günstigerweise kleiner 15,0 Vol.-%, zweckmäßigerweise kleiner 10,0 Vol.-%, insbesondere kleiner 5,0 Vol.-%, ist, wobei„Teilchen" in diesem Zusammenhang insbesondere Teilchen des Verbundpulvers im Sinne der Erfindung, kleine Teilchen im Sinne der Erfindung sowie Bruchstücke oder Fragmente der großen und/oder der kleinen Teilchen im Sinne der Erfindung umfassen, sofern sie die genannte Teilchengröße aufweisen.

Für Verbundpulver mit einer mittleren Teilchengröße dso im Bereich von 10 μιτι bis 40 μιτι ist der Feinkornanteil vorzugsweise derart, dass der Anteil von Teilchen im Produkt mit einer Teilchengröße kleiner 5 μιτι vorzugsweise kleiner 50,0 Vol.-%, bevorzugt kleiner 45,0 Vol.-%, besonders bevorzugt kleiner 40,0 Vol.-%, noch mehr bevorzugt kleiner 20,0 Vol.-%, günstigerweise kleiner 15,0 Vol.-%, zweckmäßigerweise kleiner 10,0 Vol.-%, insbesondere kleiner 5,0 Vol.-%, ist, wobei„Teilchen" in diesem Zusammenhang insbesondere Teilchen des

Verbundpulvers im Sinne der Erfindung, kleine Teilchen im Sinne der Erfindung sowie Bruchstücke oder Fragmente der großen und/oder der kleinen Teilchen im Sinne der Erfindung umfassen, sofern sie die genannte Teilchengröße aufweisen.

Ferner ist die Dichte des Feinkornanteils vorzugsweise kleiner 2,6 g/cm 3 , bevorzugt kleiner 2,5 g/cm 3 , besonders bevorzugt kleiner 2,4 g/cm 3 , insbesondere im Bereich von größer 1 ,2 g/cm 3 bis kleiner 2,4 g/cm 3 , wobei dieser Wert vorzugsweise durch Abtrennung des Feinkornanteils mittels Sieben und

Dichtemessung an der abgetrennten Fraktion bestimmt wird.

Bevorzugt weisen die Teilchen des Verbundpulvers eine Teilchengröße d9o von kleiner 350 μιτι, vorzugsweise kleiner 300 μιτι, bevorzugt kleiner 250 μιτι, besonders bevorzugt kleiner 200 μιτι, insbesondere kleiner 150 μιτι auf. Weiterhin ist die Teilchengröße d9o vorzugsweise größer 50 μιτι, bevorzugt größer 75 μιτι, insbesondere größer 100 μιτι.

Zweckmäßigerweise ist das Verhältnis d2o/dso kleiner 100%, vorzugsweise kleiner 75%, bevorzugt kleiner 65%, besonders bevorzugt kleiner 60%, insbesondere kleiner 55%. Weiterhin ist das Verhältnis d2o/dso zweckmäßigerweise größer 10%, vorzugsweise größer 20%, bevorzugt größer 30%, besonders bevorzugt größer 40%, insbesondere größer 50%.

Die vorstehend genannten Größen d2o, dso und d9o sind im Rahmen der

vorliegenden Erfindung wie folgt definiert: d2o bezeichnet die Teilchengröße der Teilchengrößenverteilung, bei welcher 20% der Teilchen eine Teilchengröße kleiner als der angegebene Wert und 80% der Teilchen eine Teilchengröße größer als oder gleich dem angegebenen Wert haben. dso bezeichnet die mittlere Teilchengröße der Teilchengrößenverteilung. 50% der Teilchen haben eine Teilchengröße kleiner als der angegebenen Wert und 50% der Teilchen haben eine Teilchengröße größer als oder gleich dem angegebenen Wert. d9o bezeichnet die Teilchengröße der Teilchengrößenverteilung, bei welcher 90% der Teilchen eine Teilchengröße kleiner als der angegebene Wert und 10% der Teilchen eine Teilchengröße größer als oder gleich dem angegebenen Wert haben.

Die erfindungsgemäße Teilchengrößenverteilung kann auf an sich bekannte Weise durch Klassieren des Verbundpulvers erreicht werden, d.h. durch Trennen eines dispersen Feststoffgemischs in Fraktionen. Vorzugsweise erfolgt eine Klassierung nach der Partikelgröße oder Partikeldichte. Besonders vorteilhaft sind die Trockensiebung, die Nasssiebung und die Luftstrahlsiebung, insbesondere die Luftstrahlsiebung, sowie das Stromklassieren, insbesondere mittels Windsichten.

Im Rahmen einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung wird das Verbundpulver in einem ersten Schritt klassiert, um die

Grobfraktion größer 800 μιτι, bevorzugt größer 500 μιτι, insbesondere größer 250 μιτι, möglichst zu entfernen. In diesem Zusammenhang hat sich ein

Trockensieben über ein grobes Sieb besonders bewährt, welches vorzugsweise eine Größe, gemeint sind die Größe der Öffnungen, im Bereich von 250 μιτι bis 800 μιτι, bevorzugt im Bereich von 250 μιτι bis 500 μιτι, insbesondere von 250 μιτι, aufweist.

In einem weiteren Schritt wird das Verbundpulver vorzugsweise klassifiziert, um den Feinanteil <20 μιτι möglichst zu entfernen. In diesem Zusammenhang haben Luftstrahlsiebung und Windsichten als besonders günstig erweisen. Die mittleren Durchmesser der Teilchen des Verbundpulvers, der großen Teilchen und der kleinen Teilchen, die Teilchengrößen d2o, dso, d9o sowie die vorstehend genannten Längengrößen werden erfindungsgemäß zweckmäßigerweise anhand mikroskopischer Aufnahmen, ggf. anhand elektronenmikroskopischer Aufnahmen, ermittelt. Für die Ermittlung der mittleren Durchmesser der großen Teilchen und der kleinen Teilchen sowie der Teilchen des Verbundpulvers und für die

Teilchengrößen d2o, dso, d9o sind auch Sedimentationsanalysen besonders vorteilhaft, wobei hier die Verwendung eines Sedigraphs 5100 (Micromeritics GmbH) besonders günstig ist. Für die Teilchen des Verbundpulvers haben sich auch Partikelgrößenanalysen mit Laserbeugung besonders bewährt, wobei in diesem Zusammenhang die Verwendung eines Laserbeugungssensors HELOS/F der Firma Sympatec GmbH besonders vorteilhaft ist. Dieser umfasst

vorzugsweise einen RODOS Trockendispergierer.

Im Übrigen beziehen sich diese Angaben sowie alle anderen Angaben in der vorliegenden Beschreibung, sofern nichts anderes angegeben wird, auf eine Temperatur von 23°C.

Das erfindungsgemäße Verbundpulver ist vergleichsweise kompakt.

Vorzugsweise ist der Anteil von Teilbereichen im Inneren der Teilchen des

Verbundpulvers, die eine Dichte kleiner 0,5 g/cm 3 , insbesondere kleiner 0,25 g/cm 3 , aufweisen, kleiner 10,0 %, bevorzugt kleiner 5,0 %, insbesondere kleiner 1 ,0 %, jeweils bezogen auf das Gesamtvolumen des Verbundpulvers.

Der Gewichtsanteil der Calciumsalz-Teilchen, vorzugsweise der Calciumcarbonat- Teilchen, bevorzugt der gefällten Calciumcarbonat-Teilchen, insbesondere der kugelförmigen Calciumcarbonat-Teilchen, bezogen auf das Gesamtgewicht des Verbundpulvers, beträgt vorzugsweise mindestens 0,1 Gew.-%, bevorzugt mindestens 1 ,0 Gew.-%, besonders bevorzugt mindestens 5,0 Gew.-%, und liegt zweckmäßigerweise im Bereich von 5,0 Gew.-% bis 80,0 Gew.-%, besonders bevorzugt im Bereich von 10,0 Gew.-% bis 60,0 Gew.-%, günstigerweise im Bereich von 20,0 Gew.-% bis 50,0 Gew.-%. Für Calciumsalz-Teilchen,

insbesondere für vorzugsweise kugelförmige Calciumcarbonat-Teilchen, welche, bezogen auf die Gesamtmenge an Calciumsalz-Teilchen, insbesondere an vorzugsweise kugelförmigen Calciumcarbonat-Teilchen, mehr als 15,0 Gew.-% Teilchen mit einer Größe kleiner 20 μιτι und/oder Teilchen mit einer Größe größer 250 μιτι enthalten, hat sich eine Gesamtmenge an Calciumsalz-Teilchen, insbesondere an vorzugsweise kugelförmigen Calciumcarbonat-Teilchen, im Bereich von 35,0 Gew.-% bis 45,0 Gew.-% ganz besonders bewährt. Für

Calciumsalz-Teilchen, insbesondere für vorzugsweise kugelförmige Calciumcarbonat-Teilchen, welche, bezogen auf die Gesamtmenge an Calciumsalz-Teilchen, insbesondere an vorzugsweise kugelförmigen

Calciumcarbonat-Teilchen, höchstens 15,0 Gew.-% Teilchen mit einer Größe kleiner 20 μιτι und/oder Teilchen mit einer Größe größer 250 μιτι enthalten, hat sich eine Gesamtmenge an Calciumsalz-Teilchen, insbesondere an vorzugsweise kugelförmigen Calciumcarbonat-Teilchen, im Bereich von 20,0 Gew.-% bis 30,0 Gew.-% ganz besonders bewährt.

Der Gewichtsanteil des Polymers, bevorzugt des thermoplastischen Polymers, bezogen auf das Gesamtgewicht des Verbundpulvers, beträgt vorzugsweise mindestens 0,1 Gew.-%, bevorzugt mindestens 1 ,0 Gew.-%, besonders bevorzugt mindestens 5,0 Gew.-%, und liegt zweckmäßigerweise im Bereich von 20,0 Gew.- % bis 95,0 Gew.-%, bevorzugt im Bereich von 40,0 Gew.-% bis 90,0 Gew.-%, günstigerweise im Bereich von 50,0 Gew.-% bis 80,0 Gew.-%.

Für ein Verbundpulver, das Calciumsalz-Teilchen, insbesondere vorzugsweise kugelförmige Calciumcarbonat-Teilchen, enthält, welche, bezogen auf die

Gesamtmenge an Calciumsalz-Teilchen, insbesondere an vorzugsweise kugelförmigen Calciumcarbonat-Teilchen, mehr als 20,0 Gew.-% Teilchen mit einer Größe kleiner 20 μιτι und/oder Teilchen mit einer Größe größer 250 μιτι enthalten, hat sich eine Gesamtmenge an Polymer im Bereich von 55,0 Gew.-% bis 65,0 Gew.-% ganz besonders bewährt. Für ein Verbundpulver, das

Calciumsalz-Teilchen, insbesondere vorzugsweise kugelförmige Calciumcarbonat- Teilchen, enthält, welche, bezogen auf die Gesamtmenge an Calciumsalz- Teilchen, insbesondere an vorzugsweise kugelförmigen Calciumcarbonat- Teilchen, höchstens 20,0 Gew.-% Teilchen mit einer Größe kleiner 20 μιτι und/oder Teilchen mit einer Größe größer 250 μιτι enthalten, hat sich eine

Gesamtmenge an Polymer im Bereich von 70,0 Gew.-% bis 80,0 Gew.-% ganz besonders bewährt.

Das Verbundpulver zeichnet sich unter anderem durch eine sehr gute Verbindung des ersten Materials mit dem zweiten Material aus. Die feste Verbindung des ersten Materials mit dem zweiten Material lässt sich vorzugsweise durch

mechanische Beanspruchung des Verbundpulvers, insbesondere durch

Ausschütteln des Verbundpulvers mit Nichtlösungsmittel für das Polymer und die Calciumsalz-Teilchen, insbesondere für die vorzugsweise kugelförmigen

Calciumcarbonat-Teilchen, bei 25°C, vorzugsweise gemäß der in Organikum, 17. Auflage, VEB Deutscher Verlag der Wissenschaften, Berlin, 1988, Abschnitt 2.5.2.1„Ausschütteln von Lösungen bzw. Suspensionen", Seite 56-57

beschriebenen Vorgehensweise, verifizieren. Die Schüttelzeit beträgt vorzugsweise mindestens eine Minute, bevorzugt mindestens 5 Minuten, insbesondere 10 Minuten, und führt vorzugsweise nicht zu einer wesentlichen Veränderung der Form, der Größe und/oder der Zusammensetzung der Teilchen des Verbundpulvers. Besonders bevorzugt sind nach dem Schütteltest

mindestens 60 Gew.-%, vorzugsweise mindestens 70 Gew.-%, bevorzugt mindestens 80 Gew.-%, besonders bevorzugt mindestens 90 Gew.-%,

günstigerweise mindestens 95 Gew.-%, insbesondere mindestens 99 Gew.-% der Teilchen des Verbundpulvers, hinsichtlich ihrer Zusammensetzung, ihrer Größe und vorzugsweise ihrer Form nicht verändert. Ein in diesem Zusammenhang besonders geeignete Nicht-Lösungsmittel ist Wasser, insbesondere für Polyamid enthaltendes Verbundpulver.

Weiterhin weisen die Teilchen des im erfindungsgemäßen Implantat eingesetzten Verbundpulvers üblicherweise eine vergleichsweise isotrope Partikelform auf, die insbesondere für Anwendungen des Verbundpulvers in SLM-Verfahren vorteilhaft ist. Die gewöhnlich nahezu kugelförmige Teilchenform der Teilchen des

Verbundpulvers führt in der Regel zu einer Vermeidung oder zumindest zu einer Reduzierung von negativen Einflüssen, wie Verzug oder Schwindung.

Infolgedessen ist üblicherweise auch ein sehr vorteilhaftes Aufschmelz- und Erstarrungsverhalten des Verbundpulvers zu beobachten.

Im Gegensatz dazu haben herkömmliche Pulverpartikel, die beispielsweise durch kryogenes Mahlen erhalten werden, eine unregelmäßige (amorphe) Teilchenform mit scharfen Kanten und spitzen Ecken. Derartige Pulver sind jedoch wegen ihrer nachteiligen Teilchenform sowie zusätzlich wegen ihrer vergleichsweise breiten Teilchengrößenverteilung und wegen ihrem vergleichsweise hohen Feinanteil von Teilchen <20 μιτι für SLM-Verfahren nicht von Vorteil.

Durch die Calciumsalz-Teilchen, vor allem durch die Calciumcarbonat-Teilchen, insbesondere durch die gefällten Calciumcarbonat-Teilchen, können die

Eigenschaften des Polymers, insbesondere des thermoplastischen Polymers, gezielt beeinflusst und gesteuert werden. So ermöglichen die Calciumsalz- Teilchen, vor allem die Calciumcarbonat-Teilchen, insbesondere die gefällten Calciumcarbonat-Teilchen, eine sehr gute Pufferung und pH-Stabilisierung des Polymers, insbesondere des thermoplastischen Polymers. Darüber hinaus wird die Biokompatibilität des Polymers, insbesondere des thermoplastischen

Polymers, durch die Calciumsalz-Teilchen, vor allem durch die Calciumcarbonat- Teilchen, insbesondere durch die gefällten Calciumcarbonat-Teilchen, deutlich verbessert. Darüber hinaus wird bei Verwendung der inhibierenden Calciumcarbonat-Teilchen eine deutliche Unterdrückung des thermischen Abbaus des Polymers, insbesondere des thermoplastischen Polymers, beobachtet.

Die Herstellung des besagten Verbundpulvers kann auf an sich bekannte Weise, beispielsweise durch ein einstufiges Verfahren, insbesondere durch Auffällen oder Beschichten, vorzugsweise durch Beschichten mit Mahlgut, erfolgen. Weiterhin ist auch eine Vorgehensweise besonders geeignet, bei welcher man Polymerteilchen aus einer Polymerlösung ausfällt, die zusätzlich kleine Teilchen im Sinne der Erfindung, vorzugsweise in suspendierter Form enthält.

Besonders bewährt hat sich jedoch eine Vorgehensweise, bei welcher man Polymerpartikel und Calciumsalz-Teilchen, insbesondere vorzugsweise

kugelförmige Calciumcarbonat-Teilchen, miteinander in Kontakt bringt und durch Einwirkung mechanischer Kräfte miteinander verbindet. Zweckmäßigerweise erfolgt dies in einem geeigneten Mischer oder in einer Mühle, insbesondere in einer Prallmühle, Stiftmühle oder in einer Ultrarotormühle. Die

Rotorgeschwindigkeit ist dabei vorzugsweise größer 1 m/s, bevorzugt, größer 10 m/s, besonders bevorzugt größer 25 m/s, insbesondere im Bereich von 50 m/s bis 100 m/s.

Die Temperatur, bei welcher die Herstellung des Verbundpulvers erfolgt, kann grundsätzlich frei gewählt werden. Besonders vorteilhaft sind jedoch

Temperaturen größer -200°C, vorzugsweise größer -100°C, bevorzugt größer - 50°C, besonders bevorzugt größer -20°C, insbesondere größer 0°C. Andererseits ist die Temperatur vorteilhafterweise kleiner 120°C, vorzugsweise kleiner 100°C, bevorzugt kleiner 70°C besonders bevorzugt kleiner 50°C, insbesondere kleiner 40°C. Ganz besonders bewährt haben sich Temperaturen im Bereich von größer 0°C bis kleiner 50°C, insbesondere im Bereich von größer 5°C bis kleiner 40°C.

Im Rahmen einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung wird der Mischer oder die Mühle, insbesondere die Prallmühle, die Stiftmühle oder die Ultrarotormühle, während der Herstellung des

erfindungsgemäßen Verbundpulvers gekühlt, um die freiwerdende Energie abzuführen. Vorzugsweise erfolgt eine Kühlung mit einem Kühlmedium, das eine Temperatur kleiner 25°C, bevorzugt im Bereich von kleiner 25°C bis -60°C, besonders bevorzugt im Bereich von kleiner 20°C bis -40°C, zweckmäßigerweise im Bereich von kleiner 20°C bis -20°C, insbesondere im Bereich von kleiner 15°C bis 0°C, aufweist. Weiterhin ist die Kühlung vorzugsweise derart dimensioniert, dass am Ende des Misch- oder Mahlvorgangs, bevorzugt des Mahlvorgangs, die Temperatur im Misch- oder Mahlraum, bevorzugt im Mahlraum, kleiner 120°C, vorzugsweise kleiner 100°C, bevorzugt kleiner 70°C besonders bevorzugt kleiner 50°C, insbesondere kleiner 40°C, ist.

Gemäß einer besonders bevorzugten Ausführungsform der vorliegenden

Erfindung führt diese Vorgehensweise insbesondere bei Polyamiden dazu, dass die Calciumsalz-Teilchen, insbesondere die vorzugsweise kugelförmigen

Calciumcarbonat-Teilchen, in das Innere der Polymerpartikel eindringen und von dem Polymer möglichst vollständig bedeckt werden, so dass sie von außen nicht erkennbar sind. Derartige Teilchen können wie das Polymer ohne die

Calciumsalz-Teilchen, insbesondere wie das Polymer ohne die vorzugsweise kugelförmigen Calciumcarbonat-Teilchen, verarbeitet und verwendet werden, weisen aber die verbesserten Eigenschaften des besagten Verbundpulvers auf.

Es erfolgt die Herstellung des Verbundpulvers in Anlehnung an die in der

Patentanmeldung JP62083029 A beschriebenen Vorgehensweise. Dabei wird ein erstes Material (sogenannte Mutterpartikel) mit einem zweiten Material, das aus kleineren Partikeln (sogenannte Babypartikel) besteht, auf der Oberfläche beschichtet. Zu diesem Zweck wird vorzugsweise eine

Oberflächenmodifizierungsvorrichtung („Hybridizer") eingesetzt, die einen

Hochgeschwindigkeitsrotor, einen Stator und ein kugelförmiges Gefäß,

vorzugsweise umfassend innenliegende Messer, umfasst. Der Einsatz von NARA Hybridization Systemen, die vorzugsweise einen Rotor-Außendurchmesser von 1 18 mm aufweisen, insbesondere von einem Hybridization System mit der Bezeichnung NHS-0 oder NHS-1 der Firma NARA Machinery Co., Ltd., hat sich in diesem Zusammenhang besonders bewährt.

Die Mutterpartikel und die Babypartikel werden gemischt, vorzugsweise

feinstverteilt und in den Hybridizer eingebracht. Dort wird die Mischung

vorzugsweise weiter feinstverteilt und vorzugsweise wiederholt mechanischen Kräften ausgesetzt, insbesondere Stoßkräften, Kompressionskräften,

Reibungskräften und Scherkräften sowie den gegenseitigen Wechselwirkungen der Teilchen, um die Babyteilchen in den Mutterteilchen einheitlich einzubetten.

Bevorzugte Rotorgeschwindigkeiten liegen im Bereich von 50 m/s bis 100 m/s, bezogen auf die Umfangsgeschwindigkeit.

Für weitere Details zu diesem Verfahren wird auf die JP62083029 A verwiesen, deren Offenbarung inklusive der besonders zweckmäßigen Verfahrensvarianten in die vorliegende Anmeldung durch Bezugnahme explizit mit aufgenommen wird. Im Rahmen einer weiteren besonders bevorzugten Variante erfolgt die Herstellung des Verbundpulvers in Anlehnung an die in der Patentanmeldung DE 42 44 254 A1 beschriebenen Vorgehensweise. Dementsprechend ist ein Verfahren zur Herstellung eines Verbundpulvers durch Befestigen einer Substanz auf der Oberfläche eines thermoplastischen Materials besonders günstig, wenn das thermoplastische Material einen durchschnittlichen Teilchendurchmesser von 100 μιτι bis 10 mm hat und die Substanz einen geringeren Teilchendurchmesser und eine bessere Hitzebeständigkeit hat als das thermoplastische Material,

insbesondere wenn das Verfahren die Schritte umfasst:

o zuerst Erhitzen der Substanz, die den geringeren Teilchendurchmesser und die bessere Hitzebeständigkeit hat als das thermoplastische Material, auf eine Temperatur, die vorzugsweise nicht kleiner ist als der Erweichungspunkt des thermoplastischen Materials, unter Rühren in einer Vorrichtung, die

vorzugsweise ein Rührwerk und eine Heizeinrichtung hat;

o Zugeben des thermoplastischen Materials in die Vorrichtung; und

o Befestigen der Substanz mit der besseren Hitzebeständigkeit auf der

Oberfläche des thermoplastischen Materials.

Für weitere Details zu diesem Verfahren wird auf die DE 42 44 254 A1 verwiesen, deren Offenbarung inklusive der besonders zweckmäßigen Verfahrensvarianten in die vorliegende Anmeldung durch Bezugnahme explizit mit aufgenommen wird.

Alternativ erfolgt die Herstellung des Verbundpulvers in Anlehnung an die in der Patentanmeldung EP 0 922 488 A1 und/oder in dem Patent US 6,403,219 B1 beschriebenen Vorgehensweise. Dementsprechend ist ein Verfahren zur

Herstellung eines Verbundpulvers durch Befestigung oder Ankleben von feinen Partikeln auf der Oberfläche eines Feststoffpartikels, das als ein Kern fungiert, durch Anwendung eines Aufpralls und anschließendes Wachstum von einem oder mehreren Kristallen auf der Kernoberfläche besonders vorteilhaft.

Für weitere Details zu diesem Verfahren wird auf die Patentanmeldung EP 0 922 488 A1 und/oder das Patent US 6,403,219 B1 verwiesen, deren Offenbarungen inklusive der besonders zweckmäßigen Verfahrensvarianten in die vorliegende Anmeldung durch Bezugnahme explizit mit aufgenommen werden.

Das Verbundpulver einer Fixierung kann in Anlehnung an die in der

Patentanmeldung EP 0 523 372 A1 beschriebenen Vorgehensweise unterzogen werden. Diese Vorgehensweise ist insbesondere für ein Verbundpulver

zweckmäßig, das in Anlehnung an das in der Patentanmeldung JP62083029 A beschriebene Verfahren erhalten wurde. Die Fixierung der Teilchen des Verbundpulvers erfolgt dabei vorzugsweise durch thermisches Plasmaspritzen, wobei vorzugsweise eine Unterdruckplasmasprühvorrichtung („reduced pressure plasma spraying device") eingesetzt wird, die vorzugsweise eine Leistung von mindestens 30 kW aufweist, insbesondere das in EP 0 523 372 A1 beschriebene Gerät.

Für weitere Details zu diesem Verfahren wird auf die Patentanmeldung EP 0 523 372 A1 verwiesen, deren Offenbarung inklusive der besonders zweckmäßigen Verfahrensvarianten in die vorliegende Anmeldung durch Bezugnahme explizit mit aufgenommen wird.

Das in dem erfindungsgemäßen Implantat eingesetzte Verbundpulver zeichnet sich durch ein hervorragendes Eigenschaftsprofil aus, welche ihre Verwendung insbesondere in Lasersinterverfahren nahelegt. Ihre hervorragende Rieselfähigkeit und ihre exzellente Fließfähigkeit ermöglichen beim Lasersintern die Herstellung von Implantate mit hervorragender Oberflächengüte und

Oberflächenbeschaffenheit sowie verbesserter Bauteildichte. Gleichzeitig zeigt das erfindungsgemäße Verbundpulver ein sehr gutes Schrumpfverhalten sowie eine hervorragende Dimensionsstabilität. Weiterhin ist ein besseres

Wärmeleitverhalten außerhalb des laserbehandelten Bereichs festzustellen.

Weiterhin weist das besagte Verbundpulver eine vergleichsweise hohe Isotropie auf, die ein überaus gleichmäßiges Aufschmelzen des Verbundpulvers ermöglicht. Dieses Verhalten kann in SLM-Verfahren zur Herstellung von Bauteilen mit hoher Qualität, hoher Bauteildichte, geringer Porosität und geringer Anzahl von

Fehlstellen genutzt werden.

Weiterhin ermöglicht die Anwesenheit der Calciumsalz-Teilchen, insbesondere der vorzugsweise kugelförmigen Calciumcarbonat-Teilchen, im Verbundpulver eine hervorragende pH-Wert-Stabilisierung (Pufferung) in späteren Anwendungen, insbesondere in solchen Polymeren, die Säuregruppen enthalten oder unter bestimmten Bedingungen Säuren freisetzen können. Hierzu gehören

beispielsweise Polyvinylchlorid und Polymilchsäure.

Ferner können durch das besagte Verbundpulver ggf. andere, teurere Werkstoffe ersetzt werden, um so eine Verbilligung des Endprodukts zu erreichen.

Es können die Eigenschaften des Verbundpulvers, insbesondere seine

Fließfähigkeit, auch über die Feuchtigkeit des Verbundpulvers gesteuert und bei Bedarf gezielt eingestellt werden. Einerseits nimmt die Fließfähigkeit des Verbundpulvers mit zunehmender Feuchtigkeit grundsätzlich zu, welches die Verarbeitbarkeit des Verbundpulvers erleichtert. Andererseits kann eine höhere Feuchtigkeit des Verbundpulvers insbesondere bei thermischer Verarbeitung des Verbundpulvers vor allem in Gegenwart von Verunreinigungen und/oder dem Vorliegen sehr feiner Teilchen zu thermischen Abbau oder Hydrolyse des

Polymers sowie zu Prozessstörungen führen.

Vor diesem Hintergrund ist die Feuchtigkeit des besagten Verbundpulvers vorzugsweise kleiner 2,5 Gew.-%, bevorzugt kleiner 1 ,5 Gew.-%, besonders bevorzugt kleiner 1 ,0 Gew.-%, noch mehr bevorzugt kleiner 0,9 Gew.-%, günstigerweise kleiner 0,8 Gew.-%, zweckmäßigerweise kleiner 0,6 Gew.-%, ganz besonders bevorzugt kleiner 0,5 Gew.-%, insbesondere kleiner 0,25 Gew.-%. Andererseits ist die Feuchtigkeit des besagten Verbundpulvers vorzugsweise größer 0,000 Gew.-%, bevorzugt größer 0,010 Gew.-%, insbesondere größer 0,025 Gew.-%.

Die Verwendung des inhibierenden Calciumcarbonats ermöglicht in diesem Zusammenhang eine nochmals verbesserte thermische Verarbeitbarkeit des Verbundpulvers. Das Verarbeitungsfenster (Temperaturfenster) wird nochmals deutlich größer als mit herkömmlichen Calciumcarbonat und ein thermischer Abbau oder eine Hydrolyse eines Polymers wird nochmals signifikant unterdrückt.

Die gewünschte Feuchtigkeit des Verbundpulvers kann durch an sich bekannte Vortrocknung des Verbundpulvers vor der Verarbeitung erreicht werden, wobei eine Trocknung im Produktionsprozess grundsätzlich zu empfehlen ist. Für eine stabile Prozessführung hat sich in diesem Zusammenhang eine Trocknung bis zu einem Feuchtegehalt im Bereich von 0,01 Gew.-% bis 0,1 Gew.-% als ganz besonders günstig erwiesen. Weiterhin hat sich die Verwendung eines

Mikrowellen-Vakuumtrockners ganz besonders bewährt.

Die Weiterverarbeitung des Verbundpulvers kann auf vergleichbar einfache Art und Weise erfolgen, da nun nur eine Komponente (das Verbundpulver) und nicht mehr zwei Komponenten (Calciumsalz-Teilchen, insbesondere vorzugsweise kugelförmige Calciumcarbonat-Teilchen, und Polymer) zu verarbeiten sind.

Dispergierprobleme sind aufgrund der festen Verbindung zwischen dem Polymer und den Calciumsalz-Teilchen, insbesondere den vorzugsweise kugelförmigen Calciumcarbonat-Teilchen, nicht zu beobachten.

Weiterhin kann über die Wahl der Anteile und der Größe der jeweiligen

Einzelkomponenten die Mikrostruktur, das Schmelzverhalten und das Fließverhalten des Verbundpulvers gezielt gesteuert werden. Diese Eigenschaften des Verbundpulvers können wiederum genutzt werden, um die Endstruktur der resultierenden Implantate, insbesondere ihre Bioverträglichkeit, ihre

Bioabbaubarkeit und ihre mechanischen Eigenschaften, gezielt zu steuern.

Ein Zusatz von weiteren Verarbeitungshilfsmitteln, insbesondere von speziellen Lösungsmitteln, ist bei der Verarbeitung des Verbundpulvers in der Regel nicht erforderlich. Dies erweitert die möglichen Anwendungsgebiete des

Verbundpulvers insbesondere im Pharma- und im Nahrungsmittelsektor.

Das Verbundpulver kann als solche direkt eingesetzt werden. Aufgrund seines hervorragenden Eigenschaftsprofils eignet sich das Verbundpulver jedoch insbesondere als Additiv, besonders bevorzugt als Polymeradditiv, als Zusatzstoff oder Ausgangsmaterial für Compoundierung, für die Herstellung von Implantate, für Anwendungen in der Medizintechnik und/oder in der Mikrotechnik und/oder für die Herstellung von geschäumten Implantate. Besonders bevorzugte

medizintechnische Anwendungen schließen vorzugsweise resorbierbare

Implantate ein. Besonders zweckmäßige Anwendungsgebiete umfassen spritzgegossene Schrauben, gepresste Platten, insbesondere schmelzgepresste Platten, geschäumte Implantate sowie rieselfähige Pulver für selektive

Fertigungsverfahren, wobei im letzteren Fall die Gesamtteilchengröße der Teilchen des Verbundpulvers vorzugsweise kleiner 3 mm und vorzugsweise größer 5,0 μιτι ist.

Als Polymeradditiv wird das Verbundpulver vorzugsweise mindestens einem Polymer, insbesondere einem thermoplastischen Polymer, als Matrixpolymer zugesetzt. Besonders bevorzugt werden hier die Polymere, die auch als

Komponente des Verbundpulvers verwendet werden können. Um

Wiederholungen zu vermeiden, wird daher auf die obigen Ausführungen verwiesen, insbesondere hinsichtlich der bevorzugten Formen des Polymers. Ganz besonders bevorzugte Matrixpolymere schließen Polyvinylchlorid (PVC), Polyurethan (PU), Silikon, Polypropylen (PP), Polyethylen (PE), insbesondere UHMWPE, und Polymilchsäure (PLA) ein.

Es sind das Matrixpolymer und das Polymer des Verbundpulvers vorzugsweise bei der Anwendungstemperatur miteinander mischbar, besonders bevorzugt chemisch identisch. Besonders bevorzugte Zusammensetzungen enthalten 40,0 Gew.-% bis 99,9 Gew.-% mindestens eines Matrixpolymers und 0,1 Gew.-% bis 50,0 Gew.-% mindestens eines besagten Verbundpulvers.

Die Herstellung der Zusammensetzung kann auf an sich bekannte Weise durch Mischen der Komponenten erfolgen.

Die Zusammensetzung kann dann in üblicherweise weiterverarbeitet,

insbesondere granuliert, gemahlen, extrudiert, spritzgegossen, geschäumt oder auch in 3D-Druckverfahren verwendet werden.

Weiterhin kann das Verbundpulver direkt, d. h. ohne Zusatz von zusätzlichen Polymeren, weiterverarbeitet und/oder verwendet werden.

Die Vorteile des Verbundpulvers sind dabei insbesondere beim Granulieren, Mahlen, Extrudieren, Spritzgießen, Schmelzpressen, Schäumen und/oder SD- Drucken des Verbundpulvers zu beobachten.

Es erfolgt die Herstellung von Polymerschäumen vorzugsweise durch die

Erzeugung oder Einbringung einer gasförmigen Phase in eine Zusammensetzung, umfassend das Verbundpulver und ggf. mindestens ein Matrixpolymer. Ziel ist es dabei, das Gas möglichst gleichmäßig in der Zusammensetzung zu verteilen, um eine gleichmäßige und homogene Schaumstruktur zu erreichen. Die Einbringung des Gases kann auf verschiedene Weise erfolgen.

Bevorzugt erfolgt die Erzeugung der Gasphase durch Zugabe eines Treibmittels. Als Treibmittel werden Substanzen bezeichnet, die durch chemische Reaktionen (chemische Treibmittel) oder durch Phasenübergang (physikalische Treibmittel) Gase freisetzen. Bei der Schaumextrusion oder beim Schaumspritzguss wird das chemische Treibmittel in Form eines Masterbatches der Zusammensetzung beigemengt oder physikalisches Treibmittel direkt in die Schmelze der

Zusammensetzung unter Druck injiziert. Die Injektion wird als Direktbegasung bezeichnet und findet insbesondere bei der Verarbeitung von thermoplastischen Polymeren Einsatz.

Darüber hinaus eignet sich das besagte Verbundpulver per se insbesondere zur Herstellung von Implantaten, die herkömmliche Implantate aus Metall bei

Knochenbrüchen ersetzen können. Die Implantate dienen der Fixierung der Knochen bis zur Heilung des Bruchs. Während Implantate aus Metall

normalerweise im Körper verbleiben oder in einer weiteren Operation entfernt werden müssen, fungieren die aus dem erfindungsgemäßen Verbundpulver erhältlichen Implantate als Helfer auf Zeit. Sie umfassen zweckmäßigerweise Polymere, die der Körper selbst abbauen kann, und Substanzen, die Calcium und vorzugsweise wertvolle Phosphorsubstanzen für den Knochenaufbau liefern. Die sich ergebenden Vorteile für den Patienten sind klar: keine weitere Operation zur Entfernung des Implantats und eine beschleunigte Regeneration der Knochen.

Gemäß einer besonders bevorzugten Variante der vorliegenden Erfindung wird das besagte Verbundpulver zur Herstellung von Implantaten durch selektives Lasersintern eingesetzt. Zweckmäßigerweise werden zu einem Pulverbett dicht nebeneinander gepackte Teilchen des erfindungsgemäßen Verbundpulvers mithilfe einer Laser-Scanner-Einheit, eines direkt abgelenkten Elektronenstrahls oder einer Infrarot-Heizung mit einer die Geometrie abbildenden Maske örtlich leicht an- oder aufgeschmolzen (nur das Polymer). Sie erstarren durch Abkühlung infolge von Wärmeleitung und verbinden sich so zu einer festen Schicht. Die nicht angeschmolzenen Pulverkörnchen verbleiben als Stützmaterial im Bauteil und werden nach Beendigung des Bauprozesses vorzugsweise entfernt. Durch erneutes Beschichten mit Pulver können in Analogie zur ersten Schicht weitere Schichten verfestigt und mit der ersten Schicht verbunden werden.

Für Lasersinterverfahren besonders geeignete Lasertypen sind alle, die das Polymer des erfindungsgemäßen Verbundpulvers zum Versintern, Verschmelzen oder Vernetzen bringen, insbesondere CO2 Laser (10 μιτι) ND-YAG Laser (1 .060 nm), He-Ne-Laser (633 nm) oder Farbstofflaser (350-1 .000 nm). Bevorzugt wird ein CO2 Laser verwendet.

Die Energiedichte in der Schüttung beträgt bei der Bestrahlung vorzugsweise von 0,1 J/mm 3 bis 10 J/mm 3 .

Der Wirkdurchmesser des Laserstrahles beträgt vorzugweise je nach Anwendung von 0,01 nm bis 0,5 nm, bevorzugt 0,1 nm bis 0,5 nm.

Bevorzugt werden gepulste Laser verwendet, wobei sich eine hohe Pulsfrequenz, insbesondere von 1 kHz bis 100 kHz, als besonderes geeignet erwiesen hat.

Die bevorzugte Verfahrensführung lässt sich wie folgt beschreiben:

Der Laserstrahl trifft auf die oberste Schicht der Schüttung aus dem

erfindungsgemäß einzusetzenden Material und versintert dabei das Material in einer bestimmten Schichtdicke. Diese Schichtdicke kann von 0,01 mm bis 1 mm, vorzugsweise von 0,05 mm bis 0,5 mm betragen. Auf diese Weise wird die erste Schicht des gewünschten Implantats erzeugt. Anschließend wird der Arbeitsraum um einen Betrag abgesenkt, der niedriger ist als die Dicke der

zusammengesinterten Schicht. Der Arbeitsraum wird bis zur ursprünglichen Höhe mit zusätzlichem Polymer-Material aufgefüllt. Durch erneute Bestrahlung mit dem Laser wird die zweite Schicht des Implantats gesintert und mit der

vorhergegangenen Schicht verbunden. Durch Wiederholung des Vorgangs werden die weiteren Schichten bis zur Fertigstellung des Implantats erzeugt.

Die Belichtungsgeschwindigkeit bei der Abtastung des Lasers beträgt

vorzugsweise 1 mm/s bis 1 .000 mm/s. Typischerweise wird eine Geschwindigkeit von etwa 100 mm/s angewendet.

Im vorliegenden Fall hat sich zum An- oder Aufschmelzen des Polymers eine Erwärmung auf eine Temperatur im Bereich von 60°C bis 250°C, bevorzugt im Bereich von 100°C bis 230°C, insbesondere im Bereich von 150°C bis 200°C besonders bewährt.

Gegenstand der vorliegenden Erfindung sind auch Implantate, die durch selektives Lasersintern einer Zusammensetzung erhältlich sind, die ein besagtes Verbundpulver umfasst, wobei Implantate für Anwendungen im Bereich der Neuro-, Mund-, Kiefer-, Gesichts-, Hals-, Nasen- und Ohrenchirurgie sowie der Hand-, Fuß-, Thorax-, Rippen- und Schulterchirurgie besonders bevorzugt werden.

Der Gewichtsanteil des besagten Verbundpulvers in der Zusammensetzung beträgt vorzugsweise mindestens 50,0 Gew.-%, bevorzugt mindestens 75,0 Gew.- %, besonders bevorzugt mindestens 90,0 Gew.-%, insbesondere mindestens 99,0 Gew.-%. Im Rahmen einer ganz besonders Ausführungsform der vorliegenden Erfindung enthält die Zusammensetzung ausschließlich das erfindungsgemäße Verbundpulver.

Die erfindungsgemäßen Implantate zeichnen sich günstigerweise durch die folgenden Eigenschaften aus:

- hervorragende Oberflächengüte,

- hervorragende Oberflächenbeschaffenheit,

- hervorragende Bauteildichte, vorzugsweise größer 95%, insbesondere größer 97%,

- hervorragendes Schrumpfverhalten,

- hervorragende Dimensionsstabilität,

- sehr wenige Fehlstellen, - sehr geringere Porosität,

- sehr geringer Gehalt an Abbau Produkten,

- hervorragende Drei-Punkt-Biegefestigkeit, bevorzugt größer 60 MPa,

besonders bevorzugt größer 65 MPa, insbesondere größer 70 MPa,

- hervorragendes E-Modul, bevorzugt 3420 N/mm 2 , besonders bevorzugt größer 3750 N/mm 2 , günstigerweise größer 4000 N/mm 2 , insbesondere größer 4500 N/mm 2 ,

- hervorragende pH-Stabilität,

- hervorragende Bioverträglichkeit,

- hervorragende Biokompatibilität,

- hervorragende Osteokonduktion,

- hervorragende Resorbierbarkeit,

- hervorragende Bioabbaubarkeit.

Im Folgenden wird die vorliegende Erfindung durch mehrere Beispiele und

Vergleichsbeispiele weiter veranschaulicht, ohne dass hierdurch eine

Beschränkung des Erfindungsgedankens erfolgen soll.

- Eingesetzte Materialien:

- Granulat 1 (Poly(L-lactid); Inhärente Viskosität: 0,8-1 ,2 dl/g (0,1 % in

Chloroform, 25°C); Tg: 60-65°C; Tm: 180-185°C)

- Granulat 2 (Poly(L-lactid); Inhärente Viskosität: 1 ,5-2,0 dl/g (0,1 % in

Chloroform, 25°C)); Tg: 60-65°C;

- Granulat 3 (Poly(D,L-lactid); Inhärente Viskosität: 1 ,8-2,2 dl/g (0,1 % in

Chloroform, 25°C)); Tg: 55-60°C; amorphes Polymer ohne Schmelzpunkt

Der mittlere Teilchendurchmesser der Polylactid-Granulate 1 bis 3 lag jeweils im Bereich von 1 bis 6 mm.

Im Rahmen der vorliegenden Beispiele wurden die folgenden Größen wie folgt ermittelt:

- CaCO3-Gehalt: Der CaCO3-Gehalt wurde mittels Thermogravimetrie mit einem STA 6000 der Firma Perkin Elmer unter Stickstoff im Bereich von 40°C bis 1000°C bei einer Heizrate von 20°C/min ermittelt. Dabei wurde der

Gewichtsverlust zwischen etwa 550°C und 1000°C bestimmt und daraus über den Faktor 2,274 (Molmassenverhältnis CaCO3 : CO2) der CaCO3-Gehalt in Prozent berechnet.

- ß-Tricalciumphosphat-Gehalt (ß-TCP-Gehalt): Der ß-TCP-Gehalt wurde mittels Thermogravimetrie mit einem STA 6000 der Firma Perkin Elmer unter Stickstoff im Bereich von 40°C bis 1000°C bei einer Heizrate von 20°C/min ermittelt. Der bei 1000°C verbliebene Gewichtsanteil entspricht dem ß-TCP-Gehalt in

Prozent.

- TP: Die Peaktemperatur Tp wurde mittels Thermogravimetrie mit einem STA 6000 der Firma Perkin Elmer unter Stickstoff im Bereich von 40°C bis 1000°C bei einer Heizrate von 20°C/min ermittelt. Die Peaktemperatur der ersten Ableitung der Massenverlustkurve entspricht der Temperatur mit dem größten Massenverlust beim Polymerabbau.

- d2o, dso, d9o: Die Bestimmung der Korngrößenverteilung des Calciumcarbonat- enthaltenden Verbundpulvers wurde mit Laserbeugung (HELOS Messbereich R5 mit RODOS-Dispergiersystem der Firma Sympatec) durchgeführt. Die Bestimmung der Korngrößenverteilung erfolgte für das Calciumcarbonat - Pulver mit dem Sedigraphen 5100 mit MasterTech 51 der Firma Micromeretics. Als Dispergierlösung wurde 0,1 %ige Natriumpolyphosphatlösung (NPP) verwendet.

- Anteil <20 μιτι: Bestimmung analog zum dso. Auswertung des Anteils < 20 μιτι.

- Feuchte: Der Wassergehalt des Calciumcarbonat-enthaltenden Verbundpulvers wurde mittels Karl Fischer Coulometer C30 der Firma Mettler Toledo bei 150°C bestimmt. Der Wassergehalt der Calciumcarbonat-Pulver wurde mit dem

Halogen-Feuchtigkeitsmessgerät HB43 von Mettler bei 130°C bestimmt

(Einwaage: 6,4-8,6 g Pulver; Messdauer: 8 Minuten).

- Inhärente Viskosität: Die Inhärente Viskosität (dl/g) wurde mit einem

Ubbelohde-Viskosimeter Kapillare 0c in Chloroform bei 25°C und 0,1 %

Polymerkonzentration bestimmt.

- Fließfähigkeit: Die Beurteilung der Fließfähigkeit der Proben wurde mit einem elektromotorischen Filmziehgerät der Firma Erichsen durchgeführt. Hierzu wurde eine 200 μιτι bzw. 500 μιτι Rakel verwendet. Die Auftragsgeschwindigkeit auf den Folien-Typ 255 (Leneta) betrug 12,5 mm/s. Bewertung wie folgt: 1 =sehr gut; 2=gut; 3=befriedigend; 4=ausreichend; 5=mangelhaft

Bestimmung der mechanischen Eigenschaften an spritzgegossenen

Probekörpern:

Drei-Punkt-Biegefestigkeit und E-Modul wurden mittels Texture Analyser

TA.XTplus (Stable Micro Systems, Godalming (UK)) bestimmt. Die Kapazität der verwendeten Kraftmesszelle betrug 50 kg. Es wurde Exponent 6.1 .9.0 Software verwendet. Die Einzelheiten zur Messung sind in der folgenden Tabelle 1 dargestellt:

Tabelle 1

Belastungseinrichtung: Drei-Punkt-Belastung nach DIN EN 843-1

Durchmesser Auflager-/Belastungsrollen: Messung: in Anlehnung an DIN EN ISO 178

Auflagerabstand: 45,0 mm

Testgeschwindigkeit: 0,02 mm/s

Vorgeschwindigkeit: 0,03 mm/s

Aufzeichnung von Kraft und Weg

Probekörper: Abmessungen ca. 3 mm x 10 mm x 50 mm

nach der Herstellung (Spritzguss) Aufbewahrung bis zur Messung im Exsikkator bei Raumtemperatur n > 5

Probekörper wurden mit dem Extruder HAAKE MiniLab II, bzw. Spritzguss mit dem HAAKE MiniJet II hergestellt. Die Prozessbedingungen zu der

Probekörperherstellung sind in der folgenden Tabelle 2 zusammengefasst:

Tabelle 2

Zytotoxizitätstest

Der Zytotoxizitätstest (FDA/GelRed) wurde wie folgt durchgeführt:

Als Referenz bzw. Negativkontrolle wurde Tissue Culture Polystyrene (TCPS) verwendet. Es wurden jeweils 4 Replikate pro Probe und vier TCPS (4x) als Kontrolle verwendet.

Versuchsdurchführung:

1 . Die unsterilen Proben wurden in einer 24 well - Mikrotiterplatte zur Verfügung gestellt. In dieser wurden die Proben sowie die TCPS-Plättchen 30 min mit 70%igem Ethanol (unvergällt) sterilisiert, anschließend 2 x 30 min mit 1 x PBS (Phosphatgepufferte Salzlösung) gespült und darauffolgend mit sterilem a- Medium equilibriert. Danach wurden die Proben mit MC3T3-E1 -Zellen einer Animpfdichte von 25.000 Zellen/cm 2 (50.000 Zellen/ml) beimpft.

Ein partieller Mediumsaustausch (1 : 2) erfolgte an Tag 2. 2. Nach 1 und 4 Tagen in Zellkultur wurde die Zytotoxizität bestimmt.

3. Die Vitalfärbung erfolgte am Tag 1 und 4 nach Standardprotokoll mittels einer Kombinationsfärbung aus FDA und GelRed.

4. Die mikroskopischen Aufnahmen wurden am Observer Z1 m/LSM 700 erzeugt. Objektiv: EC Plan-Neofluar 10x;

Mit Kamera AxioCam HRc fotografierte Bilder:

Anregung der Grünfluoreszenz: LED Colibri 470; Filtersatz FS10 (AF488)

Anregung der Rotfluoreszenz: LED Colibri 530; Filtersatz FS14 (AF546)

Im Laserscan-Modus erfasste Bilder:

Track 1 : Laser: 488 nm, DBS 560 nm, PMT1 : 488 - 560 nm,

Track 2: Laser: 555 nm, DBS 565 nm, PMT2: 565 - 800 nm

5. Die Bewertung erfolgte nach folgender Zytotoxizitätsskala:

Akzeptanz: das Material ist nicht zytotoxisch (max. 5% tote Zellen)

Leichte Hemmung: das Material ist schwach toxisch (5%-20% tote Zellen) Deutliche Hemmung: das Material ist mäßig toxisch (20%-50% tote Zellen) Toxizität: das Material ist stark zytotoxisch (>50%-100% tote Zellen)

6. Die Zellzahlen beziehen sich auf den fotografierten bzw. gescannten

Bildausschnitt.

Die Ergebnisse sind in Tabelle 3 zusammengefasst.

Elektronenmikroskop (REM)

Die rasterelektronischen Aufnahmen wurden mit einem

Hochspannungselektronenmikroskop (Zeiss, DSM 962) bei 15 kV durchgeführt. Die Proben wurden mit einer Gold-Palladiumschicht besprüht.

Beispiel 1

In 4 I Calciumhydroxid-Suspension mit einer Konzentration von 75 g/l CaO wurde bei einer Ausgangstemperatur von 10°C ein CO2-Gasgemisch, enthaltend 20% CO2 und 80% N 2 , eingeleitet. Der Gasdurchfluss betrug 300 l/h. Das

Reaktionsgemisch wurde mit 350 U/min gerührt und die Reaktionswärme wurde während der Reaktion abgeführt. Beim abrupten Absinken des Leitwerts

(Absinken von mehr als 0,5 mS/cm/min und Abnahme des Leitwerts um mehr als 0,25 mS/cm innerhalb von 30 Sekunden), wird der Suspension 0,7 %

Aminotri(methylenphosphonsäure), bezogen auf CaO (als theoretische

Bezugsgröße), zugegeben. Die Reaktion zu den kugelförmigen Calciumcarbonat- Teilchen war abgeschlossen, als das Reaktionsgemisch quantitativ zu

kugelförmigen Calciumcarbonat-Teilchen carbonatisiert war, wobei die

Reaktionsmischung dann einen pH-Wert zwischen 7 und 9 aufwies. Im vorliegenden Fall war die Reaktion nach ungefähr 2 h beendet und das

Reaktionsgemisch wies zum Reaktionsende einen pH-Wert von 7 auf.

Die resultierenden kugelförmigen Calciumcarbonat-Teilchen wurden auf herkömmliche Weise abgetrennt und getrocknet. Sie wiesen einen mittleren Teilchendurchmesser von 12 μιτι auf. Eine typische REM-Aufnahme ist in Fig. 1 dargestellt.

Beispiel 2

500 ml VE-Wasser wurden in einem 1000 ml Becherglas vorgelegt. 125 g kugelförmige Calciumcarbonat-Teilchen nach Beispiel 1 wurden unter Rühren hinzugegeben und die resultierende Mischung wurde 5 min gerührt. 37,5 g einer 10%igen Natriummetaphosphat (NaPOs)n-Lösung wurden langsam zugegeben und die resultierende Mischung wurde 10 min gerührt. 75,0 g 10%iger

Phosphorsäure wurden langsam zugegeben und die resultierende Mischung wurde 20 h gerührt. Der Niederschlag wird abgetrennt und über Nacht im

Trockenschrank bei 130°C getrocknet. Die resultierenden kugelförmigen

Calciumcarbonat-Teilchen wiesen ebenfalls einen mittleren Teilchendurchmesser von 12 μιτι auf.

Eine REM-Aufnahme der kugelförmigen Calciumcarbonat-Teilchen ist in Fig. 2 dargestellt. Es ist auf der Oberfläche der kugelförmigen Calciumcarbonat-Teilchen eine dünne Phosphat-Schicht zu erkennen.

Beispiel 3

Ein Verbundpulver aus kugelförmigen Calciumcarbonat-Teilchen und einem Polylactid (PLLA) wurde in Anlehnung an das in JP 62083029 A beschriebene Verfahren unter Verwendung des Geräts NHS-1 hergestellt. Es wurde mit 12°C kaltem Wasser gekühlt. Als Mutterpartikel wurden ein Polylactid-Granulat 1 und als die Babypartikel (Füllstoff) die kugelförmigen Calciumcarbonat-Teilchen aus Beispiel 1 verwendet.

39,5 g Polylactid-Granulat wurden mit 26,3 g CaCO3-Pulver vermengt und bei 6.400 U/min befüllt. Die Rotorgeschwindigkeit des Aggregats wurde auf 6.400 U/min (80 m/s) eingestellt und die zudosierten Materialien für 10 min verarbeitet. Die maximal erreichte Temperatur im Mahlraum des NHS-1 betrug 35°C. Es wurden insgesamt 7 Wiederholungen mit den gleichen Materialmengen und Maschineneinstellungen durchgeführt. Es wurden insgesamt 449 g Verbundpulver gewonnen. Das gewonnene Verbundpulver wurde durch ein 250 μηη-Sieb manuell trocken gesiebt. Der Siebrückstand (Fraktion > 250 μιτι) betrug 0,4 %. Eine REM-Aufnahme des erhaltenen Verbundpulvers ist in Fig. 3a dargestellt. Beispiele 4 bis 7

Es wurden weitere Verbundpulver analog Beispiel 3 hergestellt, wobei in Beispiel 5 die Kühlung bei ca. 20°C erfolgte. Es wurden jeweils 30 g Polylactid-Granulat mit 20 g CaCO3-Pulver vermengt. Die maximal erreichte Temperatur im Mahlraum des NHS-1 betrug für Beispiel 4 33°C, für Beispiel 5 58°C, für Beispiel 6 35°C und für Beispiel 7: 35°C. Die Produkte wurden gesiebt, um die Grobfraktion >250 μιτι nach Möglichkeit zu entfernen (manuelle Trocken-Siebung durch ein 250 μιτι- Sieb). In den Beispielen 4, 6 und 7 wurde zusätzlich die Fraktion < 20 μιτι nach Möglichkeit Strom klassiert (mittels Windsichten) oder durch Sieben (mittels einer Luftstrahlsiebmaschine) entfernt. Die eingesetzten Materialien, die Durchführung der Herstellung mit oder ohne Siebung/Windsichtung sowie die Eigenschaften der erhaltenen Verbundpulver werden in der folgenden Tabelle 3 zusammengefasst.

Fig. 3a, Fig. 3b und Fig. 3c zeigen eine REM-Aufnahme von Beispiel 3 sowie Aufnahmen von mehreren Rakelaufträgen (12,5 mm/s) von Beispiel 3 (Fig. 3b: 200 μηη Rakel; Fig. 3c: 500 μηη Rakel).

Die REM-Aufnahme des erhaltenen Verbundpulvers ist in der Fig. 3a dargestellt. Im Gegensatz zu der kantigen, unregelmäßigen Partikelform, die typisch für die kryogen gemahlenen Pulver sind, haben die Teilchen des gewonnenen

Verbundpulvers eine für SLM-Verfahren sehr vorteilhafte runde Partikelform bzw. hohe Sphärizität. Die PLLA-Oberfläche ist spärlich mit kugelförmigen

Calciumcarbonat-Teilchen und deren Fragmenten belegt. Die Probe hat eine breite Partikelgrößenverteilung mit erhöhtem Feinanteil.

Das Pulver ist eingeschränkt fließbar (Fig. 3b und 3c). Ein Pulverberg wird von der Rakel vor sich hergeschoben. Durch das eingeschränkte Fließverhalten, ausgelöst wahrscheinlich durch einen höheren Anteil an Feinpartikeln, entstehen mit beiden Rakeln nur sehr dünne Schichten.

Fig. 4a, Fig. 4b und Fig. 4c zeigen eine REM-Aufnahme von Beispiel 4 sowie Aufnahmen von mehreren Rakelaufträgen (12,5 mm/s) von Beispiel 4 (Fig. 4b: 200 μηη Rakel; Fig.4c: 500 μηη Rakel).

Die REM-Aufnahme des erhaltenen Verbundpulvers ist in Fig. 4a dargestellt. Im Gegensatz zu der kantigen, unregelmäßigen Partikelform, die typisch für die kryogen gemahlenen Pulver sind, haben die Teilchen des gewonnenen Verbundpulvers eine für SLM-Verfahren sehr vorteilhafte runde Partikelform bzw. hohe Sphärizität. Die PLLA-Oberfläche ist spärlich mit kugelförmigen

Calciumcarbonat-Teilchen und deren Fragmenten belegt. Die Probe hat deutlich schmalere Partikelgrößenverteilung mit wenig Feinanteil.

Das Pulver ist sehr gut fließbar und rakelbar (Fig. 4b und 4c). Auch die dünnen Schichten (200 μιτι) lassen sich aufrakeln und sind weitgehend frei von

Rakelstreifen (Spurrillen). Die mit 500 μιτι gerakelte Pulverschicht ist homogen, dicht gepackt, glatt und frei von Rakelstreifen.

Fig. 5a, Fig. 5b und Fig. 5c zeigen eine REM-Aufnahme von Beispiel 5 sowie Aufnahmen von mehreren Rakelaufträgen (12,5 mm/s) von Beispiel 5 (Fig. 5b: 200 μιτι Rakel; Fig. 5c: 500 μιτι Rakel). Das Pulver ist eingeschränkt fließbar. Ein Pulverberg wird von der Rakel vor sich hergeschoben. Durch das eingeschränkte Fließverhalten, ausgelöst wahrscheinlich durch einen höheren Anteil an

Feinpartikeln, entstehen mit beiden Rakeln nur sehr dünne Schichten.

Fig. 6a, Fig. 6b und Fig. 6c zeigen eine REM-Aufnahme von Beispiel 6 sowie Aufnahmen von mehreren Rakelaufträgen (12,5 mm/s) von Beispiel 6 (Fig. 6b: 200 μιτι Rakel; Fig. 6c: 500 μιτι Rakel). Das Pulver ist gut fließbar und rakelbar. Auch die dünnen Schichten (200 μιτι) lassen sich aufrakeln. Einzelne

Rakelstreifen durch vermutlich zu grobe Pulverpartikel sind erkennbar. Die mit 500 μιτι gerakelte Pulverschicht ist nicht ganz dicht gepackt, ist aber frei von

Rakelstreifen.

Fig. 7a, Fig. 7b und Fig. 7c zeigen eine REM-Aufnahme von Beispiel 7 sowie Aufnahmen von mehreren Rakelaufträgen (12,5 mm/s) von Beispiel 7 (Fig. 7b: 200 μιτι Rakel; Fig. 7c: 500 μιτι Rakel). Das Pulver ist fließbar und rakelbar. Auch die dünnen Schichten (200 μιτι) lassen sich aufrakeln. Sie sind nicht homogen und von Rakelstreifen vermehrt durchsetzt. Etwas eingeschränktes Fließverhalten ist wahrscheinlich durch zu grobe Pulverpartikel hervorgerufen. Die mit 500 μιτι gerakelte Pulverschicht ist homogen und frei von Rakelstreifen.

Vergleich 1

Mikrostrukturierte Verbundteilchen aus kugelförmigen Calciumcarbonat-Teilchen aus Beispiel 1 und einem amorphen Polylactid (PDLLA) wurden in Anlehnung an das in JP 62083029 A beschriebene Verfahren unter Verwendung des Geräts NHS-1 hergestellt. Es wurde mit 12°C kaltem Wasser gekühlt. Als Mutterpartikel wurde ein Polylactid-Granulat 3 und als die Babypartikel die kugelförmigen Calciumcarbonat-Teilchen aus Beispiel 1 verwendet. 39,5 g Polylactid-Granulat wurden mit 10,5 g CaCO3-Pulver vermengt und bei 8.000 U/min befüllt. Die Rotorgeschwindigkeit des Aggregats wurde auf 8.000 U/min (100 m/s) eingestellt und die zudosierten Materialien für 1 ,5 min verarbeitet. Die maximal erreichte Temperatur im Mahlraum des NHS-1 betrug 71 °C. Es wurden insgesamt 49 Wiederholungen mit den gleichen Materialmengen und Maschineneinstellungen durchgeführt. Es wurden insgesamt 2376 g strukturierte Verbundteilchen gewonnen. Die gewonnenen strukturierten Verbundteilchen wurden für die Messung der Teilchengrößenverteilung durch ein 800 μηη-Sieb manuell trocken gesiebt. Der Siebrückstand (Fraktion > 800 μιτι) betrug 47 %.

Die Eigenschaften der erhaltenen mikrostrukturierten Verbundteilchen werden in der folgenden Tabelle 3 zusammengefasst.

Fig. 8a, Fig. 8b und Fig. 8c zeigen eine REM-Aufnahme von Vergleich 1 sowie Aufnahmen von mehreren Rakelaufträgen (12,5 mm/s) von Vergleich 1 (Fig. 8b: 200 μιτι Rakel; Fig. 8c: 500 μιτι Rakel). Das Pulver ist schlecht fließbar und kann nicht zu 200 bzw. 500 μιτι dünnen Schichtstärken geräkelt werden. Die zu groben, irregulären Partikel verklemmen sich beim Aufrakeln. Es entstehen inhomogene Schichten mit sehr häufigen und ausgeprägten Rakelstreifen.

Die REM-Analyse zeigt, dass die Oberflächen der strukturierten Verbundteilchen spärlich mit kugelförmigen Calciumcarbonat-Teilchen und deren Fragmenten belegt sind. Im Vergleich zu den Beispielen 3 - 7 haben die Partikel eine unregelmäßigere Partikelgeometrie.

Beispiel 8

Ein Verbundpulver aus ß-Tricalciumphosphat -Teilchen und einem Polylactid (PDLLA) wurde in Anlehnung an das in JP 62083029 A beschriebene Verfahren unter Verwendung des Geräts NHS-1 hergestellt. Es wurde mit 12°C kaltem Wasser gekühlt. Als Mutterpartikel wurde ein Polylactid-Granulat 3 und als die Babypartikel ß-Tricalciumphosphat (ß-TCP; d2o=30 μιτι; dso=141 μιτι; d9o=544 μιτι) verwendet. Die REM-Aufnahme des verwendeten ß-TCP ' s werden in Fig. 9a und Fig. 9b gezeigt.

30,0 g Polylactid-Granulat wurden mit 20,0 g ß-TCP-Pulver vermengt und bei 6.400 U/min befüllt. Die Rotorgeschwindigkeit des Aggregats wurde auf 6.400 U/min (80 m/s) eingestellt und die zudosierten Materialien für 10 min verarbeitet. Es wurden insgesamt 5 Wiederholungen mit den gleichen Materialmengen und Maschineneinstellungen durchgeführt. Es wurden insgesamt 249 g Verbundpulver gewonnen. Das Produkt wurden gesiebt, um die Grobfraktion >250 μιτι nach Möglichkeit zu entfernen (manuelle Trocken-Siebung durch ein 250 μηη-Sieb). Anschließend wurde der Feinanteil < 20 μιτι über ein 20 μηη-Sieb mittels einer Luftstrahlsiebmaschine abgetrennt.

Beispiel 9

Ein Verbundpulver aus rhomboedrischen Calciumcarbonat-Teilchen und einem Polylactid (PDLLA) wurde in Anlehnung an das in JP 62083029 A beschriebene Verfahren unter Verwendung des Geräts NHS-1 hergestellt. Es wurde mit 12°C kaltem Wasser gekühlt. Als Mutterpartikel wurde ein Polylactid-Granulat 3 und als die Babypartikel rhomboedrische Calciumcarbonat-Teilchen

μιτι; d9o=32 μιτι) verwendet.

30,0 g Polylactid-Granulat wurden mit 20,0 g der rhomboedrischen

Calciumcarbonat-Teilchen vermengt und bei 6.400 U/min befüllt. Die

Rotorgeschwindigkeit des Aggregats wurde auf 6.400 U/min (80 m/s) eingestellt und die zudosierten Materialien für 10 min verarbeitet. Es wurden insgesamt 5 Wiederholungen mit den gleichen Materialmengen und Maschineneinstellungen durchgeführt. Es wurden insgesamt 232 g Verbundpulver gewonnen. Das Produkt wurden gesiebt, um die Grobfraktion >250 μιτι nach Möglichkeit zu entfernen (manuelle Trocken-Siebung durch ein 250 μηη-Sieb). Anschließend wurde der Feinanteil < 20 μιτι über ein 20 μηη-Sieb mittels einer Luftstrahlsiebmaschine abgetrennt.

Beispiel 10

Ein Verbundpulver aus gemahlenen Calciumcarbonat-Teilchen und einem

Polylactid (PDLLA) wurde in Anlehnung an das in JP 62083029 A beschriebene Verfahren unter Verwendung des Geräts NHS-1 hergestellt. Es wurde mit 12°C kaltem Wasser gekühlt. Als Mutterpartikel wurden ein Polylactid-Granulat 3 und als die Babypartikel gemahlenes Calciumcarbonat (GCC; d2o=15 μιτι; dso=46 μιτι; d9o=146 μιτι) verwendet.

30,0 g Polylactid-Granulat wurden mit 20,0 g GCC vermengt und bei 6.400 U/min befüllt. Die Rotorgeschwindigkeit des Aggregats wurde auf 6.400 U/min (80 m/s) eingestellt und die zudosierten Materialien für 10 min verarbeitet. Es wurden insgesamt 5 Wiederholungen mit den gleichen Materialmengen und

Maschineneinstellungen durchgeführt. Es wurden insgesamt 247 g Verbundpulver gewonnen. Das Produkt wurden gesiebt, um die Grobfraktion >250 μιτι nach Möglichkeit zu entfernen (manuelle Trocken-Siebung durch ein 250 μηη-Sieb). Anschließend wurde der Feinanteil < 20 μηη über ein 20 μηη-Sieb mittels einer Luftstrahlsiebmaschine abgetrennt.

Tabelle 3

1 : mindestens Zweifachbestimmung

Tabelle 3 (Fortset;