Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
INTEGRATED PROCESS FOR THE PREPARATION OF OLEFIN OXIDES
Document Type and Number:
WIPO Patent Application WO/2002/014299
Kind Code:
A1
Abstract:
The present invention relates to an integrated process for the preparation in continuous of epoxides which comprises: (a) preparing an alcoholic or hydro-alcoholic solution of hydrogen peroxide in a concentration of over 3 % by weight, using a gaseous stream containing hydrogen, oxygen and an inert gas, in the presence of a bimetallic catalyst based on palladium and platinum as active components; (b) putting the alcoholic or hydro-alcoholic solution of hydrogen peroxide obtained in step (a) in contact with an olefin and a buffering agent, in the presence of an epoxidation catalyst suspended in the reaction solvent, in order to obtain a reaction mixture containing the epoxide corresponding to the olefin, water and alcoholic solvent; (c) treating the alcoholic stream leaving step (b), after separation of the epoxide, in order to eliminate the nitrogenated compounds present; (d) feeding the alcoholic solvent obtained in (c) to step (a). The process may comprise a further step (e), wherein the raw hydro-alcoholic mixture of the flash column bottom, is used, when necessary, for diluting the alcoholic or hydro-alcoholic solution of hydrogen peroxide obtained in step (a) to the value required by the epoxidation plant. The process operates under high safety conditions and with a high overall efficiency, in terms of productivity and selectivity.

Inventors:
PAPARATTO GIUSEPPE (IT)
FORLIN ANNA (IT)
DE ALBERTI GIORDANO (IT)
D ALOISIO RINO (IT)
TEGON PAOLO (IT)
Application Number:
PCT/EP2001/009076
Publication Date:
February 21, 2002
Filing Date:
August 06, 2001
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ENICHEM SPA (IT)
PAPARATTO GIUSEPPE (IT)
FORLIN ANNA (IT)
ALBERTI GIORDANO DE (IT)
ALOISIO RINO D (IT)
TEGON PAOLO (IT)
International Classes:
B01J23/44; C01B15/013; B01D3/00; C01B15/029; C07D303/04; C07B61/00; C07D301/12; (IPC1-7): C07D303/04; C07D301/12
Foreign References:
US5384418A1995-01-24
EP1074548A12001-02-07
US5912367A1999-06-15
EP0568337A21993-11-03
Attorney, Agent or Firm:
De Gregori, Antonella (10 Milan, IT)
Download PDF:
Claims:
CLAIMS
1. An integrated process for the production in continuous of epoxides by the direct oxidation of an olefin with hydrogen peroxide which comprises: (a) preparing an alcoholic or hydroalcoholic solution of hydrogen peroxide in a concentration of over 3% by weight, using a gaseous stream containing hydrogen, oxygen and an inert gas, in the presence of a bimetallic catalyst based on palladium and platinum as active components; (b) putting the alcoholic or hydroalcoholic solution of hydrogen peroxide obtained in step (a) in contact with an olefin and a buffering agent, in the presence of an epoxidation catalyst suspended in the reaction solvent, in order to obtain a reaction mixture con taining the epoxide corresponding to the olefin, water and the alcoholic solvent; (c) treating the alcoholic stream leaving step (b), after separation of the epoxide, in order to eliminate the nitrogenated compounds present; (d) feeding the alcoholic solvent obtained in (c) to step (a).
2. The process according to claim 1, wherein in step (c) the treatment of the alcoholic stream is effected by distilling the solvent together with an aqueous or di luted hydroalcoholic solution containing sulfuric acid in a quantity of about 1050 mg/kg of sulfuric acid with respect to the total stream, or by treating the distilled solvent with activated carbons, sulfonic resins or sulfonated carbons.
3. The process according to claim 1, which comprises a further step (e), wherein the raw hydroalcoholic mix ture of the flash column bottom is used for diluting the alcoholic or hydroalcoholic solution of hydrogen peroxide leaving step (a) to the value required by the epoxidation plant.
4. The process according to claim 1, wherein step (a) for the production in continuous of alcoholic or hydro alcoholic solutions of hydrogen peroxide comprises: (a') feeding to a reactor, containing a catalyst based on palladium and platinum, heterogeneous and kept in dispersion in a liquid reaction medium: (i) a liquid stream consisting of an alcohol or an alcoholwater mixture with a prevalent alcoholic con tent, containing an acid promoter and a halogenated promoter. (ii) a gaseous stream containing hydrogen, oxygen and an inert gas, characterized in that the concentration of hydrogen is lower than 4.5% by volume and the con centration of oxygen is lower than 21% by volume, the complement to 100 being an inert gas; (b') removing from the reactor: (iii) a liquid stream essentially consisting of the stream (i) and also containing the hydrogen peroxide and water produced by the reaction, characterized in that the concentration of hydrogen peroxide is higher than 3% by weight ; and (iv) a gaseous stream essentially consisting of nonreacted hydrogen and oxygen and the inert gas.
5. The process according to claim 1, wherein the catalyst in step (a') contains palladium in a quantity ranging from 0.1 to 3% by weight and platinum in a quantity ranging from 0.01 to 1% by weight, with an atomic ra tio platinum and palladium ranging from 1/500 to 100/100.
6. The process according to claim 5, wherein the catalyst contains a quantity of palladium ranging from 0.4 to 2% by weight and a quantity of platinum ranging from 0.02 to 0.5% by weight, with an atomic ratio platinum and palladium ranging from 1/200 to 20/100.
7. The process according to claim 5, wherein the cata lyst, in addition to palladium and platinum, contains another metal selected from those of group VIII or IB.
8. The process according to claim 7, wherein the metal is ruthenium, rhodium, iridium or gold.
9. The process according to claim 4, wherein the catalyst is prepared by dispersing the active components on an inert carrier by means of precipitation and/or impreg nation.
10. The process according to claim 9, wherein the inert carrier is selected from silica, alumina, silica alumina, zeolites, activated carbon and activated car bon functionalized with sulfonic groups.
11. The process according to claim 10, wherein the carrier is an activated carbon selected from those of fossil or natural origin deriving from wood, lignite, peat or coconut and having a surface area higher than 300 m2/g *.
12. The process according to claim 11, wherein the carrier is an activated carbon having a surface area which can reach a value of 1400 m2/g.
13. The process according to claim 12, wherein the carrier is an activated carbon with a surface area higher than 600 M2/g.
14. The process according to claim 11, wherein the acti vated carbon has a low ash content.
15. The process according to claim 4, wherein the catalyst is dispersed in the reaction medium at a concentration ranging from 0.1 to 10% by weight.
16. The process according to claim 15, wherein the cata lyst is dispersed in the reaction medium at a concen tration ranging from 0.3 to 3% by weight.
17. The process according to claim 4, wherein the liquid stream (i) consists of an alcohol or mixture of C1C4 alcohols or a mixture of said alcohols with water with an alcoholic content higher than 50%.
18. The process according to claim 17, wherein the alcohol is methanol.
19. The process according to claim 17, wherein the mixture is a mixture of methanol and water containing at least 70% by weight of methanol.
20. The process according to claim 4, wherein the halogen ated promoter is a substance capable of generating halogen ions in the liquid reaction medium.
21. The process according to claim 20, wherein the halo genated promoter is selected from substances capable of generating bromide ions such as hydrobromic acid and its salts soluble in the reaction medium, such as alkaline bromides.
22. The process according to claim 21, wherein the pro moter is hydrobromic acid.
23. The process according to claim 4, wherein the concen tration of the halogenated promoter ranges from 0.1 to 50 mg per kg of solution.
24. The process according to claim 23, wherein the concen tration of the halogenated promoter ranges from 1 to 10 mg per kg of solution.
25. The process according to claim 4, wherein the acid promoter is selected from substances capable of gener ating H+ hydrogen ions in the reaction medium.
26. The process according to claim 25, wherein the acid promoter is selected from inorganic acids such as sul furic, phosphoric, nitric acid or organic acids such as sulfonic acids.
27. The process according to claim 26, wherein the acid promoter is sulfuric acid or phosphoric acid.
28. The process according to claim 4, wherein the concen tration of acid promoter ranges from 0 to 1000 mg per kg of solution.
29. The process according to claim 28, wherein the concen tration of acid promoter ranges from 10 to 500 mg per kg of solution.
30. The process according to claim 4, wherein in the gase ous stream (ii) the concentration of hydrogen ranges from 2% to 4% by volume and the concentration of oxy gen ranges from 6% to 18% by volume, the complement to 100 being an inert gas selected from nitrogen, helium and argon.
31. The process according to claim 30, wherein the inert gas is nitrogen.
32. The process according to claim 4, wherein in the gase ous stream (ii) the oxygen can be supplied using as raw material pure or substantially pure oxygen, en riched air, containing from 21 to 90% of oxygen or air, the composition of the stream then being brought to the desired value by the addition of a suitable concentration of inert gas.
33. The process according to claim 4, wherein the liquid stream (iii) leaving the reactor has a concentration of hydrogen peroxide ranging from 4% to 10% by weight.
34. The process according to claim 4, wherein the liquid stream (iii) is separated from the catalyst by means of filtration.
35. The process according to claim 34, wherein the filtra tion is carried out using filters situated inside the reactor or externally by means of tangential filtra tion.
36. The process according to claim 4, wherein the gaseous stream (iv) leaving the reactor, essentially consist ing of nonreacted hydrogen and oxygen and the inert gas, contains a volume concentration of hydrogen equal to or lower than 2% and a volume concentration of oxy gen lower than 18%.
37. The process according to claim 36, wherein the gaseous stream (iv) leaving the reactor, contains a volume concentration of hydrogen ranging from 0.5 to 1.5% by volume and a volume concentration of oxygen ranging from 6 to 12%.
38. The process according to claim 4, wherein the gaseous stream (iv) leaving the reactor is recycled to the feeding to the reactor, after flushing from the system the fraction necessary for eliminating the quantity of inert gas charged in excess with the feeding and the addition of H2 and 02 used up in the process.
39. The process according to claim 4, wherein the gaseous stream (iv) leaving the reactor is fed to one or more subsequent reactors operating analogously to that de scribed in claim 4, after adding each time a quantity of hydrogen and oxygen essentially equal to that used up by the reaction which takes place in the single re actors.
40. The process according to claim 4, wherein the reaction is carried out at a temperature ranging from10 to 60°C.
41. The process according to claim 40, wherein the tem perature ranges from 0 to 40°C.
42. The process according to claim 4, wherein the reaction is carried out at a total pressure ranging from 1 to 300 bars.
43. The process according to claim 42, wherein the total pressure ranges from 40 to 150 bars.
44. The process according to claim 4, wherein the reactor is a reactor suitable for operating in continuous and carrying out the reaction in a triphasic system, ob taining an effective contact between gaseous phase, liquid phase and the catalyst kept in suspension.
45. The process according to claim 4, wherein the reactor is selected from stirred reactors, bubble reactors or gaslift reactors with internal or external circula tion.
46. The process according to claim 4, wherein the resi dence time of the liquid medium in the reactor ranges from 0.05 to 5 hours.
47. The process according to claim 46, wherein the resi dence time of the liquid medium in the reactor ranges from 0.1 to 2 hours.
48. The process according to claim 1, wherein step (b) for the production of epoxides comprises: (1) feeding the liquid stream (iii) leaving step (a) to a reaction unit consisting of one or more reactors containing the epoxidation catalyst suspended in the reaction solvent together with the olefin, hydrogen peroxide and a buffering agent; (2) feeding the filtered liquid product leaving the reaction unit is fed to a distillation unit consisting of one or more stripping (flash) columns, one for each reactor of the reaction unit, to obtain a product at the head essentially consisting of olefin oxide and nonreacted olefin and a product at the bottom essen tially consisting of solvent, nonreacted hydrogen peroxide, water and reaction byproducts; (3) feeding the product at the bottom of the distilla tion unit to a decomposition unit R4 consisting of one or more reactors situated in series containing a sup ported decomposition catalyst having the function of decomposing the residual hydrogen peroxide into Oz and H20 ; (4) feeding the mixture leaving the decomposition unit R4, essentially consisting of solvent, oxygen and wa ter, together with an inert gas to a phase separator V4 to obtain, at the head, a gaseous phase containing oxygen, inert gas and traces of solvent and, at the bottom, a liquid phase consisting of solvent, water and reaction byproducts; (5) feeding the gaseous phase leaving V4 to a conden sation system consisting of one or more condensers in series for the recovery of the residual solvent, whereas the noncondensable compounds (oxygen and in ert gas with traces of solvent) are discharged; (6) feeding the solvent leaving the condensation sys tem and the liquid phase leaving V4 to the distilla tion column C6A to obtain, at the head, the solvent which is recycled to the reaction unit (a), and a product, at the bottom, essentially consisting of re action water and that charged with the hydrogen perox ide, reaction byproducts and traces of solvent, which is discharged; (7) feeding the product at the head of the stripping column (s) together with the vent products of the reac tors to a distillation column C4 to obtain a product, at the head, consisting of nonreacted olefin, recy cled to the reaction unit, and a product, at the bot tom essentially consisting of olefin oxide; (8) feeding the product at the bottom of the distilla tion column C4 to a purification system C5 to recover the residual olefin, recycled to the reaction unit, a liquid phase essentially consisting of solvent, recy cled to the flash column (s), and the olefin oxide with a commercial purity.
49. The process according to claim 48, wherein in step (6) the solvent leaving the condensation system and the liquid phase leaving R4 are fed to the distillation column C6A together with a diluted aqueous or hydro alcoholic solution containing 1050 mg/kg of sulfuric acid with respect to the total stream.
50. The process according to claim 49, wherein the solvent leaving the condensation system and the liquid phase leaving V4 are fed towards the bottom of the distilla tion column C6A, whereas the acid solution is fed to a height equal to about 2/3 of the column itself.
51. The process according to claim 49, wherein the solvent leaving the head of the column C6A is fed to a column C6B, in order to separate the light products at the head, whereas the purified solvent is separated at the bottom.
52. The process according to claim 51, wherein the stream at the head of the column C6B is sent to a distilla tion column C6C, to recover, at the bottom, the sol vent without light products, recycled to the hydrogen peroxide synthesis reaction, and a concentrated stream of light products, at the head.
53. The process according to claim 48, wherein in step (6) the solvent at the head of the column C6A is recycled to the hydrogen peroxide synthesis reaction after treatment with activated carbons, sulfonic resins or sulfonated carbons.
54. The process according to claim 48, wherein the reac tion unit consists of three reactors R1, R2 and R3.
55. The process according to claim 1, wherein in step (b) the olefin is selected from those having general for mula (I) wherein: Ri, R2, R3 and R4, the same or different, can be hydrogen, an alkyl radical with from 1 to 20 carbon atoms, an aryl radical, alkylaryl radical with from 7 to 20 carbon atoms, a cycloalkyl radical with from 6 to 10 carbon atoms, an alkylcycloalkyl radical with from 7 to 20 carbon atoms.
56. The process according to claim 55, wherein in the com pounds having formula (I), the radicals Rl, R2, R3 and R4, can form, in pairs, saturated or unsaturated rings and can contain halogen atoms, nitro, nitrile, sul fonic and relative ester groups, carbonyl, hydroxyl, carboxyl, thiol, amine and ether groups.
57. The process according to claim 55, wherein olefins having formula (I) are: ethylene, propylene, allyl chloride, allyl alcohol, butenes, pentenes, hexenes, heptenes, octene1,1tridecene, mesityl oxide, iso prene, cyclooctene, cyclohexene or bicyclic com pounds such as norbornenes, pinenes.
58. The process according to claim 57, wherein the olefin is propylene.
59. The process according to claim 58, wherein the propyl ene has a purity of over 70%.
60. The process according to claim 59, wherein the propyl ene is available as a stream from steam cracking with a minimum purity of 96%, the remainder consisting of propane and typical C3 impurities.
61. The process according to claim 48, wherein the olefin fed to the reaction unit consists of fresh olefin, re cycled olefin or their mixtures.
62. The process according to claim 61, wherein, before en tering the reaction unit, the fresh olefin is purified in the distillation column C4.
63. The process according to claim 48, wherein the liquid stream (iii) is fed to step (1) so as to have a molar ratio olefin/H202 ranging from 10: 1 to 1: 10.
64. The process according to claim 63, wherein the molar ratio olefin/H202 ranges from 6: 1 to 1: 1.
65. The process according to claim 48, wherein the solvent used in the epoxidation reaction consists of an alco hol or mixture of CiC4 alcohols or a mixture of said alcohols with water with an alcoholic content higher than 50%.
66. The process according to claim 65, wherein the alcohol is methanol.
67. The process according to claim 65, wherein the mixture is a mixture of methanol and water containing at least 70% by weight of methanol.
68. The process according to claim 48, wherein the buffer ing agent is selected from ammonia, ammonium acetate, ammonium formiate or a system consisting of a nitro genated base and a salt thereof with an organic or in organic acid.
69. The process according to claim 48, wherein the buffer ing agent is fed in continuous with one of the reagent streams fed to the epoxidation reactor, in such a quantity as to maintain the pH of the reaction mix ture, measured under operative conditions, at a value higher than 5.
70. The process according to claim 69, wherein the pH of the reaction mixture is maintained at a value ranging from 5.5 to 8.
71. The process according to claim 1, wherein the epoxida tion catalyst of step (b) is selected from titanium silicalites with an MFI structure, titanium silicalites with a MEL or intermediate MFI/MEL struc ture or beta zeolites containing titanium and having a BEA structure.
72. The process according to claim 71, wherein the cata lyst is selected from titaniumsilicalites having gen eral formula (II): xTi02 (lx) Si02 wherein x ranges from 0.0001 to 0.04.
73. The process according to claim 72, wherein in the ti tanium silicalite, part of the titanium is substituted by metals selected from boron, aluminum, iron or gal lium.
74. The process according to claim 1, wherein the catalyst can be used in the form of powder, pellets, micro spheres, extruded or other convenient physical forms.
75. The process according to claim 74, wherein the cata lyst can be used in a combination with a ligand (co gel) or a carrier selected from silica, alumina, sil icaalumina, zeolites or activated carbon.
76. The process according to claim 1, wherein the quantity of catalyst used in the epoxidation reaction ranges from 1 to 15% by weight with respect to the reaction mixture.
77. The process according to claim 76, wherein the quan tity of catalyst ranges from 4 to 10% by weight with respect to the reaction mixture.
78. The process according to claim 1, wherein the epoxida tion reaction is carried out at a temperature ranging from 20 to 150°C.
79. The process according to claim 78, wherein the tem perature ranges from 40 to 100°C.
80. The process according to claim 79, wherein the tem perature ranges from 55 to 90°C.
81. The process according to claim 54, wherein the reac tors Rl and R2 operate at a temperature of 5575°C and a pressure of 13 bars, and the reactor R3 operates at a temperature of 7090°C and a pressure of 8 bars.
82. The process according to claim 48, wherein the decom position reaction of residual hydrogen peroxide is carried out at a temperature ranging from 80 to 90°C, with a residence time ranging from 1 to 10 minutes.
83. The process according to claim 82, wherein the resi dence time ranges from 2 to 5. minutes.
84. The process according to claim 48, wherein the cata lysts used in the decomposition reaction of residual hydrogen peroxide consist of metals of group VIII or their oxides.
85. The process according to claim 48, wherein the epoxi dation reactors are selected from stirred reactors, bubble reactors, gaslift reactors with internal or external circulation or CSTR (Continuous Stirred Tank Reactors) or PFR (Plug Flow Reactors).
86. The process according to claim 54, wherein the reac tors R1, R2, R3 are of the isotherm CSTR type.
87. The process according to claim 48, wherein the decom position reactor R4 consists of one or more fixed bed tubular reactors arranged in series.
88. The process according to claim 48, wherein the strip ping columns operate under the same operating condi tions and discharge, at the head, streams in vapour phase essentially consisting of nonreacted olefin, olefin oxide, inert products and solvent vapour.
89. The process according to claim 48, wherein the tem perature at the bottom of the distillation column C4 does not exceed 80°C, with residence times in the or der of 1 minute.
90. The process according to claim 48, wherein the purifi cation column C5 consists of two columns in series with a high number of plates and separates, at the head, residual vapours still present, at the bottom, a liquid stream containing solvent and olefin oxide and, laterally, a liquid stream consisting of olefin oxide having a purity > 99.8%.
91. The process according to claim 48, wherein the conden sation heat recovered at the head of the column C6 is used to supply all the reboiling units present in the process.
Description:
INTEGRATED PROCESS FOR THE PREPARATION OF OLEFIN OXIDES.

The present invention relates to an integrated process for the preparation in continuous of epoxides by the direct oxidation of an olefin with hydrogen peroxide.

More specifically, the present invention relates to an integrated process for the preparation in continuous of propylene oxide consisting in the production of an alco- holic or hydro-alcoholic solution of hydrogen peroxide by the reaction between hydrogen and oxygen in the presence of a bimetallic catalyst based on palladium or platinum as ac- tive components, feeding said solution to an epoxidation process of propylene in the presence of an epoxidation catalyst, and feeding the recycled alcoholic solvent leav- ing the epoxidation plant, suitably pretreated, to the hy- drogen peroxide production plant. The process may comprise a further step (e), in which the raw hydro-alcoholic mix- ture of the flash column bottom, is used, when necessary, for diluting the alcoholic or hydro-alcoholic solution of hydrogen peroxide obtained in step (a) to the value re-

quired by the epoxidation plant.

Epoxides, or olefin oxides, are intermediates which can be used for the preparation of a wide variety of com- pounds. For example, epoxides can be used for the produc- tion of glycols, condensation polymers such as polyesters or for the preparation of intermediates used in the synthe- sis of polyurethane foams, elastomers, seals and similar products.

Current technologies adopted on an industrial scale for the production of propylene oxide (PO) are based on processes via chlorohydrin and processes via indirect oxi- dation with hydroperoxides as oxygen source.

In particular, the commercialized chlorohydrin process involves the synthesis of propylene chlorohydrin (PCH) and subsequent dehydrohalogenation of PCH to propylene oxide (PO).

This process however has the following disadvantages: -the production of high quantities of aqueous effluents (40-60 Kg/kg of PO) containing sodium or calcium chlorides; -the coproduction of chlorinated organic products which, depending on their end-use, must undergo suitable treat- ment.

Processes via oxidation preferably use ter butyl hy- droperoxide and ethylbenzene hydroperoxide as hydro- peroxides.

These processes cause the formation of a higher quan- tity of co-products of commercial interest with respect to PO. For example, the process via ter butyl hydroperoxide co-produces 2.5-3.5 Kg of ter butyl alcohol per Kg of PO, whereas that via ethylbenzene hydroperoxide co-produces 2.2-2.5 Kg of styrene per Kg of PO.

The presence of these co-products can be of little ad- vantage if the request for PO and the respective co- products is not suitably balanced. For example, when the demand for styrene or MTBE, obtained from ter butyl alco- hol, is high, the economics of this process are competitive with those of the process via chlorohydrin, otherwise these processes are not economic.

Other synthetic techniques for the indirect oxi- dation of propylene involve the use of hydrogen peroxide and essentially consist in: 1) synthesis of hydrogen peroxide; and 2) its use in the epoxidation process of propylene to propylene oxide.

Aqueous solutions of H202 are typically obtained in- dustrially by means of a complex two-step process. In this process a solution of anthraquinone, such as butylanthra- quinone or ethylanthraquinone, in an organic medium immis- cible with water, is first hydrogenated and then oxidized with air to produce H202 which is subsequently extracted in

aqueous phase. This process is onerous due to the high costs deriving from the investment necessary for setting up the complex production unit, the necessity of separating and disposing of the by-products generated during the oxi- dation phase, and purifying and reintegrating the anthra- quinone solution before its re-use.

A second method for the production of hydrogen perox- ide comprises the use of secondary alcohols such as isopro- panol and methylbenzylalcohol (US 2, 871, 102, EP-378,388) or high-boiling secondary alcohols such as diaryl methanol (US 4,303,632) with oxygen.

These known processes, however, substantially suffer from disadvantages deriving from the necessity of operating at high reaction temperatures (generally ranging from 100 to 180°C), the partial oxidation of the ketone which is formed as main co-product, the necessity of using a hydro- gen peroxide stabilizer (orthophosphoric acid or sodium py- rophosphate).

Furthermore, these processes are complicated by the necessity of separating and recovering the ketone and by- products from the reaction mixture before using the hydro- gen peroxide solution in a subsequent epoxidation process.

Another method for the production of hydrogen perox- ide, which seems attractive from a technical and economic point of view, is based on the direct synthesis of hydrogen

peroxide from H2 and °2v These processes generally use a catalytic system con- sisting of a noble metal, particularly metals of the plati- num group or their mixtures, in the form of salts or as supported metals, by reacting the two gases in a solvent consisting of an aqueous medium or an aqueous-organic me- dium.

The industrial embodiment of these processes however has proved to be difficult for the following reasons: A) the use of mixtures of H2 and 09 in concentrations fal- ling within the explosivity range, as the mixture becomes explosive when the concentration of H2 exceeds a value which, in relation to the pressure and concentration of Os, varies from 4.5 to 6% by volume; B) even when operating outside the explosivity range of H2- 02 mixtures, the use of high concentrations of 02 is risky to handle and has a limited compatibility with the presence of flammable organic solvent mediums; C) the use in the reaction medium of high concentrations of promoters, for example acid promoters, halogenated products and/or other additives, makes the catalytic system or H202 solution unstable. This makes it necessary to add stabiliz- ers, with onerous purification operations of the H202 solu- tion before its use; D) low productivity and selectivity of the reaction and the

production of H202 solutions which are too dilute for eco- nomic industrial exploitation; E) poor stability of the catalytic system under the reac- tion conditions.

Patent application EP-812836, for example, describes a process for the preparation of propylene oxide which con- sists in reacting hydrogen and oxygen in the presence of a catalytic system based on supported palladium, in a hydro- alcoholic medium and using the hydro-alcoholic mixture of hydrogen peroxide thus obtained in the epoxidation process.

The illustrative examples of this document describe the production of hydro-alcoholic solutions containing H202 in concentrations ranging from 0.15 to 0.39% by weight. Us- ing these solutions in the subsequent epoxidation reaction, after 1 hour, hydrogen peroxide conversions equal to 99% and 65% respectively, are obtained, with a selectivity to propylene oxide ranging from 70% to 95%, i. e. with a maxi- mum yield to PO of 70%.

This process does not seem to be of industrial inter- est for the following reasons: A) The use, in the reaction medium for the production of hydrogen peroxide, of high concentrations of promoters, for example acid promoters, halogenated products and/or other additives, makes it necessary to add considerable quanti- ties of neutralizers before its use in the subsequent ep-

oxidation process; B) overall low process concentration, productivity and selectivity. This requires the use of high reaction volumes in both steps of the integrated process ; C) Production of a high stream of waste products to be disposed of in the epoxidation process; D) The use of diluted hydro-alcoholic solutions of hydro- gen peroxide implies the production of a stream of alco- holic distillate whose entity makes the process rather un- economic.

The Applicant has now found that by using a well de- fined group of metallic catalysts and operating conditions in the initial reaction between hydrogen and oxygen, by suitably treating the recycled alcoholic solvent leaving the epoxidation plant before being fed to the hydrogen per- oxide production plant, and by using the raw hydro- alcoholic mixture of the flash column bottom, when neces- sary, to dilute the hydro-alcoholic solution of hydrogen peroxide obtained in step (a) to the value required by the epoxidation plant, an overall high process efficiency is obtained in terms of productivity and selectivity.

In particular, when operating according to the process of the present invention, the following advantages are ob- tained: -reduction in waste products in the epoxidation plant;

-reduction in the volume of solvent to be distilled in the epoxidation reaction plant; -high stability of the catalysts used in the two reac- tions; reduction in the reaction volumes ; -high degree of purity of the epoxides.

In accordance with this, the objective of the present invention relates to an integrated process for the prepara- tion in continuous of epoxides by the direct oxidation of an olefin with hydrogen peroxide which comprises: (a) preparing an alcoholic or hydro-alcoholic solution of hydrogen peroxide in a concentration of over 3o by weight, using a gaseous stream containing hydrogen, oxygen and an inert gas, in the presence of a bimetallic catalyst based on palladium and platinum as active components; (b) putting the alcoholic or hydro-alcoholic solution of hydrogen peroxide obtained in step (a) in contact with an olefin and a buffering agent, in the presence of an epoxi- dation catalyst suspended in the reaction solvent, in order to obtain a reaction mixture containing the epoxide corre- sponding to the olefin, water and the alcoholic solvent; (c) treating the alcoholic stream leaving step (b), after separation of the epoxide, in order to eliminate the nitro- genated compounds present; (d) feeding the alcoholic solvent obtained in (c) to step

(a).

The process may comprise a further step (e), wherein the raw hydro-alcoholic mixture of the flash column bottom, is used, when necessary, for diluting the hydro-alcoholic solution of hydrogen peroxide obtained in step (a) to the value required by the epoxidation plant. This advanta- geously allows a reduction in the volume of solvent to be distilled in the epoxidation reaction plant.

The process for the preparation of epoxides according to the present invention can be described in detail as fol- lows.

In the first step, the process for the synthesis of epoxides comprises: (a) feeding to a reactor, containing a catalyst based on palladium and platinum, heterogeneous and kept in disper- sion in a liquid reaction medium: (i) a liquid stream consisting of an alcohol or an al- cohol-water mixture with a prevalent alcoholic content, containing an acid promoter and a halogenated promoter.

(ii) a gaseous stream containing hydrogen, oxygen and an inert gas, characterized in that the concentration of hydrogen is lower than 4.5% by volume and the concentration of oxygen is lower than 21% by volume, the complement to 100 being an inert gas ; (b) removing from the reactor:

(iii) a liquid stream essentially consisting of the stream (i) and also containing the hydrogen peroxide and water produced by the reaction, characterized in that the concentration of hydrogen peroxide is higher than 3% by weight ; and (iv) a gaseous stream essentially consisting of non- reacted hydrogen and oxygen and the inert gas.

The reactor used can be any reactor suitable for oper- ating in continuous and conducting the reaction in a tri- phasic system such as that described, obtaining an effec- tive contact between the gaseous phase, liquid phase and catalyst kept in dispersion (so-called slurry system). For example, stirred reactors, bubble reactors, gas-lift reac- tors with internal or external circulation, such as those described in the state of the art, are suitable for the purpose.

The reactor is maintained under appropriate tempera- ture and pressure conditions. According to the process, ob- ject of the invention, the temperature normally ranges from -10°C to 60°C, preferably from 0°C to 40°C. The pressure normally ranges from 1 to 300 bars, preferably from 40 to 150 bars.

The residence time of the liquid medium in the reactor normally ranges from 0.05 to 5 hours, preferably from 0.10 to 2 hours.

The catalyst which can be used for the purposes of the invention is a heterogeneous catalyst containing palladium and platinum as active components.

In these catalysts, the palladium is normally present in a quantity ranging from 0.1 to 3% by weight and the platinum in a quantity ranging from 0.01 to 1% by weight, with an atomic ratio between platinum and palladium ranging from 1/500 to 100/100.

The palladium is preferably present in a quantity ranging from 0.4 to 2% by weight and the platinum in a quantity ranging from 0.02 to 0.5% by weight, with an atomic ratio between platinum and palladium ranging from 1/200 to 20/100.

In addition to palladium and platinum, other metals of group VIII or IB, such as, for example, ruthenium, rhodium, iridium and gold, can be present as active components or promoters, in a concentration generally not higher than that of the palladium.

The catalyst can be prepared by dispersing the active components on an inert carrier by means of precipitation and/or impregnation starting from precursors consisting, for example, of solutions of their salts or soluble com- plexes, and therein reduced to the metal state by means of thermal and/or chemical treatment with reducing substances such as hydrogen, sodium formiate, sodium citrate by means

of preparative techniques well known in the state of the art.

The inert carrier may typically consist of silica, alumina, silica-alumina, zeolites, activated carbon, and other materials well known in the state of the art. Acti- vated carbon is preferred for the preparation of the cata- lysts useful for the invention.

Activated carbons which can be used for the invention are selected from those of fossil or natural origin deriv- ing for example from wood, lignite, peat or coconut and having a surface area higher than 300 m2/g and which can reach 1400 m2/g, in particular those having a surface area higher than 600 m2/g.

Preferred activated carbons are those with a low ash content.

The sulfonated activated carbons described in Italian patent application MI 98A01843 can be used for the purpose.

Before the supporting or impregnation of the metals, the activated carbon can be subjected to treatment such as washing with distilled water or treatment with acids, bases or diluted oxidizing agents, for example acetic acid, hy- drochloric acid, sodium carbonate and hydrogen peroxide.

The catalyst is normally suspended in the reaction me- dium at a concentration ranging from 0.1 to 10% by weight, preferably from 0. 3 to 3% by weight.

The liquid stream (i) consists of an alcohol or a mix- ture of Cl-C4 alcohols or a mixture of said alcohols with water with a prevalent alcoholic content. A mixture with a prevalent alcoholic content refers to a mixture containing over 50% by weight of alcohol or mixture of alcohols. Among Cl-C4 alcohols, methanol is preferred for the purposes of the invention. Among preferred mixtures is a mixture of methanol and water containing at least 70% by weight of methanol.

The liquid stream also contains an acid promoter and a halogenated promoter.

The acid promoter can be any substance capable of gen- erating H+ hydrogen ions in the reaction liquid medium and is generally selected from inorganic acids such as sulfu- ric, phosphoric, nitric acid or from organic acids such as sulfonic acids.

Sulfuric acid and phosphoric acid are preferred. The concentration of the acid generally ranges from 0 to 1000 mg per kg of liquid medium and preferably from 10 to 500 mg per kg of liquid medium.

The halogenated promoter can be any substance capable of generating halide ions in the reaction liquid medium.

Substances capable of generating bromide ions are pre- ferred. These substances are generally selected from hydro- bromic acid and its salts soluble in the reaction medium,

for example alkaline bromides, hydrobromic acid being pre- ferred.

The concentration of halogenated promoter generally ranges from 0.1 to 50 mg per kg of liquid medium and pref- erably from 1 to 10 mg per kg of liquid medium.

The gaseous stream (ii) at the inlet contains a con- centration of hydrogen of less than 4.5% by volume and a concentration of oxygen of less than 21% by volume, the complement to 100 being an inert gas, which is generally selected from nitrogen, helium, argon. Said gas is prefera- bly nitrogen.

In the gaseous stream (ii) the concentration of hydro- gen preferably ranges from 2% to 4% by volume and the con- centration of oxygen preferably ranges from 6% to 18% by volume.

The oxygen can be supplied to said stream using pure or substantially pure oxygen, or enriched air, as raw mate- rial, containing for example from 21 to 90% of oxygen or air, the composition of the stream then being brought to the desired values, defined above, by the addition of a suitable concentration of inert gas.

The liquid stream (iii) leaving the reactor normally has a concentration of hydrogen peroxide of over 3% by weight and, preferably from 4% to 10% by weight. It also contains the acid promoter and halogenated promoter in

quantities equal to those charged with the liquid stream fed and water in a quantity equal to that charged with the liquid stream fed together with the water obtained as reac- tion by-product. The latter usually represents an addi- tional concentration of 0.5% to 2.5% by weight.

The liquid stream (iii) is separated from the catalyst by means of filtration techniques well known in the state of the art, for example by the use of filters situated in- side the reactor or in a special recirculation cycle of the reaction mixture outside the reactor. In the latter case, the tangential filtration technique can also be conven- iently adopted.

The liquid stream (iii) proves to be stable to storage without requiring the addition of stabilizing substances.

The gaseous stream (iv) leaving the reactor, essen- tially consisting of non-reacted hydrogen and oxygen and the inert gas, generally contains a volume concentration of hydrogen equal to or lower than 2%, normally ranging from 0.5 to 1. 5%, and a volume concentration of oxygen generally less than 18%, normally ranging from 6 to 12%.

In an embodiment of the process of the present inven- tion, the gaseous stream leaving the reactor is recycled to the feeding to the reactor, after flushing from the system the fraction necessary for eliminating the quantity of in- ert gas charged in excess with the feeding, particularly

when air is used as oxygen source. In this case, the gase- ous stream (ii) fed to the reactor consists of the recycled fraction of the above stream (iv), containing a quantity of hydrogen and oxygen (as such or in the form of air or en- riched air) essentially equal to that used up by the reac- tion and that used for the flushing.

According to another embodiment of the process of the present invention, the gaseous stream (iv) leaving the re- actor is fed to one or more subsequent reactors operating analogously to that described above, after adding each time a quantity of hydrogen and oxygen (as such or in the form of air or enriched air) essentially equal to that used up by the reaction which takes place in the single reactors.

Operating under the conditions described above, it is possible to produce hydrogen peroxide under safety condi- tions with a reaction productivity normally ranging from 30 to 200 g of H202 (expressed as H202 at 100%) per liter of reaction medium per hour and with a molar selectivity to- wards the formation of H202, referring to the hydrogen used up, generally higher than 70%.

Furthermore, the possibility of minimizing the concen- trations of acid and halogenated promoters present in the reaction liquid medium positively influences the stability of the catalytic system; there are no signs of a substan- tial loss in the catalytic activity after 1000 hours of re-

action in continuous.

The filtered liquid stream (iii) is fed to a reaction unit consisting of one or more reactors containing the ep- oxidation catalyst suspended in the reaction solvent to- gether with the olefin and a buffering agent.

When the concentration of hydrogen peroxide in the liquid stream (iii) is higher than the values required by the epoxidation process (3.5-4.5%), the liquid stream (iii) is diluted with the raw hydro-alcoholic mixture of the flash column bottom to the value required by the epoxida- tion plant.

The filtered liquid product leaving the reaction unit is fed to a distillation unit consisting of one or more stripping (flash) columns, one for each reactor of the re- action unit, to obtain a product at the head essentially consisting of olefin oxide and non-reacted olefin and a product at the bottom essentially consisting of solvent, non-reacted hydrogen peroxide, water and reaction by- products. The product at the bottom of the distillation unit is fed, for the quota not recycled to the epoxidation reaction unit, to a decomposition unit R4 consisting of one or more reactors containing a decomposition catalyst having the function of decomposing the residual hydrogen peroxide into 02 and H2O.

The mixture leaving the decomposition unit R4, essen-

tially consisting of solvent, oxygen and water, is fed, to- gether with an inert gas (preferably nitrogen), to a phase separator V4 to obtain, at the head, a gaseous phase con- taining oxygen, inert gas and traces of solvent and, at the bottom, a liquid phase consisting of solvent, water and re- action by-products.

The gaseous phase leaving V4 is fed to a condensation system consisting of one or more condensers in series for the recovery of the residual solvent, whereas the non- condensable compounds (oxygen and inert gas with traces of solvent) are discharged.

The solvent leaving the condensation system and the liquid phase leaving R4 are fed to the distillation column C6-A together with a diluted aqueous or hydro-alcoholic so- lution containing sulfuric acid (about 10-50 mg/kg of sul- furic acid with respect to the total stream) to obtain, at the head, the purified solvent containing traces of light products and a product, at the bottom, essentially consist- ing of reaction water and that charged with the hydrogen peroxide, reaction by-products and traces of solvent, which is discharged.

The solvent leaving the condensation system and the liquid phase leaving V4 are preferably fed towards the bot- tom of the distillation column C6-A, whereas the acid solu- tion is fed at a height equal to about 2/3 of the column.

The function of this acid treatment is to completely sepa- rate the nitrogenated basic products present in the stream, which could influence the performance of the catalyst used for the synthesis of hydrogen peroxide. The solvent leaving the head of the column C6-A is fed to a column C6-B, in or- der to separate the light products at the head, whereas the purified solvent is separated at the bottom.

The stream at the head of the column C6-B is sent to a distillation column C6-C, to recover, at the bottom, the solvent without light products, recycled to the hydrogen peroxide synthesis reaction, and a concentrated stream of light products, at the head.

The acid treatment in the column described above, can be substituted by means of treatment on the methanol at the head of C6-A with activated carbon, sulfonic resins or sul- fonated carbons (Italian Patent Application MI 98A01843).

The product at the head of the stripping column (s) and the vent products of the reactors are fed to a distillation column C4 to obtain a product, at the head, consisting of non-reacted olefin, recycled to the reaction unit, and a product, at the bottom essentially consisting of olefin ox- ide.

The product at the bottom of the distillation column is fed to a purification system C5. The residual olefin ob- tained at the head. C5 is recycled to the reaction unit, the

liquid phase, at the bottom, essentially consisting of sol- vent is recycled to the flash column (s), and the olefin ox- ide with a commercial purity is obtained from a lateral cut in the upper part of the column.

Olefins which can be used in the process of the pres- ent invention are those having general formula (I) wherein: RI, R2, R3 and R4, the same or different, can be hydrogen, an alkyl radical with from 1 to 20 carbon atoms, an aryl radical, alkylaryl radical with from 7 to 20 carbon atoms, a cyclo-alkyl radical with from 6 to 10 carbon at- oms, an alkylcyclo-alkyl radical with from 7 to 20 carbon atoms.

The radicals R1, R2, R3 and R4, can form, in pairs, saturated or unsaturated rings. Furthermore, said radicals can contain halogen atoms, nitro, nitrile, sulfonic and relative ester groups, carbonyl, hydroxyl, carboxyl, thiol, amine and ether groups.

The olefins can carry the above substituents both on unsaturated carbon atoms and in different positions.

Non-limiting examples of olefins having formula (I) are: ethylene, propylene, allyl chloride, allyl alcohol,

butenes, pentenes, hexenes, heptenes, octene-1,1- tridecene, mesityl oxide, isoprene, cyclo-octene, cyclo- hexene or bicyclic compounds such as norbornenes, pinenes, etc.

The preferred olefin is propylene. Propylene with a purity of'over 70% is generally used. The propylene is preferably available as a stream from steam cracking with a minimum purity of 96%, the remaining percentage consisting of propane and typical C3 impurities.

The quantity of hydrogen peroxide with respect to the olefin is not critical, but a molar ratio olefin/H202 rang- ing from 10: 1 to 1: 10, preferably from 6: 1 to 1: 1, is pref- erably used.

The epoxidation reaction can be carried out in one or more liquid solvents at epoxidation temperatures, compati- ble with hydrogen peroxide and capable of dissolving the olefin and olefin oxide produced.

Solvents of a polar nature consisting of an alcohol or mixture of Cl-C4 alcohols or a mixture of said alcohols with water with a prevalent alcoholic content, are typi- cally used. A mixture with a prevalent alcoholic content refers to a mixture containing over 50% by weight of alco- hol or mixture of alcohols. Among Ci-C4 alcohols, methanol is preferred for the purposes of the invention. Among the mixtures, a mixture of methanol and water containing at

least 70% by weight of methanol, is preferred.

The buffering agent is selected from ammonia, ammonium acetate, ammonium formiate or a system consisting of a ni- trogenated base and one of its salts with an organic or in- organic acid as described in Italian patent application MI 99A/001658.

The buffering agent is fed in continuous with one of the reagents streams fed to the epoxidation reactor, in such a quantity as to maintain the pH of the reaction mix- ture, measured under the operating conditions, at a value higher than 5, preferably ranging from 5.5 to 8.

The epoxidation catalyst which can be used in the pro- cess of the present invention is selected from those gener- ally known under the name of titanium silicalites.

For example, titanium-silicalites can be used, with an MFI structure, described in the patent U. S. 4,410,501, which also describes their structural characteristics.

Titanium silicalites in which part of the titanium is substituted by other metals such as boron, aluminum, iron or gallium, can also be used. These substituted titanium silicalites and the methods for their preparation are de- scribed in European patent applications 226,257,226,258 and 266,825.

Titanium silicalites with a MEL or intermediate MFI/MEL structure, described in Belgian patent 1,001,038,

can also be used. Other titanium-silicalites can be se- lected from beta zeolites containing titanium and having a BEA structure, described in Spanish patent 2,037,596, ZSM- 12 containing titanium and optionally aluminum, described in"Journal of Chemical Communications, 1992, page 745".

The preferred catalyst according to the present inven- tion is titanium-silicalite having general formula (II): xTi02- (1-X) Si02 wherein: x represents a number ranging from 0.0001 to 0.04, preferably the value of x ranges from 0.01 to 0.025, and described, for example in patents U. S. 4.410,501, 4,824,976,4,666,692,4,656,016,4,859,785,4,937,216.

The catalyst can be used in the form of powder, pel- lets, microspheres, extruded or other convenient physical forms.

The use of a ligand (co. gel) or an inert carrier com- bined with the catalyst can be advantageous. Supported catalysts can be prepared using known methods.

The inert carrier may typically consist of silica, alumina, silica-alumina, zeolites, activated carbon, and other materials well known in the state of the art.

The quantity of catalyst used in the process of the present invention is not critical; it is selected however so as to allow epoxidation reaction to be completed in the shortest possible time.

The quantity of catalyst is generally selected in re- lation to the various parameters, such as the reaction tem- perature, reactivity and concentration of the olefin, the concentration of hydrogen peroxide, type and composition of the solvent, catalytic activity and type of reactor or re- action system used.

The quantity of catalyst typically ranges from 1 to 15% by weight with respect to the reaction mixture, pref- erably from 4 to 10% by weight.

The temperature used in the process of the present in- vention generally ranges from 20 to 150°C, preferably from 40 to 100°C, from 55 to 90°C is particularly preferred.

The operating pressure is such as to allow the olefin to be maintained in liquid phase at the temperature pre- selected for the reaction. In general, the operating pres- sure is higher than atmospheric pressure when gaseous ole- fins are used.

The reactor used in the epoxidation reaction can be any reactor suitable for operating in continuous and con- ducting the reaction in a system such as that described, obtaining an effective contact between the olefin, the liq- uid phase and catalyst kept in suspension.

For example, stirred reactors, bubble reactors, gas- lift reactors with internal or external circulation or CSTR (Continuous Stirred Tank Reactors) or PFR (Plug Flow Reac-

tors), as described in the state of the art, are suitable for the purpose.

The olefin charged, this term referring to fresh ole- fin, recycled olefin or their mixtures, is fed to the reac- tion step under flow-rate control and in excess to maximize the conversion and selectivity to olefin oxide and maintain the reaction pressure. A mixture consisting of fresh olefin deriving from battery limits and recycled olefin is pref- erably fed. Before entering the reaction unit, the fresh olefin can be purified in the distillation column C4.

According to an embodiment of the process of the pres- ent invention, the reaction unit is made up of three reac- tors R1-R2-R3 of the CSTR type and isotherms.

The reactors R1 and R2 operate under substantially identical conditions, i. e. at a temperature of about 55- 75°C and a pressure of 13 bars, whereas the reactor R3, which acts as finishing reactor, i. e. with exhaustion of the hydrogen peroxide fed to the reactors R1 and R2, oper- ates at a temperature of 79-90°C and a pressure of 8 bars.

The overall oxidation reaction of the olefin is car- ried out in such a way as to have a concentration of 102 of less than 100 ppm in the stream leaving the unit R3.

In the first and second reactor, the reaction selec- tivity with respect to hydrogen peroxide is 98% molar with a conversion of 96%, in the third reactor there is a selec-

tivity of 80% molar and a conversion of 95%. The flash col- umns substantially operate under the same operating condi- tions and discharge, at the head, streams in vapour phase essentially consisting of non-reacted olefin, olefin oxide, inert products, for example aliphatic hydrocarbons such as propane, and solvent vapours. At the bottom, the columns discharge streams in liquid phase with a differentiated composition, which for Cl and C2 are partly recycled to the respective synthesis reactors R1 and R2.

The vapours at the head of columns C1-C2-C3 are fed to a distillation column C4 to recover the non-reacted olefin at the head. The latter is recycled to the synthesis of the olefin oxide after partial elimination of the inert prod- ucts. The vapours coming from the vents of reactors R1-R2- R3, are also fed to the column C4.

The temperature at the bottom of the column C4 must not exceed 80°C with residence times in the order of 1 min- ute; this is to avoid degradation of the olefin oxide.

Whereas the streams at the bottom of the distillation columns Cl and C2 still contain significant quantities of hydrogen peroxide, and are therefore recycled to the syn- thesis of the olefin oxide, the stream at the tail of the column C3 is substantially without H202 and essentially consists of solvent, water and reaction by-products.

This stream is fed to a decomposition section of the

residual hydrogen peroxide R4'consisting of one or more fixed bed tubular reactors arranged in series.

The hydrogen peroxide decomposition reaction is exo- thermic and takes place in liquid phase at about 80-90°C, with a residence time ranging from 1 to 10 minutes, pref- erably from 2 to 5 minutes.

Examples of catalysts used in the decomposition reac- tion consist of metals of group VIII or their oxides. The carriers are selected from those of the known art and indi- cated above.

The mixture leaving R4 is fed to a phase separator V4 which separates the oxygen generated from the decomposition of the hydrogen peroxide and the dilution inert product, preferably nitrogen, charged downstream of the reactor R4 to maintain the solvent/oxygen mixture released in the flash column below the lower flammability limit.

The solvent-oxygen-inert product mixture leaving V4 is then condensed in two condensers in series to recover the solvent, whereas the non-condensable products (oxygen and inert product with traces of solvent) are discharged.

The liquid phase leaving R4 and the liquid mixture leaving V4 are fed to the distillation column C6-A and treated as described above.

The condensation heat recovered at the head of the column C6-A can be used to supply all the reboiling units

present in the process. In this case, the pressure of the column is kept at a suitable value for this purpose.

A liquid stream rich in olefin oxide is extracted from the bottom of the distillation column C4, and is sent to a purification section C5.

The latter consists of two columns in series due to the high number of plates and separates, at the head, re- sidual vapours still present (non-reacted olefin and inert gases), at the bottom, a liquid stream containing solvent and olefin oxide (recycled to the distillation column C3) and, laterally, a liquid stream consisting of olefin oxide with a commercial purity (> 99.8%).

The vapours extracted from the head of the purifica- tion column C5 may still contain significant quantities of olefin oxide and are recycled upstream of the distillation column C4.

Operating with the process of the present invention, the epoxidation catalyst, after 1000 hours, does not show any sign of deterioration and the productivity and reaction selectivity are high.

The process for the preparation of olefin oxides can be better understood by referring to the block schemes of figure 1, which represents an illustrative but non-limiting embodiment.

With reference to figure 1, the olefin, for example

propylene, is fed in parallel to Lhe reactors R1-R2-R3 with lines (2)- (11)- (21). The buffering agent is fed to the re- actors R1-R2-R3 parallelly with lines (T1)- (T2)- (T3), whereas half of the recycled solvent with the hydrogen per- oxide (4) is fed to the reactor R1 (4A) and the other half to R2 (4B). Possible solvent losses in the integrated pro- duction cycle are replaced by means of"make-up"line (3) which enters with the feeding of column C6-A.

Propylene oxide synthesis reaction The filtered liquid reaction product leaving the first reactor Rl is fed with line (6) to the first distillation column Cl from whose head the propylene oxide produced and non-reacted propylene (7), in vapour phase, are recovered, and from the bottom, a liquid stream (8) still containing hydrogen peroxide, a part of (8) is fed to the reactor R3 and the remaining stream (8A) is recycled to the reactor R1 to dilute the hydrogen peroxide to the desired concentra- tion.

The filtered liquid reaction product leaving the sec- ond reactor R2 is fed with line (9) to the second distilla- tion column C2 from whose head the propylene oxide produced and non-reacted propylene (12), in vapour phase, are recov- ered, and from the bottom, a liquid stream (13) still con- taining hydrogen peroxide, a part of (13) is fed to the re- actor R3 and the remaining stream (13A) is recycled to the

reactor R2 to dilute the hydrogen peroxide to the desired concentration.

The filtered liquid reaction product leaving the sec- ond reactor R3 is fed with line (14) to the third distilla- tion column C3 from whose head the propylene oxide produced and non-reacted propylene (16), in vapour phase, are recov- ered, and from the bottom, a liquid stream (15) still con- taining hydrogen peroxide, fed to the reactor system R4 (the system R4 refers to the reactor R4 itself, a phase separator V4 and two condensers in series E421/E422 on the vapour phase leaving V4).

The liquid reaction product leaving the system R4 is fed to the column C6-A (18), the gaseous product vented into the atmosphere containing oxygen, nitrogen and traces of methanol is represented by line (17). The diluting ni- trogen is fed to the system R4 with line (AZ).

Recovery of the solvent The liquid product leaving the reactor system R4, without hydrogen peroxide and essentially consisting of solvent, water and by-products, is fed with line (18) to the solvent recovery section consisting in this particular case of a series of distillation columns C6 A-B-C. Water and the reaction by-products (24) are discharged from the bottom of C6-A. At the head of C6-A, the solvent (23) is recovered and sent to the column C6-B. At about 2/3 of the

height of C6-A an acid solution (A1) is fed, which blocks the nitrogenated compounds present in vapour phase. The head of the column C6-B consisting of light compounds (methyl formiate, dimethoxymethane) present in the methanol at the inlet of C6-A, at a concentration of 1-2% by weight of methanol, is fed to the column C6-C. The light concen- trated products (6-8% by weight) leave the head of the col- umn C6-C with the flushing stream (31). The bottom products of columns C6-B and C6-C when joined (33), form the metha- nol recycled to the synthesis reaction of hydrogen perox- ide.

Recovery of the propylene oxide The streams (7), (12) and (16), together with the vented products of the synthesis reactors, consist of non- reacted propylene, propylene oxide and solvent; they are fed, by means of the compressor Kl, to the distillation column C4. The propylene is separated at the head of the column C4 together with the inert products (27) + (25). The inert products, such as propane, are inserted into the cy- cle together with fresh propylene (5). To prevent there be- ing an accumulation of inert products in the production cy- cle, a part of the stream of propylene recycled to the re- actors, is flushed (25).

A stream rich in propylene oxide (28) is recovered at the bottom of the column C4 and is fed to the purification

section of propylene oxide, in this particular case con sisting of a distillation column C5 (in two sections). A stream in vapour phase (29) still containing traces of non- reacted propylene and propylene oxide is recovered at the head of the column C5; this stream is recycled by means of the compressor Kl to the column C4. A liquid stream (26) containing propylene oxide and solvent is extracted from the bottom of the column C5 and is sent back to the column C3.

The propylene oxide with a commercial purity is ex- tracted from the column C5 as a lateral cut (30).

Synthesis reaction of hydrogen peroxide The stream of distilled methanol (33) coming from the propylene oxide synthesis section goes to the hydrogen per- oxide synthesis section.

A stream (35) of an aqueous solution of HBr (halogen- ated promoter) and a stream (36) of an aqueous solution of H2SO4 (acid promoter) are added to the stream (33) ; the pump P1 sends the mixture obtained (37) to the hydrogen peroxide synthesis reactor R5 at a pressure of 100 bars.

The streams (39)- (40)- (41) of hydrogen, oxygen and nitro- gen, respectively, are sent by means of the compressor K2 to the reactor R5 at 100 bars. The ventilator K3 recycles the non-reacted gases from the top of the reactor into the reaction medium. The stream (44), consisting of the reac-

tion products hydrogen peroxide and water, the methanol solvent and reaction gases dissolved at 100 bars, is fed to the flash column Fl at low pressure. The vapour phase leav- ing F1, after condensation (45), feeds the separation col- umn C7 fed at the head with water (48). The gases at the head C7 (46) are flushed from the cycle, the stream (47) at the bottom of the column C7 containing traces of methanol and water is sent to a biological treatment system. The gases of the top of the reactor removed for analysis with the on-line analyzer An, are also sent to the flash column Fl.

The liquid stream (4) leaving F1 consists of hydrogen peroxide (7% weight), water and methanol. Said stream forms the feeding stream to the propylene oxide synthesis.

Compared with the known methods, the process described above allows epoxides to be obtained with a high productiv- ity over a period of time and a high selectivity, using a method which can be easily applied on an industrial scale and with the possibility of operating in continuous.

The following operative example is provided for illus- trative purposes and does not limit the scope of the inven- tion.

EXAMPLE 1 The procedure is adopted according to figure 1 to pro- duce propylene oxide starting from:

-a stream deriving from a steam cracking plant consist- ing of 99.5% by weight of propylene and 0.05% by weight of propane; -a gaseous stream containing hydrogen, oxygen and ni- trogen, characterized in that the concentration of hydrogen is lower than 4.5% by volume and the concentration of oxy- gen is lower than 21% by volume, the complement to 100 be- ing nitrogen; -make-up methanol; -an acid promoter H2SO4 (200 mg per kg of liquid me- dium) and a halogenated promoter HBr (6 mg per kg of liquid medium) fed to the methanol stream at the inlet of R5; -a buffering agent consisting of an aqueous solution of NH40H, fed to the stream of methanol at the inlet of reac- tors R1-R2-R3 in such a quantity as to buffer the pH of the reaction mixture to a value of 6.5 (present in the liquid stream in the feeding to R1-R2-R3 in a concentration of 80 ppm); a reinforced glass pH-meter inserted in the reaction stream, is used ; a diluted solution containing sulfuric acid (about 10- 50 mg/kg of sulfuric acid with respect to the total stream (18), fed to the column C6-A to obtain a distillation under acid conditions of the methanol recycled to R5.

The titanium silicalite catalyst, of the type de- scribed in patent U. S. 4,937,216, is present in the reac-

tors R1, R2 and R3 in a concentration of 6% by weight with respect to the slurry.

The catalyst bed of the decomposer R4, in pellets with an active phase of 15%, is charged in volume excess to guarantee exhaustion of the hydrogen peroxide.

The heterogeneous catalyst based on palladium and platinum is kept in dispersion in the liquid reaction me- dium at 1% by weight in R5.

Table 1 enclosed (3 pages) indicates the balances and composition of the single streams.

Table 1-A Streams 2 3 4 4A 4B 5 6 7 Components (kg/h) (%) (kg/h) (%) (kg/h) (%) (kg/h) (%) (kg/h) (%) (kg/h) (%) (kg/h) (%) (kg/h) (%) Propylene 411.63 93.95 207.3 99.50 318.2 11.92 318.2 60.25 Propane 26.50 6.05 1.035 0.50 26.5 0.99 26.5 5.03 Propylene oxide (PO) 128.4 4.81 128.4 24.31 Methanol (MeOH) 0.00 0.01 7.70 100 2069.10 89.68 1034.55 89.68 1034.55 89.68 2067.9 77.44 55.0 10.41 Water (H2O) 0.00 0.00 78.22 3.39 39.11 3.39 39.11 3.39 118.7 4.45 0.0 0.00 Hydrogen peroxide (H2O2) 0.00 0.00 0.00 0.00 160.00 6.93 80.00 6.93 80.00 6.93 4.8 0.18 0.0 0.00 Methoxypropanol 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.9 0.18 0.0 0.00 1,2 propandiol 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.0 0.04 0.0 0.00 FLOW RATE 438.1 100 7.70 100 2307.3 100 1153.7 100 1153.7 100 208.3 100 2670.5 100 528.2 100 Temperature -14.50 35.00 35.00 35.00 35.00 37.50 50.00 36.60 Pressure 16.00 16.00 16.00 16.00 16.00 16.00 13.00 1.80 Streams 17 18 8-A 13-A 21 22 23 24 Components (kg/h) (%) (kg/h) (%) (kg/h) (%) (kg/h) (%) (kg/h) (%) (kg/h) (%) (kg/h) (%) (kg/h) (%) Propylene 202.6 93.95 0.00 0.00 Propane 13.0 6.05 0.00 0.00 Propylene oxide (PO) 0.0 0.00 0.0 0.00 0.001 0.00 0.00 0.00 Methanol (MeOH) 0.6 27.46 2065.2 92.25 1034.5 96.04 1034.54 96.04 2065.87 92.25 2072.9 97.04 0.0 0.00 Water (H2O) 0.003 0.13 162.5 7.26 39.11 3.63 39.11 3.63 162.49 7.26 63.28 2.96 99.2 90.02 Hydrogen peroxide (H2O2) 0.0 0.00 1.6 0.15 1.60 0.15 0.00 0.00 Methoxypropanol 9.08 0.41 1.6 0.15 1.63 0.15 9.08 0.41 0.00 0.00 9.08 8.24 1,2 propandiol 1.92 0.09 0.343 0.03 0.34 0.03 1.92 0.09 1.92 1.74 Oxygen 0.15 6.61 0.15 0.007 NH4OH H2SO4 Nitrogen 1.5 65.80 0.000 0.00 0.02 0.00 FLOW RATE 2.3 100 2238.7 100 1077.2 100 1077.2 100 215.6 100 2239.5 100 2136.2 100 110.2 100 Temperature -15.00 67.30 84.30 40.00 -14.50 89.8 87.00 128.60 Pressure 1.10 1.20 16.00 16.00 16.00 10 2.50 2.66 Table 1-B Streams 8 9 10 11 12 13 14 15 16 Components (kg/h) (%) (kg/h) (%) (kg/h) (%) (kg/h) (%) (kg/h) (%) (kg/h) (%) (kg/h) (%) (kg/h) (%) (kg/h) (%) Propylene 0.0 0.00 318.2 11.92 0.0 0.00 411.63 93.95 318.2 60.25 0.0 0.00 195.2 8.32 0.0 0.00 196.2 55.70 Propane 0.0 0.00 26.5 0.99 0.0 0.00 26.50 6.05 26.5 5.03 0.0 0.00 12.9 0.55 0.000 0.00 12.9 3.68 Propylene oxide (PO) 0.000 0.00 128.4 4.81 0.0 0.00 128.4 24.31 0.0 0.00 8.30 0.35 0.00 0.00 51.6 14.71 Methanol (MeOH) 2012.9 93.96 2067.9 77.44 1956.8 91.86 55.0 10.41 2012.9 93.96 1955.9 83.37 2065.87 92.25 90.0 25.68 Nater (H2O) 118.7 5.54 118.7 4.45 159.2 7.47 0.0 0.00 118.7 5.54 162.3 6.92 162.32 7.25 0.76 0.22 Hydrogen peroxide (H2O2) 4.8 0.22 4.8 0.18 6.4 0.30 0.0 0.00 4.8 0.22 0.3 0.01 0.3 0.01 0.0 0.00 Methoxypropanol 4.9 0.23 4.9 0.18 6.5 0.31 0.0 0.00 4.9 0.23 9.1 0.39 9.1 0.41 0.0 0.00 1,2 propandiol 1.0 0.05 1.0 0.04 1.4 0.06 0.0 0.00 1.0 0.05 1.9 0.08 1.9 0.09 0.0 0.00 FLOW RATE 2142.4 100 2670.5 100 2130.3 100 438.1 100 528.2 100 2142.4 100 2345.9 100 2239.5 100 350.4 100 Temperature 84.30 50.00 30.00 -14.50 50.00 50.00 37.80 88.20 40.00 Pressure 1.94 13.00 16.00 16.00 16.00 13.00 1.80 2.01 1.10 ms 25 26 27 28 29 30 T 1-2-3 A1 AZ 33 onents (kg/h) (%) (kg/h) (%) (kg/h) (%) (kg/h) (%) (kg/h) (%) (kg/h) (%) (%) (%) (kg/h) (%) (kg/h) (%) ene 10.000 90.62 1028.8342 93.98 3.00 2.01 2.9910 2.72 0.0090 @e 1.035 9.38 65.9410 6.02 0.29 0.19 0.2850 0.26 0.0010 Propylene oxide (PO) 43.3 17.72 0.00 0.00 106.7210 97.02 265.114 99.99 Methanol (MeOH) 200.0 81.96 145.00 97.28 0.0020 0.00 0.0120 2068.9 97.03 Water (H2O) 0.77 0.32 0.77 0.51 0.0010 0.00 0.0020 90.00 90.00 63.28 2.97 Hydrogen peroxide (H2O2) 0.00 0.00 Methoxypropanol 0.00 0.00 1,2 propandiol Oxygen NH4OH 10.00 H2SO4 10.00 Nitrogen 0.0000 0.00 1.50 100.0 FLOW RATE 11.0 100 244.0 100 1094.8 100 149.1 100 110.0 100 265.1 100 100 100 1.5 100 2132.2 100 Temperature -14.30 63.40 -14.50 75.30 37.60 39.10 30.00 30.00 30.00 Pressure 3.80 1.68 3.80 3.88 1.20 1.22 16.00 16.00 16.00 Table 1-C Streams 31 35 36 37 38 40 41 Components (kg/h) (%) (kg/h) (%) (kg/h) (%) (kg/h) (%) (kg/h) (%) (kg/h) (%) (kg/h) (%) Hydrogen Oxygen 182.9 100 Nitrogen 43.9 100.00 Methanol (MeOH) 4.00 100.00 2068.94 96.88 99.84 Water (H2O) 0.26 96.30 2.61 85.02 66.15 3.10 0.14 Hydrogen peroxide (H2O2) 0.00 0.00 HBr 0.01 3.70 0.01 0.00 0.0 0.00 H2SO4 0.46 14.98 0.46 0.02 0.5 0.02 FLOW RATE 4.0 100 0.27 100 3.1 100 2135.6 100 0.5 100 182.9 100 43.9 100 Temperature 35.00 35.00 35.00 35.00 35.00 -180.00 30.00 Pressure 2.50 2.50 2.50 2.50 100.00 4.00 3.10 @treams 42 43 44 45 46 48 47 @omponents (kg/h) (%) (kg/h) (%) (kg/h) (%) (kg/h) (%) (kg/h) (%) (kg/h) (%) (kg/h) (%) Hydrogen 12.6 5.25 0.00 1.30 0.0 0.00 0.0 0.06 0.0 0.06 Oxygen 182.9 76.41 0.00 6.10 7.2 0.31 7.2 14.13 7.2 14.15 Nitrogen 43.9 18.34 0.00 92.60 43.9 1.86 43.9 85.71 43.9 85.80 Methanol (MeOH) 2069.1 87.71 0.05 0.10 0.1 0.05 Water (H2O) 78.2 3.32 100.00 100.00 100.0 99.95 Hydrogen peroxide (H2O2) 160.0 6.78 HBr 0.01 0.00 H2SO4 0.46 0.02 FLOW RATE 239.4 100 0.0 100 2359.0 100 51.2 100 51.2 100 100.0 100.0 100.1 100 Temperature 30.00 30.00 30.00 30.00 30.00 30.00 30.00 Pressure 100.00 100.00 100.00 1.50 1.00 1.00 1.00