Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
LAYER ARRANGEMENT
Document Type and Number:
WIPO Patent Application WO/2012/150064
Kind Code:
A1
Abstract:
The present invention relates to an arrangement, comprising at least three successive layers, wherein the three layers have an upper electrode layer (16), a lower electrode layer (14) and an electrolyte layer (18) arranged between the upper electrode layer (16) and the lower electrode layer (14), wherein at least the electrolyte layer (18) and either the upper electrode layer (16) or the lower electrode layer (14) have an organic matrix, and wherein the organic matrix of the electrolyte layer (18) has an ion conductivity in a range of ≥ 10-6 S/cm. Such an arrangement is particularly suitable for forming a lithium-ion rechargeable battery and enables simple and inexpensive production and good matchability to the desired application.

Inventors:
PIRK TJALF (DE)
GHAHREMANPOUR MEHRAN (DE)
SAEGEBARTH JOACHIM (DE)
BOGNER MARTIN (DE)
SANDMAIER HERMANN (DE)
Application Number:
PCT/EP2012/053889
Publication Date:
November 08, 2012
Filing Date:
March 07, 2012
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BOSCH GMBH ROBERT (DE)
PIRK TJALF (DE)
GHAHREMANPOUR MEHRAN (DE)
SAEGEBARTH JOACHIM (DE)
BOGNER MARTIN (DE)
SANDMAIER HERMANN (DE)
International Classes:
H01M4/62; H01M10/0525; H01M10/0565
Domestic Patent References:
WO2010054272A12010-05-14
Foreign References:
DE69903073T22003-05-15
DE10020031A12001-11-22
DE19964159A12001-02-22
Attorney, Agent or Firm:
ROBERT BOSCH GMBH (DE)
Download PDF:
Claims:
Ansprüche

Anordnung, umfassend wenigstens drei aufeinanderfolgende Schichten, wobei die drei Schichten eine obere Elektrodenschicht (16), eine untere Elektrodenschicht (14) und eine zwischen der oberen (16) und der unteren (14) Elektrodenschicht angeordnete Elektrolytschicht (18) aufweisen, wobei wenigstens die Elektrolytschicht (18) und eine der oberen (16) und der unteren (14) Elektrodenschicht eine organische Matrix aufweisen, und wobei die organische Matrix der Elektrolytschicht (18) eine lonenleitfähigkeit in einem Bereich von > 10"6 S/cm aufweist.

Anordnung nach Anspruch 1 , dadurch gekennzeichnet, dass die untere Elektrodenschicht (14) und die obere Elektrodenschicht (16) eine organische Matrix umfassen. 3. Anordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass

entweder die untere Elektrodenschicht (14) oder die obere Elektrodenschicht (16) ein Kathodenspeichermaterial umfasst, das ausgewählt ist aus der Gruppe der oxidischen Materialien, insbesondere aus Lithium-Cobaltdioxid, Lithium-Eisenphosphat, Lithium-Manganoxid Spinell oder Nickel umfassende Mischoxide, und/oder dass entweder die untere Elektrodenschicht (14) oder die obere Elektrodenschicht (16) ein Anodenspeichermaterial umfasst, das ausgewählt ist aus der Gruppe bestehend aus Silicium, Germanium, Lithium, einem kohlenstoffhaltigen Material oder einer metallischen Legierung.

Anordnung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die organische Matrix ein Material umfasst, das ausgewählt ist aus der Gruppe bestehend aus Chitosan, Polyethylenoxid, einem organischen lonomeren oder einer organischen Matrix mit funktionellen SOsX-Gruppen. 5. Anordnung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass in der organischen Matrix wenigstens ein Hilfsstoff angeordnet ist.

6. Anordnung nach Anspruch 5, dadurch gekennzeichnet, dass der Hilfsstoff Kohlenstoff-Nanoröhrchen, ein Kathodenspeichermaterial und/oder ein Anodenspeichermaterial umfasst.

7. Anordnung nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass der wenigstens eine Hilfsstoff in einer Menge von bis zu 30Gew.-% vorliegt.

8. Anordnung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Anordnung (10) ein Substrat (12) umfasst.

9. Anordnung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass auf der der Elektrolytschicht (18) entgegengesetzten Seite der unteren (14) und oder der oberen (16) Elektrodenschicht eine Stromsammlerschicht (20, 22) angeordnet ist.

10. Energiespeicher, insbesondere Lithium-Ionen-Akkumulator, dadurch

gekennzeichnet, dass er eine Anordnung (10) nach einem der Ansprüche 1 bis 9 umfasst.

Description:
Beschreibung

Titel

Schichtanordnung Die vorliegende Erfindung betrifft eine Schichtanordnung umfassend zwei

Elektrodenschichten und eine zwischen den Elektrodenschichten angeordnete Elektrolytschicht. Die vorliegende Erfindung betrifft insbesondere einen Lithium- Ionen-Akkumulator, der die Schichtanordnung umfasst.

Stand der Technik

Lithium-Ionen Batterien beziehungsweise Lithium-Ionen-Akkumulatoren sind heutzutage weit verbreitet. Insbesondere in tragbaren Geräten, wie

Mobiltelefonen oder mobilen Computern, werden sie bevorzugt eingesetzt. Ihre

Vorteile liegen insbesondere in ihrer hohen Leistungsdichte und

Kapazitätsdichte. Es wurden bereits Versuche unternommen, Lithium-Ionen Akkumulatoren mittels Halbleiterverfahren in Dünnschichttechnologie

herzustellen. Dabei waren die Leistungswerte jedoch aufgrund der geringen Mengen in den dünnen zweidimensionalen Schichten an aktivem Material meist begrenzt. Bei energiesparenden Geräten werden derartige Dünnschicht- Akkumulatoren jedoch bereits genutzt.

Eine interessante Perspektive auch für Anwendungen, die nicht am unteren Ende des Leistungsspektrums liegen, wird zudem bereits theoretisch mittels so genannter dreidimensionaler Batterien aufgezeigt. Bei derartigen Batterien beziehungsweise Akkumulatoren wird über ein strukturiertes Substrat die Nutzfläche für Dünnschichtbatterien gefaltet und so bei gleicher

Substratgrundfläche ein Mehrfaches an Kapazität gespeichert und zudem die gespeicherte Ladung schneller aufgenommen und abgegeben. Es steht also auch eine höhere Leistung zur Verfügung. Aus DE 199 64 159 A1 ist ferner ein Verfahren zum Herstellen von Materialien mit elektrochemischen Eigenschaften bekannt. Derartige Materialien sind aus pastösen Massen ausgebildet, die beispielsweise für die Herstellung von Primärbatterien oder Akkumulatoren geeignet sind. Beispielswiese im Fall eines Akkumulators kann dieser drei aufeinanderfolgende Schichten aufweisen, von denen die äußeren Schichten als Elektroden dienen können, wohingegen die mittlere Schicht als Elektrolytschicht ausgestaltet sein kann. Die Schichten umfassen neben den funktionalen Stoffen jeweils eine organische Matrix und gegebenenfalls weitere Zusatzstoffe. Die Elektrodenschichten können neben den lonenspeicherstoffen beispielsweise einen Feststoff enthalten, der insbesondere einer Verbesserung der mechanischen Eigenschaften der organischen Matrix dient, insbesondere in Bezug auf deren Stützung oder deren Verarbeitung. Die Elektrolytschicht weist dabei Käfige auf, in denen eine Flüssigkeit angeordnet ist, die als eigentlicher Elektrolyt dient. Beispielsweise kann der Elektrolyt ein wässriges System umfassen.

Offenbarung der Erfindung

Gegenstand der vorliegenden Erfindung ist eine Anordnung, umfassend wenigstens drei aufeinanderfolgende Schichten, wobei die drei Schichten eine obere Elektrodenschicht, eine untere Elektrodenschicht und eine zwischen der oberen und der unteren Elektrodenschicht angeordnete Elektrolytschicht aufweisen, wobei wenigstens die Elektrolytschicht und eine der oberen und der unteren Elektrodenschicht eine organische Matrix aufweisen, und wobei die organische Matrix der Elektrolytschicht eine lonenleitfähigkeit in einem Bereich von > 10 "6 S/cm aufweist. Eine erfindungsgemäße Anordnung umfasst somit wenigstens drei Schichten, die aufeinanderfolgend und damit direkt benachbart sind. Vorzugsweise sind die wenigstens drei Schichten parallel angeordnet und grenzen unmittelbar aneinander. Dabei weisen zwei der wenigstens drei Schichten die Eigenschaft einer Elektrode auf, nämlich insbesondere eine gute lonenspeicherfähigkeit sowie eine gute elektrische Leitfähigkeit. Daher werden diese Schichten im

Folgenden als Elektrodenschichten bezeichnet. Zwischen den Elektrodenschichten ist eine Schicht angeordnet, die die Funktion eines

Elektrolyten hat. Sie weist daher insbesondere eine gute lonenleitfähigkeit in einem Bereich von > 10 "6 S/cm auf. Erfindungsgemäß umfassen dabei wenigstens zwei benachbarte Schichten der wenigstens drei Schichten eine organische Matrix. Eine organische Matrix bedeutet im Rahmen der Erfindung dabei insbesondere ein organisches, insbesondere polymeres Material, das entweder als alleinige Komponente die jeweilige Schicht bildet, oder aber weitere Hilfsstoffe beziehungsweise

Zusatzkomponenten aufweist, die vorzugsweise in der Matrix fein verteilt sein können. Ferner ist erfindungsgemäß von der organischen Matrix ein Material umfasst, dass auf einem organischen oder polymeren Material basiert, aber weitere Stoffe in chemisch oder physikalisch gebundener Form aufweist.

Besonders bevorzugt liegt der organische Anteil der organischen Matrix in einem Bereich von > 30%.

Ein organisches Material beziehungsweise eine organische Matrix umfasst dabei insbesondere eine Kohlenstoffverbindung, wie etwa eine

Kohlenwasserstoffverbindung als prägende Einheit.

Durch das Vorsehen wenigstens zwei organischer Schichten ist ein besonders einfaches Herstellungsverfahren in kurzer Zeit möglich. Die organischen

Schichten können auf einfache Weise aneinander beziehungsweise mit einer weiteren, beispielsweise anorganischen Schicht, fixiert werden. Beispielsweise kann das Aufbringen einer organischen Schicht durch einen herkömmlichen

Druckvorgang erfolgen. Eine Strukturierung ist durch den Einsatz eines Siebes oder einer Schablone, bzw. eines Lasers einfach und genau möglich. Darüber hinaus können auf diese Weise die Eigenschaften der organischen Schichten wie gewünscht und auf genau definierte Weise eingestellt werden. Beispielsweise kann die Dicke und die Geometrie besonders einfach und genau an die gewünschte Anwendung angepasst werden. Darüber hinaus können auf einfache Weise Hilfsstoffe in die organische Matrix eingebettet werden, um so

mechanische wie auch elektronische Eigenschaften der jeweiligen Schicht anzupassen, um die Eigenschaften der Anordnung in Bezug auf das gewünschte Anwendungsgebiet zu verbessern. Erfindungsgemäß ist dabei vorgesehen, dass die lonenleitfähigkeit der

Elektrolytschicht beziehungsweise der organischen Matrix der Elektrolytschicht in einem Bereich von > 10 "6 S/cm liegt. Auf diese Weise weist bereits die organische Matrix eine ausreichende lonenleitfähigkeit auf, wie sie

beispielsweise für eine Verwendung als Elektrolytschicht in Batterien

beziehungsweise Akkumulatoren, wie etwa einem Lithium-Ionen-Akkumulator, geeignet ist. Dadurch ist die organische Matrix beziehungsweise die

Elektrolytschicht ohne weitere Maßnahmen, wie etwa bauliche Maßnahmen oder Herstellungsschritte, als Elektrolytschicht zwischen den beiden

Elektrodenschichten verwendbar. So ist es beispielsweise nicht notwendig, bei der Herstellung der organischen Schicht ein Elektrolytmaterial beizumengen, um geeignete Eigenschaften zu erzielen. Es ist insbesondere nicht notwendig, in der Matrix des organischen Materials Käfige auszubilden und diese in einem weiteren Arbeitsschritt beispielsweise mit einem flüssigen Elektrolyten zu füllen. Dadurch können sowohl Arbeitsschritte als auch Materialen zur Herstellung der Elektrolytschicht eingespart werden, was die Herstellungskosten der organischen Schicht und damit der erfindungsgemäßen Anordnung mindert.

Darüber hinaus kann durch einen Verzicht auf einen herkömmlichen Elektrolyt, wie insbesondere einen flüssigen Elektrolyt, ein Auslaufen der

erfindungsgemäßen Anordnung vollständig verhindert werden. Dies ist insbesondere bei einer Verwendung der erfindungsgemäßen Anordnung als Dünnschicht-Batterie oder -Akkumulator von Vorteil, da die mit einem derartigen Energiespeicher ausgestatteten Komponenten und elektronischen Geräte durch ein Auslaufen des Elektrolyten beschädigt würden. Darüber hinaus sind eine Vielzahl von Elektrolyten nicht unproblematisch für die Umwelt. Erfindungsgemäß wird daher eine Entsorgung beziehungsweise eine Wiederverwendung der erfindungsgemäßen Anordnung, beispielsweise nach einer Beschädigung erleichtert.

Die organischen Elektrodenschichten stellen aufgrund der intrinsischen lonenleitfähigkeit eine Matrix dar, welche die Verteilung der Ionen zu den eingebetteten Speichermaterialien ermöglicht, ohne als Schnittstelle zu benachbarten Schichten eine hoch-topographische Oberfläche zu benötigen. Im Rahmen einer bevorzugten Ausführungsform der vorliegenden Erfindung umfassen die untere Elektrodenschicht und die obere Elektrodenschicht eine organische Matrix. In dieser Ausführungsform kann somit vollständig auf herkömmliche Elektrodenmaterialien und Elektrolytmaterialien verzichtet werden, wie sie beispielsweise für Lithium-Ionen-Akkumulatoren bekannt sind. Vielmehr weisen sämtliche Schichten eine organische Matrix auf. Dadurch ist die erfindungsgemäße Anordnung besonders einfach und kostengünstig herstellbar und ferner in vielen Anwendungsgebieten einsetzbar.

Im Rahmen einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung umfasst entweder die untere Elektrodenschicht oder die obere

Elektrodenschicht ein Kathodenspeichermaterial, das ausgewählt ist aus der Gruppe der oxidischen Materialien, insbesondere aus Lithium-Cobaltdioxid (LiCo0 2 ), Lithium-Eisenphosphat (LiFeP0 4 ), Lithium-Manganoxid Spinell (LiMn 2 0 4 ) oder Nickel umfassende Mischoxide, und/oder umfasst entweder die untere Elektrodenschicht oder die obere Elektrodenschicht ein

Anodenspeichermaterial, das ausgewählt ist aus der Gruppe bestehend aus Silicium (Si), Germanium (Ge), Lithium (Li), einem kohlenstoffhaltigen Material oder einer metallischen Legierung. In dieser Ausführungsform umfasst folglich für den Fall, dass nur eine Elektrodenschicht eine organische Matrix aufweist, diese Elektrodenschichten ein Anodenspeichermaterial, wohingegen die weitere Elektrodenschicht aus einem herkömmlichen Kathodenmaterial geformt ist beziehungsweise dieses aufweist, das beispielsweise aus der Herstellung eines Lithium-Ionen-Akkumulators bekannt ist. Entsprechend kann, für den Fall, dass nur eine Elektrodenschicht eine organische Matrix aufweist, diese

Elektrodenschicht ein Kathodenspeichermaterial aufweisen, wohingegen die weitere Elektrodenschicht aus einem ein herkömmliches Anodenmaterial geformt ist beziehungsweise dieses aufweist, das beispielsweise aus der Herstellung eines Lithium-Ionen-Akkumulators bekannt ist. Für den Fall, dass beide

Elektrodenschichten eine organische Matrix aufweisen, weist eine der

Elektrodenschichten ein Kathodenspeichermaterial auf, wohingegen die andere Elektrodenschicht ein Anodenspeichermaterial aufweist.

Die Kathodenschicht weist dabei insbesondere ein hohes chemisches Potential gegenüber Lithium auf und ermöglicht in geeigneter Weise das Speichern von Lithium beispielsweise bei einem Entladen eines Lithium-Akkumulators. In einer Ausgestaltung als Anode weist die Elektrodenschicht insbesondere ein möglichst niedriges chemisches Potential gegenüber der Kathode auf und ermöglicht insbesondere eine Lithiumspeicherung bei einem Laden eines Lithium-Ionen- Akkumulators.

Im Rahmen einer weiteren bevorzugten Ausführungsform umfasst die organische Matrix ein Material, das ausgewählt ist aus der Gruppe bestehend aus Chitosan, Polyethylenoxid, einem organischen lonomeren oder einer organischen Matrix mit funktionellen S0 3 X-Gruppen. Dabei kann das X beispielsweise bedeuten einwertige Ionen, wie etwa Alkalimetallionen, so wie Lithium-, Natrium- oder

Kaliumionen, als auch Ammoniumionen. Derartige Materialien sind kostengünstig herstellbar, was auch die gesamte erfindungsgemäße Anordnung kostengünstig gestaltet. Darüber hinaus lassen sich derartige organische Materialien gut verarbeiten, wodurch die erfindungsgemäße Anordnung insbesondere für Dünnschicht-Batterien beziehungsweise -Akkumulatoren geeignet ist. Weiterhin weisen die genannten organischen Materialien eine lonenleitfähigkeit auf, um in geeigneter Weise als Elektrolytschicht verwendet zu werden, wobei auf die Zugabe eines weiteren Elektrolytmaterials, wie etwa einer Elektrolytflüssigkeit, verzichtet werden kann. Dadurch wird die Herstellung der erfindungsgemäßen Anordnung besonders einfach und kostengünstig möglich.

Im Rahmen einer weiteren bevorzugten Ausgestaltung der vorliegenden

Erfindung ist in der organischen Matrix wenigstens ein Hilfsstoff angeordnet. Der wenigstens eine Hilfsstoff kann dabei dazu geeignet sein, insbesondere die elektronischen Eigenschaften der entsprechenden Schicht zu verbessern, oder aber eine Verbesserung der mechanischen Eigenschaften hervorzurufen.

Weiterhin kann durch den Hilfsstoff beispielsweise die lonenleitfähigkeit verbessert werden, insbesondere für den Fall, dass die organische Matrix in der Elektrolytschicht angeordnet ist, beziehungsweise diese zumindest teilweise bildet. Für den Fall, dass die organische Matrix in der Elektrodenschicht angeordnet ist, beziehungsweise diese bildet, kann durch den Hilfsstoff insbesondere die Elektronenleitfähigkeit oder lonenspeicherkapazität verbessert werden. Ferner können jedoch durch den Hilfsstoff auch die mechanischen Eigenschaften verbessert werden. In diesem Fall kann beispielsweise die Stabilität der organischen Matrix verstärkt werden, wodurch die

erfindungsgemäße Anordnung nicht auf einem Substrat angeordnet muss. Geeignete Beispiele umfassen etwa Si0 2 , Si 3 N 4 , Al 2 0 3 , AIN, MgO, oder auch Fasern, wie etwa Glasfasern.

Dabei ist es ferner besonders bevorzugt, dass der Hilfsstoff Kohlenstoff- Nanoröhrchen umfasst, oder dass der Hilfsstoff ein Material umfasst, das ausgewählt ist aus der oben genannten Gruppe der

Kathodenspeichermatenalien, oder dass der Hilfsstoff ein Material umfasst, das ausgewählt ist aus der Gruppe der oben genannten Anodenspeichermaterialien.

Bei der Wahl des entsprechenden Hilfsstoffes ist dabei insbesondere der Verwendungszweck der entsprechenden Schicht zu berücksichtigen. Soll der Hilfsstoff beispielsweise in der organischen Matrix einer Elektrodenschicht angeordnet sein, sind insbesondere Kohlenstoff-Nanoröhrchen von Vorteil, da dieses die elektrische Leitfähigkeit steigern können. In dieser Funktion können Kohlenstoffnanoröhrchen in beiden Elektrodenschichten angeordnet sein, unabhängig davon, ob es sich um eine Kathode oder um eine Anode handelt. In einer Anodenschicht helfen sie zudem, die lonenspeicherkapazität zu erhöhen. Für den Fall einer Anode sind ferner Materialien aus der oben genannten Gruppe der Anodenspeichermaterialien vorteilhaft, wohingegen bei einer Kathode Materialien aus der oben genannten Gruppe der Kathodenspeichermatenalien bevorzugt sind. Durch die vorbezeichneten Hilfsstoffe wird insbesondere das chemische Potential gegenüber Lithium optimiert beziehungsweise die lonenspeicherkapazität verbessert. In Abhängigkeit der gewünschten

Anwendung kann auch eine geeignete Kombination an Hilfsstoffen vorgesehen sein.

Dabei ist es ferner besonders bevorzugt, dass der wenigstens eine Hilfsstoff in einer Menge von bis zu 30Gew.-% vorliegt. Dadurch können bereits die erwünschten Effekte erzielt werden, ohne jedoch die Verarbeitbarkeit der organischen Matrix und ferner die Herstellung der entsprechenden Schichten wesentlich negativ zu beeinflussen.

Im Rahmen einer weiteren vorteilhaften Ausgestaltung der erfindungsgemäßen Anordnung umfasst die Anordnung ein Substrat. Das Substrat kann der

Anordnung eine verbesserte Stabilität verleihen insbesondere für den Fall, dass die einzelnen Schichten eine niedrige Stabilität aufweisen. Dies kann

beispielsweise durch die Ausbildung sehr dünner Schichten der Fall sein.

Im Rahmen einer weiteren vorteilhaften Ausgestaltung der erfindungsgemäßen Anordnung ist auf der der Elektrolytschicht entgegengesetzten Seite der unteren und/oder der oberen Elektrodenschicht eine Stromsammlerschicht angeordnet. Die Stromsammlerschicht dient dazu, die elektrische Leitfähigkeit der

entsprechenden Elektrodenschicht zu verbessern und ferner, einen geeignet ausbildbaren Kontakt der Elektrodenschicht bereitzustellen. Beispielsweise kann die Stromsammlerschicht ausgebildet sein aus Gold, Platin, Aluminium,

Legierungen oder weiteren Materialien mit einer guten elektrischen Leitfähigkeit.

Die Erfindung betrifft ferner einen Energiespeicher, wie insbesondere einen Lithium-Ionen-Akkumulator, der eine erfindungsgemäße Anordnung umfasst. Insbesondere für den Aufbau eines Lithium-Ionen-Akkumulators ist die erfindungsgemäße Anordnung geeignet. Dabei ist der erfindungsgemäße Lithium-Ionen-Akkumulator besonders einfach herzustellen und in seinen Eigenschaften gut an den gewünschten Einsatzzweck anpassbar.

Weitere Vorteile und vorteilhafte Ausgestaltungen der erfindungsgemäßen Gegenstände werden durch die Zeichnung veranschaulicht und in der nachfolgenden Beschreibung erläutert. Dabei ist zu beachten, dass die

Zeichnung nur beschreibenden Charakter hat und nicht dazu gedacht ist, die Erfindung in irgendeiner Form einzuschränken. Es zeigt

Fig. 1 eine schematische Schnittansicht einer Ausführungsform der

erfindungsgemäßen Anordnung von der Seite.

In Figur 1 ist eine Ausführungsform der erfindungsgemäßen Anordnung 10 gezeigt. Die Anordnung 10 kann beispielsweise Teil eines Lithium-Ionen- Akkumulators sein.

Die erfindungsgemäße Anordnung 10 kann ein Substrat 12 als Träger umfassen. Das Substrat 12 kann dazu dienen, den Schichten, wie folgend beschrieben, mehr Stabilität zu verleihen. Das Substrat 12 ist jedoch nur optional und muss nicht zwingend vorhanden sein. Beispielsweise kann bei einer ausreichenden Stabilität der Schichten auf das Substrat 12 verzichtet werden. Das Substrat 12 ist beispielsweise aus einem Halbleiter- oder MEMS-Material ausgebildet, wie etwa aus Silizium. Ferner kann das Substrat 12 aus einem Polymer oder einem Metall ausgebildet sein. Es ist dabei von Vorteil, wenn die Oberfläche des Substrats 12 elektrisch isolierend ausgebildet ist. Dazu kann, wenn das Material des Substrats 12 an sich nicht elektrisch isolierend ist, eine isolationsschicht auf dem Substrat 12 angeordnet sein. Beispielsweise kann diese Isolationsschicht eine dielektrische Passivierungsschicht sein. Die erfindungsgemäße Anordnung 10 umfasst ferner wenigstens drei

beispielsweise auf dem Substrat 12 angeordnete aufeinanderfolgende Schichten. Die drei Schichten weisen dabei eine untere Elektrodenschicht 14, eine obere Elektrodenschicht 16 und eine zwischen der oberen 16 und der unteren 14 Elektrodenschicht angeordnete Elektrolytschicht 18 auf. Dabei deckt die

Elektrolytschicht 18 die untere Elektrodenschicht 14 zumindest teilweise, vorzugsweise vollständig, ab und trennt die beiden Elektrodenschichten 14, 16, so von einander. Erfindungsgemäß weisen wenigstens die Elektrolytschicht 18 und eine der oberen 14 und der unteren 16 Elektrodenschicht eine organische Matrix auf.

Mit Bezug auf die Elektrolytschicht 18 umfasst diese erfindungsgemäß, um geeignete Elektrolyteigenschaften aufweisen zu können, eine organische Matrix, die eine lonenleitfähigkeit in einem Bereich von > 10 "6 S/cm aufweist. Dadurch ist ein lonentransport durch die Elektrolytschicht 18 sichergestellt, der für eine Vielzahl an Anwendungen ausreicht. Die organische Matrix kann beispielsweise ein Material umfassen, das ausgewählt ist aus der Gruppe bestehend aus Chitosan und Polyethylenoxid (PEO), insbesondere bei kürzeren Molekülketten auch Polyethylenglykol (PEG) genannt. Derartige Polymere weisen eine lonenleitfähigkeit in dem erfindungsgemäßen Bereich auf und sind deshalb bereits ohne weitere Zusatzstoffe als Elektrolyt geeignet. Trotzdem ist es möglich, der organischen Matrix in der Elektrolytschicht 18 weitere Hilfsstoffe beizumengen, um beispielsweise die lonenleitfähigkeit zu verbessern

beziehungsweise zu optimieren und an den gewünschten Anwendungsfall anzupassen. Als Beispiele für Hilfsstoffe, welche die lonenleitfähigkeit erhöhen, seien hier Elektrolytsalze, beispielsweise Lithiumsalze, wie etwa Lithiumhexafluorophosphat (LiPF 6 ) oder Lithiumsulfit (LiS0 3 ) genannt.

Vorzugsweise sind die Hilfsstoffe fein in der organischen Matrix verteilt.

Neben der Elektrolytschicht 18 umfasst auch wenigstens die obere

Elektrodenschicht 16 oder die untere Elektrodenschicht 14 eine organische

Matrix. In einer Ausführungsform können sowohl die obere 16, als auch die untere 14 Elektrodenschicht eine organische Matrix umfassen. Die organische Matrix der jeweiligen Elektrodenschicht 14, 16 kann wiederum eine Matrix umfassen, die im Wesentlichen Chitosan oder Polyethylenoxid aufweist. Um geeignete Eigenschaften als Elektrodenschicht zu erzeugen, sollte in der organischen Matrix ein Hilfsstoff vorzugsweise fein verteilt vorliegen. Hierzu können etwa Kohlenstoff-Nanoröhrchen oder Silizium verwendet werden, die insbesondere die elektrische Leitfähigkeit verbessern und die

lonenspeicherkapazität von kapazitätsrelevanten Ionen, typischerweise Lithium- ionen, erhöhen. Insbesondere bei der Verwendung von Kohlenstoff-

Nanoröhrchen können diese durch eine entsprechende Vorbehandlung an die gewünschte Anwendung angepasst werden. So können die Fehlstellen der Kohlenstoff-Nanoröhrchen oxidiert und so ein einfacherer Zugang der Lithium- Ionen zum Kern der Kohlenstoff-Nanoröhrchen erreicht werden. Dadurch kann die Leitfähigkeit und die lonenspeicherkapazität erhöht werden. Eine weitere vorteilhafte Vorbehandlung ist das Dispergieren der Kohlenstoff-Nanoröhrchen beispielsweise in Lithium-Laurylsulfat (LLS), um sie mit einem Mantel aus Lithiumionen zu umgeben. Eine Herstellung eines derartigen Materials ist beispielsweise durch das

Vermischen von Kohlenstoff-Nanoröhrchen mit einer Schmelze eines

organischen Materials möglich. Dies ist allerdings abhängig von der

Schmelztemperatur des entsprechenden Polymers, wodurch hochschmelzende Polymere, wie etwa Chitosan, hier nicht verwendet werden können. Alternativ kann eine Lösung beziehungsweise Suspension des organischen Materials mit den Kohlenstoff-Nanoröhrchen in einem Lösungsmittel verwendet werden. Das Lösungsmittel ist dabei zweckmäßigerweise an das entsprechende organische Material anzupassen. Dabei ist die verwendete Herstellungsroute beispielsweise zu wählen in Abhängigkeit des gewählten organischen Materials

beziehungsweise Polymers. Die Vorteile der vorgenannten Herstellungsrouten liegen insbesondere in der Möglichkeit der Herstellung von sehr dünnen Schichten und in der einfachen und problemlosen Herstellung der

erfindungsgemäßen Anordnung.

Die organische Matrix kann weiterhin ein entsprechendes Elektrodenmaterial als Hilfsstoff umfassen, welches abhängig ist von der Polarität der jeweiligen Elektroden. Soll die Elektrodenschicht beispielswiese als Kathode ausgebildet sein, sind hier insbesondere Kathodenspeichermaterialien, wie etwa oxidische Materialien, insbesondere Lithium-Cobaltdioxid (LiCo0 2 ), Lithium-Eisenphosphat (LiFeP0 4 ), Lithium-Manganoxid Spinell (LiMn 2 0 4 ) oder Nickel umfassende Mischoxide geeignet. Soll die Elektrodenschicht jedoch als Anode ausgebildet sein, sind hier insbesondere Anodenspeichermaterialien, wie etwa Silicium (Si), Germanium (Ge), Lithium, ein kohlenstoffhaltiges Material oder eine metallische Legierung von Vorteil.

Weiterhin kann eine der Elektrodenschichten 14, 16 aus einem anderen Material ausgebildet sein, als aus einer organischen Matrix. Die genau Ausgestaltung der jeweiligen Elektrodenschicht 14, 16 ist dabei wiederum insbesondere abhängig von ihrer Funktion, also ob sie insbesondere als Kathode oder Anode

Verwendung finden soll. Für eine Verwendung als Kathode ist ein hohes chemisches Potential gegenüber Lithium und ein hohes Potential zur

Lithiumspeicherung bei einem Entladevorgang vorteilhaft, wohingegen bei einer Verwendung als Anode ein möglichst niedriges chemisches Potential gegenüber Lithium und eine gute Lithiumspeicherung bei einem Ladevorgang vorteilhaft ist.

Für den Fall, dass die Kathode eine organische Matrix aufweist, kann die Anode aus einem herkömmlichen, für die Herstellung von Lithium-Ionen-Akkumulatoren bekannten Material ausgebildet werden. Beispielsweise kann die Anode in diesem Fall ein Material umfassen, wie etwa Silizium, Germanium, Kohlenstoff (beispielsweise Graphit), oder metallische Legierungen sowie weitere oben genannte Anodenspeichermaterialien. Dieses Material kann mit einem geeigneten Verfahren, wie etwa einem Abscheideverfahren, direkt auf das Substrat 12 oder die Elektrolytschicht 18 aufgetragen werden, oder aber es kann ein Verbund derartiger Materialien mit Trägersubstanzen, Leitungsvermittlern oder Bindern verwendet werden. Gleichermaßen kann, für den Fall, dass die Anode eine organische Matrix aufweist, die Kathode aus einem herkömmlichen, für die Herstellung von Lithium- Ionen-Akkumulatoren bekannten Material ausgebildet werden, von denen einige oben genannt und als Kathodenspeichermaterialien bezeichnet wurden.

Die als Kathode fungierende Elektrodenschicht kann in diesem Fall

beispielsweise auf das Substrat 12 oder auf die Elektrolytschicht 18 direkt abgeschieden werden, etwa durch ein Sputter-Verfahren, oder aber es kann ein Verbund derartiger Materialien mit Trägersubstanzen, Leitungsvermittlern oder Bindern verwendet werden.

Grundsätzlich sollte dabei die obere Elektrodenschicht 16 zu der unteren

Elektrodenschicht 14 komplementär sein, es sollte also eine Kathode und eine Anode vorliegen. Ferner sollten die entsprechenden Elektrodenschichten 14, 16 keinen direkten Kontakt mit der entsprechend komplementären Elektrodenschicht 14, 16 aufweisen.

Unterhalb der unteren Elektrodenschicht 14, wie auch oberhalb der oberen Elektrodenschicht 16, also jeweils auf der der Elektrolytschicht

entgegengesetzten Seite, kann eine untere Stromsammlerschicht 20

beziehungsweise eine obere Stromsammlerschicht 22 angeordnet sein. Die

Stromsammlerschicht 20, 22 ist zweckmäßigerweise aus einem gut elektrisch leitenden Material ausgebildet, wie etwa einem Metall, einer Legierung oder auch einem gut leitfähigen Polymer. Die Stromsammlerschicht 20, 22 dient

insbesondere dazu, die elektrische Leitfähigkeit der unteren beziehungsweise oberen Elektrodenschicht 14, 16 zu verbessern oder einen Kontakt aus dem

Schichtensystem herauszuziehen, also einen elektrischen Kontakt an geeigneter Stelle, beispielsweise auf dem Substrat 12, zu schaffen. Dabei sollte vermieden werden, dass die entsprechende Stromsammlerschicht 20, 22 einen Kontakt mit der jeweils komplementären Stromsammlerschicht 22, 20 beziehungsweise mit der mit der komplementären Stromsammlerschicht 22, 20 verbundenen

Elektrodenschicht 14, 16 aufweist.

Schließlich kann die Anordnung 10 eine Passivierungsschicht, wie etwa eine Metallschicht, einen Metall-Polymerverbund oder eine keramischen Schicht, etwa mit entsprechenden Isolierungen, umfassen, um die Anordnung 10 zu umhüllen beziehungsweise die entsprechenden Schichten abzudecken für den Fall, dass ein Substrat 12 vorhanden ist. Dadurch kann eine Degradierung der Funktion durch Umwelteinflüsse eliminiert oder verringert werden.

An den jeweiligen Grenzübergängen der Schichten 14, 16, 18 können durch die unterschiedlichen chemischen und mechanischen Eigenschaften

Übergangsbereiche entstehen. Zur Optimierung bzw. Stabilisierung der Funktion der Erfindung können diese Übergangsbereiche mit weiteren Zwischenschichten definiert werden, die in eigenen Schritten aufgebracht werden. Diese

Zwischenschichten können beispielsweise die Diffusion von nicht-funktionalen Komponenten, Hilfsstoffen oder Ionen unterbinden.