Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
METHOD FOR PRODUCING A CATION-CONDUCTIVE SILICON DIOXIDE-BASED MATERIAL AND/OR SOLID ELECTROLYTE
Document Type and Number:
WIPO Patent Application WO/2017/198515
Kind Code:
A1
Abstract:
The invention relates to a method for producing a cation-conductive silicon dioxide-based material and/or solid electrolyte (4) in which polysilicic acid (1) or a polysilicic acid derivative is converted into a salt (2) and the salt (2) of the polysilicic acid or the polysilicic acid derivative is reacted with at least one Lewis acid (3). The invention also relates to such a material and to such a solid electrolyte (4).

Inventors:
PILZ THOMAS (DE)
WIDENMEYER MARKUS (DE)
Application Number:
PCT/EP2017/061189
Publication Date:
November 23, 2017
Filing Date:
May 10, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BOSCH GMBH ROBERT (DE)
International Classes:
C01B33/113; H01M10/056
Domestic Patent References:
WO2015049244A12015-04-09
WO2015022288A22015-02-19
Other References:
None
Download PDF:
Claims:
Ansprüche

1. Verfahren zur Herstellung eines kationenleitfähigen, silliciumdioxidbasierten Materials und/oder zur Herstellung eines Festkörperelektrolyten (4), in dem

- Polykieselsäure (1) oder ein Polykieselsäure-Derivat in ein Salz (2) überführt wird, und

- das Salz (2) der Polykieselsäure beziehungsweise des Polykieselsäure- Derivates mit mindestens einer Lewis-Säure (3) umgesetzt wird.

2. Verfahren nach Anspruch 1 , wobei die mindestens eine Lewis-Säure (3) Bor und/oder Aluminium und/oder Phosphor umfasst.

3. Verfahren nach Anspruch 1 oder 2, wobei die mindestens eine Lewis-Säure (3) mindestens ein Halogenatom und/oder mindestens eine Alkoxygruppe und/oder mindestens eine Organylgruppe umfasst.

4. Verfahren nach einem der Ansprüche 1 bis 3, wobei die mindestens eine Lewis-Säure (3) ausgewählt wird aus der Gruppe bestehend aus

Borhalogeniden, insbesondere Bortrifluorid, Boralkoxiden, insbesondere Bortri(/so-propoxid) und/oder Bortri(terf-butoxid), und/oder

Triorganylboranen, insbesondere Tri(/so-propoxyl)boran und/oder Tri(terf- butoxyl)boran, und/oder Aluminiumhalogeniden, insbesondere

Aluminiumchlorid, und/oder Aluminiumalkoxiden, insbesondere

Aluminiumtri(/so-propoxid) und/oder Aluminiumtri(terf-butoxid).

5. Verfahren nach einem der Ansprüche 1 bis 4, wobei die Polykieselsäure (1) beziehungsweise das Polykieselsäure-Derivat in ein Alkalimetallsalz, insbesondere Lithiumsalz, überführt wird.

Verfahren nach einem der Ansprüche 1 bis 5, wobei das Überführen der Polykieselsäure (1) beziehungsweise des Polykieselsäure-Derivates in das Salz (2) in Gegenwart mindestens eines Alkalimetall-Alkoxids und/oder - Amids und/oder -Halogenids, insbesondere von Lithium und/oder Natrium, durchgeführt wird.

7. Verfahren nach einem der Ansprüche 1 bis 6, wobei das Überführen der Polykieselsäure (1) beziehungsweise des Polykieselsäure-Derivates in das Salz (2) in Gegenwart mindestens einer Hilfsbase durchgeführt wird.

8. Verfahren nach einem der Ansprüche 1 bis 7, wobei ein Silan- funktionalisiertes Polykieselsäure-Derivat eingesetzt wird, insbesondere welches mit mindestens einem Silan der allgemeinen chemischen Formel: (R"0)3Si-R'-OH oder (R"0)3Si-R'-NH2 funktionalisiert ist, wobei R' für eine substituierte oder unsubstituierte Alkylengruppe und R" für eine

substituierte oder unsubstituierte Alkylgruppe steht.

9. Verfahren nach einem der Ansprüche 1 bis 8, wobei poröse, insbesondere mesoporöse, Polykieselsäure (1) beziehungsweise ein poröses, insbesondere mesoporöses, Polykieselsäure-Derivat eingesetzt wird. 10. Verfahren nach einem der Ansprüche 1 bis 9, wobei die Polykieselsäure (1) beziehungsweise das Polykieselsäure-Derivat einen durchschnittlichen Porendurchmesser in einem Bereich von > 2 nm bis < 150 nm aufweist.

11. Verfahren nach einem der Ansprüche 1 bis 10, wobei die Polykieselsäure (1) beziehungsweise das Polykieselsäure-Derivat mittels eines Templates, insbesondere mindestens eines Tensids, hergestellt wird.

12. Verfahren nach einem der Ansprüche 1 bis 1 1 , wobei die Polykieselsäure (1) beziehungsweise das Polykieselsäure-Derivat durch Hydrolyse eines Orthokieselsäure-Derivates, insbesondere eines Tetraalkoxysilans, in

Gegenwart eines Templates, insbesondere mindestens eines Tensids, hergestellt wird, wobei das Template wieder entfernt wird.

13. Verfahren nach Anspruch 12, wobei das Silan-funktionalisierte

Polykieselsäure-Derivat dadurch hergestellt wird, dass die Hydrolyse in Gegenwart mindestens eines Silans durchgeführt wird, wobei das Template durch Extrahieren mit mindestens einem

Lösungsmittel wieder entfernt wird, und/oder

nach dem Entfernen des Templates mindestens ein Silan zugegeben wird.

Verfahren nach einem der Ansprüche 1 bis 13, wobei Silicium der

Polykieselsäure beziehungsweise des Polykieselsäure-Derivates teilweise durch Phosphor und/oder Aluminium substituiert wird, insbesondere wozu bei der Hydrolyse eine Phosphorverbindung und/oder eine

Aluminiumverbindung zugegeben wird.

Kationenleitfähiges, silliciumdioxidbasiertes Materials und/oder

Festkörperelektrolyt (4), insbesondere für eine Alkalimetall-Zelle und/oder - Batterie,

umfassend mindestens eine strukturelle Einheit der allgemeinen chemischen Formel:

Y

wobei Z für Bor oder Aluminium steht,

wobei Y für eine Alkoxygruppe und/oder eine Organylgruppe, insbesondere Alkylgruppe, und/oder ein Halogenatom steht,

wobei X für einen Spacer steht, insbesondere wobei X für ein Silan der allgemeinen chemischen Formel: -Si(OR")2-R'-0- oder -Si(OR")2-R'-NH- steht, wobei R' für eine substituierte oder unsubstituierte Alkylengruppe und R" für eine substituierte oder unsubstituierte Alkylgruppe steht, und wobei x für die Anzahl des Spacers X steht und 0 oder 1 ist,

und/oder

hergestellt durch ein Verfahren nach einem der Ansprüche 1 bis 14.

Description:
Beschreibung Titel

Verfahren zur Herstellung eines kationenleitfähigen, silliciumdioxidbasierten Materials und/oder Festkörperelektrolyten

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines

kationenleitfähigen, silliciumdioxidbasierten Materials und/oder

Festkörperelektrolyten sowie ein derartiges Material und einen derartigen Festkörperelektrolyten.

Stand der Technik

Herkömmliche Festkörperelektrolyte beruhen auf einem anionischen und einem kationischen Teilgitter und werden standardmäßig durch klassische

Festkörpersynthese bei erhöhten Temperaturen hergestellt. Bei der klassischen Festkörpersynthese werden feste Ausgangsstoffe vermischt und anschließend - oft mehrstündig - erhitzt. Dabei entstehen das anionische und das kationische Teilgitter gleichzeitig. Daher kann das anionische Teilgitter in der Regel nicht nachträglich mit Kationen auffüllt werden, was eine fundamentale Limitierung, zum Beispiel für die thermodynamische Größe von Transportkanälen mobiler Kationen beziehungsweise eine Ausweitung des Anionen-Gerüstes, darstellt. Bei herkömmlichen Festkörperelektrolyten bewegt sich die Größe der

Transportkanäle mobiler Kationen - insbesondere da in thermodynamisch stabilen Kristallen eine möglichst hohe Packungsdichte angestrebt wird - im Subnanometerbereich, also im Bereich der Länge weniger Atombindungen, insbesondere von Anion-Kation-Anion-Abständen, zum Beispiel O-Li-O, beispielsweise zwischen etwa 0,3 nm und 0,8 nm. Herkömmliche Festkörperelektrolyte, wie Perowskite (Li(i/3) x La(2/3)-xTi03), können bei höheren Temperaturen einen Anstieg der ionischen Leitfähigkeit in eine bestimmte kristallographische Richtung zeigen. Dies kann insbesondere darauf beruhen, dass sich bei höheren Temperaturen Engstellen entlang dieser

Richtung aufweiten. Zum Beispiel können sich bei Perowskiten die Flächen des Kuboktaeders (Position A im Perowskit ABO3) mit steigender Temperatur aufweiten, was in einer Erhöhung der ionischen Leitfähigkeit resultiert.

Offenbarung der Erfindung

Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung eines kationenleitfähigen, silliciumdioxidbasierten Materials und/oder zur Herstellung eines, insbesondere kationenleitfähigen und silliciumdioxidbasierten,

Festkörperelektrolyten, insbesondere für eine Alkalimetall-Zelle und/oder - Batterie. Zum Beispiel kann das Verfahren zur Herstellung eines

alkalimetallionenleitfähigen, beispielsweise lithiumionenleitfähigen oder natriumionenleitfähigen, insbesondere lithiumionenleitfähigen,

siliciumdioxidbasierten Materials und/oder Festkörperelektrolyten ausgelegt sein.

Beispielsweise kann das Verfahren zur Herstellung eines Festkörperelektrolyten für eine Lithium-Zelle und/oder -Batterie und/oder für eine Natrium-Zelle und/oder -Batterie, zum Beispiel für eine Lithium-Ionen-Zelle und/oder -Batterie und/oder für eine Natrium-Ionen-Zelle und/oder -Batterie, ausgelegt sein.

In dem Verfahren wird, beispielsweise in einem Verfahrensschritt a),

Polykieselsäure oder ein Polykieselsäure-Derivat in ein Salz, beispielsweise ein Alkalisalz, zum Beispiel ein Lithiumsalz oder Natriumsalz, insbesondere ein Lithiumsalz, überführt.

Unter einem Polykieselsäure-Derivat kann insbesondere ein von Polykieselsäure ableitbarer beziehungsweise abgeleiteter Stoff verstanden werden.

Beispielsweise kann ein Polykieselsäure-Derivat ein von Polykieselsäure abgeleiteter Stoff sein, bei dem Hydroxygruppen (OH-Gruppen) der

Polykieselsäure teilweise oder vollständig, beispielsweise durch Kondensationsreaktion, zum Beispiel mit einem Silan, funktionalisiert wurden beziehungsweise sind. Zum Beispiel können Hydroxygruppen der

Polykieselsäure teilweise oder vollständig, insbesondere durch

Kondensationsreaktion, mit mindestens einem Silan der allgemeinen chemischen Formel: (R"0)3Si-R'-OH oder (R"0)3Si-R'-NH2, beispielsweise wobei R' für eine substituierte oder unsubstituierte Alkylengruppe, zum Beispiel eine

Methylengruppe, Ethylengruppe, Propylengruppe oder Butylengruppe, und R" für eine substituierte oder unsubstituierte Alkylgruppe, zum Beispiel eine

Methylgruppe, Ethylgruppe, Propylgruppe oder Butylgruppe, steht, wie

(CH 3 0) 3 Si-R'-OH oder (CH 3 0) 3 Si-R'-NH2, funktionalisiert werden.

Das Salz der Polykieselsäure beziehungsweise des Polykieselsäure-Derivates wird dann, beispielsweise in einem Verfahrenschritt b), mit mindestens einer Lewis-Säure umgesetzt.

Dabei addiert die mindestens eine Lewis-Säure an terminale Atome,

beispielsweise Sauerstoffatome, des Gerüstes der Polykieselsäure

beziehungsweise des Polykieselsäure-Derivates, wobei die Kationen des Salzes, beispielsweise Lithiumionen oder Natriumionen, über die addierte Lewis-Säure und darüber ausgebildete Kation-Polyanion-Wechselwirkungen, beispielsweise Li + -Polyanion-Wechselwirkungen oder Na + -Polyanion-Wechselwirkungen, und eine negative Formalladung am Zentralatom der Lewis-Säure lediglich schwach an das anionische Gitter des Gerüstes der Polykieselsäure beziehungsweise des Polykieselsäure-Derivates gebunden werden und somit - insbesondere im Gegensatz zu unbehandelter Polykieselsäure beziehungsweise unbehandelten Polykieselsäuresalzen - vorteilhafterweise eine ionische Leitfähigkeit zeigen können.

Dabei kann vorteilhafterweise das anionische Gitter beziehungsweise S1O2- Gerüst der Polykieselsäure beziehungsweise des Polykieselsäure-Derivates unabhängig von den zur ionischen Leitfähigkeit beitragenden Alkalimetallionen- Anion-Wechselwirkungen ausgebildet werden. Durch die Nachbehandlung des Gerüstes kann das Material dann vorteilhafterweise in einen Alkalimetall- Ionenleiter überführt werden. Im Gegensatz zu herkömmlichen Festkörperlelektrolyten lässt sich durch Einfügen der Lewis-Säure so vorteilhafterweise die Coulomb-Attraktion - ohne Wechsel der anionischen Teilstruktur des Grundgerüstes - vermindern. So kann durch das Verfahren ein funktionalisiertes Silica-Material, nämlich ein kationenleitfähiges, siliciumdioxidbasiertes Material, ausgebildet werden, welches vorteilhafterweise als Festkörperelektrolyt, beispielsweise in Batterien, wie Lithium-Ionen-Batterien oder Natrium-Ionen-Batterien, eingesetzt werden kann. Im Rahmen einer Ausführungsform umfasst die mindestens eine Lewis-Säure, insbesondere als Zentralatom, Bor und/oder Aluminium und/oder Phosphor. Insbesondere kann die mindestens eine Lewis-Säure Bor und/oder Aluminium, insbesondere als Zentralatom, umfassen.

Im Rahmen einer weiteren Ausführungsform umfasst die mindestens eine Lewis- Säure, insbesondere deren Koordinationssphäre, mindestens ein Halogenatom, beispielsweise Fluor und/oder Chlor, und/oder mindestens eine Alkoxygruppe, beispielsweise /so-Propoxygruppe (-O-iPr) und/oder terf-Butoxygruppe (-O-tBu) und/oder Ethyoxygruppe (-O-Et) und/oder Methoxygruppe (-O-Me), und/oder mindestens eine Organylgruppe, beispielsweise Alkylgruppe, zum Beispiel iso- Propylgruppe (-iPr) und/oder terf-Butylgruppe (-tBu) und/oder Ethylgruppe (-Et) und/oder Methylgruppe (-Me). Sterisch anspruchsvolle Lewis-Säuren haben sich zum Erzielen einer schwachen Alkalimetallionen-Anion-Wechselwirkung und damit hohen ionischen Leitfähigkeit als besonders vorteilhaft erwiesen. Zum Beispiel kann die mindestens eine Lewis-Säure, insbesondere deren

Koordinationssphäre, mindestens eine /so-Propoxygruppe (-O-iPr) und/oder tert- Butoxygruppe (-O-tBu) und/oder mindestens eine /so-Propylgruppe (-iPr) und/oder terf-Butylgruppe (-tBu) umfassen. Im Rahmen einer weiteren Ausführungsform wird beziehungsweise ist die mindestens eine Lewis-Säure ausgewählt aus der Gruppe bestehend aus Borhalogeniden, beispielsweise Bortrifluorid (BF3), Boralkoxiden (B(OR)3), beispielsweise Bortri(/so-propoxid) (B(0-iPr) 3 ) und/oder Bortri(terf-butoxid) (B(0- tBu) 3 ) und/oder Bortriethoxid (B(0-Et) 3 ) und/oder Bortrimethoxid (B(0-Me) 3 ), zum Beispiel Bortri(/so-propoxid) (B(0-iPr) 3 ) und/oder Bortri(terf-butoxid) (B(0-tBu) 3 ), und/oder Triorganylboranen (BR3), beispielsweise Tri(/so-propoxyl)boran (B(iPr)3) und/oder Tri(terf-butoxyl)boran (B(tBu)3) und/oder Triethylboran (B(Et)3) und/oder Trimethylboran (B(Me)3), zum Beispiel Tri(/so-propoxyl)boran (B(iPr)3) und/oder Tri(terf-butoxyl)boran (B(tBu)3), und/oder Aluminiumhalogeniden, beispielsweise Aluminiumchlorid (AICI3) und/oder Aluminiumalkoxiden (AI(OR)3), beispielsweise

Aluminiumtri(/so-propoxid) (AI(0-iPr)3) und/oder Aluminiumtri(terf-butoxid) (Al(0- tBu)s) und/oder Aluminiumtriethoxid (Al(0-Et)3) und/oder Aluminiumtrimethoxid (Al(0-Me)3), zum Beispiel Aluminiumtri(/so-propoxid) (AI(0-iPr)3) und/oder Aluminiumtri(terf-butoxid) (AI(0-tBu) 3 ).

Im Rahmen einer weiteren Ausführungsform wird die Polykieselsäure

beziehungsweise das Polykieselsäure-Derivat in ein Alkalimetallsalz,

beispielsweise Lithiumsalz oder Natriumsalz, insbesondere Lithiumsalz, überführt.

Im Rahmen einer weiteren Ausführungsform erfolgt das Überführen der

Polykieselsäure beziehungsweise des Polykieselsäure-Derivates in das Salz durch beziehungsweise in Gegenwart mindestens einer Alkalimetallverbindung, beispielsweise Lithiumverbindung und/oder Natriumverbindung, insbesondere Lithiumverbindung. Beispielsweise kann das Überführen der Polykieselsäure beziehungsweise des Polykieselsäure-Derivates in das Salz durch

beziehungsweise in Gegenwart mindestens eines Alkalimetall-Alkoxids und/oder -Amids und/oder -Halogenids, beispielsweise -Chlorids, zum Beispiel von Lithium und/oder Natrium, erfolgen beziehungsweise durchgeführt werden. Zum Beispiel kann das Überführen der Polykieselsäure beziehungsweise des Polykieselsäure-

Derivates in das Salz durch beziehungsweise in Gegenwart mindestens eines Lithium-Alkoxids und/oder -Amids und/oder -Halogenids, beispielsweise von Lithiumchlorid, erfolgen beziehungsweise durchgeführt werden. Im Rahmen einer weiteren Ausführungsform erfolgt das Überführen der

Polykieselsäure beziehungsweise des Polykieselsäure-Derivates in das Salz in Gegenwart mindestens einer Hilfsbase. Zum Beispiel kann das Überführen der Polykieselsäure beziehungsweise des Polykieselsäure-Derivates in das Salz in Gegenwart mindestens eines Amins und/oder Hydroxids und/oder von

Acetylacetonat erfolgen beziehungsweise durchgeführt werden. Zum Beispiel kann das Überführen der Polykieselsäure beziehungsweise des Polykieselsäure-Derivates in das Salz in einem aprotischen Lösemittel, beispielsweise in Tetrahydrofuran (THF), erfolgen beziehungsweise durchgeführt werden.

Im Rahmen einer weiteren Ausführungsform wird ein Silan-funktionalisiertes Polykieselsäure-Derivat, insbesondere in Verfahrensschritt a), eingesetzt.

Beispielsweise kann, insbesondere in Verfahrensschritt a), ein Silan- funktionalisiertes Polykieselsäure-Derivat eingesetzt werden, welches mit mindestens einem Silan der allgemeinen chemischen Formel: (R"0)3Si-R'-OH oder (R"0)3Si-R'-NH2 funktionalisiert ist. Dabei kann R' insbesondere für eine substituierte oder unsubstituierte Alkylengruppe, zum Beispiel eine

Methylengruppe, Ethylengruppe, Propylengruppe oder Butylengruppe, stehen. R" kann dabei insbesondere für eine substituierte oder unsubstituierte

Alkylgruppe, zum Beispiel eine Methylgruppe, Ethylgruppe, Propylgruppe oder Butylgruppe, stehen. Zum Beispiel kann, insbesondere in Verfahrensschritt a), ein Silan-funktionalisiertes Polykieselsäure-Derivat eingesetzt werden, welches mit (CH 3 0) 3 Si-R'-OH oder (CH 3 0) 3 Si-R'-NH2 funktionalisiert ist.

Im Rahmen einer weiteren Ausführungsform wird, insbesondere in

Verfahrensschritt a), poröse, insbesondere mesoporöse, Polykieselsäure beziehungsweise ein poröses, insbesondere mesoporöses, Polykieselsäure- Derivat eingesetzt. Beispielsweise kann, insbesondere in Verfahrensschritt a), Periodisch Mesoporöses Silica (PMS) oder ein Derivat davon, zum Beispiel Silan-funktionalisiertes Periodisch Mesoporöses Silica, eingesetzt werden.

Poröse, insbesondere mesoporöse, Polykieselsäure beziehungsweise poröse, insbesondere mesoporöse, Polykieselsäure-Derivate, zum Beispiel Periodisch Mesoporöses Silica (PMS) und dessen Derivate, können vorteilhafterweise potentiell große Transportkanäle aufweisen. Periodisch mesoporöses Silica (PMS) ist metastabil und wird insbesondere nicht durch klassische

Festkörpersynthese, sondern durch das später erläuterte Template- Syntheseverfahren hergestellt. Die Poren der Polykieselsäure beziehungsweise des Polykieselsäure-Derivates und die dadurch ausgebildeten Transportkanäle lassen vorteilhafterweise eine erfindungsgemäße Salzbildung und Lewis-Säuren-Addition ohne Veränderung der restlichen Struktur zu. Klassische, beispielsweise oxidische, lonenleiter würden im Gegensatz dazu bei solch einer Adduktbildung in der Regel eine

Phasenumwandlung erster Ordnung zeigen.

Durch die poröse, insbesondere mesoporöse, Polykieselsäure beziehungsweise das poröse, insbesondere mesoporöse, Polykieselsäure-Derivat kann somit vorteilhafterweise die Kanalgröße vorgegeben und durch die Lewis-Säure die

Coulomb-Wechselwirkung von Kation zum Polyanion - insbesondere ohne Änderung der Anionischen Teilstruktur der Polykieselsäure beziehungsweise des Polykieselsäure-Derivates - abgeschwächt werden. Im Rahmen einer weiteren Ausführungsform weist die, insbesondere poröse, beispielsweise mesoporöse, Polykieselsäure beziehungsweise das,

insbesondere poröse, beispielsweise mesoporöse, Polykieselsäure-Derivat einen durchschnittlichen Porendurchmesser in einem Bereich von > 2 nm bis < 150 nm, auf. Die Transportkanalgröße derartiger mesoporösen Polykieselsäuren und Polykieselsäure-Derivate hat sich im Hinblick auf die ionische Leitfähigkeit als besonders vorteilhaft erwiesen.

Die Poren und Kanalgröße der Polykieselsäure beziehungsweise des

Polykieselsäure-Derivates kann vorteilhafterweise bereits während der Synthese der Polykieselsäure beziehungsweise des Polykieselsäure-Derivates,

beispielsweise in einem vorgelagerten Verfahrensschritt x), eingestellt werden. Die zu leitenden Kationen, beispielsweise Lithiumionen, können

erfindungsgemäß danach eingefügt werden, was bei klassischen

Festkörpersyntheseverfahren nicht möglich ist.

Die Poren und Kanalgröße der Polykieselsäure beziehungsweise des

Polykieselsäure-Derivates können insbesondere durch eine Reaktionsführung mithilfe eines Templates ausgebildet und eingestellt werden. Im Rahmen einer weiteren Ausführungsform wird daher die, insbesondere poröse, beispielsweise mesoporöse, Polykieselsäure beziehungsweise das, insbesondere poröse, beispielsweise mesoporöse, Polykieselsäure-Derivat, beispielsweise in Verfahrensschritt x), mittels eines Templates, zum Beispiel mindestens eines Tensids, hergestellt.

Zum Beispiel kann die, insbesondere poröse, beispielsweise mesoporöse, Polykieselsäure beziehungsweise das, insbesondere poröse, beispielsweise mesoporöse, Polykieselsäure-Derivat durch Hydrolyse eines Orthokieselsäure- Derivates, zum Beispiel eines Tetraalkoxysilans, wie Tetraethyoxysilan (TEOS), in Gegenwart eines Templates, insbesondere mindestens eines Tensids, beispielsweise in einem wässrigen System, hergestellt werden. Dabei kann das Template, beispielsweise das mindestens eine Tensid, insbesondere später, zum Beispiel durch Erhitzen, beispielsweise auf eine Temperatur von > 500 °C, und/oder durch Extrahieren mit mindestens einem Lösungsmittel, wieder entfernt werden. So kann vorteilhafterweise poröse, insbesondere mesoporöse,

Polykieselsäure beziehungsweise können poröse, insbesondere mesoporöse, Polykieselsäure-Derivate mit einer durchschnittlichen Porendurchmesser in einem Bereich von > 2 nm bis < 150 nm, also einem Vielfachen der typischen Anion-Kation-Anionen-Abstände, hergestellt werden.

Die Überführung in das Salz, insbesondere Verfahrensschritt a), kann dann nach Isolieren, und beispielsweise Trocknen, der beziehungsweise des, insbesondere in Verfahrensschritt x), ausgebildeten porösen Polykieselsäure/Polykieselsäure- Derivates durchgeführt werden.

Im Rahmen einer weiteren Ausführungsform wird das Silan-funktionalisierte Polykieselsäure-Derivat dadurch hergestellt, dass die Hydrolyse in Gegenwart mindestens eines Silans, insbesondere der allgemeinen chemischen Formel: (R"0) 3 Si-R'-OH oder (R"0) 3 Si-R'-NH 2 durchgeführt wird. R' kann dabei insbesondere für eine substituierte oder unsubstituierte Alkylengruppe, zum Beispiel eine Methylengruppe, Ethylengruppe, Propylengruppe oder

Butylengruppe, und R" für eine substituierte oder unsubstituierte Alkylgruppe, zum Beispiel eine Methylgruppe, Ethylgruppe, Propylgruppe oder Butylgruppe, stehen. Zum Beispiel kann das mindestens eine Silan (CH30)3Si-R'-OH oder (CH30)3Si-R'-N H2 sein. Dabei kann das Template, beispielsweise das

mindestens eine Tensid, insbesondere durch Extrahieren mit mindestens einem Lösungsmittel, wieder entfernt werden. Im Rahmen einer anderen Ausführungsform wird das Silan-funktionalisierte

Polykieselsäure-Derivat dadurch hergestellt, dass nach dem Entfernen des Templates, beispielsweise des mindestens einen Tensids, zum Beispiel durch Erhitzen, beispielsweise auf eine Temperatur von > 500 °C und/oder durch Extrahieren mit mindestens einem Lösungsmittel, mindestens ein Silan, insbesondere der allgemeinen chemischen Formel: (R"0)3Si-R'-OH oder

(R"0)3Si-R'-N H2, zugegeben wird. Auch hierbei kann insbesondere R' für eine substituierte oder unsubstituierte Alkylengruppe, zum Beispiel eine

Methylengruppe, Ethylengruppe, Propylengruppe oder Butylengruppe, und R" für eine substituierte oder unsubstituierte Alkylgruppe, zum Beispiel eine

Methylgruppe, Ethylgruppe, Propylgruppe oder Butylgruppe, stehen und beispielsweise kann das mindestens eine Silan (CH30)3Si-R'-OH oder

(CH 3 0)3Si-R'-N H2 sein.

Im Rahmen dieser Ausführungsformen kann das mindestens eine Silan insbesondere eine Kondensationsreaktion mit Hydroxygruppen an der

Oberfläche der Polykieselsäure beziehungsweise des Polykieselsäure-Derivates eingehen. Das mindestens eine Silan kann dabei vorteilhafterweise als Spacer dienen, an dem dann, insbesondere terminal, die Salzbildung und Addition der Lewis-Säure durchgeführt wird.

Im Rahmen einer weiteren Ausführungsform wird, beispielsweise in

Verfahrensschritt x), Silicium, insbesondere tetraedrisch koordiniertes Silicium, der Polykieselsäure beziehungsweise des Polykieselsäure-Derivates teilweise durch Phosphor und/oder Aluminium substituiert. Dazu kann beispielsweise bei der Hydrolyse eine Phosphorverbindung, beispielsweise Phosphorchlorid, zum

Beispiel Phosphorpentachlorid (PCI5), und/oder eine Aluminiumverbindung, beispielsweise Aluminiumchlorid (AICI3), zugegeben werden. So kann

vorteilhafterweise innerhalb des Si02-Gerüstes stellenweise, insbesondere tetraedrisch koordiniertes, Silicium gegen Phosphor und/oder Aluminium ausgetauscht werden. Erfindungsgemäß hergestellte kationenleitfähige, silliciumdioxidbasierte

Materialien und Festkörperelektrolyte, beispielsweise lithiumionenleitfähige und/oder natriumionenleitfähige, siliciumdioxidbasierte Materialien und

Festkörperelektrolyte, können beispielsweise durch Elementaranalyse und/oder

Infrarot-Spektroskopie und/oder Raman-Spektroskopie und/oder

röntgenographische Strukturaufklärungsmethoden nachgewiesen werden.

Hinsichtlich weiterer technischer Merkmale und Vorteile des erfindungsgemäßen Verfahrens wird hiermit explizit auf die Erläuterungen im Zusammenhang mit dem erfindungsgemäßen Material und Festkörperelektrolyten sowie auf die Figur und die Figurenbeschreibung verwiesen.

Ein weiterer Gegenstand der vorliegenden Erfindung ist ein kationenleitfähiges, beispielsweise alkalimetallionenleitfähiges, insbesondere lithiumionenleitfähiges oder natriumionenleitfähiges, silliciumdioxidbasiertes Materials und/oder ein, insbesondere kationenleitfähiger, beispielsweise alkalimetallionenleitfähiger, insbesondere lithiumionenleitfähiger oder natriumionenleitfähiger,

silliciumdioxidbasierter, Festkörperelektrolyt, insbesondere für eine Alkalimetall- Zelle und/oder -Batterie, beispielsweise für eine Lithium-Zelle und/oder -Batterie und/oder für eine Natrium-Zelle und/oder -Batterie, zum Beispiel für eine Lithium Ionen-Zelle und/oder -Batterie und/oder für eine Natrium-Ionen-Zelle und/oder - Batterie, umfassend mindestens eine strukturelle Einheit der allgemeinen chemischen Formel:

—o ^ο— -

Li© X)

γ 2 γ

^ und/oder

hergestellt durch ein erfindungsgemäßes Verfahren.

Z kann dabei insbesondere für Bor oder Aluminium stehen. Y kann dabei insbesondere für eine Alkoxygruppe, beispielsweise eine iso- Propoxygruppe (-O-iPr) und/oder terf-Butoxygruppe (-O-tBu) und/oder

Ethyoxygruppe (-O-Et) und/oder Methoxygruppe (-O-Me), und/oder eine

Organylgruppe, insbesondere Alkylgruppe, zum Beispiel eine /so-Propylgruppe (- iPr) und/oder terf-Butylgruppe (-tBu) und/oder Ethylgruppe (-Et) und/oder

Methylgruppe (-Me), und/oder ein Halogenatom, insbesondere Fluor und/oder Chlor, stehen.

X kann dabei insbesondere für einen Spacer stehen. Beispielsweise kann X für ein Silan, beispielsweise der allgemeinen chemischen Formel: -Si(OR")2-R'-0- oder -Si(OR")2-R'-NH-, stehen. R' kann dabei insbesondere für eine substituierte oder unsubstituierte Alkylengruppe, zum Beispiel eine Methylengruppe,

Ethylengruppe, Propylengruppe oder Butylengruppe, und R" für eine substituierte oder unsubstituierte Alkylgruppe, zum Beispiel eine Methylgruppe, Ethylgruppe, Propylgruppe oder Butylgruppe, zum Beispiel -Si(OCH3)2-R'-0- oder -Si(OCH3)2-

R'-NH-, stehen. x steht dabei insbesondere für die Anzahl, insbesondere das Vorhandensein beziehungsweise die Abwesenheit, des Spacers X. x kann insbesondere 1 oder 0 sein. Dabei kann im Fall x = 1 insbesondere ein Spacer X vorhanden sein. Im

Fall x = 0 kann insbesondere kein Spacer vorhanden sein.

Hinsichtlich weiterer technischer Merkmale und Vorteile des erfindungsgemäßen Materials beziehungsweise Festkörperelektrolyten wird hiermit explizit auf die Erläuterungen im Zusammenhang mit dem erfindungsgemäßen Verfahren sowie auf die Figur und die Figurenbeschreibung verwiesen.

Zeichnungen

Weitere Vorteile und vorteilhafte Ausgestaltungen der erfindungsgemäßen Gegenstände werden durch die Zeichnung veranschaulicht und in der nachfolgenden Beschreibung erläutert. Dabei ist zu beachten, dass die Zeichnung nur beschreibenden Charakter hat und nicht dazu gedacht ist, die Erfindung in irgendeiner Form einzuschränken. Es zeigt Fig. 1 ein Reaktionsschema zur Veranschaulichung einer Ausführungsform des erfindungsgemäßen Verfahrens sowie eines dadurch herstellbaren Materials beziehungsweise Festkörperelektrolyten.

Figur 1 zeigt, dass im Rahmen der darin illustrierten Ausführungsform des erfindungsgemäßen Verfahrens zunächst in einem Verfahrensschritt a) poröse, insbesondere mesoporöse, Polykieselsäure 1, zum Beispiel Periodisch

Mesoporöses Silica (PMS), in ein Lithiumsalz 2, beispielsweise ein Lithium- Polysilikat, überführt wird. Dabei werden OH-Gruppen an der Oberfläche der Polykieselsäure 1, zum Beispiel des Periodisch Mesoporöses Silica (PMS), in ein Lithiumsalz überführt. Das resultierende Lithiumsalz 2 der Polykieselsäure kann insbesondere einen basischen Charakter aufweisen und noch keine gute lonenleitfähikeit zeigen, da die Coulomb-Attraktion von Lithium zu Sauerstoff zu stark ist (hartes Anion an hartem Kation).

Das Lithiumsalz 2 der Polykieselsäure wird dann, insbesondere nach dessen Isolierung, in einem Verfahrensschritt b) mit mindestens einer Lewis-Säure 3 umgesetzt. Die mindestens eine Lewis-Säure kann beispielsweise Bor oder Aluminium oder Phosphor, insbesondere Bor oder Aluminium, als Zentralatom Z und eine Koordinationssphäre aus beispielsweise drei iso-Propoxygruppen (-0- iPr) aufweisen. Zum Beispiel kann als Lewis-Säure Bortri(/so-propoxid) (B(0- iPr)3) oder Aluminiumtri(/so-propoxid) (AI(0-iPr)3) eingesetzt werden.

Die mindestens eine Lewis-Säure 3 wird dabei addiert beziehungsweise angelagert und es entsteht - analog zu Synthese von Na2S0 4 BF3 gemäß der Reaktionsgleichung: Na2S0 4 + BF3 — > Na2S0 4 BF3 - ein Addukt 4 mit einer schwachen Li + -Polyanion-Wechselwirkung und einer negativen Formalladung am Zentralatom Z der Lewis-Säure 3, welches auf Siliciumdioxid basiert und lithiumuionenleitfähig ist und potentiell als Festkörperelektrolyt, beispielsweise in Batterien, wie Lithium-Ionen-Batterien, eingesetzt werden kann.