Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
INTER-NETWORK HANDOVER SYSTEM AND METHOD
Document Type and Number:
WIPO Patent Application WO/2009/119699
Kind Code:
A3
Abstract:
There is described a method of facilitating handover of a user device between a source base station component in a first communications network of a first network type and a target base station component in a second communications network of a second network type. The method includes determining an identifier of at least one target gateway component connected to the target base station component in the second communications network. A handover request message is then generated in the first communications network, the handover request message incorporating the identifier of the at least one target gateway component. The handover request message is then transmitted to the second communications network. Apparatus for performing this and other related methods is also described, for example eNodeB, gateway and user device components.

Inventors:
SERRAVALLE FRANCESCA (GB)
Application Number:
PCT/JP2009/056030
Publication Date:
December 30, 2009
Filing Date:
March 18, 2009
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
NEC CORP (JP)
SERRAVALLE FRANCESCA (GB)
International Classes:
H04W36/14
Domestic Patent References:
WO2007007990A12007-01-18
Other References:
"Digital cellular telecommunications system (Phase 2+); Universal Mobile Telecommunications System (UMTS); Numbering, addressing and identification (3GPP TS 23.003 version 7.6.0 Release 7); ETSI TS 123 003", ETSI STANDARDS, LIS, SOPHIA ANTIPOLIS CEDEX, FRANCE, vol. 3-CN2;3-CN4, no. V7.6.0, 1 January 2008 (2008-01-01), XP014040553, ISSN: 0000-0001
QUALCOMM EUROPE ET AL: "Inter-RAT/frequency Automatic Neighbour Relation Function", 3GPP DRAFT; R3-072117 INTER-RAT ANR V1, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG5, no. Sophia Antipolis, France; 20080107, 30 October 2007 (2007-10-30), XP050306633
ERICSSON: "Requirements for Automatic Neighbour Relations", 3GPP DRAFT; S5-080409 E REQUIREMENTS FOR ANR, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG5, no. St Julian, Malta; 20080218, 10 February 2008 (2008-02-10), XP050307020
Attorney, Agent or Firm:
IKEDA, Noriyasu et al. (2-2 Uchisaiwaicho 1-chom, Chiyoda-ku Tokyo 11, JP)
Download PDF:
Claims:

CLAIMS

1. A method of facilitating handover of a user device between a source base station component in a first communications network of a first network type and a target base station component in a second communications network of a second network type, the method comprising: determining an identifier of at least one target gateway component connected to the target base station component in the second communications network; generating a handover request message in the first communications network, the handover request message incorporating the identifier of the at least one target gateway component; and transmitting the handover request message to the second communications network.

2. A method according to Claim 1 wherein determining an identifier of the target gateway component comprises receiving the identifier from the user device.

3. A method according to Claim 1 or 2 further comprising sending a request message to the user device to request that the user device obtain identification information relating to the target gateway component.

4. A method according to Claim 2 or 3 wherein the user device extracts the identifier of the target gateway component from system information broadcast by the second communications network.

5. A method according to any of Claims 1 to 4 further comprising receiving

from the user device a cell identifier of a cell in the second communications network, the cell being associated with the target base station component.

6. A method according to any of Claims 1 to 5 wherein the handover request message further includes an identifier of the target base station component.

7. A method according to Claim 6 further comprising obtaining the identifier of the target base station component.

8. A method according to Claim 7 wherein obtaining the identifier of the target base station component comprises receiving from the user device an identifier of a cell in the second communications network and performing a lookup in a lookup table of the identifier of the target base station component.

9. A method according to Claim 7 wherein obtaining the identifier of the target base station component comprises receiving an identifier of the target base station component from the user device.

10. A method according to any of Claims 1 to 9 wherein the first network type comprises E-UTRAN.

11. A method according to any of Claims 1 to 10 wherein the second network type comprises UTRAN.

12. A method according to any of Claims 1 to 10 wherein the second network type comprises GERAN.

13. A method according to of Claims 1 to 12 further comprising: receiving the handover request message at the gateway component in the second communications network; extracting a cell identifier from the handover request message; obtaining an identifier of a target base station component based on the cell identifier; and generating a second handover request message and forwarding the second handover request message to the target base station component.

14. A method according to any of Claims 1 to 13 wherein the identifier of the at least one target gateway component identifies a group of gateway components in the second communications network.

15. A method according to Claim 13 wherein the user device is assigned to a target gateway component in the group of gateway components by the second communications network.

16. Apparatus for facilitating a handover of a user device from a source base station component in a first communications network of a first network type to a target base station component in a second communications network of a second network type, the apparatus comprising: means for determining an identifier of at least one target gateway component connected to the target base station component in the second communications network; means for generating a handover request message in the first communications network, the handover request message incorporating the identifier of the at least one target gateway component; and means for transmitting the handover request message to the second

communications network.

17. Apparatus according to Claim 16 wherein the means for determining an identifier of the target gateway component comprises means for receiving the identifier from the user device.

18. Apparatus according to Claim 16 or 17 further comprising means for sending a request message to the user device to request that the user device obtain identification information relating to the target gateway component.

19. Apparatus according to any of Claims 16 to 18 further comprising means for receiving from the user device a cell identifier of a cell in the second communications network, the cell being associated with the target base station component.

20. Apparatus according to any of Claims 16 to 19 wherein the handover request message further includes an identifier of the target base station component.

21. Apparatus according to any of Claims 16 to 20 further comprising means for obtaining the identifier of the target base station component.

22. Apparatus according to any of Claims 16 to 21 wherein the means for obtaining the identifier of the target base station component comprises: means for receiving from the user device an identifier of a cell in the second communications network; and means for performing a lookup in a lookup table of the identifier of the target base station component.

23. Apparatus according to any of Claims 16 to 22 wherein the means for obtaining the identifier of the target base station component comprises means for receiving an identifier of the target base station component from the user device.

24. Apparatus according to any of Claims 16 to 23 wherein the first network type comprises E-UTRAN.

25. Apparatus according to any of Claims 16 to 24 wherein the second network type comprises UTRAN.

26. Apparatus according to any of Claims 16 to 24 wherein the second network type comprises GERAN.

27. Apparatus according to any of Claims 16 to 26 further comprising: means for receiving the handover request message at the gateway component in the second communications network; means for extracting a cell identifier from the handover request message; means for obtaining an identifier of a target base station component based on the cell identifier; and means for generating a second handover request message and forwarding the second handover request message to the target base station component.

28. Apparatus for facilitating a handover of a user device from a source base station component in a first communications network of a first network type to a target base station component in a second communications network of a

second network type, the apparatus comprising: a processor for determining an identifier of at least one target gateway component connected to the target base station component in the second communications network; a processor for generating a handover request message in the first communications network, the handover request message incorporating the identifier of the at least one target gateway component; and a transmitter for transmitting the handover request message to the second communications network.

29. Apparatus according to Claim 28 wherein the processor is further operable to extract the identifier of the target gateway component from a message received from the user device.

30. A method of operating a gateway device in a second communications network of a second type, the method comprising: receiving a first handover request message from a source base station component; extracting a cell identifier from the handover request message; obtaining an identifier of a target base station component based on the cell identifier; and generating a second handover request message and forwarding the second handover request message to the target base station component.

31. A method according to Claim 30 wherein the second communications network comprises a UTRAN network.

32. A method according to Claim 30 or 31 wherein the source base station

component comprises a base station component in a first communications network of a first type.

33. A method according to Claim 32 wherein the first communications network comprises an E-UTRAN network.

34. A method according to any of Claims 30 to 33 wherein obtaining an identifier of a target base station component comprises requesting the identifier of the target base station component from a database based on the extracted cell identifier.

35. A method according to any of Claims 28 to 32 further comprising storing a mapping of cell identifiers to identifiers of target base station components internally in a database in the gateway device.

36. A method according to Claim 35 wherein requesting comprises requesting the identifier of the target base station component from a database stored externally.

37. A method according to any of Claims 1 to 15 or 30 to 36 wherein the gateway device comprises a Serving GPRS Support Node (SGSN).

38. A method according to any of Claims 1 to 15 or 30 to 37 wherein the target base station component comprises a Radio Network Controller (RNC).

39. A gateway device operating in a second communications network of a second type, the gateway device comprising: means for receiving a first handover request message from a source

base station component; means for extracting a cell identifier from the handover request message; means for obtaining an identifier of a target base station component based on the cell identifier; means for generating a second handover request message; and means for forwarding the second handover request message to the target base station component.

40. A gateway according to Claim 39 wherein the second communications network comprises a UTRAN network.

41. A gateway according to Claim 39 or 40 wherein the source base station component comprises a base station component in a first communications network of a first type.

42. A gateway according to Claim 41 wherein the. first communications network comprises an E-UTRAN network.

43. A gateway according to any of Claims 39 to 42 wherein the means for obtaining an identifier of a target base station component comprises means for requesting the identifier of the target base station component from a database based on the extracted cell identifier.

44. A gateway according to any of Claims 39 to 43 further comprising means for storing a mapping of cell identifiers to identifiers of target base station components internally in a database in the gateway device.

45. A gateway according to any of Claims 39 to 43 further comprising means

for requesting the identifier of the target base station component from a database stored externally.

46. Apparatus according to any of Claims 16 to 27 or 39 to 45 wherein the gateway device comprises a Serving GPRS Support Node (SGSN).

47. Apparatus according to any of Claims 16 to 27 or 39 to 46 wherein the target base station component comprises a Radio Network Controller (RNC).

48. A gateway device operating in a second communications network of a second type, the gateway device comprising: a receiver for receiving a first handover request message from a source base station component; a processor for extracting a cell identifier from the handover request message; a processor for obtaining an identifier of a target base station component based on the cell identifier; a processor for generating a second handover request message; and a transmitter for forwarding the second handover request message to the target base station component.

49. A method of operating a user device in a first communications network, the method comprising: receiving a request from a base station component of the first communications network for information relating to a cell in a second communications network; obtaining a cell identifier of the cell in the second communications network;

obtaining an identifier of a gateway component associated with the cell in the second communications network; and transmitting the cell identifier and the identifier of the gateway component to the base station component of the first communications network.

50. A method according to Claim 49 wherein obtaining comprises receiving information broadcast by the cell in the second communications network.

51. A method according to Claim 49 or 50 wherein the cell identifier comprises a Global Cell Identity.

52. A method according to any of Claims 49 to 51 wherein the identifier of the gateway component comprises a Routing Area Code associated with the cell in the second communications network.

53. A method according to any of Claims 49 to 52 wherein the identifier of the gateway component comprises a Location Area Code associated with the cell in the second communications network.

54. A method according to any of Claims 49 to 53 wherein the identifier of the second gateway component comprises an SGSN identifier.

55. A method according to any of Claims 49 to 54 further comprising: obtaining an identifier of a second base station component associated with the cell in the second communications network; and transmitting the cell identifier and the identifier of the second base station component to the first base station component of the first communications network.

56. A user device operating in a first communications network, the user device comprising: means for receiving a request from a base station component of the first communications network for information relating to a cell in a second communications network; means for obtaining a cell identifier of the cell in the second communications network; means for obtaining an identifier of a gateway component associated with the cell in the second communications network; and means for transmitting the cell identifier and the identifier of the gateway component to the base station component of the first communications network.

57. A user device according to Claim 56 wherein the means for obtaining comprises means for receiving information broadcast by the cell in the second communications network.

58. A user device according to Claim 53 or 54 wherein the cell identifier comprises a Global Cell Identity.

59. A user device according to any of Claims 56 to 58 wherein the identifier of the gateway component comprises a Routing Area Code associated with the cell in the second communications network.

60. A user device according to any of Claims 56 to 59 wherein the identifier of the gateway component comprises a Location Area Code associated with the cell in the second communications network.

61. A user device according to any of Claims 56 to 60 wherein the identifier of the second gateway component comprises an SGSN identifier.

62. A user device according to any of Claims 56 to 61 further comprising: means for obtaining an identifier of a second base station component associated with the cell in the second communications network; and means for transmitting the cell identifier and the identifier of the second base station component to the first base station component of the first communications network.

63. A user device operating in a first communications network, the user device comprising: a receiver for receiving a request from a base station component of the first communications network for information relating to a cell in a second communications network; a processor for obtaining a cell identifier of the cell in the second communications network; a processor for obtaining an identifier of a gateway component associated with the cell in the second communications network; and a transmitter for transmitting the cell identifier and the identifier of the gateway component to the base station component of the first communications network.

64. A method of operating a user device in a first communications network, the method comprising: receiving a request from a first base station component of the first communications network for information relating to a cell in a second communications network;

obtaining a cell identifier of the cell in the second communications network; obtaining an identifier of a second base station component associated with the cell in the second communications network; and transmitting the cell identifier and the identifier of the second base station component to the first base station component of the first communications network.

65. A method according to Claim 64 wherein obtaining a cell identifier and an identifier of a second base station component comprises receiving information broadcast by the cell in the second communications network.

66. A method according to Claim 64 or 65 wherein the cell identifier comprises a Global Cell Identity.

67. A method according to any of Claims 64 to 66 wherein the identifier of the second base station component comprises an Radio Network Controller identifier.

68. A method according to any of Claims 64 to 67 wherein obtaining an identifier of a second base station component comprises performing a lookup of the identifier of the second base station component based on the cell identifier.

69. A user device operating in a first communications network, the user device comprising: means for receiving a request from a first base station component of a first communications network for information relating to a cell in a second communications network;

means for obtaining a cell identifier of the cell in the second communications network; means for obtaining an identifier of a second base station component associated with the cell in the second communications network; and means for transmitting the cell identifier and the identifier of the second base station component to the first base station component of the first communications network.

70. A user device according to 66 wherein the means for obtaining a cell identifier and the identifier of the second base station component comprises means for receiving information broadcast by the cell in the second communications network.

71. A user device according to Claim 69 or 70 wherein the cell identifier comprises a Global Cell Identity.

72. A user device according to any of Claims 69 to 71 wherein the identifier of the second base station component comprises an Radio Network Controller identifier.

73. A user device according to any of Claims 69 to 72 wherein the identifier of the gateway component comprises a Location Area Code associated with the cell in the second communications network.

74. A user device according to any of Claims 69 to 73 wherein the means for obtaining an identifier of a second base station component comprises means for performing a lookup of the identifier of the second base station component based on the cell identifier.

75. A user device operating in a first communications network, the user device comprising: a receiver for receiving a request from a first base station component of a first communications network for information relating to a cell in a second communications network; a processor for obtaining a cell identifier of the cell in the second communications network; a processor for obtaining an identifier of a second base station component associated with the cell in the second communications network; and a transmitter for transmitting the cell identifier and the identifier of the second base station component to the first base station component of the first communications network.

76. A method of operating a first base station component in a first communications network, the method comprising: transmitting a request to a user device operating in the first communications network for information relating to a cell in a second communications network; receiving a cell identifier of the cell in the second communications network; and obtaining an identifier of a second base station component associated with the cell in the second communications network.

77. A method according to Claim 76 further comprising obtaining an identifier of a gateway component associated with the cell in the second communications network.

78. A method according to Claim 76 or 77 further comprising generating a handover request message comprising the identifier of the second base station component and transmitting the handover request message to a gateway component in the second communications network.

79. A method according to any of Claims 76 to 78 wherein obtaining an identifier of the second base station component comprises receiving the identifier from the user device operating in the first communications network.

80. A method according to any of Claims 76 to 79 wherein obtaining an identifier of the second base station component comprises performing a lookup of the identifier based on the cell identifier of the cell in the second communications network.

81. A base station component operating in a first communications network, the base station component comprising: means for transmitting a request to a user device operating in the first communications network for information relating to a cell in a second communications network; means for receiving a cell identifier of the cell in the second communications network; and means for obtaining an identifier of a second base station component associated with the cell in the second communications network.

82. A base station component according to Claim 81 further comprising means for obtaining an identifier of a gateway component associated with the cell in the second communications network.

83. A base station component according to Claim 81 or 82 further comprising means for generating a handover request message comprising the cell identifier and the identifier of the second base station component and means for transmitting the handover request message to a gateway component in the second communications network.

84. A base station component according to any of Claims 81 to 83 wherein the means for obtaining an identifier of the second base station component comprises means for receiving the identifier from the user device operating in the first communications network.

85. A base station component operating in a first communications network, the base station component comprising: a transmitter for transmitting a request to a user device operating in the first communications network for information relating to a cell in a second communications network; a receiver for receiving a cell identifier of the cell in the second communications network; and a processor for obtaining an identifier of a second base station component associated with the cell in the second communications network.

Description:

DESCRIPTION

INTER-NETWORK HANDOVER SYSTEM AND METHOD

TECHNICAL FIELD:

The present invention relates to connections in communications networks, particularly but not exclusively networks operating according to the 3GPP standards or equivalents or derivatives thereof.

BACKGROUND ART:

As the requirements and operation of communications systems have changed, several different types of telecommunications networks have been developed. One type of network is a Universal Terrestrial Radio Access Network (UTRAN). In addition, Evolved-UTRAN or E-UTRAN networks are being developed based on UTRAN, but with increased flexibility, simplified architecture and other advantages for users and service providers. Some items of user equipment (UE) are able to connect both to UTRAN and to E-UTRAN networks. Therefore, it is desirable if the different network types interwork. In particular, it would be advantageous if components of one network type could perform handover of a UE to components of another network type.

DISCLOSURE OF INVENTION:

According to one aspect, there is provided a method of facilitating handover of a user device between a source base station component in a first communications network of a first network type and a target base station component in a second communications network of a second network type, the method comprising: determining a gateway identifier of at least one target gateway

component connected to the target base station component in the second communications network; generating a handover request message in the first communications network, the handover request message incorporating the gateway identifier of the at least one target gateway component; and transmitting the handover request message to the second communications network.

Hence handover of the user device from the network of the first type to the network of the second type is enabled by the source base station component addressing the target gateway component using the gateway identifier.

According to a further aspect, there is provided a method of operating a gateway device in a second communications network of a first type, the method comprising: receiving a first handover request message from a source base station component; extracting a cell identifier from the handover request message; obtaining an identifier of a target base station component based on the cell identifier; and generating a second handover request message and forwarding the second handover request message to the target base station component.

This aspect advantageously enables a gateway device of a target network, such as a target SGSN, to handle handover of a UE from a source base station component to a target base station component without the source base station component having to be aware of an identifier for the target base station component.

According to a further aspect, there is provided a method of operating a user device in a first communications network, the method comprising:

receiving a request from a base station component of the first communications network for information relating to a cell in a second communications network; obtaining a cell identifier of the cell in the second communications network; obtaining an identifier of a gateway component associated with the cell in the second communications network; and transmitting the cell identifier and the identifier of the gateway component to the base station component of the first communications network.

The present aspect may enable a user device to obtain the necessary information to enable handover of the user device from a component in a network of a first type to a component in a network of a second type.

According to a further aspect, there is provided a method of operating a user device in a first communications network, the method comprising: receiving a request from a first base station component of the first communications network for information relating to a cell in a second communications network; obtaining a cell identifier of the cell in the second communications network; obtaining an identifier of a second base station component associated with the cell in the second communications network; and transmitting the cell identifier and the identifier of the second base station component to the first base station component of the first communications network.

In the present aspect, the user device may therefore obtain all of the information necessary to facilitate handover of the user device to the second network. In particular, the identifier of the second base station component to which the user device is being handed over.

According to a further aspect, there is provided a method of operating a first base station component in a first communications network, the method

comprising: transmitting a request to a user device operating in the first communications network for information relating to a cell in a second communications network; receiving a cell identifier of the cell in the second communications network; and obtaining an identifier of a second base station component associated with the cell in the second communications network.

This aspect enables a base station component to obtain information necessary for handover of a UE to a component in a second network without any changes or additional steps being taken in the UE.

The various acronyms applicable in the telecommunications network will of course be familiar to those skilled in the art, but a glossary is appended for the benefit of lay readers. Although for efficiency of understanding for those of skill in the art the invention will be described in detail in the context of a E- UTRAN and UTRAN system, the principles of the identifier system can be applied to other systems, e.g. 3G, CDMA or other wireless systems in which base station components, such as eNodeB components, communicate with each other or with other devices, such as gateway devices, in the telecommunications network, with the corresponding elements of the system changed as required. The present methods and systems may also be implemented in wireless local area networks (WLANs) or other local or wide area networks (LANs or WANs).

Aspects of the invention are set out in the independent claims. Preferred features of the aspects are set out in the dependent claims. The invention provides, for all methods disclosed, corresponding computer programs or computer program products for execution on corresponding equipment, the equipment itself (user equipment, nodes, networks or

components thereof, including gateway and base station nodes for carrying out the methods described) and methods of configuring and updating the equipment. Features of one aspect may be applied to other aspects.

Exemplary embodiments of the systems and methods described herein will now be described in more detail with reference to the accompanying figures in which:

BRIEF DESCRIPTION OF THE DRAWINGS:

Figure 1 is a schematic diagram of a portion of a E-UTRAN network; Figure 2 is a schematic diagram of a portion of a UTRAN network;

Figure 3 illustrates an Automatic Neighbour Relation process;

Figure 4 is a schematic illustration of a Global Cell Identity message;

Figure 5 illustrates an Inter-RAT handover according to one embodiment; Figure 6 illustrates a relationship between Location Areas and SGSN serving areas;

Figure 7 is a schematic diagram of an Iu Flex scenario;

Figure 8 is a block diagram illustrating the main components of one of the base stations shown in Figure 1 ; Figure 9 is a block diagram illustrating the main components of one of the mobile telephones shown in Figure 1 ; and

Figure 10 is a block diagram illustrating the main components of one of the gateways shown in Figure 2.

BEST MODE FOR CARRYING OUT THE INVENTION:

The following description sets out a number of specific exemplary embodiments of the method and system claimed herein. It will be clear to one skilled in the art that variations of the features and method steps may be

provided and that many of the features described are not essential to the invention.

Figure 1 schematically illustrates a mobile (cellular) telecommunication system 1 according to the E-UTRAN protocol in which users of mobile (or cellular) telephones (MT) 3-0, 3-1 , and 3-2 (which may be termed user devices or user equipment (UE)) can communicate with other users (not shown) via one of the base stations 5-1 , 5-2 or 5-3 (which may be termed eNodeBs or eNBs) and a telephone network 7 or Core Network (CN). The telephone network 7 includes a plurality of components including gateway components 9-1 , 9-2, in one exemplary embodiment MMEs. It will be appreciated by the skilled person that the each base station 5-1 , 5-2, 5-3 may connect to the telephone network 7 via either gateway 9-1 , 9-2 and that all base stations 5-1 , 5-2, 5-3 may connect via the same gateway 9-1 , 9-2. Similarly, each mobile telephone 3 may connect to the telephone network 7 via either base station 5 and that all mobile telephones 3 may connect via the same base station 5.

When a mobile telephone 3 enters the network 7, for example by being switched on, a connection is established between the mobile telephone 3 and a base station 5 and between the base station 5 and a gateway device 9. This enables communication between the mobile telephone 3 and other components in the network 7.

Also, when a mobile telephone 3 moves from the cell of a source base station (e.g. base station 5-1 ) to a target base station (e.g. base station 5-2), a handover procedure (protocol) is carried out in the source and target base stations 5 and in the mobile telephone 3, to control the handover process. The handover is enabled by the establishment of a connection between the source and target base stations 5. As part of the handover process, the gateway device 9-1 , 9-2 via which communications from a mobile telephone 3 are transmitted to the telephone network may change. Alternatively, the gateway

device 9-1 , 9-2 through which communications are transmitted may remain the same, but the base station 5-1 , 5-2 to which the mobile device is connected may change. These transfers are also enabled by the establishment of connections between the base stations 5 and the gateways 9. An E-UTRAN protocol network may also be termed an LTE or Long

Term Evolution of UTRAN network.

Figure 2 schematically illustrates a mobile (cellular) telecommunication system 2 according to the UTRAN protocol in which users of mobile (or cellular) telephones (MT) 210-1 , 210-2 and 210-3 (which may be termed user devices or user equipment (UE)) can communicate with other users (not shown) via one of the base stations 212-1 , 212-2 and 212-3 (which may be termed NodeBs or NBs). Each of the base stations is associated with a network controller 214-1 , 214-2, or RNC (Radio Network Controller), which is then connected to a telephone network 218 or Core Network (CN). The telephone network 218 includes a plurality of components including gateway components 216-1 , 216-2, in one embodiment SGSNs.

In a UTRAN network, handover of UEs may also be performed between base stations. The handover of a UE between base stations in a UTRAN network may also involve a handover between controllers in the network and a handover between gateway components in the network.

A UTRAN protocol network may also be referred to as a UMTS network (Universal Mobile Telecommunications System network).

Each type of telecommunications network may be termed a Radio Access Technology (RAT). One skilled in the art will appreciate that each type of network may include fewer or additional network components and Figures 1 and 2 are not intended to be limiting in any way.

One exemplary embodiment of the Automatic Neighbour Relation

(ANR) function will now be described with reference to Fig. 3. This process enables a base station, such as an eNB in an LTE network, to discover information relating to neighbour cells. In a situation where different types of networks overlap, ANR enables an eNB to look for neighbour cells using different Radio Access Technologies (RATs) or different frequencies.

As illustrated in Fig. 3, a first base station 310 in an LTE network may use the process to determine whether there are other neighbouring base stations in the area, for example base stations that are part of other types of networks. The base station 310 sends a Report Neighbour Request message

316 to a user device (UE) 314 that is connected to the base station 310, requesting that the UE 314 reports the presence of any neighbouring base stations to the first base station 310.

The UE 314 sends a Report Neighbour Response message 318 to the first base station 310 reporting the presence of a second base station 312, which is part of a different type of network, in this case a UTRAN network. The response message 318 includes information relating to the second base station 312, such as the signal level from the second base station and the Physical- layer Cell Identity (Phy-CID) of the base station 312. The first base station 310 may then request further information about the second base station 312 by sending a Report Global Cell Identity (Global- CID) Request 320 to the UE 314, identifying the second base station using the Phy-CID supplied in the Report Neighbour Response message 318.

The UE 314 obtains the Global-CID information 322 from the second base station 312 and reports this information back to the first base station 310 using a Report Global-CID message 324.

The first base station 310 then updates its Inter-Radio Access Technology (Inter-RAT) neighbour relation list, which it maintains in memory, to

store details of the new neighbour node.

The UE 314 obtains the Global-CID information from the second base station from a Global-CID message 400 that the second base station broadcasts from time to time. One example of a Global-CID message 400 is illustrated in Fig. 4. The message includes information locating the cell to which it relates. In particular, the Mobile Country Code (MCC) 410, which identifies the country of the cell, the Mobile Network Code (MNC) 412, which identifies the carrier or network operator associated with the cell, and the Location Area Code (LAC) 414, which identifies a group of cells within the network. This information together forms the Location Area Identification (LAI) 420. The Global-CID message 400 further includes the Cell Identity (Cl) 416. As noted above, the Global-CID information is broadcast in each cell.

A specific example of how a source eNB 510 in a E-UTRAN or LTE network 520 performs handover of a UE 516 to a NodeB 524 and RNC 512 in a UTRAN network 522 is set out below with reference to Figure 5.

As set out above, the eNB 510 in the E-UTRAN network 520 determines the existence of a cell in a UTRAN network 522 via the UE 516 using the ANR method described above. The eNB 510 obtains and stores information provided in the Global-CID of the UTRAN cell. In order for the source eNB 510 to hand over the UE 516 to the

UTRAN target RNC 512, the eNB 510 needs to address the SGSN 514 associated with the target cell and, in some embodiments as described in more detail below, to provide information for the SGSN to address the target RNC. However, the Global-CID does not contain sufficient information to enable the source eNB 510 to address the target SGSN 514.

In order to address the target SGSN 514, the MCC and MNC (which together form the Public Land Mobile Network (PLMN) ID), and the LAC are required and these can be obtained from the Global-CID. However, to address

the target SGSN 514, the source eNB 510 also needs the Routing Area Code (RAC) associated with the target SGSN 514. This additional information is needed since one location area (identified by the LAC) may cover more than one SGSN service area, as illustrated in Figure 6. Figure 6 illustrates the situation in which a plurality of SGSNs service a single location area. For example RNC3 614, serviced by SGSN1 610 and RNC 1 616 serviced by SGSN2 612 are within the same location area, LA1 618. Therefore an LAC identifying LA1 618 would not uniquely identify an SGSN, since SGSN 1 610 and SGSN2 612 are both within LA1. However, the RAC is not included in the Global-CID obtained by the UE.

In the present exemplary embodiment, therefore, the UE 516 is arranged to obtain the RAC of the target cell and report this information to the source eNB 510 together with the Global-CID. In order to obtain the RAC, the UE 516 reads the RAC from the core network (CN) system information in the System Information Block 1 (SIB 1 ). SIB 1 is one of a number of system information blocks broadcast by the target cell in order to provide information about the target cell.

The UE 516 is preferably pre-programmed, on receipt of a "Report Global-CID Request" message from a source eNB 510, to obtain both the Global-CID information and the RAC from information periodically broadcast by UTRAN cell.

In an alternative embodiment, the source eNB 510 may specifically request the UE 516 to obtain the RAC, either in the Report Global-CID request message or as a separate message. The source eNB 510 can then use the RAC obtained by the UE 516 to address the target SGSN 514, enabling the handover of the UE 516 to the target SGSN 514. It is noted that the source eNB 510 also needs to use information from the Global-CID, in particular the LAI, to address the target

SGSN in addition to the RAC.

With reference to Figure 7, in an Iu Flex network, in which a many-to- many relationship between SGSNs and RNCs is permitted within a pool area, a single RNC 710 may be served by more than one SGSN, e.g. SGSNs 712 and 714. Therefore the RAC no longer necessarily identifies a single SGSN. In this embodiment, preferably the RAC is assumed to address the default SGSN within the pool area, for example SGSN 712 in Figure 7.

It is not currently proposed but it is possible, in some implementations, that the Network Resource Identifier (NRI) could be used to uniquely identify a particular SGSN in the pool area.

Turning again to Figure 5, once the source eNB 510 has addressed the target SGSN 514, according to the current UMTS specification, the target SGSN 514 addresses the target RNC 512. That is, the target SGSN 514 forwards the Relocation Request to the target RNC 512 according to the RNC identifier received from the source system. However, in the case of Inter-RAT handover, the source eNB 510 does not know the identifier of the target RNC 512.

In one exemplary embodiment, the routing information in the target SGSN 514 is changed to enable the target SGSN 514 to address the target RNC 512 based on the Global-CID. The Global-CID is sent from the source eNB 510 to the target SGSN 514. The target SGSN 514 is arranged to store the structure of the Radio Access Network (RAN) and a mapping between the Global-CID and the RNC identifier. Hence the target SGSN 514 can address the target RNC 512 based on the Global-CID. The mapping between the Global-CID and the RNC identifier may be stored internally or the SGSN may query an external database, such as a Domain Name Server (DNS) to obtain the target RNC identifier.

In an alternative exemplary embodiment, the UTRAN network may be

changed so that, together with the Global-CID, the RNC identifier of the target cell is also broadcast. The UE 516 would then report the identifier of the target RNC 512 to the source eNB 510 with the Global-CID when the cell is detected. Hence the source eNB 510 can address the target SGSN 514 and provide the identifier of the target RNC 512 in the Handover Request message.

Alternatively, the source eNB 510 may be configured to query a lookup table using the Global-CID, which will then return the corresponding RNC identifier. This may then be transmitted to the target SGSN 514 as set out above. Advantageously, the present systems and methods described my enable handover from LTE to UMTS networks without requiring pre- configuration in the source eNB of the LTE network.

Figure 8 is a block diagram illustrating the main components of one of the base stations 5 shown in Figure 1 and used in an exemplary embodiment of the invention. As shown, the base station 5 includes a transceiver circuit 21 which is operable to transmit signals to and to receive signals from the mobile telephones 3 via one or more antennae 23 and which is operable to transmit signals to and to receive signals from the telephone network 7 via a network interface 25. The operation of the transceiver circuit 21 is controlled by a controller 27 in accordance with software stored in memory 29. The software includes, among other things, an operating system 31 , an Identifier Management Module 33 and a Handover Module 35. The Identifier Management Module 33 is operable for requesting information relating to identifiers of target gateway and base station components and of storing, processing and managing this information. As shown in Figure 3, the software also includes a Handover module 35 for generating and transmitting handover requests based on the identifier information.

Figure 9 is a block diagram illustrating the main components of one of

the mobile telephones shown in Figure 1 according to one exemplary embodiment. As shown, the mobile telephones 3 include a transceiver circuit 71 which is operable to transmit signals to and to receive signals from the base station 5 via one or more antennae 73. As shown, the mobile telephone 3 also includes a controller 75 which controls the operation of the mobile telephone 3 and which is connected to the transceiver circuit 71 and to a loudspeaker 77, a microphone 79, a display 81 , and a keypad 83. The controller 75 operates in accordance with software instructions stored within memory 85. As shown, these software instructions include, among other things, an operating system 87 and an Identifier Request Module 89. The identifier request module 89 is operable to request identifiers, such as Global-CID and RAC identifier and manage the transmission of this information to base station components in the network.

Figure 10 is a block diagram illustrating the main components of each of the gateway components 9 used in this exemplary embodiment. As shown, each gateway 9 includes a transceiver circuit 41 , which is operable to transmit signals to and to receive signals from at least controller 214-1 via a base station interface 43 and which is operable to transmit signals to and receive signals from the rest of the telephone network 7 via a network interface 45. A controller 47 controls the operation of the transceiver circuit 41 in accordance with software stored in memory 49. The software includes, among other things, an operating system 51 , an identifier management module 53 for obtaining and handling identifiers of target base stations and a handover module 55 for receiving and handling handover requests. In the above description, the base stations 5, the gateways 9 and the mobile telephones 3 are described for ease of understanding as having respective discrete modules which operate according to the methods described herein. Whilst the features may be provided in this way for certain applications,

for example where an existing system has been modified to implement the invention, in other applications, for example in systems designed with the inventive features in mind from the outset, these features may be built into the overall operating system or code and so the modules described above may not be discernable as discrete entities.

Hence, Inter-RAT handover of UEs may be achieved using the systems and methods described above.

While the invention has been particularly shown and described with reference to exemplary embodiments thereof, the invention is not limited to these embodiments. It will be understood by those ordinary skill in the art that various changes in form and details may be made therein without departing from the sprit and scope of the present invention as defined by the claims.

Glossary of 3GPP terms

LTE - Long Term Evolution (of UTRAN) eNodeB - E-UTRAN Node B

AGW - Access Gateway

UE - User Equipment - mobile communication device

DL - downlink - link from base to mobile

UL - uplink - link from mobile to base AM - Acknowledge Mode

UM - Unacknowledge Mode

MME - Mobility Management Entity

UPE - User Plane Entity

CN - Core Network HO - Handover

RAN - Radio Access Network

RANAP - Radio Access Network Application Protocol

RLC - Radio Link Control

RNC - Radio Network Controller

RRC - Radio Resource Control

RRM - Radio Resource Management

SDU - Service Data Unit SRNC - Serving Radio Network Controller

PDU - Protocol Data Unit

NAS - Non Access Stratum

ROHC - Robust Header Compresion

TA - Tracking Area U-plane or UP - User Plane

TNL - Transport Network Layer

S1 Interface - Interface between Access Gateway and eNodeB

X2 Interface - Interface between two eNodeBs

MMEs / SAE Gateway - Access Gateway having both MME and UPE entities Global-CID - Global Cell Identity

SGSN - Serving GPRS Support Node

LAC - Location Area Code

RAC - Routing Area Code

The following is a detailed description of the way in which the present inventions may be implemented in the currently proposed 3GPP LTE standard. Whilst various features are described as being essential or necessary, this may only be the case for the proposed 3GPP LTE standard, for example due to other requirements imposed by the standard. These statements should not, therefore, be construed as limiting the present invention in any way.

Title: Inter-RAT ANR enhancement: Target Node Addressing in UTRAN

1 Introduction

In the last RAN3 meeting, stage 2 specifications have been updated in order to include the ANR IRAT functionality.

This proposal focuses to the LTE-UTRAN scenario. In particular this contribution proposes necessary enhancement to the functionality to allow the addressing of the target node in the target node in UTRAN.

2 RAN3 current status

Below is a summary of the ANR IRAT, illustrated in Figure 3:

• The eNB instructs the UE to look for neighbor cells in the target RATs/frequencies • The UE reports the Phy-CID of the detected cells in the target

RATs/frequencies. The Phy-CID is defined by the Primary Scrambling Code (PSC) in case of UTRAN FDD cell, by the cell parameter ID in case of UTRAN TDD cell and by the BSIC in case of GERAN cell

• The eNB instructs the UE, to read the Global-CID of the detected neighbour cell in the target RAT/frequency. It is FFS how this is achieved

• The UE reports the detected Global-CID to the serving cell eNB

• The eNB updates its inter-RAT/frequency neighbour relation list. 2.1 Discussion Execution of the IRAT HO involves addressing the target node. This issue can be split into two main issues:

• Addressing the target SGSN

• Addressing the target RNC.

The only information the eNB knows about the target system is the Global cell id of the reported cell.

According to [1], Global cell id or Global cell definition is defined as illustrated in Figure 4.

As explained below, this information is not enough for the source eNB

to address the target node in UTRAN.

2.1.1 Target SGSN Addressing

Following information are needed to address the target SGSN

> PLMN id (MCC and MNC) > LAC

> RAC

RAC is needed since one Location Area may cover more than one SGSN service area (see below).

Figure 6 illustrates Location Area and SGSN Serving Area Proposal 1: UE should report the RAC of the target cell together with the target Global cell id. UE will read the RAC from the CN system information in the SIB 1.

In case of Iu Flex, the target RNC will be connected to all the SGSN in the pool area, i.e. same RAC may be served by more than one SGSN. In this case, the target SGSN is addressed as follow:

• Together with the PLMN id, LAC and RAC, also the NRI is needed to identify the target SGSN

• The NRI is used to identify the SGSN in a pool area

Figure 7 illustrates a possible Iu flex scenario Proposal 2: no use of NRI will be made from the source system in order to address the target SGSN in a pool area i.e. always the default SGSN will be addressed.

2.1.2 Target RNC Addressing

According to the current UMTS specification, target SGSN address the target RNC e.g. forward the Relocation Request to the target RNC according to the RNC id received from the source system.

In the case of IRAT ANR, the source eNB does not know the target RNC id. In order to allow the addressing of the target RCN, following proposals

are listed:

> Proposal 3:

> Changing the routing information in the SGSN in order to allow the RNC to be addressed by means of Global cell id. As a consequence:

> Global cell id to be send to the target SGSN

> SGSN should either know the structure of cells in the RAN and store the mapping Global cell id-RNC id or querying the DNS to get it. > Proposal 4

> Change the System information in UTRAN so that the RNC id is also broadcasted. The UE would then reports the RNC id to the source eNB whenever the cell is detected

> Proposal 5 > Query a look up table with the Global cell id in order to get the

RNC id back which will then be informed to the target SGSN

3 Conclusion

In this contribution we propose to enhance the IRAT ANR in order to allow the target node in UTRAN to be addressed.

It is proposed to discuss the contribution and agree on the proposals in section 2. NEC is available to prepare the necessary CRs to update the stage 2 specification accordingly.

4 Reference [1 ] 23.003: Technical Specification Group Core Network and Terminals;

Numbering, addressing and identification

This application is based upon and claims the benefit of priority from

United Kingdom patent application No. 0805436.3, filed on March 25, 2008, the disclosure of which is incorporated herein in its entirety by reference.




 
Previous Patent: ABSORPTION HEAT PUMP UNIT

Next Patent: WO/2009/119754