Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
NOVEL VITAMIN D DERIVATIVES WITH C-25 SUBSTITUENTS, PROCESS FOR THEIR PREPARATION, INTERMEDIATE PRODUCTS AND THEIR USE IN PREPARING MEDICAMENTS
Document Type and Number:
WIPO Patent Application WO/1997/000242
Kind Code:
A1
Abstract:
The invention concerns novel vitamin D derivatives with C-25 substituents of general formula (I). The invention also concerns a process for their preparation and their use in preparing medicaments.

Inventors:
KIRSCH GERALD (DE)
STEINMEYER ANDREAS (DE)
NEEF GUENTER (DE)
SCHWARZ KATICA (DE)
THIEROFF-EKERDT RUTH (DE)
WIESINGER HERBERT (DE)
MENRAD ANDREAS (DE)
HABEREY MARTIN (DE)
Application Number:
PCT/EP1996/001788
Publication Date:
January 03, 1997
Filing Date:
April 30, 1996
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SCHERING AG (DE)
KIRSCH GERALD (DE)
STEINMEYER ANDREAS (DE)
NEEF GUENTER (DE)
SCHWARZ KATICA (DE)
THIEROFF EKERDT RUTH (DE)
WIESINGER HERBERT (DE)
MENRAD ANDREAS (DE)
HABEREY MARTIN (DE)
International Classes:
A61P3/02; A61P17/00; A61K31/59; A61P29/00; A61P35/00; A61P37/00; A61P43/00; C07C401/00; (IPC1-7): C07C401/00; A61K31/59
Domestic Patent References:
WO1994007853A11994-04-14
Other References:
V. OSTREM ET AL: "24- and 26-Homo-1,25-dihydroxyvitamin D3: Preferential Activity in Inducing Differentiation of Human Leukemia Cells HL-60 "In Vitro"", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 84, no. 9, 1987, WASHINGTON US, pages 2610 - 2614, XP002009787
Download PDF:
Claims:
PATENTANSPRÜCHE
1. Vitamin DDerivate mit Substituenten an C25 der allgemeinen Formel I, worin Yj ein WasserstofFatom, eine Hydroxylgruppe, eine Alkanoyloxygruppe mit 1 bis 12 C Atomen oder eine Aroyloxygruppe, Y2 ein Wasserstoffatom oder eine Alkanoylgruppe mit 1 bis 12 C Atomen oder eine Aroylgruppe, Rj und R2 je ein WasserstofFatom oder gemeinsam eine exocycüsche Methylengruppe, R3 und R4 unabhängig voneinander ein WasserstofFatom, ein Chlor oder Fluoratom, eine Alkylgruppe mit 1 bis 4 Kohlenstoffatomen, gemeinsam eine Methylengruppe oder gemeinsam mit dem quartären Kohlenstoffatom 20 einen 37gliedrigen, gesättigten oder ungesättigten carbocyclischen Ring, A und B gemeinsam eine Ketogruppe oder A eine Gruppe OR' und B ein Wasserstoffatom oder B eine Gruppe OR1 und A ein WasserstofFatom, wobei R' ein WasserstofFatom oder eine gerad oder verzweigtkettige, gesättigte Alkanoylgruppe mit bis zu 9 Kohlenstoffatomen oder eine Aroylgruppe ist, R5 und Rg gleichzeitig je ein WasserstofFatom, ein Chlor oder Fluoratom, eine Trifluormethylgruppe, einen gerad oder verzweigtkettigen, gesättigten oder ungesättigten Kohlenwasserstoffrest mit bis zu 4 Kohlenstoffatomen oder R5 und Rg gemeinsam mit dem Kohlenstoffatom 25 einen 37gliedrigen, gesättigten oder ungesättigten carbocyclischen Ring und Z einen gerad oder verzweigtkettigen, gesättigten oder ungesättigten Kohlenwasserstoffrest mit bis zu 12 Kohlenstoffatomen, der auch carbo oder heterocyclische ERSATZBLAπ (REGEL 26) Struktur oder Partialstruktur haben kann und an beliebigen Positionen Ketogruppen, Hydroxygruppen (α oder ßständig), die ihrerseits verethert oder verestert sein können, Aminogruppen, Halogenatome oder Carbonsäureester oder amideinheiten aufweisen kann und durch eine Carbonylgruppe, eine Hydroxymethylengruppe oder eine EthendiylEinheit (E oder ZGeometrie) mit dem Kohlenstoffatom 25 verknüpft ist.
2. Vitamin DDerivate nach Anspruch 1, (5Z,7E,22£)( lS,3R,24R)25( 1 Oxopentyl)26,27cyclo9, 10secocholesta5,7, 10(19),22 tetraen 1 ,3,24triol (5Z,7.E:,22£)(lS,3R,24S)25(lOxopentyl)26,27cyclo9,10secocholesta5,7,10(19),22 tetraenl,3,24triol (5Z,7£,22E)(lS,3R,24R)25Acetyl26,27cyclo9,10secocholesta5,7,10(19),22tetraen 1,3,24triol (5Z,7£,22£)(lS,3R,24S)25Acetyl26,27cyclo9,10secocholesta5,7,10(19),22tetraen 1,3,24triol (5Z,7£,22E)(lS,3R,24R)25(lOxopropyl)26,27cyclo9,10secocholesta5,7,10(19),22 tetraenl,3,24triol (5Z,7£,22£)(lS,3R,24S)25(lOxopropyl)26,27cyclo9,10secocholesta5,7,10(19),22 tetraenl,3,24triol (5Z,7E,22E)( lS,3R,24R)25(\ Oxobutyl)26,27cyclo9, 10secocholesta5,7, 10(19),22 tetraenl,3,24triol (5Z,7£,22£)(lS,3R,24S)25(lOxobutyl)26,27cyclo9,10secocholesta5,7,10(19),22 tetraen 1 ,3 ,24triol (5Z,7E,22£)(lS,3R,24R)25( 1 Oxohexyl)26,27cyclo9, 10secocholesta5,7, 10( 19),22 tetraenl,3,24triol (5Z,7£,22E)(lS,3R,24S)25(lOxohexyl)26,27cyclo9,10secocholesta5,7,10(19),22 tetraenl,3,24triol (5Z,7E,22E)( lS,3R,24R)25(l Oxoheptyl)26,27cyclo9, 10secocholesta5,7, 10( 19),22 tetraenl,3,24triol (5Z,7£,22£)(1^3R,24S)25(lOxoheptyl)26,27cyclo9,10secocholesta5,7,10(19),22 tetraen 1 , 3 , 24triol ERSATZBLAπ (REGEL 26) (5Z,7E,22E)(lS,3R,24R)25(lOxooctyl)26,27cyclo9,10secocholesta5,7,10(19),22 tetraenl,3,24triol (5Z,7£,22£)(l5,3R,24S)25(lOxooctyl)26,27cyclo9,10secocholesta5,7,10(19),22 tetraenl,3,24triol (5Z,7£,22£)(lS,3R,24R)25(lOxononyl)26,27cyclo9,10secocholesta5,7,10(19),22 tetraen 1 ,3 ,24triol (5Z,7£,22E)(lS,3R,24S)25(lOxononyl)26,27cyclo9,10secocholesta5,7,10(19),22 tetraenl,3,24triol (5Z,7£,22E)(lS,3R,24R)25Benzoyl26,27cyclo9,10secocholesta5,7,10(19),22tetraen 1,3,24triol (5Z,7£,22E)(lS,3R,24S)25Benzoyl26,27cyclo9,10secocholesta5,7,10(19),22tetraen 1,3,24triol (5Z,7E,22E)( lS,3R,24R)25(2Furanylcarbonyl)26,27cyclo9, 10secocholesta 5,7,10(19),22tetraenl,3,24triol (5Z,7£,22E)(lS,3R,24S)25(2Furanylcarbonyl)26,27cyclo9,10secocholesta 5,7, 10(19),22tetraen 1 ,3 ,24triol (5Z,7£,22E)(lS,3R,24R)25(2,2Dimethylloxoρropyl)26,27cyclo9,10secocholesta 5,7,10(19),22tetraenl,3,24triol (5Z,7£,22£)(lS,3R,24S)25(2,2Dimethylloxopropyl)26,27cyclo9,10secocholesta 5,7,10(19),22tetraenl,3,24triol (5Z,7£,22£)(lS,3R,24R)25(2Pyridinylcarbonyl)26,27cyclo9,10secocholesta 5,7,10(19),22tetraenl,3,24triol (5Z,7£,22£)( lS,3R,24S)25(2Pyridinylcarbonyl)26,27cyclo9, 10secocholesta 5,7, 10( 19),22tetraen 1 ,3 ,24triol [5Z,7i:,22£,25(£)](lS,3R,24R)25(lOxo2hexenyl)26,27cyclo9,10secocholesta 5,7,10(19),22tetraenl,3,24triol [5Z,7£,22E,25(E)](lS,3R,24S)25(lOxo2hexenyl)26,27cyclo9,10secocholesta 5,7,10(19),22tetraenl,3,24triol (5Z,7£,22E)(lS,3R,24R)25(lOxo2hexinyl)26,27cyclo9,10secocholesta 5,7,10(19),22tetraenl,3,24triol (5Z,7£,22E)(lS,3R,24S)25(lOxo2hexinyl)26,27cyclo9,10secocholesta 5,7,10(19),22tetraenl,3,24triol ERSATZBLAπ (REGEL 26) (5Z,7E,22E)( lS,3R,24R)25(Cyclopropylcarbonyl)26,27cyclo9, 10secocholesta 5,7,10(19),22tetraenl,3,24triol (5Z,7£,22£)(lS,3R,24S)25(Cyclopropylcarbonyl)26,27cyclo9,10secocholesta 5,7,10(19),22tetraenl,3,24triol [5Z,7£,22jE:,25(£)](lS,3R,24R)25(3Ethoxy3oxolpropenyl)26,27cyclo9,10 secocholesta5,7, 10( 19),22tetraen 1 ,3 ,24triol [5Z,7£,22E,25(E)](lS,3R,24S)25(3Ethoxy3oxolpropenyl)26,27cyclo9,10 secocholesta5,7, 10( 19),22tetraen 1 ,3,24triol [5Z,7.5:,22£:,25(£)](1^3R,24R)25[3(l,lDimethylethoxy)3oxolpropenyl]26,27 cyclo9, 10secocholesta5 ,7,10(19),22tetraen 1 ,3 ,24triol [5Z,7£:,22£:,25(£)](lS,3R,24S)25[3(l,lDimethylethoxy)3oxolpropenyl]26,27cyclo 9 10secocholesta5, 7, 10( 19),22tetraen 1 ,3 ,24triol [5Z,7£,22£:,25(£)](lS,3R,24R)25(3Propoxy3oxolpropenyl)26,27cyclo9,10 secocholesta5,7,10(19),22tetraenl,3,24triol [5Z,7£,22£,25(£)](lS,3R,24S)25(3Propoxy3oxolpropenyl)26,27cyclo9,10 secocholesta5,7,10(19),22tetraenl,3,24triol [5Z,7£,22JE,25(£)](lS,3R,24R)25(3Butoxy3oxolpropenyl)26,27cyclo9,10 secocholesta5,7, 10(19),22tetraen 1 ,3,24triol [5Z,7£,22£,25(£)](lS,3R,24S)25(3Butoxy3oxolpropenyl)26,27cyclo9,10 secocholesta5,7, 10( 19),22tetraen 1 ,3,24triol (5Z,7£,22£)[l^,3R,24S,25(S)]25(lHydroxy2,2,3,3,4,4,5,5,5nonafluo entyl)26,27 cyclo9,10secocholesta5,7,10(19),22tetraenl,3,24triol (5Z,7E,22E)[lS,3R,24S,25(R)]25(lHydroxy2,2,3,3,4,4,5,5,5nonafluorpentyl)26,27 cyclo9,10secocholesta5,7,10(19),22tetraenl,3,24triol (5Z,7£,22E)[lS,3R,24R,25(S)]25(lHydroxy2,2,3,3,4,4,5,5,5nonafluorpentyl)26,27 cyclo9, 10secocholesta5,7, 10( 19),22tetraen 1 ,3 ,24triol (5Z,7.?:,22E)[lS,3R,24R,25(R)]25(lHydroxy2,2,3,3,4,4,5,5,5nonafluoφentyl)26,27 cyclo9, 10secocholesta5,7, 10( 19),22tetraen 1 ,3,24triol (5Z,7£,22£)[lS,3R,24S,25(S)]25(lHydroxy2,2,3,3,4,4,5,5,6,6,7,7,7tridecafluorheptyl) 26,27cyclo9,10secocholesta5,7,10(19),22tetraenl,3,24triol (5Z,7E,22E)[lS,3R,24S,25(R)]25(lHydroxy2,2,3,3,4,4,5,5,6,6,7,7,7tridecafluorheptyl) 26,27cyclo9,10secocholesta5,7,10(19),22tetraenl,3,24triol ERSATZBLAπ (REGEL 26) (5Z,7E,22E)[lS,3R,24R,25(S)]25(lHydroxy2,2,3,3,4,4,5,5,6,6,7,7,7tridecafluorheptyl) 26,27cyclo9,10secocholesta5,7,10(19),22tetraenl,3,24triol (5Z,7£,22E)[15,3R,24R,25(R)]25(lHydroxy2,2,3,3,4,4,5,5,6,6,7,7,7tridecafluorheptyl) 26,27cyclo9, 10secocholesta5,7, 10( 19),22tetraen 1,3,24triol (5Z,7£,22£)(lS,3R,24R)25(Trifluoracetyl)26,27cyclo9, 10secocholesta5,7, 10(19),22 tetraenl,3,24triol (5Z,7.5:,22E)(lS,3R,24S)25(Trifluoracetyl)26,27cyclo9,10secocholesta5,7,10(19),22 tetraen 1 ,3 ,24triol (5Z,7£,22£)(lS,3R,24R)25(Perfluorethylcarbonyl)26,27cyclo9,10secocholesta 5,7,10(19),22tetraenl,3,24triol (5Z,7£,22£)(lS,3R,24S)25(Perfluorethylcarbonyl)26,27cyclo9,10secocholesta 5,7,10(19),22tetraenl,3,24triol (5Z,7£,22£)(lS,3R,24R)25(Perfluorpropylcarbonyl)26,27cyclo9,10secocholesta 5,7,10(19),22tetraenl,3,24triol (5Z,7E,22E)( lS,3R,24S)25(Perfluoφropylcarbonyl)26,27cyclo9, 10secocholesta 5,7,10(19),22tetraen 1 ,3,24triol (5Z,7£,22£)(lS,3R,24R)25(Perfluorbutylcarbonyl)26,27cyclo9,10secocholesta 5,7,10(19),22tetraenl,3,24triol (5Z,7£,22E)(lS,3R,24S)25(Perfluorbutylcarbonyl)26,27cyclo9,10secocholesta 5,7,10(19),22tetraenl,3,24triol (5Z,7.E,22E)(lS,3R,24R)25(Perfluoφentylcarbonyl)26,27cyclo9,10secocholesta 5,7, 10( 19),22tetraen 1 ,3,24triol (5Z,7J. ,22£)(lS,3R,24S)25(Perfluoφentylcarbonyl)26,27cyclo9,10secocholesta 5,7, 10(19),22tetraen 1 ,3,24triol (5Z,7£,22E)(lS,3R,24R)25(Perfluorhexylcarbonyl)26,27cyclo9,10secocholesta 5,7,10(19),22tetraenl,3,24triol (5Z,7£,22£)(lS,3R,24S)25(Perfluorhexylcarbonyl)26,27cyclo9,10secocholesta 5,7, 10(19),22tetraen 1 ,3,24triol (5Z,7E,22E)( lS,3R,24R)25Acetyl20methyl26,27cyclo9, 10secocholesta 5,7,10(19),22tetraenl,3,24triol (5Z,7jE:,22£)(lS,3R,24S)25Acetyl20methyl26,27cyclo9,10secocholesta 5,7,10(19),22tetraenl,3,24triol ERSATZBLAπ (REGEL 26) (5Z,7E,22E)(lS,3R,24R)20Methyl25(loxopropyl)26,27cyclo9,10secocholesta 5,7, 10(19),22tetraenl,3,24triol (5Z,7.5:,22£)(lS,3R,24S)20Methyl25(loxopropyl)26,27cyclo9,10secocholesta 5,7,10(19),22tetraenl,3,24triol (5Z,7£,22£)(lS,3R,24R)20Methyl25(loxobutyl)26,27cyclo9,10secocholesta 5,7,10(19),22tetraenl,3,24triol (5Z,7£,22j^)(lS,3R,24S)20Methyl25(loxobutyl)26,27cyclo9,10secocholesta 5,7,10(19),22tetraen 1 ,3 ,24triol (5Z,7£,22£)(lS,3R,24R)20Methyl25(loxopentyl)26,27cyclo9,10secocholesta 5,7, 10( 19),22tetraen 1 ,3,24triol (5Z,7£,22£)(l53R,245)20Methyl25(loxopentyl)26,27cyclo9,10secocholesta 5,7,10(19),22tetraenl,3,24triol (5Z,7£,22E)(l'S',3R,24R)20Methyl25(loxohexyl)26,27cyclo9,10secocholesta 5,7,10(19),22tetraenl,3,24triol (5Z,7i:,22E)(lS,3R,24S)20Methyl25(loxohexyl)26,27cyclo9,10secocholesta 5,7,10(19),22tetraenl,3,24triol (5Z,7£,22£)(lS,3R,24R)20Methyl25(loxoheptyl)26,27cyclo9,10secocholesta 5,7,10(19),22tetraenl,3,24triol (5Z,7£,22£)(lS,3R,24S)20Methyl25(loxoheptyl)26,27cyclo9,10secocholesta 5,7,10(19),22tetraenl,3,24triol (5Z,7E,22E)(lS,3R,24R)20Methyl25(loxooctyl)26,27cyclo9,10secocholesta 5,7,10(19),22tetraenl,3,24triol (5Z,7£,22E)(lS,3R,24S)20Methyl25(loxooctyl)26,27cyclo9,10secocholesta 5,7,10(19),22tetraenl,3,24triol (5Z,7£,22£)(lS,3R,24R)20Methyl25(loxononyl)26,27cyclo9,10secocholesta 5,7,10(19),22tetraenl,3,24triol (5,Z,7£,22£)(lS,3R,24S)20Methyl25(loxononyl)26,27cyclo9,10secocholesta 5,7,10(19),22tetraenl,3,24triol (7£,22E)(lR,3R,24R)25Acetyl26,27cyclo19nor9,10secocholesta5,7,22trienl,3,24 triol (7E,22E)( lR,3R,24S)25Acetyl26,27cyclo 19nor9, 10secocholesta5,7,22trien 1 ,3,24 triol ERSATZBLAπ (REGEL 26) (7E,22E)( lR,3R,24R)25( 1 Oxopropyl)26,27cyclo 19nor9, 10secocholesta5,7,22 trienl,3,24triol (7£,22E)(lR,3R,24S)25(lOxoproρyl)26,27cyclo19nor9,10secocholesta5,7,22trien 1,3,24triol (7£,22E)(lR,3R,24R)25(lOxobutyl)26,27cyclo19nor9,10secocholesta5,7,22trien 1,3,24triol (7E,22E)( \R,3R,24S)25( 1 Oxobutyl)26,27cyclo 19nor9, 10secocholesta5,7,22trien 1,3,24triol (7£,22£)(lR,3R,24R)25(lOxopentyl)26,27cyclo19nor9,10secocholesta5,7,22trien 1,3,24triol (7£,22£)(lR,3R,24S)25(lOxopentyl)26,27cyclo19nor9,10secocholesta5,7,22trien 1,3,24triol (7£,22£)(lR,3R,24R)25(lOxohexyl)26,27cyclo19nor9,10secocholesta5,7,22trien 1,3,24triol (7£,22£)(lR,3R,24S)25(lOxohexyl)26,27cyclo19nor9,10secocholesta5,7,22trien 1,3,24triol (7£,22£)(lR,3R,24R)25(lOxoheptyl)26,27cyclo19nor9,10secocholesta5,7,22trien 1,3,24triol (7£,22E)(lR,3R,24S)25(l Oxoheptyl)26,27cyclo 19nor9, 10secocholesta5,7,22trien 1,3,24triol (7£,22E)(lR,3R,24R)25(lOxooctyl)26,27cyclo19nor9,10secocholesta5,7,22trien 1,3,24triol (7£,22£)(lR,3R,24S)25(lOxooctyl)26,27cyclo19nor9,10secocholesta5,7,22trien 1,3,24triol (7£,22E)(lR,3R,24R)25(lOxononyl)26,27cyclo19nor9,10secocholesta5,7,22trien 1,3,24triol (7£,22E)(lR,3R,24S)25(lOxononyl)26,27cyclo19nor9,10secocholesta5,7,22trien 1,3,24triol (7E,22E)( lR,3R,24R)25Acetyl20methyl26,27cyclo 19nor9, 10secocholesta5,7,22 trienl,3,24triol (7£,22E)(l*R3R,24S)25Acetyl20methyl26,27cyclo19nor9,10secocholesta5,7,22 trienl,3,24triol ERSATZBLAπ (REGEL 26) (7.5:,22£)(lR,3R,24R)20Methyl25 1 oxopropyl)26,27cyclo 19nor9, 10secocholesta 5,7,22trienl,3,24triol (7E,22E)( lR,3R,24S)20Methyl25. 1 oxopropyl)26,27cyclo 19nor9, 10secocholesta 5,7,22trienl,3,24triol (7£,22£)(lR,3R,24R)20Methyl25 1 oxobutyl)26,27cyclo 19nor9, 10secocholesta 5,7,22trien 1 ,3 ,24triol (7£,22£)(lR,3R,24S)20Methyl25* 1 oxobutyl)26,27cyclo 19nor9, 10secocholesta 5 7,22trien 1 ,3 ,24triol (7£,22£)(lR,3R,24R)20Methyl25 1 oxopentyl)26,27cyclo 19nor9, 10secocholesta 5,7,22trien 1 ,3 ,24triol (7£,22£)(lR,3R,24S)20Methyl25* 1 oxopentyl)26,27cyclo 19nor9, 10secocholesta 5,7,22trienl,3,24triol (7£,22£)(lR,3R,24R)20Methyl25 1 oxohexyl)26,27cyclo 19nor9, 10secocholesta 5,7,22trien 1 ,3,24triol (7E,22£)(lR,3R,24S)20Methyl25 1 oxohexyl)26,27cyclo 19nor9, 10secocholesta 5,7,22trien 1 ,3 ,24triol (7£,22£)(lR,3R,24R)20Methyl25 1 oxoheptyl)26,27cyclo 19nor9, 10secocholesta 5,7,22trien 1 ,3 ,24triol (7£,22£)(lR,3R,24S)20Methyl25 1 oxoheptyl)26,27cyclo 19nor9, 10secocholesta 5,7,22trien 1 ,3 ,24triol (7£,22£)(lR,3R,24R)20Methyl25 1 oxooctyl)26,27cyclo 19nor9, 10secocholesta 5,7,22trien 1 ,3 ,24triol (7.E:,22£)(lR,3R,24S)20Methyl25 1 oxooctyl)26,27cyclo 19nor9, 10secocholesta 5,7,22trien 1 ,3 ,24triol (7£,22£)(lR,3R,24R)20Methyl25 1 oxononyl)26,27cyclo 19nor9, 10secocholesta 5,7,22trien 1 ,3 ,24triol (7E,22E)( lR,3R,24S)20Methyl25. 1 oxononyl)26,27cyclo 19nor9, 10secocholesta 5,7,22trien 1 ,3,24triol (5Z,7£,22£)[lS,3R,25(R)]l,3Dihydroxy25(lhydroxy2,2,3,3,4,4,5,5,5 nonafluoφentyl)26,27cyclo9,10secocholesta5,7,10(19),22tetraen24on (5Z,7£,22E)[lS,3R,25(S)]l,3Dihydroxy25(lhydroxy2,2,3,3,4,4,5,5,5nonafluoφentyl) 26,27cyclo9, 10secocholesta5,7, 10(19),22tetraen24on (5Z,7E,22E)[lS,3R,25(R)]l,3Dihydroxy25(lhydroxy2,2,3,3,4,4,5,5,6,6,7,7,7 tridecafluorheptyl)26,27cyclo9,10secocholesta5,7,10(19),22tetraen24on (5Z,7£,22i^[15,3R,25(S)]l,3Dihydroxy25(lhydroxy2,2,3,3,4,4,5,5,6,6,7,7,7 tridecafluorheptyl)26,27cyclo9,10secocholesta5,7,10(19),22tetraen24on (5Z,7£,22£)(3S,24R)25Acetyl26,27cyclo9,10secocholesta5,7,10(19),22tetraen3,24 diol (5Z,7£,22£)(3S,24S)25Acetyl26,27cyclo9,10secocholesta5,7,10(19),22tetraen3,24 diol (5Z,7E,22£)(3S,24R)25(lOxoproρyl)26,27cyclo9,10secocholesta5,7,10(19),22 tetraen3,24diol (5Z,7£,22 )(3S,24S)25(lOxopropyl)26,27cyclo9,10secocholesta5,7,10(19),22 tetraen3,24diol (5Z,7£,22£)(3S,24R)25(lOxobutyl)26,27cyclo9,10secocholesta5,7,10(19),22 tetraen3,24diol (5Z,7£,22E)(3S,24S)25(lOxobutyl)26,27cyclo9,10secocholesta5,7,10(19),22 tetraen3,24diol (5Z,7£,22£)(3S,24R)25(lOxopentyl)26,27cyclo9,10secocholesta5,7,10(19),22 tetraen3,24diol (5Z,7.E:,22£)(3S,24S)25(lOxopentyl)26,27cyclo9,10secocholesta5,7,10(19),22 tetraen3,24diol (5Z,7£,22E)(3S,24R)25(lOxohexyl)26,27cyclo9,10secocholesta5,7,10(19),22 tetraen3,24diol (5Z,7£,22£)(3S,24S)25(lOxohexyl)26,27cyclo9,10secocholesta5,7,10(19),22 tetraen3,24diol (5Z,7E,22E)(3S,24R)25(lOxoheptyl)26,27cyclo9,10secocholesta5,7,10(19),22 tetraen3,24diol (5Z,7£,22£)(3S,24S)25(lOxoheptyl)26,27cyclo9,10secocholesta5,7,10(19),22 tetraen3,24diol (5Z,7E,22E)(35,24R)25(lOxooctyl)26,27cyclo9,10secocholesta5,7,10(19),22 tetraen3,24diol (5Z,7£,22£)(3S,24S)25( 1 Oxooctyl)26,27cyclo9, 10secocholesta5,7, 10(19),22 tetraen3,24diol ERSATZBLAπ (REGEL 26) (5Z,7£,,22E)(3S,24R)25(lOxononyl)26,27cyclo9,10secocholesta5,7,10(19),22 tetraen3,24diol (5Z,7£,22£)(3S,24S)25(lOxononyl)26,27cyclo9,10secocholesta5,7,10(19),22 tetraen3,24diol [5Z,7£,22£,25(£)](lS,3R,24R)25[3(l,lDimethylethoxy)3oxolpropenyl]24 methoxy26,27cyclo9, 10secocholesta5,7, 10(19),22tetraenl,3diol [5Z,7£,22£',25(E)](lS,3R,24S)25[3(l,lDimethylethoxy)3oxolpropenyl]24methoxy 26,27cyclo9, 10secocholesta5,7, 10( 19),22tetraen 1 ,3diol (5Z,7£,22£)(lS,3R,24R)25Hydroxymethyl26,27cyclo9,10secocholesta5,7,10(19),22 tetraenl,3,24triol (5Z,7£,22£)(lS,3R,24S)25Hydroxymethyl26,27cyclo9,10secocholesta5,7,10(19),22 tetraenl,3,24triol [5Z,7£,22.5:,25(£)](lS,3R,24R)25(3Oxolheptenyl)26,27cyclo9,10secocholesta 5,7,10(19),22tetraenl,3,24triol [5Z,7£,22£,25(£)](lS,3R,24S)25(3Oxolheptenyl)26,27cyclo9,10secocholesta 5,7,10(19),22tetraen 1 ,3 ,24triol [5Z,7£,22£,25(££)](1^3R,24R)25(lOxo2,4hexadienyl)26,27cyclo9,10 secocholesta5,7,10(19),22tetraenl,3,24triol [5Z,7£,22£,25(£,£)](lS,3R,24S)25(lOxo2,4hexadienyl)26,27cyclo9,10 secocholesta5,7, 10(19),22tetraen 1 ,3,24triol .
3. Verfahren zur Herstellung der Vitamin DDerivate der allgemeinen Formel I nach Anspruch 1 und 2, worin eine Verbindung der allgemeinen Formel π, ERSATZBLAπ (REGEL 26) worin Y'] ein Wasserstoffatom oder eine geschützte Hydroxygruppe und Y'2 eine Hydroxyschutzgruppe, A' und B' gemeinsam eine Ketogruppe oder einer der beiden Substimenten eine gegebenenfalls geschützte Hydroxygruppe und der andere ein Wasserstoffatom, Z' analoge Bedeumng wie Z hat oder gegebenenfalls schutzgruppentragende Substimenten aufweisen, bedeuten, durch gleichzeitige oder sukzessive Abspaltung der Hydroxyschutzgruppen und gegebenenfalls durch partielle, sukzessive oder vollständige Veresterung der freien Hydroxygruppen umgesetzt wird.
4. Zwischenprodukte der allgemeinen Formel XU xπ worin Y'j, Y'2, R5 und R6 die in Anspruch 3 genannten Bedeutungenhaben und Rπ eine säurelabile Schutzgruppe analog Y* oder Y' oder die Tetrahydropyranyl, Tetrahydrofuranyl, Ethoxyethylen, Methoxymethyl oder Methoxyethoxymethylgruppe bedeutet.
5. Verwendung der Vitamin DDerivate der allgemeinen Formel I zur Herstellung von Arzneimitteln.
6. Verwendung der Arzneimittel nach Anspruch 5 zur Therapie von hypeφroliferativen Hauterkrankungen (Psoriasis, Akne, Ichthyosis) sowie Tumorerkrankungen und Präkanzerosen (z. B. Darmtumoren, Mammakarzinom, Lungentumoren, Prostatakarzinom, Leukämien,TZellLymphone, aktronische Keratosen, Ceonixdysplasien, weiterhin ERSATZBLAπ (REGEL 26) Autoimmunerkrankungen (z. B. multiple Sklerose, Diabetes mellitus Typ I, Myastenia gravis, Lupus erythematodes), Abstoßungsreaktionen bei antologen, allogenen oder xenogenen Transplantaten sowie AIDS, daneben ist der therapeutische Einsatz bei atropischer Haut oder Wundheilung möglich sowie der Therapie von sekundären Hypeφarathyroidisum, renaler Osteodystrophie sowie seniler und postmenopausaler Osteoporose und der Therapie von degenativen Erkrankungen des peripheren und zentralen Nervensystems (z. B. der Alzhei ersehen Krankheit und der amyotrophen Lateralsklerose).
7. Verwendung der Arzneimittel nach Anspruch 5 zur Therapie von Hypercalcämien (Hypervitaminose D, Intoxikation mit Calcitriol oder dessen Analoga) oder granulomatiösen Erkrankungen (Sarkoidose, Tuberkolose) sowie paraneoplastischer Hypercalcämien (z. B. osteolytische Metastasen und Tumore mit erhöhter Synthese von Parathormonrelated pepside) und Hypercalcämie bei Hyypeφarathyroidismus und zur Fertilitätskontrolle oder als Immunstimulantien sowie bei Honsutismus und zur Therapie und Prophyyylaxe der Arterosklerose, sowie zur Therapie von entzündlichen Erkrankungen (rheumatische Arthritis, Morbus Crohn, Colisis ulcerose und granulomatöse Erkrankungen). ERSATZBLAπ (REGEL 26).
Description:
Neue Vitamin D-Derivate mit Substituenten an C-25, Verfahren zu ihrer Herstellung, Zwischenprodukte und die Verwendung zur Herstellung von Arzneimitteln

Die vorliegende Erfindung betrifft Vitamin D-Derivate mit Substituenten an C-25 der allgemeinen Formel I,

woπn

Y* ein Wasserstoffatom, eine Hydroxylgruppe, eine Alkanoyloxygruppe mit 1 bis 12 C-

Atomen oder eine Aroyloxygruppe,

Y 2 ein Wasserstoffatom oder eine Alkanoylgruppe mit 1 bis 12 C- Atomen oder eine

Aroylgruppe,

Rj und R 2 je ein Wasserstoffatom oder gemeinsam eine exocyclische Methylengruppe,

R 3 und R 4 unabhängig voneinander ein Wasserstoffatom, ein Chlor- oder Fluoratom, eine

Alkylgruppe mit 1 bis 4 Kohlenstoffatomen, gemeinsam eine Methylengruppe oder gemeinsam mit dem quartären Kohlenstoffatom 20 einen 3-7-gliedrigen, gesättigten oder ungesättigten carbocyclischen Ring,

A und B gemeinsam eine Ketogruppe oder A eine Gruppe OR' und B ein Wasserstoffatom oder B eine Gruppe OR' und A ein Wasserstoffatom, wobei R' ein Wasserstoffatom oder eine gerad- oder verzweigtkettige, gesättigte Alkanoylgruppe mit bis zu 9

Kohlenstoffatomen oder eine Aroylgruppe ist,

R 5 und R 6 gleichzeitig je ein Wasserstoffatom, ein Chlor- oder Fluoratom, eine

Trifluormethylgruppe, einen gerad- oder verzweigtkettigen, gesättigten oder ungesättigten

Kohlenwasserstoffrest mit bis zu 4 Kohlenstoffatomen oder R 5 und R 6 gemeinsam mit dem

Kohlenstoffatom 25 einen 3-7-gliedrigen, gesättigten oder ungesättigten carbocyclischen

Ring und

Z einen gerad- oder verzweigtkettigen, gesättigten oder ungesättigten

Kohlenwasserstoffrest mit bis zu 12 Kohlenstoffatomen der auch carbo- oder heterocyclische Partial Struktur haben kann und an beliebigen Positionen Ketogruppen,

Hydroxygruppen (α- oder ß-ständig), die ihrerseits verethert oder verestert sein können, Aminogruppen, Halogenatome oder Carbonsäureester oder -amideinheiten aufweisen kann und durch eine Carbonylgruppe, eine Hydroxymethylengruppe oder eine Ethendiyl-Einheit (-CH=CH-, E oder Z-Geometrie) mit dem Kohlenstoffatom 25 verknüpft ist, bedeuten, sowie Verfahren zu ihrer Herstellung, Zwischenprodukte für diese Verfahren, pharmazeutische Präparate, die diese Verbindungen enthalten sowie deren Verwendung zur Herstellung von Arzneimitteln.

Die für die Reste Y* und Y 2 möglichen Alkanoyl- bzw. Alkanoyloxygruppen mit 1 bis 12

C-Atomen leiten sich insbesondere von gesättigten Carbonsäuren ab. Diese Reste können cyclisch, acyclisch, carbocyclisch oder heterocyclisch sein. Die bevorzugten Reste leiten sich von C-- bis C 9 -, insbesondere C 2 - bis C 5 -Alkancarbonsäuren wie beispielsweise

Acetyl(oxy)-, Propionyl(oxy)-, Butyryl(oxy)- ab.

Als Aroyl(oxy)gruppen sind die Benzoyl(oxy)- und substituierte Benzoyl(oxy)gruppen bevorzugt.

Für R 3 und R 4 gelten die folgenden bevorzugten Kombinationen: R 3 = H, R 4 = Methyl oder R 3 = Methyl, R 4 =H; R 3 = F, R 4 = Methyl oder R 3 = Methyl, R 4 =F; R 3 , R 4 = Methyl; R 3 und R 4 bilden zusammen eine Methylengruppe oder gemeinsam mit dem tertiären Kohlenstoffatom 20 einen Cyclopropylring.

Für A und B gelten folgende bevorzugte Kombinationen:

A=OH, B=H oder A=H, B=OH sowie A und B bilden eine Carbonylgruppe.

Für R 5 und R 6 gelten folgende bevorzugte Kombinationen:

R 5 , R 6 = Methyl oder Ethyl; R 5 und R 6 bilden gemeinsam mit dem Kohlenstoffatom 25 einen Cyclopropyl-, Cyclobutyl-, Cyclopentyl- oder Cyclohexylring.

Besonders bevorzugt sind die Fälle R 5 , R 6 = Methyl sowie R 5 und R 6 bilden zusammen mit dem Kohlenstoffatom 25 einen Cyclopropylring.

Für Z gelten folgende Bevorzugungen:

Z= -C(O)-R 9 oder Z= -CH(OH)-R 9 (α- oder ß-Hydroxy), wobei R 9 ein gerad- oder verzweigtkettiger, gesättigter oder ungesättigter Kohlenwasserstoffrest mit bis zu 12 Kohlenstoffatomen ist oder auch carbo- oder heterocyclisch sein kann oder derartige Partialstrukturen aufweisen kann und auch perfluoriert sein kann.

Für R 9 gelten folgende besondere Bevorzugungen:

R 9 = Methyl, Ethyl, Propyl, Butyl, Pentyl, Hexyl, Heptyl, Octyl, i-Propyl, i-Butyl, t-Butyl, 1-Butenyl, 1-Pentenyl, 1-Butinyl, 1-Pentinyl, Phenyl, Furanyl, Pyridinyl, Trifluormethyl, Perfluorethyl, Perfluorpropyl, Perfluorbutyl, Perfluo entyl oder Perfluorhexyl.

Weiterhin gilt für Z die folgende Bevorzugung: o

Z= ^ R '2 , mit R ] 2 = C ] -C 10 -Alkyl- oder Alkoxy (geradkettig, verzweigt, gesättigt, ungesättigt, cyclisch) oder

Z= =^ R* 3 , mit R, 3 = C 1 -C l0 -Alkyl geradkettig, verzweigt, gesättigt, ungesättigt, cyclisch), wobei R 13 auch Substituenten (Ketogruppen, Hydroxygruppen, Carbonsäureester, -amide, Halogene) tragen kann.

Besonders bevorzugt gemäß vorliegender Erfindung sind die folgenden Verbindungen:

(5Z,7E,22E)-( 15,3R,24R)-25-( 1 -Oxopentyl)-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22- tetraen-l ,3,24-triol

(5Z,7£,22£)-( 1 S,3R,24S)-25-( 1 -Oxopentyl)-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22- tetraen-l ,3,24-triol

(5Z,7£,22£)-( 1 S,3R,24R)-25- Acety l-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22-tetraen-

1 ,3,24-triol

(5Z.7£,22E)-( 15,3R.245)-25-Acetyl-26,27-cyclo-9,10-secocholesta-5,7,10(19 ),22-tetraen-

1,3,24-triol

(5Z,7£,22£)-( 1 S,3R,24R)-25-( 1 -Oxopropyl)-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22- tetraen-l ,3,24-trioI

(5Z,7£,22£)-( 1 S,3R,24S)-25-( 1 -Oxopropyl)-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22- tetraen-l ,3,24-triol

(5Z,7£,22£)-( 1 S,3R,24R)-25-( 1 -Oxobutyl)-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22- tetraen- l ,3,24-triol

(5Z.7£.22£)-( 15,3R,245)-25-( 1 -Oxobuty 1 )-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22- tetraen-l,3,24-triol

(5Z,7£,22£)-( 1 S.3R,24R)-25-( 1 -OxohexyI)-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22- tetraen-1.3,24-triol

(5Z,7£,22£)-( 1 S,3R,24S)-25-( 1 -Oxohexyl)-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22- tetraen-l,3,24-triol

(5Z,7£,22£)-( 1 S,3R,24R)-25-( 1 -Oxoheptyl)-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22- tetraen-l,3,24-triol

(5Z,7£,22£)-( 1 S,3R,24S)-25-( 1 -Oxoheptyl)-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22- tetraen-l,3,24-triol

(5Z,7£,22£)-( 1 S,3R,24R)-25-( 1 -Oxooctyl)-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22- tetraen-l,3,24-triol

(5Z,7£,22£)-( 1 S,3R,24S)-25-( 1 -Oxooctyl)-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22- tetraen-l,3,24-triol

(5Z,7£,22£)-( lS,3R,24R)-25-( 1 -Oxononyl)-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22- tetraen-l,3,24-triol

(5Z,7£,22£)-( 1 S,3R,24S)-25-( 1 -Oxonony l)-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22- tetraen-l,3,24-triol

(5Z,7£,22£)-( 1 S,3R,24R)-25-Benzoyl-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22- tetraen-l,3,24-triol

(5Z,7£,22£)-( lS,3R,24S)-25-Benzoyl-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22- tetraen-l,3,24-triol

(5Z,7£,22£)-( 15,3R,24R)-25-(2-Furanylcarbonyl)-26,27-cyclo-9, 10-secocholesta-

5,7, 10( 19),22-tetraen- 1 ,3,24-triol

(5Z,7£,22£)-( lS,3R,24S)-25-(2-Furanylcarbonyl)-26,27-cyclo-9, 10-secocholesta-

5,7, 10( 19),22-tetraen- 1 ,3,24-triol

(5Z,7£,22£)-( 15,3R,24R)-25-(2,2-Dimethyl- 1 -oxopropyl)-26,27-cyclo-9, 10-secocholesta-

5,7,10(19),22-tetraen-l,3,24-triol

(5Z,7£,22£)-( 15,3Λ,245)-25-(2,2-Dimethyl- 1 -oxopropyl)-26,27-cyclo-9, 10-secocholesta-

5,7,10(19),22-tetraen- 1 ,3,24-triol

(5Z.7£,22£)-(15,3R,24R)-25-(2-Pyridinylcarbonyl)-26,27- cyclo-9,10-secocholesta-

5,7, 10( 19),22-tetraen- 1 ,3,24-triol

(5Z,7£,22£)-(15,3R,245)-25-(2-Pyridinylcarbonyl)-26,27- cyclo-9,10-secocholesta-

5,7, 10( 19),22-tetraen- 1 ,3,24-triol

[5Z,7£,22£,25(£)]-( 15,3R,24R)-25-( 1 -Oxo-2-hexenyl )-26,27-cyclo-9, 10-secocholesta-

5,7, 10( 19),22-tetraen- 1 ,3,24-triol

[5Z,7£,22£,25(£)]-( 15,3R,245)-25-( 1 -Oxo-2-hexenyl )-26,27-cyclo-9, 10-secocholesta-

5,7, 10( 19),22-tetraen- 1 ,3,24-trioI

(5Z,7£,22£)-( 1 S,3R,24R)-25-( 1 -Oxo-2-hexiny I )-26,27-cyclo-9, 10-secocholesta-

5,7,10(19),22-tetraen- 1 ,3,24-triol

(5Z,7£,22£)-(15,3R,24S)-25-(l-Oxo-2-hexinyl)-26,27-cyclo-9 ,10-secocholesta-

5,7, 10( 19),22-tetraen- 1 ,3,24-triol

(5Z,7£,22£)-( 15,3R,24R)-25-(Cyclopropylcarbonyl)-26,27-cyclo-9, 10-secocholesta-

5,7,10(19),22-tetraen- 1 ,3 ,24-triol

(5Z,7£,22£)-( 1 S,3R,24S)-25-(Cyclopropylcarbony l)-26,27-cyclo-9, 10-secocholesta-

5,7, 10( 19),22-tetraen- 1 ,3,24-triol

[5Z,7£,22£,25(£)]-( 1 S,3R,24R)-25-(3-Ethoxy-3-oxo- 1 -propeny l)-26,27-cyclo-9, 10- secocholesta-5,7, 10( 19),22-tetraen- 1 ,3,24-triol

[5Z,7£,22£,25(£)]-( 15,3R,245)-25-(3-Ethoxy-3-oxo- 1 -propenyl)-26,27-cyclo-9, 10- secocholesta-5,7, 10( 19),22-tetraen- 1 ,3,24-triol

[5Z,7£,22£,25(£)]-( 1 S,3R,24R)-25-[3-( 1 , 1 -Dimethylethoxy)-3-oxo- 1 -propenyl]-26,27- cyclo-9, 10-secocholesta-5,7, 10( 19),22-tetraen- 1 ,3,24-triol

[5Z,7£,22£,25(£)]-( 1 S,3R,24S)-25-[3-( 1 , 1 -Dimethy lethoxy)-3-oxo- 1 -propenyl]-26,27- cyclo-9, 10-secocholesta-5,7, 10( 19),22-tetraen- 1 ,3,24-triol

[5Z,7£,22£,25(£)]-( 1 S,3R,24R)-25-(3-Propoxy-3-oxo- 1 -propenyl)-26,27-cyclo-9, 10- secocholesta-5,7, 10( 19),22-tetraen- 1 ,3,24-triol

[5Z,7£,22£,25(£)]-( 15,3R,245)-25-(3-Propoxy-3-oxo- 1 -propenyl)-26,27-cyclo-9, 10- secocholesta-5,7, 10( 19),22-tetraen- 1 ,3,24-triol

[5Z,7£,22£,25(£)]-( 15,3R,24 ?)-25-(3-Butoxy-3-oxo-l-propenyl)-26,27-cyclo-9,10- secocholesta-5,7, 10( 19),22-tetraen- 1 ,3,24-triol

[5Z,7£,22£,25(£)]-( 15,3R,245)-25-(3-Butoxy-3-oxo- 1 -propenyl)-26,27-cyclo-9, 10- secocholesta-5,7, 10( 19),22-tetraen- 1 ,3,24-triol

(5Z,7£,22£)-[15,3R,245,25(5)]-25-( l-Hydroxy-2,2,3,3,4,4,5,5,5-nonafluoφentyl)-26,27- cyclo-9, 10-secocholesta-5,7, 10( 19),22-tetraen- 1 ,3,24-triol

(5Z,7£,22£)-[15,3R,245,25(R)]-25-(l-Hydroxy-2.2,3,3,4,4 ,5,5,5-nonafluoφentyl)-26,27- cyclo-9, 10-secocholesta-5,7, 10( 19),22-tetraen- 1 ,3,24-triol

(5Z,7£,22£)-[l- ,3R,24R,25(5)]-25-( l-Hydroxy-2.2,3,3,4,4,5,5,5-nonafluoφentyl)-26,27- cyclo-9, 10-secocholesta-5,7, 10( 19),22-tetraen- 1 ,3,24-triol

(5Z,7£,22£)-[15,3R,24R,25(Ä)]-25-(l-Hydroxy-2.2,3.3,4, 4,5,5,5-nonafluoφentyl)-26,27- cyclo-9, 10-secocholesta-5,7, 10( 19).22-tetraen- 1 ,3,24-triol

(5Z,7£,22£)-[ 15,3R.24S.25(5)]-25-( l -Hydroxy-2.2.3,3,4.4,5,5,6,6,7,7,7- tridecafIuorheptyl)-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22-tetraen- 1 ,3,24-triol

(5Z,7£,22£)-[ 1 S,3R,245,25(Ä)]-25-( 1 -Hydroxy-2,2,3,3,4,4,5.5,6,6,7,7,7- tridecafluorheptyl)-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22-tetraen- 1 ,3,24-triol

(5Z,7£,22£)-[15,3R.24R,25(5)]-25-( l-Hydroxy-2.2,3.3,4,4,5,5,6,6,7,7,7- tridecafluorheptyl)-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22-tetraen- 1 ,3,24-triol

(5Z,7£,22£)-[15,3R,24R,25(R)]-25-(l-Hydroxy-2,2,3,3,4,4,5, 5,6,6,7,7,7- tridecafluorheptyl)-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22-tetraen- 1 ,3,24-triol

(5Z,7£,22£)-( 1 S,3R,24R)-25-(Trifluoracetyl)-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22- tetraen-l,3,24-triol

(5Z,7£,22£)-( 1 S,3R,24S)-25-(Trifluoracetyl)-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22- tetraen-l,3,24-triol

(5Z,7£,22£)-( 15,3R,24R)-25-(Perfluorethy lcarbony l)-26,27-cyclo-9, 10-secocholesta-

5,7, 10( 19),22-tetraen- 1 ,3,24-triol

(5Z,7£,22£)-( 1 S,3R,24S)-25-(Perfluorethylcarbonyl)-26,27-cyclo-9, 10-secocholesta-

5,7, 10( 19),22-tetraen- 1 ,3,24-triol

(5Z,7£,22£)-( 15,3R,24R)-25-(Perfluoφropylcarbonyl)-26,27-cyclo-9, 10-secocholesta-

5,7, 10( 19),22-tetraen- 1 ,3,24-triol

(5Z,7£,22£)-( 1 S,3R,24S)-25-(Perfluoφroρylcarbony l)-26,27-cyclo-9, 10-secocholesta-

5,7, 10( 19),22-tetraen- 1 ,3,24-triol

(5Z,7£,22£)-( 15,3R,24R)-25-(Perfluorbutylcarbonyl)-26,27-cyclo-9,10-secoc holesta-

5,7, 10( 19),22-tetraen- 1 ,3,24-triol

(5Z,7£,22£)-( 15,3R,245)-25-(Perfluorbuty lcarbony l)-26,27-cyclo-9, 10-secocholesta-

5,7, 10( 19),22-tetraen- 1 ,3,24-triol

(5Z,7£,22£)-( 15,3R,24/?)-25-(Perfluoφentylcarbonyl)-26,27-cyclo-9,10-sec ocholesta-

5,7, 10( 19),22-tetraen- 1 ,3,24-triol

(5Z,7£,22£)-( lS,3R,245)-25-(PerfluoφentylcarbonyI)-26,27-cyclo-9,10-seco cholesta-

5,7, 10( 19),22-tetraen- 1 ,3,24-trioI

(5Z,7£,22£)-(15,3R,24R)-25-(Perfluorhexylcarbonyl)-26,2 7-cyclo-9,10-secocholesta-

5,7, 10( 19),22-tetraen- 1 ,3,24-triol

(5Z,7£,22£)-( lS,3R,24S)-25-(Perfluorhexylcarbonyl)-26,27-cyclo-9,10-secoc holesta-

5,7, 10( 19),22-tetraen- 1 ,3,24-triol

(5Z,7£,22£)-( 1 S,3R,24R)-25-Acetyl-20-methyl-26,27-cyclo-9, 10-secocholesta-

5,7, 10( 19),22-tetraen- 1 ,3,24-triol

(5Z,7£,22£)-( 1 S,3R,24S)-25-Acetyl-20-methy]-26,27-cyclo-9.10-secocholesta-

5,7, 10( 19),22-tetraen- 1 ,3,24-triol

(5Z,7£,22£)-( 15,3R,24R)-20-Methy l-25-( 1 -oxopropyl)-26,27-cyclo-9, 10-secocholesta-

5,7, 10( 19),22-tetraen- 1 ,3,24-triol

(5Z,7£,22£)-( 1 S,3R,245)-20-Methyl-25-( 1 -oxopropyl)-26,27-cyclo-9, 10-secocholesta-

5.7, 10( 19),22-tetraen- 1 ,3,24-triol

(5Z,7£,22£)-( 15,3R,24R)-20-Methyl-25-( l-oxobutyl)-26,27-cyclo-9,10-secocholesta-

5,7, 10( 19),22-tetraen- 1 ,3,24-triol

(5Z,7£,22£)-( 15,3R,245)-20-Methyl-25-( 1 -oxobutyl)-26,27-cyclo-9, 10-secocholesta-

5,7,10(19),22-tetraen- 1 ,3,24-triol

(5Z,7£,22£)-( 15,3R,24R)-20-Methyl-25-( 1 -oxopentyl)-26,27-cyclo-9, 10-secocholesta-

5,7,10(19),22-tetraen- 1 ,3,24-triol

(5Z,7£,22£)-( 15,3R,245)-20-Methyl-25-( 1 -oxopentyl)-26,27-cyclo-9, 10-secocholesta-

5,7, 10( 19),22-tetraen- 1 ,3,24-triol

(5Z,7£,22£)-( 15,3R,24R)-20-Methyl-25-( 1 -oxohexyl)-26,27-cyclo-9, 10-secocholesta-

5,7, 10( 19),22-tetraen- 1 ,3,24-triol

(5Z,7£,22£)-( 15,3R,245)-20-Methyl-25-( 1 -oxohexy l)-26,27-cyclo-9, 10-secocholesta-

5,7, 10( 19),22-tetraen- 1 ,3,24-triol

(5Z,7£,22£)-( 1 S,3R,24R)-20-Methyl-25-( 1 -oxoheptyl)-26,27-cyclo-9, 10-secocholesta-

5,7,10(19),22-tetraen-l,3,24-triol

(5Z,7£,22£)-( 1 S,3R,245)-20-Methyl-25-( 1 -oxoheptyl)-26,27-cyclo-9, 10-secocholesta-

5,7, 10( 19),22-tetraen- 1 ,3,24-triol

(5Z,7£,22£)-( 15,3R,24R)-20-Methy l-25-( 1 -oxoocty l)-26,27-cyclo-9, 10-secocholesta-

5,7, 10( 19),22-tetraen- 1 ,3,24-triol

(5Z,7£,22£)-( 15,3R,245)-20-Methyl-25-( 1 -oxooctyl)-26,27-cyclo-9, 10-secocholesta-

5,7, 10( 19),22-tetraen- 1 ,3,24-triol

(5Z,7£,22£)-( 1 S,3R,24R)-20-Methyl-25-( 1 -oxononyl)-26,27-cyclo-9, 10-secocholesta-

5,7, 10( 19),22-tetraen- 1 ,3,24-triol

(5,Z,7£,22£)-( 1 S,3R,24S)-20-Methyl-25-( 1 -oxononyl)-26,27-cyclo-9, 10-secocholesta-

5,7, 10( 19),22-tetraen- 1 ,3,24-triol

(7£,22£)-( 1 R,3R,24R)-25-Acetyl-26,27-cyclo- 19-nor-9, 10-secocholesta-5,7,22-trien-

1,3,24-triol

(7£,22£)-( 1 R,3R,245)-25-Acety 1-26,27-cyclo- 19-nor-9, 10-secocholesta-5,7,22-trien-

1,3,24-triol

(7£,22£)-( 1 R,3R,24R)-25-( 1 -Oxopropyl)-26.27-cyclo- 19-nor-9, 10-secocholesta-5,7,22- trien-l,3,24-trioI

(7£.22£)-( \R,3R,24S)-25-( 1 -Oxoρropyl)-26,27-cyclo- 19-nor-9, 10-secocholesta-5,7,22- trien-l ,3,24-triol

(lE.22E)-( 1 R,3R.24R)-25-( I -Oxobuty 1 )-26,27-cyclo- 19-nor-9, 10-secocholesta-5,7,22- trien- l,3,24-trioI

(7£,22£)-( 1 R,3R,24S)-25-( 1 -Oxobutyl)-26,27-cyclo- 19-nor-9, 10-secocholesta-5,7,22-trien-

1 ,3,24-triol

(7£,22£)-( 1 R,3R,24R)-25-( 1 -Oxopenty 1 )-26,27-cyclo- 19-nor-9, 10-secocholesta-5,7,22- trien-l ,3,24-triol

(7£,22£)-( 1 R,3R,245)-25-( 1 -Oxopenty 1 )-26,27-cyclo- 19-nor-9, 10-secocholesta-5,7,22- trien-l,3,24-triol

(7£,22£)-(lR,3R,24R)-25-(l-Oxohexyl)-26,27-cyclo-19-nor -9,10-secocholesta-5,7,22- trien-l,3,24-triol

(7£,22£)-( lR,3R,245)-25-( 1 -Oxohexyl)-26,27-cyclo- 19-nor-9, 10-secocholesta-5,7,22- trien-l,3,24-triol

(7£,22£)-( lR,3R,24R)-25-( 1 -Oxoheptyl)-26,27-cyclo- 19-nor-9, 10-secocholesta-5,7,22- trien-l,3,24-triol

(7£,22£)-( 1 R,3R,24S)-25-( 1 -Oxohepty l)-26,27-cyclo- 19-nor-9, 10-secocholesta-5,7,22- trien-l,3,24-triol

(7£,22£)-( lR,3R,24R)-25-( 1 -Oxooctyl )-26,27-cyclo- 19-nor-9, 10-secocholesta-5,7,22- trien-l,3,24-triol

(7£,22£)-( 1 R,3R,24S)-25-( 1 -Oxooctyl)-26,27-cyclo- 19-nor-9, 10-secocholesta-5,7,22-trien-

1 ,3,24-triol

(7£,22£)-( \R,3R,24R)-25-( 1 -Oxononyl)-26,27-cyclo- 19-nor-9, 10-secocholesta-5,7,22- trien-l ,3,24-triol

(7£,22£)-( 1 R,3R,245)-25-( 1 -Oxonony 1 )-26,27-cyclo- 19-nor-9, 10-secocholesta-5,7,22- trien-l,3,24-triol

(7£,22£)-( 1 R,3R,24/?)-25-AcetyI-20-methyl-26,27-cyclo- 19-nor-9, 10-secocholesta-5,7,22- trien-l,3,24-triol

(7£,22£)-( 1 R,3R,245)-25-Acetyl-20-methyl-26,27-cyclo- 19-nor-9, 10-secocholesta-5,7,22- trien- 1 ,3,24-triol

(7£,22£)-( lR,3R,24R)-20-Methy]-25-( 1 -oxopropyl)-26,27-cyclo- 19-nor-9, 10-secocholesta-

5,7,22-trien-l,3,24-trioI

(7£,22£)-( 1 R,3R,245)-20-Methyl-25-( 1 -oxopropyl)-26,27-cyclo- 19-nor-9, 10-secocholesta-

5,7,22-trien-l ,3,24-triol

(7£,22£)-( 17?,3R,24R)-20-Methy l-25-( 1 -oxobuty I )-26,27-cyclo- 19-nor-9, 10-secocholesta-

5,7,22-trien-l,3,24-triol

(7£,22£)-( 1 R,3R,24S)-20-Methy l-25-( 1 -oxobuty 1 )-26,27-cyclo- 19-nor-9, 10-secocholesta-

5,7,22-trien-l,3,24-triol

(7£,22£)-( 1 R,3R,24R)-20-Methyl-25-( 1 -oxopenty l)-26.27-cyclo- 19-nor-9, 10-secocholesta-

5,7,22-trien- 1 ,3,24-triol

(7£,22£)-( 1 / 3/?,24S)-20-Methyl-25-( 1 -oxopenty l)-26,27-cyclo- 19-nor-9, 10-secocholesta-

5,7,22-trien- 1 ,3,24-triol

(7£,22£)-( lR,3R,24/?)-20-Methyl-25-( 1 -oxohexyI)-26,27-cyclo-19-nor-9,10-secocholesta-

5,7,22-trien- 1 ,3,24-triol

(7£,22£)-( 1 R,3R,245)-20-Methy l-25-( 1 -oxohexyl)-26,27-cyclo- 19-nor-9, 10-secocholesta-

5,7,22-trien-l,3,24-triol

(7£,22£)-( lR,3R,24R)-20-Methyl-25-( 1 -oxoheptyl)-26,27-cyclo- 19-nor-9, 10-secocholesta-

5,7,22-trien-l,3,24-triol

(7£,22£)-( lR,3R,24S)-20-Methy l-25-( 1 -oxoheptyl)-26,27-cyclo- 19-nor-9, 10-secocholesta-

5,7,22-trien-l,3,24-triol

(7£,22£)-( lR,3R,24R)-20-Methyl-25-( 1 -oxooctyl)-26,27-cyclo- 19-nor-9, 10-secocholesta-

5,7,22-trien-l,3,24-triol

(7£,22£)-( 1 R,3R,24S)-20-Methyl-25-( 1 -oxooctyl)-26,27-cyclo- 19-nor-9, 10-secocholesta-

5,7,22-trien-l,3,24-triol

(7£,22£)-( lR,3R,24R)-20-Methyl-25-( 1 -oxononyl)-26,27-cyclo- 19-nor-9, 10-secocholesta-

5,7,22-trien- 1 ,3,24-triol

(7£,22£)-( lR,3R,24S)-20-Methyl-25-( 1 -oxononyl)-26,27-cyclo- 19-nor-9, 10-secocholesta-

5,7,22-trien- 1 ,3,24-triol

(5Z,7£,22£)-[ 1 S,3R,25(R)]- 1 ,3-Dihydroxy-25-( 1 -hydroxy-2,2,3,3 ,4,4,5,5,5- nonafluoφentyl)-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22-tetraen-24-on

(5Z,7£,22£)-[ 1 S,3R,25(S))- 1 ,3-Dihydroxy-25-( 1 -hydroxy-2,2,3,3,4,4,5,5,5- nonafluoφentyl)-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22-tetraen-24-on

(5Z,7£,22£)-[ \S,3R,25(R)]- 1 ,3-Dihydroxy-25-( 1 -hydroxy-2,2,3,3 ,4,4,5,5,6,6,7,7,7- tridecafluorheptyl)-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22-tetraen-24-on

(5Z,7£,22£)-[15,3R,25(5)]-l ,3-Dihydroxy-25-(l-hydroxy-2,2,3,3,4,4,5,5,6,6,7,7,7- tridecafluorheptyl)-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22-tetraen-24-on

(5Z,7£,22£)-(35,24R)-25-Acetyl-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22-tetraen-

3,24-diol

(5Z,7£,22£)-(35,24S)-25-Acetyl-26.27-cyclo-9, 10-secocholesta-5,7, 10( 19),22-tetraen-

3,24-diol

(5Z,7£,22£)-(35,24R)-25-( 1 -Oxopropyl)-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22- tetraen-3,24-diol

(5Z,7£,22£)-(35,24S)-25-( 1 -Oxopropyl)-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22- tetraen-3,24-diol

(5Z,7£,22£)-(35,24R)-25-( 1 -Oxobuty l)-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22- tetraen-3,24-diol

(5Z,7£,22£)-(3S,24S)-25-( 1 -Oxobutyl)-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22- tetraen-3,24-diol

(5Z,7£,22£)-(35,24R)-25-( 1 -Oxopentyl)-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22- tetraen-3,24-diol

(5Z,7£,22£)-(3S,24S)-25-( 1 -Oxopentyl)-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22- tetraen-3,24-diol

(5Z,7£,22£)-(3S,24R)-25-( 1 -Oxohexyl)-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22- tetraen-3,24-diol

(5Z,7£,22£)-(3S,24S)-25-( 1 -Oxohexyl)-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22- tetraen-3,24-diol

(5Z,7£,22£)-(35,24R)-25-( 1 -Oxohepty l)-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22- tetraen-3,24-diol

(5Z,7£,22£)-(35,24S)-25-( 1 -Oxohepty l)-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22- tetraen-3,24-diol

(5Z,7£,22£)-(35,24R)-25-( 1 -Oxooctyl)-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22- tetraen-3,24-diol

(5Z,7£,22£)-(3S,24S)-25-( 1 -Oxooctyl)-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22- tetraen-3,24-dioI

(5Z,7£,22£)-(35,24R)-25-( 1 -Oxononyl)-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22- tetraen-3,24-diol

(5Z,7£,22£)-(3S,24S)-25-( 1 -Oxononyl)-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22- tetraen-3,24-diol

[5Z,7£,22£,25(£)]-( 15,3R,24R)-25-[3-( 1 , 1 -Dimethylethoxy)-3-oxo- 1 -proρenyI]-24- methoxy-26.27-cyclo-9, 10-secocholesta-5,7, 10( 19),22-tetraen- 1 ,3diol

[5Z,7£,22£,25(£)]-( 15,3R,245)-25-[3-( 1 , 1 -Dimethylethoxy)-3-oxo- 1 -propenyl]-24- methoxy-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22-tetraen- 1 ,3diol

(5Z,7£,22£)-( 1 S,3R,24R)-25-Hydroxymethyl-26,27-cyclo-9, 10-secocholesta-

5,7, 10( 19),22-tetraen- 1 ,3,24-triol

(5Z,7£,22£)-( 15,3R,245)-25-Hydroxymethyl-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22- tetraen-l,3,24-triol

[5Z,7£,22£,25(£)]-( 15,3R,24R)-25-(3-Oxo- 1 -hepteny 1 )-26,27-cyclo-9, 10-secocholesta-

5,7, 10( 19),22-tetraen- 1 ,3,24-triol

[5Z,7£,22£,25(£)]-( 15,3R,245)-25-(3-Oxo-l -hepteny l)-26,27-cyclo-9,10-secocholesta-

5,7, 10( 19),22-tetraen- 1 ,3,24-triol

[5Z.7£,22£,25(£,£)]-( 15,3R,24/?)-25-( l -Oxo-2,4-hexadienyl)-26,27-cyclo-9,10- secocholesta-5,7, 10( 19).22-tetraen- 1 ,3,24-triol

[5Z,7£,22£,25(££)]-(15,3R,245)-25-(l-Oxo-2,4-hexadien yl)-26,27-cyclo-9,10- secocholesta-5,7, 10( 19),22-tetraen- 1 ,3,24-triol

Die natürlichen Vitamine D 2 und D 3 (vergl. allgemeine Formel Vitamin D) sind an sich biologisch inaktiv und werden erst nach Hydroxylierung am C-Atom 25 in der Leber und am C-Atom 1 in der Niere in biologisch aktive Metaboliten [lα,25-Dihydroxyvitamin D 3 (Calcitriol) bzw. -D 2 ] umgewandelt. Die Wirkung der aktiven Metaboliten besteht in der Regulation der Calcium- und Phosphatkonzentration im Serum; sie wirken einem Absinken der Calciumkonzentration im Serum entgegen, indem sie die Calciumabsoφtion im Darm erhöhen und unter bestimmten Umständen die Calciummobilisation aus dem Knochen fördern.

Vitamin D o

Vitamin D, H, Rb=OH 1α-Hydroxycholecalciferol: Ra=OH, Rb=Rc=H 1α,25-Dihydroxycholecalciferol: Ra=Rb=OH, Rc=H Calcitriol

Neben ihrer ausgeprägten Wirkung auf den Calcium- und Phosphatstoffwechsel besitzen die aktiven Metaboliten von Vitamin D 2 und D 3 und seine synthetischen Abkömmlinge eine proliferationshemmende und differenzierungsstimuliernde Wirkung auf Tumorzellen und normale Zellen, wie zum Bespiel Hautzellen. Weiterhin wurde eine ausgeprägte Wirkung auf Zellen des Immunsystems (Hemmung der Proliferation und Interleukin 2- Synthese von Lymphocyten, Steigerung der Cytotoxizität und Phagocytose in vitro von Monocyten) gefunden, die sich in einer immunmodulatorischen Wirkung äußert, schließlich wird infolge einer fördernden Wirkung auf knochenbildende Zellen eine vermehrte Knochenbildung bei normalen und osteoporotischen Ratten gefunden [R. Bouillon et al. "Short term course of l,25(OH) 2 D 3 stimulates osteoblasts but not osteoclasts" . Calc. Tissue Int. 49, 168-173 (1991)]

Alle Wirkungen werden durch Bindung an den Vitamin D-Rezeptor vermittelt. Infolge der Bindung wird die Aktivität von spezifischen Genen reguliert.

Bei Anwendung der biologisch aktiven Metabolite von Vitamin D 2 und D 3 wird eine toxische Wirkung auf den Calciumstoffwechsel hervorgerufen (Hypercalcämie).

Durch strukturelle Manipulationen der Seitenkette können therapeutisch nutzbare Wirkqualitäten von der unerwünschten hypercalcämischen Aktivität abgetrennt werden. Eine geeignete Strukturvariation ist die Einführung von 24-Hydroxy-Derivaten.

In 24-Stellung hydroxylierte 1 α-Cholecalciferole gehen bereits aus der DE 25 26 981 hervor. Sie besitzen eine geringere Toxizität als das entsprechende nicht-hydroxylierte lα- Cholecalciferol. Darüberhinaus sind 24-Hydroxy-Derivate in folgenden Patentanmeldun¬ gen beschrieben: DE 39 33 034, DE 4003 854, DE 4034 730, EP 0421 561, EP 0441 467, WO 91/12238.

Schließlich werden in der WO 94/07853 an C 24 hydroxylierte 25-Carbonsäure-Derivate von Calcitriol beschrieben, die ein günstigeres Wirkspektrum als Calcitriol aufweisen. Während die Fähigkeit zur Auslösung einer Hypercalcämie deutlich abgeschwächt ist, bleiben die proliferationshemmenden und differenzierungsstimuliernden Wirkungen erhalten.

Gegenüber diesen strukturell verwandten Verbindungen zeichnen sich die erfindungsgemäßen Substanzen dadurch aus, daß sie eine stärkere Wirkung auf die Zelldifferenzierung zeigen, wobei die Wirkung auf den Calciumhaushalt nicht zunimmt.

Die Vitamin D-Aktivität der erfindungsgemäßen Substanzen wird mittels des Calcitriol- Rezeptortests bestimmt. Er wird unter Verwendung eines spezifischen Rezeptoφroteins aus dem Darm von jungen Schweinen durchgeführt.

Rezeptorhaltiges Bindungsprotein wird mit 3 H-Calcitriol (5xl0 ~ -0 rnol/1) in einem Reaktionsvolumen von 0,270 ml in Abwesenheit und in Anwesenheit der Prüfsubstanzen für zwei Stunden bei 4°C in einem Teströhrchen inkubiert. Zur Trennung von freiem und rezeptorgebundenem Calcitriol wird eine Charcoal-Dextran-Absoφtion durchgeführt. Dazu werden 250 μl einer Charcoal-Dextran-Suspension jedem Teströhrchen zugeführt und bei 4°C für 20 Min. inkubiert. Anschließend werden die Proben bei 10 000 x g 5 Minuten bei 4°C zentrifugiert. Der Überstand wird dekantiert und nach 1 stündiger Aquilibrierung in Picofluor 15 ™ in einem ß-Zähler gemessen.

Die mit verschiedenen Konzentrationen der Prüfsubstanz sowie der Referenzsubstanz (unmarkiertes Calcitriol) bei konstanter Konzentration der Bezugssubstanz ( 3 H-Calcitriol)

erhaltenen Kompetitionskurven werden in Beziehung zueinander gesetzt und ein Kompetitionsfaktor (KF) ermittelt.

Er ist definiert als Quotient aus den Konzentrationen der jeweiligen Prüfsubstanz und der Referenzsubstanz, die für 50%ige Kompetition erforderlich sind:

KF = Konzentration Prüfsubstanz bei 50% Kompetition

Konzentration Referenzsubstanz bei 50% Kompetition

Den erfindungsgemäßen Verbindungen ist gemein, daß sie alle über eine beträchtliche Affinität zum Calcitriol-Rezeptor verfügen.

Zur Bestimmung der akuten hypercalcämischen Wirkung verschiedener Calcitriolderivate wird nachfolgend beschriebener Test durchgeführt:

Die Wirkung von Kontrolle (Lösungsgrundlage), Referenzsubstanz (l,25(OH) 2 -D 3 =Calci- triol) und Testsubstanz wird jeweils nach einmaliger subcutaner Applikation in Gruppen von 10 gesunden männlichen Ratten ( 140-170 g) getestet. Die Ratten werden während der Versuchszeit in speziellen Käfigen zur Bestimmung der Exkretion von Wasser und Mine¬ ralstoffen gehalten. Der Harn wird in 2 Fraktionen (0-16 h und 16-22 h) gesammelt. Eine orale Calciumgabe (0.1 mM Calcium in 6,5% Alpha-hydroxypropylcellulose, 5 ml/Tier) ersetzt zum Zeitpunkt 16 h die durch Futterentzug fehlende Calciumaufnahme. Zu Ver¬ suchsende werden die Tiere durch Dekapitieren getötet und für die Bestimmung der Serum-Calciumwerte entblutet. Für die primäre Screen-Untersuchung in vivo wird eine einzelne Standarddosis (200 μg/kg) getestet. Für ausgewählte Substanzen wird das Ergebnis durch Erstellung einer Dosis-Wirkungs-Beziehung abgesichert.

Eine hypercalcämische Wirkung zeigt sich in im Vergleich zur Kontrolle erhöhten Serum- Calciumspiegel-Werten.

Die Signifikanz auftretender Unterschiede zwischen Substanzgruppen und Kontrollen sowie zwischen Testsubstanz und Referenzsubstanz werden mit geeigneten statistischen Verfahren abgesichert. Das Ergebnis wird als Dosisrelation DR (DR = Faktor Testsubs¬ tanzdosis/Referenzsubstanzdosis für vergleichbare Wirkungen) angegeben.

Die differenzierungsstimulierende Wirkung von Calcitriolanaloga wird ebenfalls quantita¬ tiv erfaßt.

Es ist literaturbekannt (Mangelsdorf, DJ. et al., J. Cell. Biol. 28: 391-398 (1984)), daß die Behandlung humaner Leukämiezellen (Promyelozytenzellinie HL 60) in vitro mit Calcitri¬ ol die Differenzierung der Zellen zu Makrophagen induziert.

HL 60-Zellen werden in Gewebekulturmedium (RPMI 10% fetales Kälberserum) bei 37°C in einer Atmosphäre 5% CO2 in Luft kultiviert.

Zur Substanztestung werden die Zellen abzentrifugiert und 2,0 x 10 5 Zellen/ml in phenol- rotfreiem Gewebekulturmedium aufgenommen. Die Testsubstanzen werden in Ethanol gelöst und mit Gewebekulturmedium ohne Phenolrot auf die gewünschte Konzentration verdünnt. Die Verdünnungsstufen werden mit der Zellsuspension in einem Verhältnis von 1 : 10 gemischt und je 100 μl dieser mit Substanz versetzten Zellsuspension in eine Vertiefung einer 96-Loch-Platte pipettiert. Zur Kontrolle wird eine Zellsuspension analog mit dem Lösungsmittel versetzt.

Nach Inkubation über 96 Stunden bei 37°C in 5% CO2 in Luft wird in jede Vertiefung der 96-Loch-Platte zu der Zellsuspension 100 μl einer NBT-TPA-Lösung (Nitroblautetrazo- lium (NBT), Endkonzentration im Ansatz 1 mg/ml, TetradecanoylρhorboImyristat-13- acetat (TPA), Endkonzentration im Ansatz 2 x 10' 7 mol/1) pipettiert.

Durch Inkubation über 2 Stunden bei 37°C und 5% CO2 in Luft wird infolge der intrazel¬ lulären Sauerstoffradikalfreisetzung, stimuliert durch TPA, in den zu Makrophagen diffe¬ renzierten Zellen NBT zu unlöslichem Formazan reduziert.

Zur Beendigung der Reaktion werden die Vertiefungen der 96-Loch-Platte abgesaugt und die Zellen durch Zugabe von Methanol am Plattenboden fixiert und nach Fixation getrock¬ net. Zur Lösung der gebildeten intrazellulären Formazankristalle werden in jede Vertie¬ fung 100 μl Kaliumhydroxid (2 mol/1) und 100 μl Dimethylsulfoxid pipettiert und 1 Minute ultrabeschallt. Die Konzentration von Formazan wird spektralphotometrisch bei 650 nm gemessen.

Als Maß für die Differenzierungsinduktion der HL 60-Zellen zu Makrophagen gilt die Konzentration an gebildetem Formazan. Das Ergebnis wird als Dosisrelation (DR = Faktor Testsubstanzdosis/Referenzsubstanzdosis für vergleichbare halbmaximale Wirkungen) angegeben.

Die Ergebnisse des Calcitriol-Rezeptortests sowie der Bestimmung der Dosisrelation der Differenzierungsinduktion von HL 60-Zellen und der Dosisrelation für Hypercalcämie sind nachfolgend zusammengefaßt (Tab. 1):

Ausgewählte Testverbindungen :

(5Z,7£,22£)-( 15,3R,24R)-25-Acetyl-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22-tetraen- l,3,24-triol 7b

(5Z,7£,22£)-( 15,3R,24R)-25-( 1 -Oxobutyl)-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22- tetraen-l,3,24-triol 8b

(5Z,7£,22£)-( lS,3R,24R)-25-Benzoyl-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22- tetraen-l,3,24-triol !0b

(5Z,7£,22£)-(15,3R,24R)-25-(Cycloproρylcarbonyl)-26,27 -cyclo-9,10-secocholesta-

5,7,10(19),22-tetraen- 1 ,3,24-triol 12b

(5Z,7£,22£)-(15,3R,24R)-25-(2,2-Dimethyl-l-oxopropyl)-2 6,27-cyclo-9,10-secocholesta-

5,7,10(19),22-tetraen- 1 ,3,24-triol 15b

(5Z,7£,22£)-( 1 S,3R,24R)-25-( 1 -Oxo-2-hexinyl)-26,27-cyclo-9, 10-secocholesta-

5,7, 10( 19),22-tetraen- 1 ,3,24-triol 19b

(5Z,7£,22£)-(15,3R,245)-25-Acetyl-20-methyl-26,27-cyclo -9,10-secocholesta-

5,7, 10( 19),22-tetraen- 1 ,3,24-triol 33a

(5Z,7£,22£)-( 1 S,3R,24R)-25-Acetyl-20-methy l-26,27-cyclo-9, 10-secocholesta-

5,7, 10( 19),22-tetraen- 1 ,3,24-trioI 33b

(5Z,7£,22£)-( 15,3R,245)-20-Methy I-25-( 1 -oxobuty 1 )-26,27-cyclo-9, 10-secocholesta-

5,7, 10( 19),22-tetraen- 1 ,3,24-triol 35a

(5Z,7£,22£)-( 15,3/?,24R)-20-Methyl-25-( 1 -oxobuty I )-26,27-cyclo-9, 10-secocholesta-

5,7, 10( 19),22-tetraen- 1 ,3,24-triol 35b

(7£,22£)-(lR,3R,24R)-25-Acetyl-26,27-cyclo-19-nor-9,10- secocholesta-5,7,22-trien- l,3,24-triol 55b

(7£,22£)-( lR,3R,245)-25-Acetyl-20-methyl-26,27-cyclo- 19-nor-9, 10-secocholesta-5,7,22- trien-l,3,24-triol 81a

(7£,22£)-( lR,3R,24R)-25-Acetyl-20-methy 1-26,27-cyclo- 19-nor-9, 10-secocholesta-5,7,22- trien-l,3,24-triol 81b

Vergleichsverbindung : Calcitriol

Tab. 1

Verbindung Kompetitionsfaktor KF Dosisrelation für für Rezeptorbindung Differenzierungs¬ induktion in HL 60-Zellen

7b 1 0,5

8b 2 0,9

10b 2 6

12b 2 0,2

15b 6 1,1

19b 2 1,5

33a 4 0,5

33b 4 0,4

35a 7 0,3

35b 2 0,2

55b 4,5 0,2

81a 10 0,2

81b 3 0,1

Calcitriol 1

Die aufgeführten Verbindungen zeigen neben einer Affinität zum Vitamin D-Rezeptor, die der von Calcitriol vergleichbar ist, zum Teil eine stärkere zeildifferenzierende Aktivität.

Die Induktion einer Hypercalcämie erfolgt dagegen erst bei sehr viel höheren Dosen als bei Calcitriol (z. B. Dosisrelation für 7b = 300, 8b = 100, 15b = 300, 19b > 300, Calcitriol DR =D*

Durch die verminderte Eigenschaft, eine Hypercalcämie auszulösen, eignen sich die erfindungsgemäßen Substanzen in besonderer Weise zur Herstellung von Arzneimitteln für die Behandlung von Erkrankungen, die durch eine Hypeφroliferation und fehlende Zelldifferenzierung gekennzeichnet sind. Dazu zählen zum Beispiel hypeφroliferative Erkrankungen der Haut (Psoriasis, Pituriasis subia pilasis, Akne, Ichthyosis) sowie Tumorerkrankungen und Präkanzerosen (zum Beispiel Darmtumoren, Mammakarzinom, Lungentumoren, Prostatakarzinom, Leukämien, T-Zell-Lymphome, Melanome, Batazell Larzin, Squamous Carcinoma, aktinische Keratosen, Cervixdysplasien, metastasierende Tumore jeglicher Art).

Auch zur Behandlung und Prophylaxe von Erkrankungen, die durch eine Störung des Gleichgewichts des Immunsystems gekennzeichnet sind, eignen sich die erfindungsgemäßen Substanzen. Hierzu zählen Ekzeme und Erkrankungen des atopischen Formonkreises, sowie Autoimmunerkrankungen wie zum Beispiel Multiple Sklerose, Diabetes mellitus Typ I, Myasthenia gravis, Lupus erythematodes, Sklerodermie, bullöse Hauterkrankungen (Pemphigus, Pemphigoid), weiterhin Abstoßungsreaktionen bei autologen, allogenen oder xenogenen Transplantaten, sowie AIDS. Bei all diesen Erkrankungen können die neuen Verbindung der allgemeinen Formel I vorteilhaft mit anderen immunsuppressiv wirksamen Stoffen wie Cyclosporin A, FK 506, Rapamycin und Anti-CD 4-Antiköφern kombiniert werden.

Ebenso sind die Substanzen geeignet zur Therapie von sekundärem Hypeφarathyreoidismus und renaler Osteodystrophie infolge der Eigenschaft von Calcitriolen, die Parathormonsynthese zu senken.

Aufgrund der Präsenz des Vitamin D-Konzeptor in den insulinproduzierenden Zellen der Bauchspeicheldrüse eignen sich die Substanzen durch Erhöhung der Insulinsekretion zur Therapie des Diabetes mellitus Typ II.

Weiterhin wurde überraschenderweise gefunden, daß durch topische Applikation der erfindungsgemäßen Verbindungen auf die Haut von Mäusen, Ratten und Meerschweinchen eine vermehrte Hautrötung und Zunahme der Epidermisdicke induziert werden kann. Die Zunahme der Hautrötung wird anhand der Erhöhung des mit einem Farbmeßgerät quantifizierbaren Rotwertes der Hautoberfläche ermittelt. Der Rotwert ist nach dreimaliger Substanzapplikation (Dosis 0,003%) im Abstand von 24 Stunden typischerweise um das 1 ,5-fache erhöht. Die Zunahme der Epidermisdicke wird im histologischen Präparat quantifiziert. Sie ist typischerweise um das 2,5-fache erhöht. Die Anzahl der proliferierenden Epidermiszellen (Zellen in der S-Phase des Zellcyclus) wird durchflußcytometrisch ermittelt und ist typischerweise um den Faktor 6 erhöht. Diese Eigenschaften der erfindungsgemäßen 25-Carbonsäure-Derivate in der Vitamin D- Reihe läßt sie zum therapeutischen Einsatz bei atrophischer Haut, wie sie bei natürlicher Hautalterung infolge erhöhter Lichtexposition oder medikamentös induzierter Hautatrophie durch Behandlung mit Glucocorticoiden auftritt, geeignet erscheinen. Weiterhin ist anzunehmen, daß die Wundheilung durch topische Applikation mit den neuen Verbindungen beschleunigt werden kann.

In Zellpopulationen das Haarfollikels, die entscheidend zum Haarwachstum bzw. der Haarzyklusregulation beitragen, konnten Vitamin D 3 -Rezeptoφroteine nachgewiesen werden (Stumpf, W. E. et al., Cell Tissue Res. 238: 489-496; Milde, P. et al., J. Invest.. 97: 230-239, 1991). Außerdem zeigen in vitro-Befunde an isolierten Haarfollikelkeratinozyten einen proliferationsinhibierenden und differenzierungsstimmulierenden Einfluß von 1,25- (OH) 2 -D 3 .

Aus klinischen Beobachtungen ist bekannt, daß die Vitamin D 3 -resistente Rachitis häufig mit einer Alopezie einhergeht, die sich im frühen Kindesalter ausprägt. Experimentelle Befunde zeigen, daß die Vitamin D 3 -Bindungsstelle des VDR bei dieser Erkrankung mutiert, d. h. defekt ist (Kristjansson. K. et al., J. Clin. Invest. 92: 12-16, 1993). Keratinozyten, die aus den Haarfollikeln dieser patienten isoliert wurden, reagieren in vitro nicht auf die Zugabe von 1 ,25-(OH) 2 -D 3 (Arase, S. et al., J. Dermatol. Science 2: 353-360, 1991).

Aus diesen Befunden läßt sich eine entscheidende Rolle von 1,25 D3 auf die Regulation des Haarwuchstums ableiten.

Daher eignen sich diese Analoga besonders zur Herstellung von Arzneimitteln zur Behandlung von Erkrankungen, die mit einem gestörten Haarwachstum einhergehen (androgenetische Alopezie, Alopezia areata/totalis, chemotherapie-induzierte Alopezie), oder zur Unterstützung des physiologischen Haarwachstums.

Die senile und postmenopausale Osteoporose ist gekennzeichnet durch einen erhöhten Knochenumsatz mit einer insgesamt negativen Bilanz. Aufgrund des Knochenschwundes insbesondere von trabekulärem Knochen kommt es in verstärktem Maße zu Knochenbrüchen. Aufgrund der fördernden Wirkung von Calcitriol sowohl auf die Anzahl als auch die Syntheseleitung von knochenneubildenden Zellen (Osteoblasten) eignen sich die erfindungsgemäßen Substanzen zur Therapie und Prophylaxe der senilen und postmenopausalen Osteoporose (EP 0 634 173 AI ), der steroidinduzierten Osteoporose sowie zur beschleunigten Einheilung von Gelenkplastiken. Für die Therapie der verschiedenen Formen der Osteoporose können sie vorteilhaft mit Estradiol oder anderen Abkömmlingen des Östrogens kombiniert werden.

Schließlich konnte gezeigt werden, daß Calcitriol die Synthese eines Wuchsstoffes für Nervenzellen (nerve growth factor) steigert [M.S. Saporito et al. Brain Res. 633. 189-196 (1994)]. Daher eignen sich die erfindungsgemäßen Verbindungen auch zur Behandlung

von degenerativen Erkrankungen des peripheren und zentralen Nervensystems, wie der Alzheimerschen Erkrankung und der amyotrophen Lateralsklerose.

Es wurde außerdem gefunden, daß bestimmte Verbindungen der allgemeinen Formel I in HL 60-Zellen überraschenderweise die Wirkung von Calcitriol antagonisieren. In der Reihe der 25-Alkyl-Derivate zeigen die Verbindungen mit zunehmender Kettenlänge an der Carbonylgruppe bei gleichbleibend guter Rezeptoraffinität deutlich schwächere differenzierungsstimulierende agonistische Aktivität in HL 60-Zellen (Tab. 2).

Ausgewählte Testverbindungen mit antagonistischer Wirkung:

(5Z,7£,22£)-( 1 S,3R,24R)-25-( 1 -Oxopentyl)-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22- tetraen-l,3,24-trioI 6b

(5Z,7£,22£)-( \S,3R,24R)-25-( 1 -Oxohexyl)-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22- tetraen-l,3,24-triol 9_b

[5Z,7£,22£,25(£)]-( 15,3R,24R)-25-( 1 -Oxo-2-hexenyl)-26,27-cyclo-9, 10-secocholesta-

5,7, 10( 19),22-tetraen- 1 ,3,24-triol l§b

[5Z,7£,22£,25(£)]-( lS,3R,24/?)-25-(3-Ethoxy-3-oxo- 1 -propenyl)-26,27-cyclo-9, 10- secocholesta-5,7, 10( 19),22-tetraen- 1 ,3,24-trioI 24b

[5Z,7£,22£,25(£)]-( lS,3R,24/?)-25-[3-( 1 , 1 -Dimethylethoxy)-3-oxo- 1 -propenyl]-26,27- cyclo-9, 10-secocholesta-5,7, 10( 19),22-tetraen- 1 ,3,24-triol 26b

(5Z,7£,22£)-( 1 S,3R,24S)-20-Methy l-25-( 1 -oxoocty l)-26,27-cyclo-9, 10-secocholesta-

5,7, 10( 19),22-tetraen- 1 ,3,24-triol 43a

(5Z,7£,22£)-(15,3R,24/?)-20-Methyl-25-(l-oxooctyI)-26,2 7-cyclo-9,10-secocholesta-

5,7, 10( 19),22-tetraen- 1 ,3.24-triol 43b

(7£,22£)-( 1 R,3R,24R)-25-( 1 -Oxopentyl)-26,27-cyclo- 19-nor-9, 10-secocholesta-5,7,22- trien-l,3,24-triol 58b

(7£,22£)-( 1 R,3R,24R)-25-( 1 -Oxohexy 1 )-26,27-cyclo- 19-nor-9, 10-secocholesta-5,7,22- trien-l ,3,24-triol 61b

(7£,22£)-( 1 R,3R,245)-25-( 1 -Oxohepty l)-26.27-cyclo- 19-nor-9, 10-secocholesta-5,7,22- trien-1.3.24-triol 64a

(7£,22£)-( 1 R,3R,24R)-20-Methy I-25-( 1 -oxohexy l)-26,27-cyclo- 19-nor-9, 10-secocholesta-

5,7,22-trien-l ,3,24-triol 61b

Vergleichsverbindung: Calcitriol

Tab. 2

Verbindung

6b

9b

18b

24b

26b

43a

43b

58b

61b

64a

87b

Calcitriol

die Wirkung von Calcitriol in HL 60-Zellen. Diese Eigenschaft setzt sich mit zunehmender Kettenlänge im Rest Z der allgemeinen Formel I fort.

Solche Verbindungen, die die Wirkung von Calcitriol antagonisieren, können bei der Therapie von Hypercalcämien eingesetzt werden, wie zum Beispiel bei Hypervitaminose D oder Intoxikation mit Calcitriol und calcitriolartig wirksamen Substanzen, oder bei erhöhter extrarenaler Calcitriolsynthese bei granulomatösen Erkrankungen (Sarkoidose, Tuberkulose). Auch paraneoplastische Hypercalcämien (zum Beispiel bei osteolytischen Metastasen und Tumoren mit erhöhter Synthese von Parathormon-related peptide) sowie bei Hypercalcämie bei Hypeφarathyreoidismus.

Weiterhin sind Calcitriolantagonisten zur Fertilitätskontrolle einzusetzen. Im Repro¬ duktionstrakt weiblicher und männlicher Tiere wird der Vitamin D-Rezeptor exprimiert. Es ist bekannt, daß die weibliche und männliche Fertilität Vitamin D-defizienter Tiere herabgesetzt ist. Durch kurzfristige Substitution von Calcitriol kann die Reproduktionsleistung erhöht werden. Daher sind Calcitriolantagonisten in der Lage, die weibliche und männliche Fertilität zu beeinflussen.

Da Calcitriol unter bestimmten Bedingungen eine immunsuppressive Wirkung zeigt, sind Calcitriolrezeptorantagonisten auch als Immunstimulantien, z. B. bei Infektabwehr¬ schwäche, einzusetzen.

Von Calcitriol ist bekannt, daß es das Haarwachstum modulieren kann. Calcitriolantagonisten können daher bei unerwünschtem Haarwachstum, z. B. beim Hirsutismus, therapeutische Verwendung finden.

Eine fördernde Rolle von Vitamin D auf die Bildung von arteriosklerotischen Plaques ist seit langem bekannt. In solchen Gefäßläsionen wird ein Calcitriol-reguliertes Protein, das Osteopontin, vermehrt gefunden, dem eine Rolle bei der Gefäßverkalkung zugeschrieben wird [R. Eisenstein et al. Arch. Path. 77, 27-35 (1964), L.A. Fitzpatrick et al. J. Clin. Invest. 94, 1597-1604 (1994)] Deshalb eignen sich Calcitriolantagonisten zur Therapie und Prophylaxe aller Erscheinungsformen der Arteriosklerose.

Schließlich eignen sich Calcitriolantagonisten infolge der Eigenschaft von Calcitriol, unspezifische Immunreaktionen von monocytären Zellen zu steigern, zur Therapie von entzündlichen Erkrankungen insbesondere chronischer Natur, wie rheumatoide Arthritis. Morbus Crohn, Colitis ulcerosa, und granulomatösen Erkrankungen wie Sarkoidose und anderen Fremdköφerreaktionen.

Die vorliegende Erfindung bezieht sich somit auf pharmazeutische Präparate, die mindestens eine Verbindung gemäß der allgemeinen Formel I zusammen mit einem pharmazeutisch vertäglichen Träger enthalten.

Die Verbindungen können formuliert werden als Lösungen in pharmazeutisch verträglichen Solventien oder als Emulsionen, Suspensionen oder Dispensionen in geeigneten pharmazeutischen Solventien oder Trägern oder als Pillen, Tabletten oder Kapseln, die in an sich bekannter Weise feste Trägerstoffe enthalten. Für eine topische Anwendung werden die Verbindungen vorteilhafterwei.se als Cremes oder Salben oder in einer ähnlichen, zur topi.schen Anwendung geeigneten Arzneimittelform formuliert. Jede derartige Formulierung kann auch andere pharmazeutisch verträgliche und nichttoxische Hilfsstoffe enthalten, wie z. B. Stabilisatoren, Antioxidantien, Bindemittel, Farbstoffe, Emulgatoren oder Ge.schmackskorrigentien. Die Verbindungen werden vorteilhafterweise durch Injektion oder intravenöse Infusion geeigneter steriler Lösungen oder als orale Dosierung über den Ernährungstrakt oder topisch in der Form von Cremes, Salben, Lotions

oder geeigneter transdermaler Pflaster appliziert, wie in der EP-A 0 387 077 beschrieben ist.

Die tägliche Dosis liegt bei 0,1 μg/Patient/Tag - 1000 μg (1 mg)/Patient Tag, vorzugsweise 1 ,0 μg/Patient Tag - 500 μg/Patient/Tag.

Die Herstellung der Vitamin D-Derivate der allgemeinen Formel I erfolgt erfindungsgemäß aus einer Verbindung der allgemeinen Formel II,

II

worin Y'* ein Wasserstoff atom oder eine geschützte Hydroxygruppe und Y' 2 eine

Hydroxyschutzgruppe bedeuten.

Bei den Schutzgruppen handelt es sich vorzugsweise um alkyl-, aryl- oder gemischt alkylarylsubstituierte Silylgruppen, z.B. die Trimethylsilyl- (TMS), Triethylsilyl- (TES), tert.-Butyldimethylsilyl- (TBDMS), tert.-Butyldiphenylsilyl- (TBDPS) oder

Triisopropylsilylgruppen (TIPS) oder eine andere gängige Hydroxyschutzgruppe (siehe

T.W. Greene, P.G.M. Wuts "Protective Groups in Organic Synthesis", 2 nd Edition, John

Wiley & Sons, 1991 ).

A' und B' können gemeinsam eine Ketogruppe oder einer der beiden Substituenten eine gegebenenfalls geschützte Hydroxygruppe und der andere ein Wasserstoffatom bedeuten

(z.B Silylschutzgruppe obiger Definition, Tetrahydrofuranyl-, Tetrahydropyranyl-,

Methoxymethyl-, Methoxyethoxymethyl- oder Trimethylsilylethoxymethylgruppe).

Z' kann analoge Bedeutung wie Z haben oder gegebenenfalls schutzgruppentragende

Substituenten (z.B. Hydroxyschutzgruppen gemäß obiger Definition) aufweisen.

Durch gleichzeitige oder sukzessive Abspaltung der Hydroxyschutzgruppen und gegebenenfalls durch partielle, sukzessive oder vollständige Veresterung der freien

Hydroxygruppen wird II in eine Verbindung der allgemeinen Formel I überführt.

Im Falle der Silylschutzgruppen oder der Trimethylsilylethoxymethylgruppe verwendet man zu deren Abspaltung Tetrabutylammoniumfluorid, Fluorwasserstoffsäure oder

Fluorwasserstoff säure/Pyridin; im Falle der übrigen Ethergruppen werden diese unter katalytischer Einwirkung von Säure, beispielsweise p-Toluolsulfonsäure, Pyridinium-p- toluolsulfonat, Essigsäure, Salzsäure, Phosphorsäure oder einem sauren Ionenaustauscher abgespalten.

Die Veresterung der freien Hydroxygruppen kann nach gängigen Verfahren mit den entsprechenden Carbonsäurechloriden, -bromiden oder -anhydriden erfolgen.

Trennungen von Diastereomeren (z.B. bezüglich C-24) können auf der Endstufe oder jeder anderen Vorstufe erfolgen.

Die Herstellung der Ausgangsverbindungen für die allgemeine Formel II geht je nach letztendlich gewünschtem Substitutionsmuster in 10- und 20-Position von verschiedenen

Startverbindungen aus.

Für die Herstellung von Verbindungen der allgemeinen Formel II, worin R* und R 2 gemeinsam eine exocyclische Methylengruppe bedeuten, wird von dem bekannten Aldehyd III ausgegangen [M. Calverley Tetrahedron 43, 4609 (1987), WO 87/00834].

III

Für Y'* und Y' 2 gelten die schon erwähnten Definitionen. Andere Schutzgruppen als die in den Literaturstellen erwähnten lassen sich durch analoge Vorgehensweise unter Verwendung entsprechend modifizierter Silylchloride (z.B. tert.-Butyldiphenylsilylchlorid anstelle von tert.-Butyldimethylsilylchlorid) erhalten. Durch Verzicht auf die entsprechenden Stufen zur l α-Hydroxylierung lassen sich Derivate vom Typ Y',=H erhalten.

Die Verbindungen der allgemeinen Formel III werden nun analog bekannter Verfahren in Aldehyde der allgemeinen Formel IV überführt (WO 94/07853).

Für R 3 und R 4 gelten die schon eingangs erwähnten Definitionen.

Zum Aufbau der Seitenkette können nun sowohl Verbindungen der allgemeinen Formel III als auch Verbindungen der allgemeinen Formel IV eingesetzt werden. Exemplarisch wird im folgenden die Umsetzung von Verbindungen der allgemeinen Formel III beschrieben. Analog der etablierten Sequenz (WO 94/07853) können so Carbonsäureamide der allgemeinen Formel V generiert werden,

wobei für Y'*, Y' 2 , R 5 und R 6 die bereits gegebenen Definitionen gelten. Vorzugsweise sollen R 5 und R 6 je eine Methylgruppe oder beide zusammen mit dem Kohlenstoffatom 25 einen Cyclopropylring bedeuten. R 7 und R 8 bedeuten gerad- oder verzweigtkettige Alkylgruppen mit 1 -9 Kohlenstoffatomen, wobei besonders Methyl- und Ethylgruppen bevorzugt sind.

Reduktion der Ketogruppe mit Reduktionsmitteln wie z.B. NaBH 4 oder NaBH 4 /CeCI 3 führt dann zu Alkoholen der allgemeinen Formel VI.

VI

Zur Etablierung des natürlichen Vitamin D-Triensystems wird eine photochemische Isomerisierung von Verbindungen der allgemeinen Formel VI vorgenommen. Bestrahlung mit ultraviolettem Licht erfolgt in Gegenwart eines sogenannten Triplettsensibilisators. Im Rahmen der vorliegenden Erfindung wird dafür Anthracen verwendet. Durch Spaltung der π-Bindung der 5,6-Doppelbindung, Rotation des A-Ringes um 180° um die 5,6- Einfachbindung und Reetablierung der 5,6-Doppelbindung wird die Stereoisomerie an der 5,6-Doppelbindung umgekehrt, wobei Verbindungen der allgemeinen Formel VII anfallen,

wobei Y' j , Y' 2 , R 5 , R 6 , R 7 und R 8 die genannten Bedeutungen haben. Die diastereomeren Alkohole an C-24 können chromatographisch getrennt werden.

Zum Aufbau des Restes Z' werden Verbindungen der allgemeinen Formel VII mit geeigneten Lithiumorganylen der allgemeinen Formel VIII

LiRo

VIII

bei tiefer Temperatur (-100 bis 0°C) umgesetzt. Die Lithiumorganyle können unter Standardbedingungen generiert werden (Halogen-Lithiumtausch bei Halogenalkanen, Metallierungen von aromatischen oder heteroaromatischen Systemen, Metall- Lithiumaustausch, Definitionen für R 9 wurden bereits genannt). Dabei entstehen Verbindungen der allgemeinen Formel II, wobei für Y'* , Y' 2 , R 5 und R 6 die genannten Bedeutungen gelten, R* und R 2 zusammen eine exocyclische Methylengruppe bedeuten, R 3 und R je nach Wahl des Aldehydes III oder IV die daraus abgeleiteten Bedeutungen haben, A' eine Hydroxygruppe und B' ein Wasserstoffatom oder A' ein Wasserstoffatom und B' eine Hydroxygruppe und Z'= C(O)-R 9 ist. Die Hydroxylgruppe in 24-Position (A' oder B') kann vor der abschließenden Schutzgruppenabspaltung gegebenfalls mit einem Oxidationsmittel wie z.B. PCC, PDC, BaMnO 4 , MnO 2 , Swern-Bedingungen, Dess-Martin- Reagenz in ein 24-Keton der allgemeinen Formel II überführt werden, wobei A' und B' zusammen eine Ketogruppe bilden. Die nachfolgende Schutzgruppenabspaltung muß dann aber unter sauren Reaktionsbedingungen erfolgen (z.B. saure Ionentauscher, Essigsäure, p- Toluolsulfonsäure, Pyridinium-p-Toluolsulfonat), da bei Verwendung der üblichen Fluorid-Reagenzien konjugierte Additionen der Nukleophile an das Enon-System zu befürchten sind. Ein temporärer Schutz der 24-Hydroxygruppe mit einer Schutzgruppe wie in Y' ] und Y' 2 kann erfolgen, um in einigen Fällen die Ausbeute bei der Addition der lithiumorganischen Verbindung VIII zu erhöhen.

Sollen sterisch anspruchsvolle, verzweigte Reste für R 9 etabliert werden, so erfolgt die Reaktion des bekannten Esters der allgemeinen Formel IX (WO 94/07853) anstelle des Amides VII mit der lithiumorganischen Verbindung VIII, wobei eine Verbindung der allgemeinen Formel II anfällt.

IX

Der Rest R 10 bedeutet eine gerad- oder verzweigtkettige Alkylgruppe mit 1-9- Kohlenstoffatomen.

Grundsätzlich können die diastereomeren Alkohole (bzgl. C-24) bei den genannten Sequenzen im Vorfeld getrennt und separat umgesetzt werden.

Für die Synthese weiterer modifizierter Derivate wird die Verbindung der allgemeinen Formel IX durch Schutz der 24-Hydroxygruppe in eine Verbindung der allgemeinen Formel X überführt,

wobei R n eine säurelabile Schutzgruppe analoger Definition wie in Y'* oder Y' 2 oder die Tetrahydropyranyl-, Tetrahydrofuranyl-, Ethoxyethyl-, Methoxymethyl- oder Methoxyethoxymethylgruppe bedeutet. Durch Reduktion der Estereinheit der allgemeinen Formel X mit einem Reduktionsmittel wie z.B. DIBAH, TIBA, LiAlH 4 , RedAl erhält man Verbindungen der allgemeinen Formel XI.

XI

Unter den bekannten Reaktionsbedingungen lassen sich nun Ether, Sulfide und Amine generieren, wobei Verbindungen der allgemeinen Formel II anfallen, für die Z'= X-R 9 mit X=O, S, NH, N-Alkyl, N-Acyl sein kann.

Zur weiteren Strukturvariation können die Verbindungen der allgemeinen Formel XI zu den Aldehyden der allgemeinen Formel XII umgesetzt werden.

Diese Reaktion kann mit den schon für die Oxidation der Hydroxygruppe in Position 24 angegebenen Reagenzien oder Methoden erfolgen. Neben den schon erwähnten Lithiumorganylen der allgemeinen Formel VIII, deren Einsatz hier zu Verbindungen der allgemeinen Formel II führt, wobei Z'= CH(OH)-R 9 ist, können hier nach literaturbekannten Methoden perfluorierte Alkylreste eingeführt werden [G.K. Surya Prakash J. Org. Chem. 56, 984 (1991), H. Uno et al. Bull. Chem. Soc. Jpn. 62, 2636 (1989)]. Durch katalytische Einwirkung von Tetrabutylammoniumfluorid auf die leicht zugänglichen Perfluoralkyltrimethylsilane (Synthese aus den kommerziell erhältlichen Perfluoralkyliodiden) oder durch Jod-Lithiumaustausch der Perfluoralkyliodide mit Methyllithium/Lithiumbromid-Komplex kann ein Angriff an die Carbonylgruppe erfolgen, wobei ' nach hydrolytischer Aufarbeitung Verbindungen der allgemeinen Formel XIII anfallen,

wobei R 9 gerad- oder verzweigtkettige perfluorierte Alkylreste von 1 -9 Kohlenstoffatomen bedeuten kann. Die diastereomeren Alkohole werden chromatographisch getrennt. Die Verbindung der allgemeinen Formel XIII können einerseits als Spezialfall der allgemeinen

Formel II angesehen und wie dort beschrieben weiter behandelt werden oder andererseits durch Oxidation mit einem der schon vorher erwähnten Oxidationsmittel (vorzugsweise Swern-Bedingungen oder Dess-Martin-Reagenz) in eine Verbindung der allgemeinen Formel II, wobei Z'= C(O)-R 9 bedeutet, überführt werden.

Ferner kann der Aldehyd XII mit Wittig-, Wittig-Horner- oder Wadsworth-Emmons- Reagenzien vom Typ XIV,

XIV

wobei V=Cl-C8-Alkyl oder Alkoxy (gerad oder verzweigtkettig oder cyclisch) vorzugsweise Methyl, Methoxy, Ethyl, Ethoxy, Butyl, Butoxy, Phenyl, Phenoxy bedeuten und die Definition für R 12 bereits eingangs gegeben wurde, in Gegenwart von Basen (z.B. NaH, KH, LDA, Butyllithium, LiHMDS, NaHMDS, KHMDS) zu Verbindungen der allgemeinen Formel XV umgesetzt werden,

XV welche als Spezialfall der allgemeinen Formel II betrachtet werden kann, für die gilt: Z'= o n 12

Der Aldehyd der allgemeinen Formel XII kann ferner durch Anwendung literaturbekannter Methoden [L. Van Hijfte Tetrahedron Lett. 30, 3655 (1989), S.L. Schreiber J. Am. Chem. Soc U2, 5583 (1990), J.R. Hauske Tetrahedron Lett. 33, 3715 (1992)] in Verbindungen der allgemeinen Formel XVI überführt werden,

XVI

welche als Spezialfall der allgemeinen Formel II angesehen werden kann, wobei gilt Z'=

== R,-<

Die Herstellung von Verbindungen der allgemeinen Formel I, für den Fall das R* und R 2 Wasserstoffatome bedeuten, erfolgt dadurch, daß eine Verbindung der allgemeinen Formel

wobei für Y' , R 3 , R 4 , R 5 , R 6 , A', B' und Z' die schon genannten Bedeutungen bestehen, analog den für die Umsetzung von II beschriebenen Bedingungen behandelt wird. Die Herstellung von Verbindungen der allgemeinen Formel II' erfolgt auf einem konvergenten Syntheseweg, wobei CD- und A-Ring-Fragmente separat aufgebaut werden. Zur Synthese der CD-Fragmente wird der literaturbekannte Aldehyd XVII [H.H. Inhoffen et al. Chem. Ber. 91, 780 (1958), Chem. Ber. 92, 1772 ( 1959), W.G. Dauben 30, 677 (1989)] verwendet,

XVII

worin P eine acyl-, alkyl- oder arylsubstituierte Silyl- oder Tetrahydropyranyl-, Tetrahydrofuranyl-, Methoxymethyl-, Ethoxyethylgruppe, eine Acylgruppe (z.B. Acetyl-, Benzoyl-) oder eine andere Alkoholschutzgruppe bedeuten (siehe T.W. Greene, P.G.M. Wuts "Protective Groups in Organic Synthesis", 2 nd Edition, John Wiley & Sons, Inc., 1991).

Nach den bekannten Verfahren (WO 94/07853) können die schon für die Normalreihe beschriebenen Modifikationen an C-20 eingeführt werden, wobei eine Verbindung der allgemeinen Formel XVIII anfällt.

XVIII

Für R 3 und R 4 gelten die eingangs erwähnten Definitionen.

Zur Vereinfachung wird im Folgenden exemplarisch die Umsetzung der Verbindung der allgemeinen Formel XVII beschrieben.

Für den Fall, daß R 5 und R 6 gemeinsam mit dem tertiären Kohlenstoffatom 25 einen

Cyclopropylring bilden, kann wie für die Normalreihe bekannt (WO 94/07853) durch

Aldolreaktion mit einem Acetessigesterbaustein der allgemeinen Formel XIX,

XIX

wobei R eine geradkettige Alkylgruppe mit 1-6 Kohlenstoffatomen bedeutet, eine Verbindung der allgemeinen Formel XX erhalten werden.

XX

Über die Zwischenprodukte XXI, XXII sowie XXDJ wird dann die Verbindung der allgemeinen Formel XXIV zugänglich.

XXI XXII XXIII

xxrv

Die dazu notwendigen chemischen Manipulationen sowie die Bedeutungen von P, R 7 , R 8 , Rr, und R π sind bereits an anderer Stelle beschrieben worden. Durch Reduktion der Ketogruppe mit einem Reduktionsmittel (z.B. NaBH 4 , NaBH 4 /CeCl 3 , LiAlH 4 , DIBAH, TIBA, Red AI) wird eine Verbindung der allgemeinen Formel XXV zugänglich, deren Hydroxygruppe mit einer säurestabilen, durch Baseneinwirkung zu entfernenden, Schutzgruppe versehen wird (z.B. R 1 = Acetyl-, Propionyl-, Pivaloyl-, Benzoylgruppe), wobei man eine Verbindung der allgemeinen Formel XXVI erhält. Trennungen der diastereomeren Hydroxygruppen erfolgen jeweils auf den geeigneten Zwischenstufen.

ERSATZSLATT (REGEL 26)

XXV XXVI

Bei Wahl geeigneter Schutzgruppen (z.B. P=Et3Si, R* ,=THP, R 14 =Ac) läßt sich die Gruppe P selektiv abspalten und durch Oxidation der Hydroxygruppe der Verbindung der allgemeinen Formel XXVII mit einem Oxidationsmittel (PCC, PDC, BaMnO 4 , Swern- Bedingungen, Dess-Martin-Reagenz) in ein CD-Fragment der allgemeinen Formel XXVIII überführen.

XXVII XXVIII

Die Verbindungen der allgemeinen Formel XXVIII werden nun durch Reaktion mit dem durch eine Base wie n-Butyllithium oder LDA erzeugten Anion des literaturbekannten Phosphinoxides der allgemeinen Formel XXIX [H.F. DeLuca et al. Tetrahedron Lett. 32, 7663, (1991)],

XXIX

worin Y' 2 die schon beschriebene Bedeutung hat, in die entsprechenden Verbindungen der allgemeinen Formel XXX überführt werden.

XXX

Sukzessive oder gleichzeitig werden jetzt die Schutzgruppen entfernt (R ]4 durch basische Hydrolyse, R n sowie Y' 2 durch saure Hydrolyse oder Fluoridreagenzien) und je nach Wunsch eine oder beide der Seitenkettenhydroxygruppen mit den schon häufiger genannten Oxidationsmittel oxidiert, wobei Verbindungen der allgemeinen Formel I anfallen, für die gilt: R* und R 2 sind Wasserstoffatome sowie R 5 und R 6 bilden gemeinsam mit dem tertiären Kohlenstoffatom 25 einen Cyclopropylring. Die weiteren Definitionen wurden bereits genannt.

Alternativ kann die Schutzgruppe P in der allgemeinen Formel XXIII selektiv gespalten werden, wenn gilt: P=SilyIschutzgruppe, R n = Tetrahydropyranyl- oder Tetrahydrofuranyl- schutzgruppe. Dies kann z.B. mit Tetrabutylammoniumfluorid erfolgen, wobei Verbindungen der allgemeinen Formel XXXI anfällt.

XXXI

Mit einem Oxidationsmittel (PCC, PDC, BaMnO 4 , Swern-Bedingungen, Dess-Martin- Reagenz) kann nun die freie Hydroxygruppe oxidiert werden, wobei Verbindungen der allgemeinen Formel XXXII entstehen,

XXXII

die mit dem durch eine Base (n-Butyllithium, Lithiumdiisopropylamid) erzeugten Anion des Phosphinoxides XXIX in Verbindungen der allgemeinen Formel XXXIII überführt werden.

XXXIII

Analog der Verbindungen in der Normalreihe (z.B. VII) erfolgt nun der Aufbau des Restes Z', wobei Verbindungen der allgemeinen Formel XXXIV anfallen.

XXXTV

Diese können als Spezialfall der allgemeinen Formel II ' angesehen werden, wobei alle Variablen bereits zuvor beschrieben worden sind. Die Weiterbehandlung der Verbindungen der allgemeinen Formel JJ 1 ist ebenso vorstehend ausgeführt worden.

Für den Fall, daß R 5 und Rg nicht zusammen mit dem tertiären Kohlenstoffatom 25 einen Cyclopropylring bilden, sondern die übrigen eingangs genannten Definitionen gelten sollen, erfolgt der Aufbau der Seitenkette auf einem etwas modifizierten Syntheseweg. Der bekannte CD-Teil der allgemeinen Formel XXXV (WO 94/07853) kann analog der Normalreihe in Derivate der allgemeinen Formeln XXXVI und XXXVII überführt werden,

XXXV XXXVI xxxvπ

wobei sämtliche Variablen die schon genannten Definitionen haben. Die Diastereomeren können auf geeigneten Zwischenstufen getrennt werden.

Durch direkte Umsetzung von Lithiumorganylen der allgemeinen Formel m ( ϊRg) mit Verbindungen der allgemeinen Formeln XXXVI und XXXVII können nun Verbindungen der allgemeinen Formel XXXVJJJ generiert und wie zuvor gezeigt in eine Verbindung der allgemeinen Formel ü 1 überführt werden.

Die diastereomeren Alkohole (bzgl. C-24) können im Vorfeld getrennt und separat umgesetzt werden.

XXXVIII

Grundsätzlich kann die Einführung entsprechend substituierter Seitenketten oder deren Vorläufer auch an Aldehyden der allgemeinen Formeln III oder IV bzw. deren 5Z- Isomeren unter Verwendung etablierter Synthesemethoden erfolgen.

Die nachstehenden Beispiele dienen der näheren Erläuterung der Erfindung.

Beispiel 1

(5Z,7£,22£)-(lS,3R,24R)-25-(l-Oxopentyl)-26,27-cyclo-9, 10-secocholesta-5,7,10(19),22- tetraen-l,3,24-triol (6b)

a) Eine Menge von 5,0 g (5£,7£,22£ (1S,3R)-1,3-Bis[[dimethyl(l,l- dimethylethyl)silyl]oxy]-24-oxo-26,27-cyclo-9, 10-secocholesta-5,7, 10(19),22-tetraen-25- carbonsäure 1 (WO 94/07853) und 1,01 g N-Hydroxysuccinimid werden in 21 ml Methylenchlorid gelöst und bei 0°C mit 1,87 g N,N , -Dicyclohexylcarbodiirnid versetzt. Nach 1,5 h werden 2,04 ml einer 40%igen wässrigen Dimethylamin-Lösung zugesetzt und weitere 30 min bei 0°C gerührt. Nach 3 h bei Raumtemperatur wird die Reaktionsmischung an Silicagel mit Essigester/Hexan (1:4) chromatographiert. Es werden 2,08 g (5£,7£,22£)- (lS,3R)-l,3-Bis-[[dimethyl(l,l-dimethyl-ethyl)silyl]oxy]-N,N -dimethyl-24-oxo-26,27-cyclo- 9,10-secocholesta-5,7,10(19),22-tetraen-25-carbonsäureamid 2 als farblose Masse erhalten.

b) 1,39 g des Amides 2 werden in 3,3 ml THF und 7,7 ml Methanol gelöst und mit 7,7 ml einer 0,4 molaren methanolischen Certrichlorid (Hydrat)-Lösung versetzt. Bei 0°C werden nun 210 mg Natriumborhydrid portionsweise hinzugegeben. Man rührt 45 min bei 0°C nach und versetzt dann mit einem Eis/Wasser-Gemisch. Anschließend wird mit Essigester extrahiert, über Natriumsulfat getrocknet und eingeengt. Der ölige Rückstand (1,32 g) ist ein Diastereomerengemisch aus (5£,7£,22£)-(lS,3R,24S)-l,3-Bis[[dimethyl(l, 1-dimethylethyl)- silyl]oxy]-N,N-dimethyl-24-hydroxy-26,27-cyclo-9,10-secochol esta-5,7,10(19),22-tetraen- 25-carbonsäureamid 3a und dem 24R-Diastereomeren 3b.

c) 2,48 g des Epimerengemisches 3a und 3b werden in 348 ml Toluol gelöst und nach Zugabe von 383 mg Anthracen und 7 Tropfen Triethylamin 19 min unter Stickstoff mit einer Quecksilberhochdrucklampe (Heraeus TQ 150) durch Pyrex-Glas bestrahlt. Die eingeengte Reaktionsmischung wird mit Hexan versetzt, filtriert und erneut eingeengt. Der Rückstand von 2,82 g ist ein Gemisch aus (5Z,7£,22£)-(1S,3R,24S)-1,3-Bis[[dimethyl(l,l- dimethylethyl)silyl]oxy]-N,N-dimethyl-24-hydroxy-26,27-cyclo -9,10-secocholesta- 5,7,10(19),22-tetraen-25-carbonsäureamid 4a und dem korrespondierenden 24R- Diastereomeren 4b.

d) Das Diastereomerengemisch aus 4a und 4b (2,82 g) wird in 28 ml THF gelöst und bei 0°C mit 6,53 ml n-Butyllithium-Lösung (1,6 M in Hexan) tropfenweise versetzt. Nach 75 min wird in die Reaktionslösung gesättigte Ammoniumchlorid-Lösung gegeben, mit Essigester extrahiert, über Natriumsulfat getrocknet und eingeengt. Durch Chromatographie des Rückstandes an Silicagel mit Essigester/Hexan erhält man in der Elutionsreihenfolge 0,84 g (5Z,7£,22£)-(lS,3R,24S)-l,3-Bis[[dimethyl(l,l-dimethylethy l)sUyl]oxy]-25-(l-oxopentyl)- 26,27-cyclo-9,10-secocholesta-5,7,10(19),22-tetraen-24-ol 5a und 0,64 g (5Z,7£:,22£)- (lS,3R,24R)-l,3-Bis[[dimethyl(l,l-dimethylethyl)silyl]oxy]-2 5-(l-oxopentyl)-26,27-cyclo- 9,10-secocholesta-5,7,10(19),22-tetraen-24-ol 5b als Öle.

e) 0,62 g des Epimeren 5b werden in 24,9 ml THF mit 1,32 g Tetrabutylammoniumfluorid (Trihydrat) über Nacht bei Raumtemperatur stehengelassen. Die Reaktionsmischung wird danach auf ein Gemisch aus Eis/Natriumhydrogencarbonat-/Natriumchlorid-Lösung gegossen. Nach Extraktion mit Essigester wird die organische Phase über Natriumsulfat getrocknet und eingeengt. Chromatographie des Rückstandes an Kieselgel mit Essigester Hexan ergeben 125 mg der Titelverbindung 6b als Schaum.

Η-NMR (300 MHz, CDC1 3 ): 6= 0,57 ppm (s, 3H); 0,91 (t, 3H); 1,00 (m, 2H); 1,05 (d, 3H); 1,22 (m, 2H); 2,15 (t, 2H); 3,29 (brd, 1H); 4,08 (m, 1H); 4,22 (m, 1H); 4,42 (m, 1H); 5,00 (brs, 1H); 5,32 (brs, 1H); 5,35 (dd, 1H); 5,49 (dd, 1H); 6,01 (d, 1H); 6,38 (d, 1H)

Beispiel 2

(5Z,7£,22£)-(lS,3R,24S)-25-(l-Oxopentyl)-26,27-cyclo-9, 10-secocholesta-5,7,10(19),22- tetraen-l,3,24-triol (6a)

Analog zur Durchfuhrung nach le) wird das Epimer 5a umgesetzt, wobei man die Titelverbindung 6a als kristallisierendes Öl erhält.

Η-NMR (300 MHz, CDC1 3 ): δ= 0,57 ppm (s, 3H); 0,90 (t, 3H); 1,00 (m, 2H); 1,05 (d, 3H); 1,22 (m, 2H); 2,16 (t, 2H); 3,25 (brs, 1H); 4,12 (m, 1H); 4,23 (m, 1H); 4,43 (m, 1H); 5,00 (brs, 1H); 5,32 (brs, 1H); 5,36 (dd, 1H); 5,55 (dd, 1H); 6,01 (d, 1H); 6,38 (d, 1H)

Beispiel 3

(5Z,7£,22£)-(lS,3R,24R)-25-Acetyl-26,27-cyclo-9,10-seco cholesta-5,7,10(19),22-tetraen- 1,3,24-triol (7b)

Ausgehend vom Epimerengemisch 4a und 4b wird analog Beispiel ld)-e) mit Methyllithium die Titelverbindung 7b kristallin erhalten (Schmelzpunkt: 138-140°C).

Η-NMR (300 MHz, CDC1 3 ): δ= 0,57 ppm (s, 3H); 1,00 (m, 2H); 1,05 (d, 3H); 1,22 (m, 2H); 1,96 (s, 3H); 3,16 (brd, 1H); 4,12 (m, 1H); 4,23 (m, 1H); 4,43 (m, 1H); 5,00 (brs, 1H); 5,32 (brs, 1H); 5,36 (dd, 1H); 5,50 (dd, 1H); 6,01 (d, 1H); 6,38 (d, 1H)

Beispiel 4

(5Z,7£,22£)-(lS,3R,24R)-25-(l-Oxobutyl)-26,27-cyclo-9,1 0-secocholesta-5,7,10(19),22- tetraen-l,3,24-triol (8b)

Ausgehend vom Epimerengemisch 4a und 4b wird analog Beispiel ld)-e) mit Propyllithium (aus n-Propylbromid und Lithium in Ether) die Titelverbindung 8b als Schaum erhalten.

Η-NMR (300 MHz, CDC1 3 ): δ= 0,57 ppm (s, 3H); 0,90 (t, 3H); 1,00 (m, 2H); 1,05 (d, 3H); 1,20 (m, 2H); 2,13 (t, 2H); 3,25 (brs, 1H); 4,10 (m, 1H); 4,23 (m, 1H); 4,43 (m, 1H); 5,00 (brs, 1H); 5,32 (brs, 1H); 5,38 (dd, 1H); 5,50 (dd, 1H); 6,01 (d, 1H); 6,38 (d, 1H)

Beispiel 5

(5Z,7£,22£)-(lS,3R,24R)-25-( 1 -Oxohexyl)-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22- tetraen-l,3,24-triol (9b)

Ausgehend vom Epimerengemisch 4a und 4b wird analog Beispiel ld)-e) mit Pentyllithium (aus n-Pentylbromid und Lithium in Ether) die Titelverbindung 9b als Schaum erhalten.

Η-NMR (300 MHz, CDC1 3 ): δ= 0,57 ppm (s, 3H); 0,90 (t, 3H); 1,00 (m, 2H); 1,05 (d, 3H);

1,22 (m, 2H); 2,13 (t, 2H); 3,30 (brs, IH); 4,08 (m, IH); 4,23 (m, IH); 4,43 (m, IH); 5,00 (brs, IH); 5,32 (brs, IH); 5,37 (dd, IH); 5,50 (dd, IH); 6,01 (d, IH); 6,38 (d, IH)

Beispiel 6 (10b)

(5Z,7£,22£ ( lS,3R,24R)-25-Benzoyl-26,27-cyclo-9, 10-secocholesta-5,7, 10(19),22-tetraen- 1,3,24-triol

Ausgehend vom Epimerengemisch 4a und 4b wird analog Beispiel ld)-e) mit Phenyllithium die Titelverbindung 10b als Schaum erhalten.

»H-NMR (300 MHz, CDC1 3 ): δ= 0,57 ppm (s, 3H); 1,01 (d, 3H); 1,08 (m, 2H); 1,22 (m, 2H); 2,20 (brd, IH); 4,23 (m, IH); 4,45 (m, 2H); 5,00 (brs, IH); 5,31 (dd, IH); 5,32 (dd, IH); 5,48 (dd, IH); 6,01 (d, IH); 6,38 (d, IH); 7,45 (m, 3H); 7,75 (d, 2H)

Beispiel 7

(5Z,7£,22£)-(lS,3R,24R)-25-(2-Furanylcarbonyl)-26,27-cy clo-9,10-secocholesta- 5,7, 10(19),22-tetraen-l,3,24-triol (11b

Ausgehend vom Epimerengemisch 4a und 4b wird analog Beispiel ld)-e) mit 2-Furyllithium (Darstellung aus Furan mit n-Butyllithium in THF) bei inverser Zugabe (-78°C, dann 0°C, 1 h) die Titelverbindung 11b als Feststoff erhalten.

Η-NMR (300 MHz, CDC1 3 ): δ= 0,57 ppm (s, 3H); 1,02 (d, 3H); 1,08 (m, 2H); 1,18 (m, 2H); 3,12 (brd, IH); 4,22 (m, 2H); 4,42 (m, IH); 5,00 (brs, IH); 5,32 (dd, IH); 5,43 (dd, IH); 5,53 (dd, IH); 6,01 (d, IH); 6,38 (d, IH); 6,50 (m, IH); 7,20 (d, IH); 7,51 (brs, IH)

Beispiel 8

(5Z,7£,22£)-(lS,3R,24R)-25-(Cyclopropylcarbonyl)-26,27- cyclo-9,10-secocholesta- 5,7, 10(19),22-tetraen-l,3,24-triol (12b)

Ausgehend vom Epimerengemisch 4a und 4b wird analog Beispiel ld)-e) mit Cyclopropyllithium (aus Cyclopropylbromid und Lithium in Ether) die Titelverbindung als Schaum erhalten.

Η-NMR (300 MHz, CDC1 3 ): δ= 0,57 ppm (s, 3H); 0,83 (m, 2H); 1,05 (m, 10H); 3,48 (brd, IH); 4,13 (m, IH); 4,23 (m, IH); 4,45 (m, IH); 5,00 (brs, IH); 5,32 (dd, IH); 5,40 (dd, IH); 5,50 (dd, IH); 6,01 (d, IH); 6,38 (d, IH)

Beispiel 9

(5Z,7£,22£)-(lS,3R,24R)-25-(2,2-Dimethyl-l-oxopropyl)-2 6,27-cyclo-9,10-secocholesta- 5,7, 10(19),22-tetraen-l,3,24-triol (15b)

a) 580 mg (5Z,7£,22£)-(lS,3R,24R)-l,3-Bis[[dimethyl(l,l-dimethylethy l)silyl]oxy]-24- hydroxy-26,27-cyclo-9, 10-secocholesta-5,7, 10(19),22-tetraen-25-carbonsäureethylester 13b (WO 94/07853) in 6,4 ml Diethylether werden bei -78°C mit 2,04 ml ter -Butyllithium (1,7 M in Pentan) tropfenweise versetzt. Nach 1 h bei -78°C wird Ammoniumchlorid-Lösung zugegeben, mit Essigester extrahiert, die organische Phase mit Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und eingeengt. Chromatographie des öligen Rückstandes an Silicagel mit Essigester/Hexan ergeben 220 mg (5Z,7£,22£)-(1S,3R,24R)- 1,3-Bis[[dimethyl( 1 , 1 -dimethylethyl)silyl]oxy]-25-(2,2-dimethyl- 1 -oxopropyl)-26,27-cyclo- 9,10-secocholesta-5,7,10(19),22-tetraen-24-ol 14b als Öl.

b) 220 mg 14b werden in 8,8 ml THF gelöst und mit 467 mg Tetrabutylammoniumfluorid (Trihydrat) über Nacht bei Raumtemperatur stehengelassen. Aufarbeitung und Isolierung erfolgt analog Beispiel le), wobei die Titelverbindung 15b als Feststoff anfallt.

1H-NMR (300 MHz, CDC1 3 ): δ= 0,57 ppm (s, 3H); 0,80-1,00 (m, 4H); 1,05 (d, 3H); 1,20 (s, 9H); 3,00 (brs, IH); 4,09 (m, IH); 4,23 (m, IH); 4,43 (m, IH); 5,00 (brs, IH); 5,29 (dd, IH); 5,32 (brs, IH); 5,52 (dd, IH); 6,01 (d, IH); 6,38 (d, IH)

Beispiel 10

(5Z,7£,22£ -(lS,3R,24R)-25-(l-Oxoheptyl)-26,27-cyclo-9,10-secocholesta- 5,7,10(19),22- tetraen-l,3,24-triol (16b)

Ausgehend vom Epimerengemisch 4a und 4b wird analog Beispiel ld)-e) mit Hexyllithium (aus 1-Hexylbromid und Lithium in Ether) die Titelverbindung 16b als farbloser Schaum erhalten.

Η-NMR (300 MHz, CDC1 3 ): δ= 0,57 ppm (s, 3H); 0,90 (m, 5H); 1,05 (d, 3H); 2,13 (t, 2H); 3,30 (brd, IH); 4,08 (m, IH); 4,23 (m, IH); 4,43 (m, IH); 5,00 (brs, IH); 5,32 (brs, IH); 5,37 (dd, IH); 5,50 (dd, IH); 6,01 (d, IH); 6,38 (d, IH)

Beispiel 11

(5Z,7£:,22£)-(lS,3R,24R)-25-(2-Pyridinylcarbonyl)-26,27 -cyclo-9,10-secocholesta- 5,7, 10( 19),22-tetraen- 1 ,3,24-triol (17b)

2,03 ml 2-Brompyridin in 38 ml Diethylether werden bei -78°C mit 13,3 ml n-Butyllithium (1.6 M in Hexan) tropfenweise versetzt. Nach 30 min werden 1,98 g (5Z,7£ , ,22£)- (lS,3R,24R)-l,3-Bis-[[dimethyl(l,l-dimethylethyl)silyl]oxy]- 24-hydroxy-26,27-cyclo-9,10- secocholesta-5,7,10(19),22-tetraen-25-carbonsäureethylester 13b (WO 94/07853) in 19 ml Diethylether zugetropft. Nach 1,5 h bei -78°C wird die Reaktionslösung mit ges. Ammoniumchlorid-Lösung versetzt, danach mit Essigester extrahiert, die organische Phase über Natriumsulfat getrocknet und eingeengt. Durch Chromatographie an Silicagel mit Essigester/Hexan werden 1,52 g eines farblosen Öls erhalten, die in 60,2 ml THF gelöst und mit 3,19 g Tetrabutylammoniumfluorid (Trihydrat) über Nacht bei Raumtemperatur stehengelassen werden. Aufarbeitung und Isolierung erfolgen analog Beispiel le). Nach Umkristallisation aus Isopropanol/Wasser erhält man die Titelverbindung vom Schmelzpunkt 120-121°C.

Beispiel 12

[5Z,7£,22£,25(£)]-(lS,3R,24R)-25-(l-Oxo-2-hexenyl)-26, 27-cyclo-9,10-secocholesta- 5,7, 10(19),22-tetraen-l,3,24-triol (18b)

11,5 ml n-Butyllithium (1.6 M in Hexan) werden bei 0°C zu 3,61 g (£)-l-Iod-l-penten [aus 1-Pentin, DIBAH und Iod analog J.K. Stille et al. J. Am. Chem. Soc. 109, 2138 (1987), T. Yokoo Synlett 645 (1994)] in 90 ml Hexan getropft. Nach 15 min werden 180 mg (5Z,7£,22£)-(lS,3R,24R)-N,N-Dimethyl-l,3,24-trihydroxy-26, 27-cyclo-9,10-secocholesta- 5,7,10(19),22-tetraen-25-carbonsäureamid [erhalten aus dem Epimerengemisch 4a und 4b (Beispiel lc) durch Chromatographie an Silicagel und Behandlung mit Tetrabutylammoniumfluorid (Trihydrat)] in 18 ml THF zugetropft. Die Reaktionsmischung wird nach 3 h bei 0°C in eiskalte Ammoniumchlorid-Lösung eingerührt. Nach Extraktion mit Essigester, Trocknen der organischen Phase über Natriumsulfat und Chromatographie an Silicagel mit Essigester/Hexan wird die Titelverbindung als farbloser Schaum erhalten.

Η-NMR (300 MHz, CDC1 3 ): δ= 0,57 ppm (s, 3H); 0,90 (t, 3H); 1,05 (d, 5H); 3,45 (brs, IH); 4,11 (m, IH); 4,23 (m, IH); 4,43 (m, IH); 5,00 (brs, IH); 5,35 (brs, IH); 5,40 (dd, IH); 5,56 (dd, IH); 5,91 (d, IH); 6,01 (d, IH); 6,38 (d, IH); 6,98 (dt, IH)

Beispiel 13

(5Z,7£,22£)-(lS,3R,24R)-25-(l-Oxo-2-hexinyl)-26,27-cycl o-9,10-secocholesta- 5,7,10(19),22-tetraen-l,3,24-triol (19b)

5,75 ml n-Butyllithium (1.6 M in Hexan) werden bei -5°C zu 0,9 ml 1-Pentin in 45 ml Hexan getropft. Nach 1 h bei -5°C werden 90 mg (5Z,7£,22£)-(1S,3R,24R)-N,N-Dimethyl-1,3,24- trihydroxy-26,27-cyclo-9,10-secocholesta-5,7,10(19),22-tetra en-25-carbonsäureamid in 9 ml THF zugetropft. Nach 3 h bei 0°C wird die Reaktionsmischung in gesättigte Ammoniumchlorid-Lösung eingerührt. Nach Extraktion mit Essigester, Trocknung der organischen Phase über Natriumsulfat und Chromatographie an Silicagel mit Essigester/Hexan wird die Titelverbindung als farbloser Feststoff erhalten.

*H-NMR (300 MHz, CDC1 3 ): δ= 0,57 ppm (s, 3H); 1,00 (m, 6H); 1,10 (m, 2H); 1,45 (m, 2H); 2,32 (t, 4H); 3,12 (brd, IH); 4,23 (m, 2H); 4,43 (m, IH); 5,00 (brs, IH); 5,32 (brs, IH); 5,37 (dd, IH); 5,51 (dd, IH); 6,01 (d, IH); 6,38 (d, IH);

Beispiel 14

[5Z,7£,22£,25(£)]-(lS,3R,24R)-25-(3-Ethoxy-3-oxo-l-pro penyl)-26,27-cyclo-9,10- secocholesta-5,7,10(19),22-tetraen-l,3,24-triol (24b)

a) 2,02 g (5Z,7£,22£ -(lS,3R,24R)-l,3-Bis[[dimethyl(l,l-dimethylethyl)silyl]oxy]- 24- hydroxy-26,27-cyclo-9, 10-secocholesta-5,7, 10(19),22-tetraen-25-carbonsäureethylester 13b (WO 94/07853) werden in 20 ml DMF gelöst und mit 761 mg Imidazol sowie 843 mg t- Butyldimethylsilylchlorid versetzt. Man rührt über Nacht bei Raumtemperatur und arbeitet wässrig auf (Zugabe von Natriumchlorid-Lösung, Essigester-Extraktion, Waschen der organischen Phase mit Natriumchlorid-Lösung, Trocknen über Natriumsulfat, Einengen). Durch Chromatographie an Silicagel mit Essigester/Hexan werden 2,12 g (5Z,7E,22E)- (1S,3R,24R)- 1 ,3,24-Tris[[dimethyl(l , 1 -dimethylethyl)silyl]oxy]-26,27-cyclo-9, 10- secocholesta-5,7,10(19),22-tetraen-25-carbonsäureethylester 20b als farbloser Schaum erhalten.

Η-NMR (300 MHz, CDC1 3 ): δ= 0,05 ppm (s, 18H); 0,52 (s, 3H); 0,87 (s, 27H); 1,01 (d, 3H); 1,22 (t, 3H); 4,08 (q, 2H); 4,18 (m, IH); 4,37 (m, IH); 4,68 (d, IH); 4,85 (brs, IH); 5,08 (brs, IH); 5,22 (dd, IH); 5,43 (dd, IH); 6,00 (d, IH); 6,22 (d, IH)

b) 2,10 g des Trisilylethers 20b werden in 15 ml THF gelöst und bei 0°C werden 12 ml DIBAH-Lösung (1 M in Toluol) zugetropft. Man rührt 1 h bei 0°C nach und fügt dann 4 ml Wasser zu. Der Niederschlag wird durch Filtration entfernt, mit Essigester nachgewaschen, die organische Phase mit Wasser gewaschen, über Natriumsulfat getrocknet und eingeengt. Chromatographie an Silicagel mit Essigester/Hexan liefert 1,53 g (5Z,7£,22£)-(1S,3R,24R)- l,3,24-Tris[[dimethyl(l,l-dimethylethyl)silyl]oxy]-26,27-cyc lo-9,10-secocholesta- 5,7,10(19),22-tetraen-25-methanol 21b als farblosen Schaum.

Η-NMR (300 MHz, CDC1 3 ): δ= 0,06 ppm (s, 18H); 0,54 (s, 3H); 0,90 (s, 27H); 1,05 (d, 3H); 3,05 (m, 2H); 3,61 (d, IH); 4,00 (d, IH); 4,19 (m, IH); 4,38 (m, IH); 4,86 (brs, IH); 5,08 (brs, IH); 5,47 (m, 2H); 6,01 (d, IH); 6,22 (d, IH)

c) 1,5 g des Alkohols 21b werden in 50 ml Methylenchlorid gelöst und bei Raumtemperatur portionsweise mit insgesamt 1,2 g Pyridiniumchlorochromat versetzt. Man rührt 3 h bei Raumtemperatur nach, verdünnt mit Ether, filtriert, engt ein und chromatographiert den Rückstand an Silicagel mit Essigester/Hexan, wobei man 570 mg (5Z,7£,22£)-(1S,3R,24R)- l,3,24-Tris[[dimethyl(l,l-dimethylethyl)silyl]oxy]-26,27-cyc lo-9,10-secocholesta- 5,7,10(19),22-tetraen-25-carbaldehyd 22b als farblosen Schaum erhält.

Η-NMR (300 MHz, CDC1 3 ): δ= 0,05 ppm (s, 18H); 0,55 (s, 3H); 0,90 (s, 27H); 1,05 (d, 3H); 4,19 (m, IH); 4,38 (m, IH); 4,45 (d, IH); 4,87 (brs, IH); 5,08 (brs, IH); 5,32 (dd, IH); 5,53 (dd, IH); 6,01 (d, IH); 6,23 (d, IH); 9,29 (s, IH)

d) Man legt 34 mg Natriumhydrid (65%) in 5 ml THF vor und gibt 216 mg Diethylphosphonoessigsäureethylester hinzu. Danach werden 100 mg des Aldehydes 22b in 5 ml THF zugetropft und 1 h auf 50°C erhitzt. Nach dem Abkühlen wird analog 14a) wässrig aufgearbeitet und an Silicagel mit Essigester/Hexan chromatographiert, wobei man 100 mg [5Z,7£,22£,25(£)]-(lS,3R,24R)-25-(3-Ethoxy-3-oxo-l-propen yl)-l,3,24-tris[[dimethyl(l,l- dimethylethyl)silyI]oxy]-26,27-cyclo-9, 10-secocholesta-5,7, 10(19),22-tetraen 23b als farblosen Schaum erhält.

Η-NMR (300 MHz, CDC1 3 ): δ= 0,06 ppm (s, 18H); 0,53 (s, 3H); 0,89 (s, 27H); 1,02 (d, 3H); 1,25 (t, 3H); 3,89 (d, IH); 4,16 (q, 2H); 4,18 (m, IH); 4,38 (m, IH); 4,85 (brs, IH); 5,18 (brs, IH); 5,30 (dd, IH); 5,41 (dd, IH); 5,68 (d, IH); 6,00 (d, IH); 6,22 (d, IH); 6,98 (d, lH)

e) Man löst 100 mg des Esters 23b in 10 ml THF, gibt 287 mg Tetrabutylammoniumfluorid (Trihydrat) zu und rührt über Nacht bei Raumtemperatur. Analog 14a) wird wässrig aufgearbeitet und an Silicagel mit Essigester/Hexan chromatographiert, wobei 39 mg der Titelverbindung 24b als farbloser Schaum anfallen.

Η-NMR (300 MHz, CDC1 3 ): δ= 0,53 ppm (s, 3H); 1,05 (d, 3H); 1,27 (t, 3H); 3,91 (d, IH);

4.15 (q, 2H); 4,20 (m, IH); 4,41 (m, IH); 4,97 (brs, IH); 5,30 (brs, IH); 5,40 (dd, IH); 5,58 (dd, IH); 5,79 (d, IH); 5,99 (d, IH); 6,37 (d, IH); 6,93 (d, IH)

Beispiel 15

[5Z,7£,22£,25(£)]-(lS,3R,24S)-25-(3-Ethoxy-3-oxo-l-pro penyl)-26,27-cyclo-9,10- secocholesta-5,7, 10(19),22-tetraen-l,3,24-triol (24a)

3,1 g (5Z,7£,22£)-(1S,3R,24S)- 1 ,3-Bis[[dimethyl( 1 , 1 -dimethylethyl)silyl]oxy]-24-hydroxy- 26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22-tetraen-25-carbonsäureethylester 13a (WO 94/07853) werden analog 14a), b), c), d) und e) zur Titelverbindung 24a umgesetzt, welche als farbloser Schaum anfällt.

Η-NMR (300 MHz, CDC1 3 ): δ= 0,56 ppm (s, 3H); 1,02 (d, 3H); 1,28 (t, 3H); 3,93 (d, IH);

4.16 (q, 2H); 4,21 (m, IH); 4,41 (m, IH); 4,99 (brs, IH); 5,31 (brs, IH); 5,41 (dd, IH); 5,61 (dd, IH); 5,80 (d, IH); 6,00 (d, IH); 6,38 (d, IH); 6,93 (d, IH)

Beispiel 16

[5Z,7£,22£,25(£)]-(lS,3R,24R)-25-[3-(l,l-Dimethylethox y)-3-oxo-l-propenyl]-26,27- cyclo-9, 10-secocholesta-5,7, 10( 19),22-tetraen- 1 ,3 ,24-triol (26b)

a) Analog 14d) wird der Aldehyd 22b mit Diethylphosphonoessigsäure-t-butylester umgesetzt, wobei [5Z,7£,22£,25(£)]-(lS,3R,24R)-25-[3-(l, l-Dimethylethoxy)-3-oxo-l- propenyl]-l,3,24-tris-[[dimethyl(l,l-dimethylethyl)silyl]oxy ]-26,27-cyclo-9,10-secocholesta- 5,7,10(19),22-tetraen 25b als farbloser Schaum anfällt.

Η-NMR (300 MHz, CDC1 3 ): δ= 0,06 ppm (s, 18H); 0,53 (s, 3H); 0,89 (s, 27H); 1,02 (d, 3H); 1,46 (s, 9H); 3,91 (d, IH); 4,18 (m, IH); 4,37 (m, IH); 4,87 (brs, IH); 5,18 (brs, IH); 5,29 (dd, IH); 5,41 (dd, IH); 5,59 (d, IH); 6,00 (d, IH); 6,22 (d, IH); 6,81 (d, IH)

b) Analog 14e) wird die Titelverbindung 26b als farbloser Schaum erhalten.

Η-N R (300 MHz, CDC1 3 ): δ= 0,58 ppm (s, 3H); 1,06 (d, 3H); 1,47 (s, 9H); 3,39 (dd, IH); 4,22 (m, IH); 4,42 (m, IH); 5,00 (brs, IH); 5,23 (dd, IH); 5,31 (sbr, IH); 5,52 (dd, IH); 5,68 (d, IH); 6,01 (d, IH); 6,38 (d, IH); 6,79 (d, IH)

Beispiel 17

(5Z,7£,22^-[lS,3R,24S,25(S)]-25-(l-Hydroxy-2,2,3,3,4,4,5 ,5,6,6,7,7,7-tridecafluorheptyl)- 26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22-tetraen- 1 ,3 ,24-triol (27aα) und (5Z,7£,22J^-[lS,3R,24S,25(R)]-25-(l-Hydroxy-2,2,3,3,4,4,5,5 ,6,6,7,7,7-tridecafluorheptyl)- 26,27-cyclo-9, 10-secocholesta-5,7, 10(19),22-tetraen-l,3,24-triol (27aB)

Man legt 60 mg des Aldehydes 22a [Synthese analog zu 22b aus 13a an Stelle von 13b. siehe 14a)-c)] mit 107 mg Perfluorhexyliodid in Diethylether bei -78°C vor und tropft 0,12 ml Methyllithium/Lithiumbromid-Komplex (1,6 M in Ether) zu. Nach 30 Minuten bei -78°C wird analog 14a) wässrig aufgearbeitet und der Rückstand chromatographisch an Silicagel mit Essigester/Hexan gereinigt. Das anfallende Produkt (22 mg) wird in 10 ml THF gelöst, mit 60 mg Tetrabutylammoniumfluorid (Trihydrat) versetzt und über Nacht bei Raumtemperatur gerührt. Nach erneuter wässriger Aufarbeitung werden nun die diastereomeren Alkohole durch präparative Dünnschichtchromatographie mit Essigester/Hexan als Laufmittel getrennt, wobei 0,9 mg der Titelverbindung 27aα und 2,45 mg der Titelverbindung 27aB als farblose Schäume anfallen.

Η-NMR (300 MHz, CD 2 C1 2 ):

27aα δ= 0,54 ppm (s, 3H); 1,00 (d, 3H); 3,35 (dd, IH); 4,15 (m, 2H); 4,35 (m, IH); 4,75

(brs, IH); 4,93 (brs, IH); 4,97 (d, IH); 5,08 (dd, IH); 5,27 (dd, IH); 5,53 (dd, IH); 6,00 (d, lH); 6,34 (d, IH)

27aß δ= 0,55 ppm (s, 3H); 1,02 (d, 3H); 3,36 (d, IH); 3,76 (d, IH); 4,07 (dd, IH); 4,16 (m,

IH); 4,36 (m, IH); 4,95 (brs, IH); 5,18 (brs, IH); 5,51 (dd, IH); 5,62 (dd, IH); 6,00 (d, IH);

6,35 (d, IH)

Beispiel 18

(5Z,7E,22E)-[lS,3R,24R,25(S)]-25-(l-Hydroxy-2,2,3,3,4,4,5 ,5,6,6,7,7,7-tridecafluorheptyl)- 26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22-tetraen- 1 ,3 ,24-triol (27bα) und (5Z,7£,22£)-[lS,3R,24R,25(R)]-25-(l-Hydroxy-2,2,3,3,4,4,5, 5,6,6,7,7,7-tridecafluorheptyl)- 26,27-cyclo-9, 10-secocholesta-5,7, 10(19),22-tetraen-l,3,24-triol (27bß)

In Analogie zu 17) werden 50 mg des Aldehydes 22b umgesetzt, wobei schließlich 4,50 mg der Titelverbindung 27bα und 3,15 mg der Titelverbindung 27bB als farblose Schäume anfallen.

Η-NMR (300 MHz, CD 2 C1 2 ):

27bα δ= 0,54 ppm (s, 3H); 1,02 (d, 3H); 3,33 (dd, IH); 4,15 (m, IH); 4,16 (m, IH); 4,36 (m,

IH); 4,84 (brs, IH); 4,95 (brs, IH); 4,99 (d, IH); 5,07 (dd, IH); 5,17 (dd, IH); 5,51 (dd,

IH); 6,00 (d, IH); 6,35 (d, IH)

27bß δ=- 0,55 ppm (s, 3H); 1,03 (d, 3H); 3,52 (d, IH); 3,73 (dd, IH); 3,98 (s, IH); 4,17 (m,

2H); 4,36 (m, IH); 4,95 (brs, IH); 5,18 (brs, IH); 5,56 (m, 2H); 6,00 (d, IH); 6,35 (d, IH)

Beispiel 19

(5Z,7£,22.5 -(lS,3R,24R)-25-Acetyl-20-methyl-26,27-cyclo-9,10-secocholes ta- 5,7,10(19),22-tetraen-l,3,24-triol (33b) und (5Z,7£,22£)-(lS,3R,24S)-25-Acetyl-20-methyl- 26,27-cyclo-9, 10-secocholesta-5,7, 10(19),22-tetraen-l,3,24-triol (33a)

a) Aus 3,4 ml Diisopropylamin und 8,7 ml n-Butyllithium-Lösung (2.5 M in Hexan) in 250 ml THF wird bei 0°C unter Argon Lithiumdiisopropylamid (LDA) bereitet und die Lösung dann auf -78°C abgekühlt. Nun tropft man 3,5 g 1-Acetylcyclopropancarbonsäuremethylester [D.F. Taber et al. J. Org. Chem. 57, 456 (1992)] zu und rührt 1 h. Anschließend werden 3,2 g (5Z,7E)-(1S,3R)- 1 ,3-Bis[[dimethyl(l , 1 -dimethylethyl)silyl]oxy]-20-methyl-9, 10-secopregna- 5,7, 10(19)-trien-20-carbaldehyd (WO 93/12081) 28 in 20 ml THF zugetropft und 2 h bei 0°C gerührt. Nach Zugabe von gesättigter Ammoniumchlorid-Lösung bei -20°C wird mit gesättigter Natriumchlorid-Lösung verdünnt, mit Essigester unter Zusatz von 5% Oxalsäure extrahiert über Natriumsulfat getrocknet und eingeengt. Das so erhaltene Rohprodukt

(5Z,7£,22E)-( 1S,3R)- 1 ,3-Bis[[dimethyl(l , 1 -dimethylethyl)silyl]oxy]-20-methyl-24-oxo- 26,27-cyclo-9,10-secocholesta-5,7,10(19),22-tetraen-25-carbo nsäure 29 (4,3 g feste Masse) wird ohne weitere Reinigung weiter umgesetzt.

b) Eine Menge von 2,23 g 29, 990 mg Dicyclohexylcarbodiimid und 552 mg N- Hydroxysuccinimid werden in 30 ml Methylenchlorid gelöst und unter Argon 2 h gerührt. Nun werden 0,81 ml Dimethylamin zugegeben und die Mischung über Nacht bei Raumtemperatur gerührt. Man verdünnt mit Natriumchlorid-Lösung, extrahiert mit Methylenchlorid, trocknet über Natriumsulfat, entfernt das Solvens und reinigt den Rückstand durch Chromatographie an Kieselgel mit Essigester/Hexan, wobei 1,5 g (5Z,7£,22E)- (l5,3R)-l,3-Bis[[dimethyl(l,l-dimethylethyl)silyl]oxy]-24-ox o-N,N,20-trimethyl-26,27- cyclo-9,10-secocholesta-5,7,10(19),22-tetraen-25-carbonsäur eamid 30 als farbloser Schaum anfallen.

1H-NMR (300 MHz, CDC1 3 ): δ= 0,07 ppm (s, 12H); 0,48 (s, 3H); 0,86 (s, 18H); 1,07 (s, 3H); 1,10 (s, 3H); 2,91 (s, 3H); 2,98 (s, 3H); 4,18 (m, IH); 4,37 (m, IH); 4,82 (brs, IH); 5,18 (brs, IH); 5,97 (d, IH); 6,13 (d, IH); 6,19 (d, IH); 7,20 (d, IH)

c) Man setzt 3,2 g 30 analog lb) um und erhält nach Chromatographie an Kieselgel mit Essigester/Hexan 2,7 g (5Z,7E,22E)-(lS,3R)-l,3-Bis[[dimethyl(l,l-dimethylethyl)süy l]oxy]- 24-hydroxy-N,N,20-trimethyl-26,27-cyclo-9,10-secocholesta-5, 7,10(19),22-tetraen-25- carbonsäuredimethylamid 31 als Diastereomerengemisch bezüglich C-24 als farblosen Schaum.

Η-NMR (300 MHz, CDC1 3 ): δ= 0,07 ppm (s, 12H); 0,55 (s, 3H); 0,89 (s, 18H); 1,02/1,03 (2x s, 3H); 1,08/1,09 (2x s, 3H); 3,04 (brs, 6H); 4,02 (m, IH); 4,19 (m, IH); 4,39 (m, IH); 4,87 (brs, IH); 5,20 (brs, IH); 5,27 (d, IH); 5,88 (d, IH); 6,00 (d, IH); 6,22 (d, IH)

d) Man legt 300 mg 31 in 2 ml Diethylether vor und tropft bei -78°C unter Argon 1,03 ml Methyllithium-Lösung (1.3 M in Diethylether) hinzu. Man rührt 30 min bei -78°C und weitere 30 min bei -30°C. Anschließend quencht man mit Natriumchlorid-Lösung, extrahiert mit Essigester, wäscht die vereinigten organischen Phasen mit Natriumchlorid-Lösung, trocknet über Natriumsulfat und entfernt das Solvens. Chromatographie des Rohproduktes an Kieselgel mit Essigester/Hexan ergibt 165 mg (5Z,7£,22E)-(lS,3R)-25-Acetyl-l,3- bis[[dimethyl( 1 , 1 -dimethylethyl)silyl]oxy]-20-methyl-26,27-cyclo-9, 10-secocholesta- 5,7,10(19),22-tetraen-24-ol 32 als farblosen Schaum.

ΕRSATZBLATT (RΕSΕL 26)

Η-NMR (300 MHz, CD 2 C1 2 ): δ= 0,04 ppm (s, 12H); 0,53 (s, 3H); 0,84 (s, 18H); 1,02/1,03 (2x s, 3H); 1,05/1,06 (2x s, 3H); 1,93/1,94 (2x s, 3H); 2,90/2,94 (2x d, OH); 4,04/4,09 (2x t, IH); 4,16 (m, IH); 4,35 (m, IH); 4,82 (brs, IH); 5,17 (brs, IH); 5,29/5,30 (2x dd, IH); 5,79 (d, IH); 5,98 (d, IH); 6,22 (d, IH)

e) Man behandelt 160 mg 32 analog le) und erhält nach Chromatographie an Kieselgel mit Essigester/Hexan sowie Diastereomerentrennung über HPLC an chiraler Phase mit Hexan Isopropanol/Ethanol nacheinander 12 mg 33b und 21 mg 33a als farblose Schäume.

J H-NMR (300 MHz, CD 2 C1 2 ):

33b δ= 0,56 ppm (s, 3H); 1,02 (s, 3H); 1,07 (s, 3H); 1,95 (s, 3H); 3,00 (d, OH); 4,08 (m,

IH); 4,17 (m, IH); 4,38 (m, IH); 4,95 (brs, IH); 5,29 (brs, IH); 5,30 (dd, IH); 5,80 (d, IH);

5,99 (d, IH); 6,35 (d, IH)

33a δ= 0,57 ppm (s, 3H); 1,01 (s, 3H); 1,08 (s, 3H); 1,95 (s, 3H); 2,95 (d, OH); 4,13 (m,

IH); 4,16 (m, IH); 4,38 (m, IH); 4,96 (brs, IH); 5,29 (brs, IH); 5,30 (dd, IH); 5,82 (d, IH);

5,99 (d, IH); 6,35 (d, IH)

Beispiel 20

(5Z,7£,22£)-(lS,3R,24R)-20-Methyl-25-(l-oxobutyl)-26,27 -cyclo-9,10-secocholesta- 5,7,10(19),22-tetraen-l,3,24-triol (35b) und (5Z,7£,22^-(lS,3R,24S)-20-Methyl-25-(l- oxobutyl)-26,27-cyclo-9,10-secocholesta-5,7,10(19),22-tetrae n-l,3,24-triol (35a)

a) Man legt 0,9 ml Propyliodid in 20 ml Diethylether vor und tropft bei -78°C unter Argon 8 ml t-Butyllithium-Lösung (1,5 M in Pentan) zu. Diese Mischung wird 30 min bei -78°C gerührt und anschließend zu einer Lösung von 300 mg 31 , in 2 ml Diethylether bei -78°C unter Argon getropft. Man rührt nun 3 h bei -78°C und quencht dann mit Natriumchlorid- Lösung. Es wird dann mit Essigester extrahiert, die vereinigten organischen Phasen werden mit Natriumchlorid-Lösung gewaschen über Natriumsulfat getrocknet und das Lösungsmittel entfernt. Der Rückstand wird an Kieselgel mit Essigester/Hexan chromatographiert, wobei 180 mg (5Z,7E,22£)-(lS,3R)-l,3-Bis[[dimethyl(l,l-dimethylethyl)sil yl]oxy]-20-methyl-25- (l-oxobutyl)-26,27-cyclo-9,10-secocholesta-5,7,10(19),22-tet raen-24-ol 34 als farbloser Schaum anfallen.

•H-NMR (300 MHz, CD 2 C1 2 ): δ= 0,03 ppm (s, 12H); 0,53 (s, 3H); 0,86 (s, 18H); 0,86 (t, 3H); 1,00/1,01 (2x s, 3H); 1,05/1,06 (2x s, 3H); 2,14 (t, 2H); 3,02/3,07 (2x d, OH); 4,02/4,05 (2x t, IH); 4,17 (m, IH); 4,37 (m, IH); 4,83 (brs, IH); 5,17 (brs, IH); 5,29/5,30 (2x dd, IH); 5,78 (d, IH); 5,98 (d, IH); 6,23 (d, IH)

b) Man behandelt 160 mg 34 analog le) und erhält nach Chromatographie an Kieselgel mit Essigester/Hexan sowie Diastereomerentrennung über HPLC an chiraler Phase mit Hexan Isopropanol/Ethanol nacheinander 14 mg 35b und 27 mg 35a als farblose Schäume.

Η-NMR (300 MHz, CD 2 C1 2 ):

35b δ= 0,55 ppm (s, 3H); 0,88 (t, 3H); 1,02 (s, 3H); 1,07 (s, 3H); 2,14 (t, 2H); 3,10 (brs,

OH); 4,05 (m, IH); 4,17 (m, IH); 4,38 (m, IH); 4,95 (brs, IH); 5,29 (brs, IH); 5,30 (dd,

IH); 5,79 (d, IH); 5,99 (d, IH); 6,35 (d, IH)

35a δ= 0,55 ppm (s, 3H); 0,88 (t, 3H); 1,00 (s, 3H); 1,09 (s, 3H); 2,16 (t, 2H); 3,06 (brs,

OH); 4,08 (m, IH); 4,17 (m, IH); 4,37 (m, IH); 4,95 (brs, IH); 5,29 (brs, IH); 5,30 (dd,

IH); 5,81 (d, IH); 5,99 (d, IH); 6,35 (d, IH)

Beispiel 21

(5Z,7£,22£)-( lS,3R,24R)-20-Methyl-25-( 1 -oxopentyl)-26,27-cyclo-9, 10-secocholesta- 5,7,10(19),22-tetraen-l,3,24-triol (37b) und (5Z,7E,22E)-(lS,3R,24S)-20-Methyl-25-(l- oxopentvl)-26.27-cvclo-9.10-secocholesta-5.7.10(19).22-tetra en-1.3.24-triol (37a)

a) Man legt 250 mg 31 in 10 ml THF unter Argon vor und kühlt auf -78°C. Bei dieser Temperatur tropft man 1 ml n-Butyllithium-Lösung (1,6 M in Hexan) zu und rührt 4 h nach. Es wird dann mit Natriumchlorid-Lösung gequencht, mit Essigester extrahiert, über Natriumsulfat getrocknet, das Solvens entfernt und der Rückstand an Kieselgel mit Essigester Hexan chromatographiert, wobei man 160 mg (5Z,7£,22£)-(1S,3R)-1,3- Bis[[dimethyl( 1 , 1 -dimethylethyl)silyl]oxy]-20-methyl-25-( 1 -oxopentyl)-26,27-cyclo-9, 10- secocholesta-5,7,10(19),22-tetraen-24-ol 36 als farblosen Schaum erhält.

1 H-NMR (300 MHz, CDC1 3 ): δ= 0,05 ppm (s, 12H); 0,54 (s, 3H); 0,88 (s, 18H); 0,90 (t, 3H); 1,02/1,03 (2x s, 3H); 1,07/1,08 (2x s, 3H); 3,27/3,28 (2x d, OH); 4,08 (m, IH); 4,20 (m, IH); 4,38 (m, IH); 4,87 (brs, IH); 5,19 (brs, IH); 5,32/5,33 (2x dd, IH); 5,80 (d, IH); 5,99 (d, IH); 6,22 (d, IH)

b) Man behandelt 150 mg 36 analog le) und erhält nach Chromatographie an Kieselgel mit Essigester/Hexan sowie Diastereomerentrennung über HPLC an chiraler Phase mit Hexan/Isopropanol Ethanol nacheinander 12 mg 37b und 22 mg 37a als farblose Schäume.

Η-NMR (300 MHz, CD 2 C1 2 ):

37b δ= 0,55 ppm (s, 3H); 0,89 (t, 3H); 1,01 (s, 3H); 1,07 (s, 3H); 2,18 (t, 2H); 3,09 (d, OH);

4,04 (t, IH); 4,17 (m, IH); 4,38 (m, IH); 4,96 (brs, IH); 5,30 (brs, IH); 5,31 (dd, IH); 5,80

(d, IH); 5,99 (d, IH); 6,35 (d, IH)

37a δ= 0,56 ppm (s, 3H); 0,88 (t, 3H); 1,00 (s, 3H); 1,08 (s, 3H); 2,19 (t, 2H); 2,99 (d, OH);

4,08 (m, IH); 4,17 (m, IH); 4,38 (m, IH); 4,96 (brs, IH); 5,30 (brs, IH); 5,31 (dd, IH); 5,82

(d, IH); 5,99 (d, IH); 6,35 (d, IH)

Beispiel 22

(5Z,7£,22£)-(lS,3R,24R)-20-Methyl-25-(l-oxohexyl)-26,27 -cyclo-9,10-secocholesta- 5,7, 10(19),22-tetraen-l,3,24-triol (39b)

a) Analog 20a) werden 150 mg 31 mit 1 -Pentyllithium (aus 1-Iodpentan und t-Butyllithium) umgesetzt, wobei man 170 mg (5Z,7E,22E)-(1S,3R)-1,3-Bis[[dimethyl(l,l- dimethylethyl)silyl]oxy]-20-methyl-25-(l-oxohexyl)-26,27-cyc lo-9,10-secocholesta- 5,7,10(19),22-tetraen-24-ol 38 als farblosen Schaum erhält. Die Trennung der Diastereomeren erfolgte durch mehrmalige Chromatographie an Aluminiumoxid-Platten mit Essigester/Hexan. Man erhielt so 25 mg (5Z,7£,22£)-(1S,3R,24R)-1,3-Bis[[dimethyl(l,l- dimethylethyl)-silyl]oxy]-20-methyl-25-( 1 -oxohexyl)-26,27-cyclo-9, 10-secocholesta- 5,7,10(19),22-tetraen-24-ol 38b und 18 mg (5Z,7£,22E)-(1S,3R,24S)-1,3-Bis[[dimethyl(l,l- dimethylethyl)-silyl]oxy]-20-methyl-25-( 1 -oxohexyl)-26,27-cyclo-9, 10-secocholesta- 5,7,10(19),22-tetraen-24-ol 38a als farblose Schäume.

Η-NMR (300 MHz, CDC1 3 ):

38b δ= 0,06 ppm (s, 12H); 0,53 (s, 3H); 0,87 (t, 3H); 0,88 (s, 18H); 0,99 (s, 3H); 1,05 (s,

3H); 3,09 (d, OH); 4,02 (t, IH); 4,18 (m, IH); 4,39 (m, IH); 4,83 (brs, IH); 5,19 (brs, IH);

5,31 (dd, IH); 5,79 (d, IH); 5,99 (d, IH); 6,22 (d, IH)

38a δ= 0,06 ppm (s, 12H); 0,52 (s, 3H); 0,87 (t, 3H); 0,88 (s, 18H); 0,99 (s, 3H); 1,08 (s,

3H); 3,03 (d, OH); 4,06 (t, IH); 4,18 (m, IH); 4,38 (m, IH); 4,83 (brs, IH); 5,19 (brs, IH);

5,30 (dd, IH); 5,79 (d, IH); 5,99 (d, IH); 6,23 (d, IH)

b) Man behandelt 24 mg 38b analog le) und erhält nach Chromatographie an Kieselgel mit Essigester/Hexan 6 mg 39b als farblosen Schaum.

Η-NMR (300 MHz, CD 2 C1 2 ): δ= 0,55 ppm (s, 3H); 0,88 (t, 3H); 1,00 (s, 3H); 1,08 (s, 3H); 3,10 (brs, OH); 4,03 (m, IH); 4,18 (m, IH); 4,38 (m, IH); 4,94 (brs, IH); 5,29 (brs, IH); 5,29 (dd, IH); 5,79 (d, IH); 5,99 (d, IH); 6,34 (d, IH)

Beispiel 23

(5Z,7.5:,22J^-(l-S , ,3R,24S)-20-Methyl-25-(l-oxohexyl)-26,27-cyclo-9,10-se cocholesta- 5.7.10(19).22-tetraen-1.3.24-triol (39a)

Man behandelt 17 mg 38a analog le) und erhält nach Chromatographie an Kieselgel mit Essigester/Hexan 5 mg 39a als farblosen Schaum.

Η-NMR (300 MHz, CD 2 C1 2 ): δ=0,56 ppm (s, 3H); 0,87 (t, 3H); 1,00 (s, 3H); 1,07 (s, 3H); 3,05 (brs, OH); 4,07 (m, IH); 4,18 (m, IH); 4,37 (m, IH); 4,95 (brs, IH); 5,29 (brs, IH); 5,29 (dd, IH); 5,80 (d, IH); 5,98 (d, IH); 6,35 (d, IH)

Beispiel 24

(5Z,7£,22£)-(lS,3R,24R)-20-Methyl-25-(l-oxoheptyl)-26,2 7-cyclo-9,10-secocholesta- 5,7,10(19),22-tetraen-l,3,24-triol (41b) und (5Z,7£,22£)-(lS,3R,24S)-20-Methyl-25-(l- oxoheptyl)-26,27-cyclo-9, 10-secocholesta-5,7, 10( 19),22-tetraen- 1 ,3 ,24-triol (41a)

a) Analog 20a) werden 300 mg 31 , mit 1-Hexyllithium (aus 1-Iodhexan und t-Butyllithium) umgesetzt, wobei man 150 mg (5Z,7£,22E)-(lS,3R)-l,3-Bis[[dimethyl(l,l-dimethylethyl)- silyl]oxy]-20-methyl-25-(l-oxoheptyl)-26,27-cyclo-9,10-secoc holesta-5,7,10(19),22-tetraen- 24-ol 40 neben 230 mg des Ausgangsmaterials als farblose Schäume erhält.

Η-NMR (300 MHz, CDC1 3 ): δ= 0,06 ppm (s, 12H); 0,53 (s, 3H); 0,87 (t, 3H); 0,89 (s, 18H); 1,02/1,03 (2x s, 3H); 1,08/1,09 (2x s, 3H); 3,25/3,29 (2x d, OH); 4,06/4,08 (2x t, IH); 4,19 (m, IH); 4,38 (m, IH); 4,87 (brs, IH); 5,20 (brs, IH); 5,32/5,34 (dd, IH); 5,80 (d, IH); 5,99 (d, IH); 6,22 (d, IH)

b) Man behandelt 145 mg 40 analog le) und erhält nach Chromatographie an Kieselgel mit Essigester/Hexan sowie Diastereomerentrennung über HPLC an chiraler Phase mit Hexan/Isopropanol/Ethanol nacheinander 19 mg 41b und 11 mg 41a als farblose Schäume.

»H-NMR (300 MHz, CD 2 C1 2 ):

41b δ= 0,55 ppm (s, 3H); 0,89 (t, 3H); 1,01 (s, 3H); 1,07 (s, 3H); 2,17 (t, 2H); 3,10 (d, OH);

4,03 (t, IH); 4,17 (m, IH); 4,38 (m, IH); 4,95 (brs, IH); 5,29 (brs, IH); 5,30 (dd, IH); 5,79

(d, IH); 5,99 (d, IH); 6,35 (d, IH)

41a δ= 0,55 ppm (s, 3H); 0,88 (t, 3H); 1,00 (s, 3H); 1,07 (s, 3H); 2,17 (t, 2H); 3,07 (brs,

OH); 4,08 (m, IH); 4,17 (m, IH); 4,38 (m, IH); 4,94 (brs, IH); 5,28 (brs, IH); 5,30 (dd,

IH); 5,80 (d, IH); 5,99 (d, IH); 6,35 (d, IH)

Beispiel 25

(5Z,7£,22£)-(lS,3R,24R)-20-Methyl-25-(l-oxooctyl)-26,27 -cyclo-9,10-secocholesta- 5,7,10(19),22-tetraen-l,3,24-triol (43b) und (5Z,7£,22£)-(lS,3R,24S)-20-Methyl-25-(l- oxooctyl)-26,27-cyclo-9, 10-secocholesta-5 ,7,10(19),22-tetraen- 1 ,3 ,24-triol (43a)

a) Analog 20a) werden 300 mg 31 mit 1-Heptyllithium (aus 1-Iodheptan und t-Butyllithium) umgesetzt, wobei man 160 mg (5Z,7£,22E)-(lS,3R)-l,3-Bis[[dimethyl(l,l-dimethylethyl)- silyl]oxy]-20-methyl-25-(l-oxooctyl)-26,27-cyclo-9,10-secoch olesta-5,7,10(19),22-tetraen- 24-ol 42 neben 210 mg des Ausgangsmaterials als farblose Schäume erhält.

Η-NMR (300 MHz, CDC1 3 ): δ= 0,06 ppm (s, 12H); 0,52 (s, 3H); 0,88 (t, 3H); 0,89 (s, 18H); 1,00/1,01 (2x s, 3H); 1,05/1,06 (2x s, 3H); 3,21/3,28 (2x d, OH); 4,04/4,07 (2x t, IH); 4,18 (m, IH); 4,37 (m, IH); 4,85 (brs, IH); 5,18 (brs, IH); 5,31/5,32 (dd, IH); 5,79 (d, IH); 5,98 (d, IH); 6,21 (d, IH)

b) Man behandelt 155 mg 42 analog le) und erhält nach Chromatographie an Kieselgel mit Essigester/Hexan sowie Diastereomerentrennung über HPLC an chiraler Phase mit Hexan/Isopropanol/Ethanol nacheinander 31 mg 43b und 25 mg 43a als farblose Schäume.

Η-NMR (300 MHz, CD 2 C1 2 ):

43b δ= 0,55 ppm (s, 3H); 0,88 (t, 3H); 1,01 (s, 3H); 1,06 (s, 3H); 2,17 (t, 2H); 3,12 (d, OH);

4,03 (t, IH); 4,17 (m, IH); 4,37 (m, IH); 4,95 (brs, IH); 5,29 (brs, IH); 5,32 (dd, IH); 5,80

(d, IH); 5,99 (d, IH); 6,34 (d, IH)

43a δ= 0,54 ppm (s, 3H); 0,87 (t, 3H); 0,99 (s, 3H); 1,07 (s, 3H); 2,17 (t, 2H); 3,04 (brs,

OH); 4,07 (m, IH); 4,17 (m, IH); 4,37 (m, IH); 4,95 (brs, IH); 5,29 (brs, IH); 5,31 (dd,

IH); 5,80 (d, IH); 5,99 (d, IH); 6,34 (d, IH)

Beispiel 26

(7£,22£)-( lR,3R,24R)-25-Acetyl-26,27-cyclo- 19-nor-9, 10-secocholesta-5,7,22-trien- 1 ,3,24- triol (55b)

a) Man setzt 6,70 g [lR-[lα(S*),3aß,4α,7aα]]-α,7a-Dimethyloctahydro-4- [(triethylsilyl)oxy]-lH-inden-l-acetaldehyd 44 [H.H. Inhoffen et al. Chem. Ber. 91, 780 (1958), Chem. Ber. 92, 1772 (1959), W.G. Dauben et al. Tetrahedron Lett. 30, 677 (1989), Triethylsilyl-Schutzgruppe an C-4-OH] analog 19a) um und erhält 11,6 g [lR-[lα[R*-(£)],3a ß,4α,7aα]]- 1 -[4-[7a-Methyloctahydro-4-[(triethylsilyl)oxy]- lH-inden- 1 -yl]- 1 -oxo-2- pentenyl]cyclopropancarbonsäure 45 als gelbes Öl.

b) Man setzt 15 g des Rohproduktes 45 analog 19b) um und erhält 11,9 g [lR-[lα[R*- (£)],3aß,4α,7aα]]-N,N-Dimethyl-l-[4-[7a-methyloctahydro- 4-[(triethylsilyl)oxy]-lH-inden- l-yl]-l-oxo-2-pentenyl]cyclopropancarbonsäureamid 46 als farbloses Öl.

»H-NMR (300 MHz, CDC1 3 ): δ= 0,52 ppm (q, 6H); 0,92 (s, 3H); 0,93 (t, 9H); 2,95 (s, 3H); 3,00 (s, 3H); 4,01 (s, IH); 6,15 (d, IH); 6,82 (d, IH)

c) Man setzt 11,6 g 46 analog lb) um und erhält 8,7 g [lR-[lα[R*-(£)],3aß,4α,7aα]]-N,N- Dimethyl- 1 -[ 1 -hydroxy-4-[7a-methyloctahydro-4-[(triethylsilyl)oxy]- lH-inden- 1 -yl]-2-pen- tenyl]cyclopropancarbonsäureamid 47 als farbloses Öl.

Η-NMR (300 MHz, CDC1 3 ): δ=0,54 ppm (q, 6H); 0,89 (s, 3H); 0,94 (t, 9H); 2,62 (brd, OH); 3,04 (brs, 6H); 4,02 (s, IH); 5,27/5,29 (2x dd, IH); 5,51/5,54 (2x dd, IH)

d) Man rührt 5,34 g 47 in 70 ml Methylenchlorid mit 3,2 ml Dihydropyran und 187 mg Pyridinium-p-Toluolsulfonat unter Argon bei Raumtemperatur für 3 Tage. Dann wird Natriumchlorid-Lösung zugegeben, mit Methylenchlorid extrahiert, die vereinigten organischen Phasen werden mit Natriumhydrogencarbonat-Lösung und Natriumchlorid- Lösung gewaschen, über Natriumsulfat getrocknet und vom Solvens befreit. Der Rückstand wird an Kieselgel mit Essigester/Hexan chromatographiert, wobei man 4,91 g [lR-[lα[R*- (£)],3aß,4α,7aα]]-N,N-Dimethyl-l-[4-[7a-methyloctahydro- 4-[(triethylsilyl)oxy]-lH-inden- l-yl]-l -[(tetrahydro-2H-pyran-2-yl)oxy]-2-pentenyl]cyclopropancarbo nsäureamid 48 als farbloses Öl erhält.

e) Man behandelt 5,92 g 48 analog le) und erhält 2,99 g [lR-[lα[R*-(£)],3aß,4α,7aα]]- N,N-Dimethyl- 1 -[4-(4-hydroxy-7a-methyloctahydro- lH-inden- 1 -yl)- 1 -[(tetrahydro-2H- pyran-2-yl)oxy]-2-pentenyl]cyclopropancarbonsäureamid 49 als farbloses Öl.

f) Man löst 2,67g 49 in 130 ml Methylenchlorid, gibt portionsweise 1,87 g Pyridiniumchlorochromat hinzu und rührt 2 h unter Argon bei Raumtemperatur. Anschließend wird mit Diethylether verdünnt, filtriert und das Lösungsmittel entfernt. Der Rückstand wird an Kieselgel mit Essigester/Hexan chromatographiert, wobei man 2,84 g [lR-[lα[R*-(£)],3a ß,7aα]]-N,N-Dimethyl- 1 -[4-(7a-methyloctahydro-4-oxo- lH-inden- 1 -yl)- 1 -[(tetrahydro-2H- pyran-2-yl)oxy]-2-pentenyl]cyclopropancarbonsäureamid 50 als farbloses Öl erhält.

g) Man löst 1,0 g (3R-trans)-[2-[3,5-Bis[[dimethyl(l,l-dimethylethyl)silyl]oxy ]cyclo- hexyliden]ethyl]diphenylphosphinoxid 5_1 [H.F. DeLuca et al. Tetrahedron Lett. 32, 7663 (1991)] in 10 ml THF und kühlt unter Argon auf -78°C. Nun tropft man 2,1 ml n- Butyllithium-Lösung (2.5 M in Hexan) zu und rührt 5 min nach. Anschließend gibt man 381 mg 50 in 7 ml THF zu und rührt 30 min bei -78°C. Danach quencht man mit Kalium/Natriumtartrat-Lösung, extrahiert mit Essigester, wäscht die organische Phase mit Natriumchlorid-Lösung, trocknet über Natriumsulfat und entfernt das Lösungsmittel. Der Rückstand wird an Kieselgel mit Essigester/Hexan chromatographiert, wobei 648 mg (7£,22E)-(lR,3R)-l,3-Bis[[dimethyl(l,l-dimethylethyl)silyl] oxy]-N,N-dimethyl-24ξ- [(tetrahydro-2H-pyran-2-yl)oxy]-26,27-cyclo- 19-nor-9, 10-secocholesta-5,7,22-trien-25- carbonsäureamid 52 als farbloser Schaum verbleiben.

h) Man löst 350 mg 52 in 5 ml THF und tropft bei -78°C unter Argon 0,64 ml Methyllithium- Lösung (1.3 M in Diethylether) zu. Nach 90 min quencht man mit Natriumchlorid-Lösung, extrahiert mit Essigester, wäscht die organische Phase mit Natriumchlorid-Lösung, trocknet über Natriumsulfat und entfernt das Lösungsmittel. Der Rückstand wird an Kieselgel mit Essigester/Hexan chromatographiert, wobei 284 mg (7£,22£)-(lR,3R)-25-Acetyl-l,3- bis[[dimethyl( 1 , 1 -dimethylethyl)silyl]oxy]-24ξ-[(tetrahydro-2H-pyran-2-yl)ox y]-26,27-cyclo- 19-nor-9,10-secocholesta-5,7,22-trien 53 als farbloser Schaum verbleiben.

i) Man löst 279 mg 53 in 37 ml Methylenchlorid und behandelt bei -25°C unter Argon mit 0,74 ml Dimethylaluminiumchlorid-Lösung (1 M in Hexan), Man rührt 10 h bei dieser Temperatur und stellt den Ansatz gegebenenfalls über Nacht in den Tiefkühlschrank. Anschließend hydrolysiert man mit Natriumhydrogencarbonat-Lösung, extrahiert mit Methylenchlorid, wäscht die organische Phase mit Natriumchlorid-Lösung, trocknet über Natriumsulfat, entfernt das Lösungsmittel und chromatographiert den Rückstand an Kieselgel mit Essigester/Hexan. Die Trennung der diastereomeren Alkohohole (bzgl. C-24) wird an Aluminiumoxid-Platten mit Essigester/Hexan vollzogen. So erhält man 69 mg (7E,22£)- (\R,3R,24S)-25- Acetyl- 1 ,3-bis[[dimethyl( 1 , 1 -dimethylethyl)silyl]oxy]-26,27-cyclo- 19-nor- 9,10-secocholesta-5,7,22-trien-24-ol 54a neben 36 mg (7£,22£)-( lR,3R,24R)-25- Acetyl- 1,3- bis[[dimethyl(l , 1 -dimethylethyl)silyl]oxy]-26,27-cyclo- 19-nor-9, 10-secocholesta-5,7,22- trien-24-ol 54b als farblose Schäume.

Η-NMR (300 MHz, CD 2 C1 2 ):

54a δ= 0,05 ppm (s, 12H); 0,52 (s, 3H); 0,85 (s, 18H); 1,01 (d, 3H); 1,93 (s, 3H); 2,89 (d, OH); 4,07 (m, 2H); 4,16 (t, IH); 5,34 (dd, IH); 5,52 (dd, IH); 5,80 (d, IH); 6,16 (d, IH) 54b δ= 0,05 ppm (s, 12H); 0,52 (s, 3H); 0,85 (s, 18H); 1,02 (d, 3H); 1,93 (s, 3H); 2,95 (d, OH); 4,06 (m, 3H); 5,33 (dd, IH); 5,46 (dd, IH); 5,80 (d, IH); 6,16 (d, IH)

j) Man behandelt 36 mg 54b analog le) und erhält nach Chromatographie an Kieselgel mit Essigester/Hexan 20 mg 55b als farblosen Schaum.

Η-N R (300 MHz, CD 2 Cl 2 /CD 3 OD): δ= 0,53 ppm (s, 3H); 1,01 (s, 3H); 1,98 (s, 3H); 3,94 (m, IH); 4,01 (m, IH); 4,15 (m, IH); 5,29 (dd, IH); 5,47 (dd, IH); 5,83 (d, IH); 6,23 (d, IH)

Beispiel 27

(7iE:,22£)-(lR,3R,24S)-25-Acetyl-26,27-cyclo-19-nor-9,10 -secocholesta-5,7,22-trien-l,3,24- triol (55a)

a) Man behandelt 69 mg 54a analog le) und erhält nach Chromatographie an Kieselgel mit Essigester/Hexan 25 mg 55a als farblosen Schaum.

1H-NMR (300 MHz, CD 2 Cl 2 /CD 3 OD): δ= 0,53 ppm (s, 3H); 0,99 (s, 3H); 1,98 (s, 3H); 3,96 (m, IH); 4,01 (m, IH); 4,20 (t, IH); 5,30 (dd, IH); 5,50 (dd, IH); 5,83 (d, IH); 6,23 (d, IH)

Beispiel 28

(7£,22£)-(lR,3R,24R)-25-(l-Oxoρentyl)-26,27-cyclo-19-n or-9,10-secocholesta-5,7,22-trien- 1,3,24-triol (58b)

a) Man behandelt 420 mg 52 analog 21a) und erhält nach Chromatographie an Kieselgel mit Essigester/Hexan 250 mg (7£,22E)-(lR,3R)-l,3-Bis[[dimethyl(l,l-dimethylethyl)silyl] oxy]- 25-( 1 -oxopentyl)-24ξ-[(tetrahydro-2H-pyran-2-yl)oxy]-26,27-cyclo - 19-nor-9, 10- secocholesta-5,7,22-trien 56 als farblosen Schaum.

b) Man behandelt 232 mg 56 analog 26i) und erhält nach Chromatographie an Kieselgel mit Essigester/Hexan nebeneinander 64 mg (7£,22£ (1R,3R,24S)-1,3-Bis[[dimethyl(l,l- dimethylethyl)silyl]oxy]-25-( 1 -oxopentyl)-26,27-cyclo- 19-nor-9, 10-secocholesta-5,7,22- trien-24-ol 57a neben 42 mg (7£,22E)-(1R,3R,24R)-1,3-Bis[[dimethyl(l,l- dimethylethyl)silyl]oxy]-25-(l-oxopentyl)-26,27-cyclo-19-nor -9,10-secocholesta-5,7,22- trien-24-ol 57b als farblose Schäume.

Η-NMR (300 MHz, CD 2 C1 2 ):

57a δ= 0,04 ppm (s, 12H); 0,52 (s, 3H); 0,85 (s, 18H); 0,87 (t, 3H); 1,01 (d, 3H); 3,00 (d, OH); 4,04 (m, 2H); 4,12 (t, IH); 5,32 (dd, IH); 5,51 (dd, IH); 5,81 (d, IH); 6,15 (d, IH) 57b δ= 0,04 ppm (s, 12H); 0,52 (s, 3H); 0,85 (s, 18H); 0,87 (t, 3H); 1,01 (d, 3H); 3,05 (d, OH); 4,05 (m, 3H); 5,34 (dd, IH); 5,44 (dd, IH); 5,81 (d, IH); 6,15 (d, IH)

c) Man behandelt 41 mg 57b analog le) und erhält 15 mg 58b als farblosen Schaum.

Η-NMR (300 MHz, CD 2 Cl 2 /CD 3 OD): δ= 0,52 ppm (s, 3H); 0,89 (t, 3H); 1,00 (d, 3H); 2,27 (t, 2H); 3,95 (m, IH); 4,03 (m, IH); 4,17 (t, IH); 5,31 (dd, IH); 5,48 (dd, IH); 5,82 (d, IH); 6,22 (d, IH)

Beispiel 29

(7£,22£)-(lR,3R,24S)-25-(l-Oxopentyl)-26,27-cyclo-19-no r-9,10-secocholesta-5,7,22-trien- 1,3,24-triol (58a)

Man behandelt 62 mg 57a analog le) und erhält 27 mg 58a als farblosen Schaum.

J H-NMR (300 MHz, CD 2 Cl 2 /CD 3 OD): δ= 0,51 ppm (s, 3H); 0,87 (t, 3H); 0,99 (d, 3H); 2,23 (t, 2H); 3,95 (m, IH); 4,02 (m, IH); 4,19 (t, IH); 5,32 (dd, IH); 5,50 (dd, IH); 5,82 (d, IH); 6,23 (d, IH)

Beispiel 30

(7£,22£)-(lR,3R,24R)-25-(l-Oxohexyl)-26,27-cyclo-19-nor -9,10-secocholesta-5,7,22-trien- 1,3,24-triol (61b)

a) Analog 20a) werden 500 mg 52 mit 1 -Pentyllithium (aus 1-Iodpentan und t-Butyllithium) umgesetzt, wobei man nach Chromatographie mit Essigester/Hexan 321 mg (7£,22£)- (lR,3R)-l,3-Bis[[dimethyl(l,l-dimethylethyl)silyl]oxy]-25-(l -oxohexyl)-24ξ-[(tetrahydro- 2H-pyran-2-yl)oxy]-26,27-cyclo-19-nor-9,10-secocholesta-5,7, 22-trien 59 als farblosen Schaum erhält.

b) Man behandelt 213 mg 59 analog 26i) und erhält nach Chromatographie an Kieselgel mit Essigester/Hexan nebeneinander 81 mg (7E,22E)-(1R,3R,24.S)-1,3-Bis[[dimethyl(l,l- dimethylethyl)silyl]oxy]-25-(l-oxohexyl)-26,27-cyclo-19-nor- 9,10-secocholesta-5,7,22-trien- 24-ol 60a neben 42 mg (7£,22E)-(1R,3R,24R)-1,3-Bis[[dimethyl(l,l- dimethylethyl)silyl]oxy]-25-(l-oxohexyl)-26,27-cyclo-19-nor- 9,10-secocholesta-5,7,22-trien- 24-ol 60b als farblose Schäume.

Η-NMR (300 MHz, CD 2 C1 2 ):

60a δ= 0,04 ppm (s, 12H); 0,52 (s, 3H); 0,86 (s, 18H); 0,87 (t, 3H); 1,01 (d, 3H); 2,15 (t, 2H); 3,01 (d, OH); 4,05 (m, 2H); 4,12 (t, IH); 5,33 (dd, IH); 5,51 (dd, IH); 5,81 (d, IH); 6,15 (d, IH)

60b δ= 0,04 ppm (s, 12H); 0,52 (s, 3H); 0,86 (s, 18H); 0,87 (t, 3H); 1,02 (d, 3H); 2,15 (t, 2H); 3,07 (d, OH); 4,02 (t, IH); 4,06 (m, 2H); 5,34 (dd, IH); 5,44 (dd, IH); 5,81 (d, IH); 6,15 (d, IH)

c) Man behandelt 51 mg 60b analog le) und erhält 27 mg 61b als farblosen Schaum.

Η-NMR (300 MHz, CD 2 C1 2 ): δ= 0,54 ppm (s, 3H); 0,87 (t, 3H); 1,02 (d, 3H); 2,16 (t, 2H); 3,11 (d, OH); 3,95 (m, IH); 4,03 (m, IH); 4,05 (t, IH); 5,34 (dd, IH); 5,46 (dd, IH); 5,83 (d, lH); 6,24 (d, IH)

Beispiel 31

(7£,22jE)-(lR,3R,24S)-25-(l-Oxohexyl)-26,27-cyclo-19-nor -9,10-secocholesta-5,7,22-trien- 1,3,24-triol (61a)

Man behandelt 63 mg 60a analog le) und erhält 32 mg 61a als farblosen Schaum.

1 H-NMR (300 MHz, CD 2 C1 2 ): δ= 0,54 ppm (s, 3H); 0,87 (t, 3H); 1,01 (d, 3H); 2,16 (t, 2H); 3,04 (d, OH); 3,95 (m, IH); 4,03 (m, IH); 4,13 (t, IH); 5,34 (dd, IH); 5,51 (dd, IH); 5,83 (d, lH); 6,24 (d, lH)

Beispiel 32

(7E,22£)-(lR,3R,24R)-25-(l-Oxoheρtyl)-26,27-cyclo-19-no r-9,10-secocholesta-5,7,22-trien- 1,3,24-triol (64b)

a) Analog 20a) werden 500 mg 52 mit 1-Hexyllithium (aus 1-Iodhexan und t-Butyllithium) umgesetzt, wobei man nach Chromatographie mit Essigester/Hexan 255 mg (7E,22E)- (lR,3R)-l,3-Bis[[dimethyl(l,l-dimethylethyl)silyl]oxy]-25-(l -oxoheptyl)-24ξ-[(tetrahydro- 2H-pyran-2-yl)oxy]-26,27-cyclo-19-nor-9,10-secocholesta-5,7, 22-trien 62 als farblosen Schaum erhält.

b) Man behandelt 190 mg 62 analog 26i) und erhält nebeneinander nach Chromatographie an Kieselgel mit Essigester/Hexan 53 mg (7£,22£)-(lR,3R,24S)-l,3-Bis[[dimethyl(l,l- dimethylethyl)silyl]oxy]-25-(l -oxoheptyl)-26,27-cyclo- 19-nor-9, 10-secocholesta-5,7,22-

trien-24-ol 63a neben 29 mg (7£,22£)-(lR,3R,24R)-l,3-Bis[[dimethyl(l,l- dimethylethyl)silyl]oxy]-25-( 1 -oxoheptyl)-26,27-cyclo- 19-nor-9, 10-secocholesta-5,7,22- trien-24-ol 63b als farblose Schäume.

Η-NMR (300 MHz, CD 2 C1 2 ):

63a δ= 0,03 ppm (s, 12H); 0,53 (s, 3H); 0,85 (s, 18H); 0,87 (t, 3H); 1,01 (d, 3H); 2,16 (t,

2H); 3,00 (d, OH); 4,05 (m, 2H); 4,12 (t, IH); 5,32 (dd, IH); 5,51 (dd, IH); 5,81 (d, IH);

6,14 (d, IH)

63b δ= 0,03 ppm (s, 12H); 0,53 (s, 3H); 0,85 (s, 18H); 0,87 (t, 3H); 1,02 (d, 3H); 2,16 (t,

2H); 3,05 (d, OH); 4,03 (t, IH); 4,05 (m, 2H); 5,34 (dd, IH); 5,44 (dd, IH); 5,81 (d, IH);

6,14 (d, IH)

c) Man behandelt 29 mg 63b analog le) und erhält 17 mg 64b als farblosen Schaum.

Η-NMR (300 MHz, CD 2 C1 2 ): δ= 0,53 ppm (s, 3H); 0,88 (t, 3H); 1,03 (d, 3H); 2,17 (t, 2H); 3,12 (d, OH); 3,98 (m, IH); 4,05 (m, IH); 4,08 (t, IH); 5,35 (dd, IH); 5,48 (dd, IH); 5,84 (d, lH); 6,26 (d, lH)

Beispiel 33

(7E,22E)-( \R,3R,24S)-25-( 1 -Oxoheptyl)-26,27-cyclo-l 9-nor-9, 10-secocholesta-5,7,22-trien- 1,3,24-triol (64a)

Man behandelt 52 mg 63a analog le) und erhält 27 mg 64a als farblosen Schaum.

Η-NMR (300 MHz, CD 2 C1 2 ): δ= 0,53 ppm (s, 3H); 0,88 (t, 3H); 1,02 (d, 3H); 2,16 (t, 2H); 3,08 (d, OH); 3,98 (m, IH); 4,05 (m, IH); 4,12 (t, IH); 5,33 (dd, IH); 5,51 (dd, IH); 5,84 (d, IH); 6,27 (d, IH)

Beispiel 34

(7£,22£)-(l^-3^ * 24R)-25-(l-Oxooctyl)-26,27-cyclo-19-nor-9,10-secochole sta-5,7,22-trien- 1,3,24-triol (67b)

a) Analog 20a) werden 380 mg 52 mit 1-Heptyllithium (aus 1-Iodheptan und t-Butyllithium) umgesetzt, wobei man nach Chromatographie mit Essigester/Hexan 224 mg (1E,22E)- ( 1R,3R)- 1 ,3-Bis[[dimethyl( 1 , 1 -dimethylethyl)silyl]oxy]-25-( 1 -oxooctyl)-24ξ-[(tetrahydro- 2H-pyran-2-yl)oxy]-26,27-cyclo-19-nor-9,10-secocholesta-5,7, 22-trien 65 als farblosen Schaum erhält.

b) Man behandelt 103 mg 65 analog 26i) und erhält nach Chromatographie an Kieselgel mit Essigester/Hexan nebeneinander 28 mg (7E,22£)-(1R,3R,24S)-1,3-Bis[[dimethyl(l,l- dimethylethyl)silyl]oxy]-25-( 1 -oxooctyl)-26,27-cyclo- 19-nor-9, 10-secocholesta-5,7,22-trien- 24-ol 66a neben 24 mg (7E,22E)-(1R,3R,24R)-1,3-Bis[[dimethyl(l,l- dimethylethyl)silyl]oxy]-25-( 1 -oxooctyl)-26,27-cyclo- 19-nor-9, 10-secocholesta-5,7,22-trien- 24-ol 66b als farblose Schäume.

Η-NMR (300 MHz, CD 2 C1 2 ):

66a δ= 0,04 ppm (s, 12H); 0,53 (s, 3H); 0,85 (s, 18H); 0,86 (t, 3H); 1,00 (d, 3H); 2,17 (t,

2H); 3,01 (d, OH); 4,06 (m, 2H); 4,12 (t, IH); 5,32 (dd, IH); 5,51 (dd, IH); 5,80 (d, IH);

6,14 (d, IH)

66b δ= 0,04 ppm (s, 12H); 0,53 (s, 3H); 0,85 (s, 18H); 0,86 (t, 3H); 1,02 (d, 3H); 2,15 (t,

2H); 3,05 (d, OH); 4,02 (t, IH); 4,06 (m, 2H); 5,35 (dd, IH); 5,45 (dd, IH); 5,80 (d, IH);

6,14 (d, IH)

c) Man behandelt 24 mg 66b analog le) und erhält 10 mg 67b als farblosen Schaum.

Η-NMR (300 MHz, CD 2 C1 2 ): δ= 0,53 ppm (s, 3H); 0,87 (t, 3H); 1,01 (d, 3H); 2,17 (t, 2H); 3,08 (brs, OH); 3,98 (m, IH); 4,06 (m, 2H); 5,36 (dd, IH); 5,48 (dd, IH); 5,83 (d, IH); 6,27 (d, IH)

Beispiel 35

(7£,22E)-(lR,3R,24S)-25-(l-Oxooctyl)-26,27-cyclo-19-nor- 9,10-secocholesta-5,7,22-trien- 1,3,24-triol (67a)

Man behandelt 38 mg 66a analog le) und erhält 13 mg 67a als farblosen Schaum.

Η-NMR (300 MHz, CD 2 C1 2 ): δ= 0,53 ppm (s, 3H); 0,85 (t, 3H); 1,00 (d, 3H); 2,15 (t, 2H); 3,00 (brs, OH); 3,97 (m, IH); 4,06 (m, IH); 4,11 (t, IH); 5,35 (dd, IH); 5,50 (dd, IH); 5,83 (d, lH); 6,26 (d, lH)

Beispiel 36

(7£,22£)-(lR,3R,24R)-25-(l-Oxononyl)-26,27-cyclo-19-nor -9,10-secocholesta-5,7,22-trien- 1,3,24-triol (70b)

a) Analog 20a) werden 375 mg 52 mit 1-Octyllithium (aus 1-Iodoctan und t-Butyllithium) umgesetzt, wobei man nach Chromatographie mit Essigester Hexan 212 mg (7£,22E)- (lR,3R)-l,3-Bis[[dimethyl(l,l-dimethylethyl)silyl]oxy]-25-(l -oxononyl)-24ξ-[(tetrahydro- 2H-pyran-2-yl)oxy]-26,27-cyclo-19-nor-9,10-secocholesta-5,7, 22-trien 68 als farblosen Schaum erhält.

b) Man behandelt 125 mg 68 analog 26i) und erhält nach Chromatographie an Kieselgel mit Essigester/Hexan nebeneinander 36 mg (7£,22£)-(lR,3R,24S)-l,3-Bis[[dimethyl(l,l- dimethylethyl)silyl]oxy]-25-( 1 -oxononyl)-26,27-cyclo- 19-nor-9, 10-secocholesta-5,7,22-trien- 24-ol 69a neben 24 mg (7£,22E)-(1R,3R,24R)-1,3-Bis[[dimethyl(l,l- dimethylethyl)silyl]oxy]-25-( 1 -oxononyl)-26,27-cyclo-l 9-nor-9, 10-secocholesta-5,7,22-trien- 24-ol 69b als farblose Schäume.

»H-NMR (300 MHz, CD 2 C1 2 ):

69a δ= 0,05 ppm (s, 12H); 0,52 (s, 3H); 0,85 (s, 18H); 0,86 (t, 3H); 1,01 (d, 3H); 2,16 (t, 2H); 3,02 (d, OH); 4,05 (m, 2H); 4,12 (t, IH); 5,32 (dd, IH); 5,51 (dd, IH); 5,80 (d, IH); 6,14 (d, IH)

69b δ= 0,05 ppm (s, 12H); 0,53 (s, 3H); 0,85 (s, 18H); 0,86 (t, 3H); 1,02 (d, 3H); 2,16 (t, 2H); 3,05 (d, OH); 4,02 (t, IH); 4,05 (m, 2H); 5,34 (dd, IH); 5,45 (dd, IH); 5,80 (d, IH); 6,14 (d, IH)

c) Man behandelt 36 mg 69b analog le) und erhält 17 mg 70b als farblosen Schaum.

! H-NMR (300 MHz, CD 2 C1 2 ): δ= 0,54 ppm (s, 3H); 0,87 (t, 3H); 1,02 (d, 3H); 2,16 (t, 2H); 3,08 (brs, OH); 3,98 (m, IH); 4,05 (m, 2H); 5,35 (dd, IH); 5,48 (dd, IH); 5,83 (d, IH); 6,28 (d, lH)

Beispiel 37

(7£,22E)-(lR,3R,24S)-25-(l-Oxononyl)-26,27-cyclo-19-nor- 9,10-secocholesta-5,7,22-trien- 1,3,24-triol (70a)

Man behandelt 24 mg 69a analog le) und erhält 8 mg 70a als farblosen Schaum.

J H-NMR (300 MHz, CD 2 C1 2 ): δ= 0,54 ppm (s, 3H); 0,87 (t, 3H); 1,02 (d, 3H); 2,17 (t, 2H); 3,07 (d, OH); 3,98 (m, IH); 4,05 (m, IH); 4,12 (t, IH); 5,34 (dd, IH); 5,51 (dd, IH); 5,83 (d, lH); 6,28 (d, lH)

Beispiel 38

(7£,22£)-(lR,3R,24S)-25-Acetyl-20-methyl-26,27-cyclo-19 -nor-9,10-secocholesta-5,7,22- trien-l,3,24-triol (81a) und (7£,22£)-(lR,3R,24R)-25-Acetyl-20-methyl-26,27-cyclo-19-no r- 9, 10-secocholesta-5,7,22-trien- 1 ,3,24-triol (81b)

a) Man legt 1,8 g Natriumhydrid (55% in Mineralöl) in 105 ml THF unter Argon vor und tropft eine Lösung von 10,8 g [lR-[lα(S*),3aß,4α,7aα]]-α,7a-Dimethyloctahydro-4- [(triethylsilyl)oxy]-lH-inden-l-acetaldehyd 44 [H.H. Inhoffen et al. Chem. Ber. 91, 780 (1958), Chem. Ber. 92, 1772 (1959), W.G. Dauben et al. Tetrahedron Lett. 30, 677 (1989), Triethylsilylschutzgruppe an C-4-OH] in 45 ml THF zu. Anschließend werden 6,24 ml Iodmethan zugetropft und die Mischung wird über Nacht bei Raumtemperatur gerührt. Nun

wird die Reaktionsmischung vorsichtig in Eiswasser gegossen und mit Essigester extrahiert. Die vereinigten organischen Phasen wäscht man mit Natriumchlorid-Lösung, trocknet über Natriumsulfat, entfernt das Solvens und chromatographiert den Rückstand an Kieselgel mit Essigester/Hexan, wobei man 7,52 g [lS-(lα,3aß,4α,7aα)]-Octahydro-4-[(triethylsilyl)oxy]- α,α,7a-trimethyl-lH-inden-l-acetaldehyd 71 , .

Η-NMR (300 MHz, CDC1 3 ): δ= 0,57 ppm (q, 6H); 0,97 (t, 9H); 0,98 (s, 3H); 1,10 (s, 3H); 1,12 (s, 3H); 4,05 (m, IH); 9,68 (s, IH)

b) Man setzt 7,5 g 71 analog 19a) um und erhält 14,6 g [lR-[lα(£),3aß,4α,7aα]]-l-[4- Methyl-4-[7a-methyloctahydro-4-[(triethylsilyl)oxy]- lH-inden- 1 -yl]- 1 -oxo-2- pentenyl]cyclopropan-carbonsäure 72 als gelbliches Öl.

c) Man setzt 12,9 g 72 analog 19b) um und erhält 5,8 g [lR-[lα(£),3aß,4α,7aα]]-N,N- Dimethyl- 1 -[4-methyl-4-[7a-methyloctahydro-4-[(triethylsilyl)oxy]- lH-inden- 1 -yl]- 1 -oxo-2- pentenyl]cyclopropancarbonsäureamid 73 als farbloses Öl.

Η-NMR (300 MHz, CDC1 3 ): δ= 0,54 ppm (q, 6H); 0,92 (t, 9H); 0,93 (s, 3H); 1,03 (s, 3H); 1,10 (s, 3H); 2,94 (s, 3H); 2,99 (s, 3H); 4,01 (m, IH); 6,15 (d, IH); 7,22 (d, IH)

d) Man setzt 1,02 g 73 analog lb) um und erhält 743 mg [lR-[lα(£),3aß,4α,7aα]]-N,N- Dimethyl- 1 -[ 1 -hydroxy-4-methyl-4-[7a-methyloctahydro-4-[(triethylsilyl)ox y]- lH-inden- 1 - yl]-2-pentenyl]cyclopropancarbonsäureamid 74 als farbloses Öl.

1 H-NMR (300 MHz, CDC1 3 ): δ= 0,54 ppm (q, 6H); 0,92 (t, 9H); 0,94 (s, 3H); 1,00/1,01 (2x s, 3H); 1,05, 1,06 (2x s, 3H); 3,03 (br s, 3H); 4,00 (m, IH); 4,05 (m, IH); 5,22 (d, IH); 5,89 (d, IH)

e) Man behandelt 1,01 g 74 in Analogie zu 26d) und erhält 938 mg [lR-[lα(E),3aß,4α,7aα ]]-N,N-Dimethyl- 1 -[4-methyl-4-[7a-methyloctahydro-4-[(triethylsilyl)oxy]- lH-inden- 1 -yl]- 1 - [(tetrahydro-2H-pyran-2-yl)oxy]-2-pentenyl]cyclopropancarbon säureamid 75 als farbloses Öl.

f) Man behandelt 1,64 g 75 in Analogie zu le) und erhält 1,08 g [lR-[lα(£),3aß,4α,7aα]]- N,N-Dimethyl- 1 -[4-(4-hydroxy-7a-methyloctahydro- lH-inden- 1 -yl)-4-methyl- 1 -[(tetrahydro- 2H-pyran-2-yl)oxy]-2-pentenyl]cyclopropancarbonsäureamid 76 als farbloses Öl.

g) 1,07 g 76 werden analog 26f) behandelt, wobei man 920 mg [lR-[lα(E),3aß,7aα]]-N,N- Dimethyl- 1 -[4-methyl-4-(7a-methyloctahydro-4-oxo- 1 H-inden- 1 -yl)- 1 -[(tetrahydro-2H- pyran-2-yl)oxy]-2-pentenyl]cyclopropancarbonsäureamid 77 als farblosen Schaum erhält.

h) Analog 26g) setzt man 583 mg 77 mit 1,5 g (3R-trans)-[2-[3,5-Bis[[dimethyl(l,l- dimethylethyl)silyl]oxy]cyclohexyliden]ethyl]diphenylphosphi noxid 51 um und erhält nach chromatographischer Aufreinigung an Kieselgel mit Hexan/Essigester 1,02 g (7E,22E)- ( 1R,3R)- 1 ,3-Bis[[dimethyl( 1 , 1 -dimethylethyl)silyl]oxy]-24ξ-[(tetrahydro-2H-pyran-2-yl)ox y]- N,N-20-trimethyl-26,27-cyclo- 19-nor-9, 10-secocholesta-5,7,22-trien-25-carbonsäureamid 78 als farblosen Schaum.

g) Man setzt 254 mg 78 analog 26h) mit Methyllithium um und erhält 136 mg (7£,22£)- (lR,3R)-25-Acetyl-l,3-bis[[dimethyl(l,l-dimethylethyl)silyl] oxy]-20-methyl-24ξ- [(tetrahydro-2H-pyran-2-yl)oxy]-26,27-cyclo-19-nor-9, 10-secocholesta-5,7,22-trien 79 als farblosen Schaum.

h) Man behandelt 135 mg 79 analog 26i) und erhält 51 mg (7£,22£)-(lR,3R)-25-Acetyl-l,3- bis[[dimethyl( 1 , 1 -dimethylethyl)silyl]oxy]-20-methyl-26,27-cyclo- 19-nor-9, 10-secocholesta- 5,7,22-trien-24-ol 80 als farblosen Schaum.

ϊH-NMR (300 MHz, CDC1 3 ): δ= 0,05 ppm (s, 12H); 0,54 (s, 3H); 0,87 (s, 18H); 1,01/1,02 (2x s, 3H); 1,07/1,08 (2x s, 3H); 1,96/1,97 (2x s, 3H); 3,11/3,15 (m, OH); 4,08 (m, 3H); 5,32/5,34 (2x dd, IH); 5,78 (d, IH); 5,82 (d, IH); 6,15 (d, IH)

i) Man behandelt 50 mg 80 analog le) und erhält nach Chromatographie an Kieselgel mit Essigester/Hexan sowie Diastereomerentrennung über HPLC an chiraler Phase mit Hexan/Isopropanol/Ethanol nacheinander 4 mg 81b und 5 mg 81a als farblose Schäume.

Η-NMR (300 MHz, CD 2 C1 2 ):

81b δ= 0,55 ppm (s, 3H); 1,02 (s, 3H); 1,08 (s, 3H); 1,95 (s, 3H); 3,98 (m, IH); 4,07 (m,

IH); 4,08 (d, IH); 5,31 (dd, IH); 5,80 (d, IH); 5,82 (d, IH); 6,28 (d, IH)

81a δ= 0,55 ppm (s, 3H); 1,01 (s, 3H); 1,08 (s, 3H); 1,96 (s, 3H); 2,94 (brs, OH); 3,99 (m,

IH); 4,08 (m, IH); 4,12 (d, IH); 5,31 (dd, IH); 5,82 (d, IH); 5,82 (d, IH); 6,28 (d, IH)

Beispiel 39

(7E,22E)-( lR,3R,24S)-20-Methyl-25-( 1 -oxopentyl)-26,27-cyclo- 19-nor-9, 10-secocholesta- 5,7,22-trien-l,3,24-triol (84a) und (7£,22E)-(lR,3R,24R)-20-Methyl-25-(l-oxopentyl)- 26,27-cyclo- 19-nor-9, 10-secocholesta-5,7,22-trien- 1 ,3 ,24-triol (84b)

a) Man setzt 250 mg 78 analog 21a) um und erhält nach Chromatographie an Kieselgel mit Essigester/Hexan 200 mg (7£,22E)-(lR,3R)-l,3-Bis[[dimethyl(l,l-dimethylethyl)silyl] oxy]- 20-methyl-25-( 1 -oxopentyl)-24ξ-[(tetrahydro-2H-pyran-2-yl)oxy]-26,27-cyclo - 19-nor-9, 10- secocholesta-5,7,22-trien 82 als farblosen Schaum.

b) Man behandelt 195 mg 82 analog 26i) und erhält 89 mg (7£,22£)-(lR,3R)-l,3- Bis[[dimethyl( 1 , 1 -dimethylethyl)silyl]oxy]-20-methyl-25-( 1 -oxopentyl)-26,27-cyclo- 19-nor- 9,10-secocholesta-5,7,22-trien-24-ol 83 als farblosen Schaum.

*H-NMR (300 MHz, CDC1 3 ): δ=0,06 ppm (s, 12H); 0,55 (s, 3H); 0,88 (s, 18H); 0,90 (t, 3H); 1,01/1,02 (2x s, 3H); 1,07/1,08 (2x s, 3H); 2,14/2,15 (2x t, 2H); 3,23/3,29 (2x d, OH); 4,08 (m, 3H); 5,33/5,34 (2x dd, IH); 5,79 (d, IH); 5,82 (d, IH); 6,16 (d, IH)

c) Man behandelt 85 mg 83 analog le) und erhält nach Chromatographie an Kieselgel mit Essigester/Hexan sowie Diastereomerentrennung über HPLC an chiraler Phase mit Hexan/Isopropanol/Ethanol nacheinander 12 mg 84b und 16 mg 84a als farblose Schäume.

Η-NMR (300 MHz, CD 2 C1 2 ):

84b δ= 0,55 ppm (s, 3H); 0,91 (t, 3H); 1,03 (s, 3H); 1,09 (s, 3H); 2,20 (t, 2H); 3,09 (d, OH);

4,00 (m, IH); 4,07 (m, 2H); 5,31 (dd, IH); 5,82 (d, IH); 5,83 (d, IH); 6,28 (d, IH)

84a δ= 0,55 ppm (s, 3H); 0,91 (t, 3H); 1,02 (s, 3H); 1,10 (s, 3H); 2,20 (t, 2H); 3,09 (d, OH);

4,00 (m, IH); 4,08 (m, IH); 4,10 (m, IH); 5,31 (dd, IH); 5,82 (d, IH); 5,82 (d, IH); 6,28 (d,

IH)

Beispiel 40

(7£:,22E)-(lR,3R,24S)-20-Methyl-25-(l-oxohexyl)-26,27-cy clo-19-nor-9,10-secocholesta- 5,7,22-trien-l,3,24-triol (87a) und (7£,22£)-(lR,3R,24R)-20-Methyl-25-(l-oxohexyl)-26,27- cyclo-19-nor-9, 10-secocholesta-5,7,22-trien-l ,3,24-triol (87b)

a) Man setzt 250 mg 78 analog 20a) mit 1 -Pentyllithium (aus 1-Iodpentan und t-Butyllithium) um und erhält nach Chromatographie an Kieselgel mit Essigester/Hexan 192 mg (7E,22£)- (lR,3R)-l,3-Bis[[dimethyl(l,l-dimethylethyl)silyl]oxy]-20-me thyl-25-(l-oxohexyl)-24ξ- [(tetrahydro-2H-pyran-2-yl)oxy]-26,27-cyclo- 19-nor-9, 10-secocholesta-5,7,22-trien 85 als farblosen Schaum.

b) Man behandelt 187 mg 85 analog 26i) und erhält 91 mg (7E,22£)-(1R,3R)-1,3- Bis[[dimethyl( 1 , 1 -dimethylethyl)silyl]oxy]-20-methyl-25-( 1 -oxohexyl)-26,27-cyclo- 19-nor- 9,10-secocholesta-5,7,22-trien-24-ol 86 als farblosen Schaum.

Η-NMR (300 MHz, CDC1 3 ): δ= 0,06 ppm (s, 12H); 0,55 (s, 3H); 0,88 (s, 18H); 0,89 (t, 3H); 1,01/1,02 (2x s, 3H); 1,07/1,08 (2x s, 3H); 2,14/2,15 (2x t, 2H); 3,25/3,30 (2x d, OH); 4,08 (m, 3H); 5,34/5,35 (2x dd, IH); 5,79 (d, IH); 5,80 (d, IH); 6,17 (d, IH)

c) Man behandelt 91 mg 86 analog le) und erhält nach Chromatographie an Kieselgel mit Essigester/Hexan sowie Diastereomerentrennung über HPLC an chiraler Phase mit Hexan/Isopropanol Ethanol nacheinander 12 mg 87b und 13 mg 87a als farblose Schäume.

Η-NMR (300 MHz, CD 2 C1 2 ):

87b δ= 0,53 ppm (s, 3H); 0,87 (t, 3H); 1,01 (s, 3H); 1,07 (s, 3H); 2,17 (t, 2H); 3,12 (d, OH);

3,97 (m, IH); 4,03 (m, 2H); 5,30 (dd, IH); 5,78 (d, IH); 5,80 (d, IH); 6,26 (d, IH)

87a δ= 0,53 ppm (s, 3H); 0,87 (t, 3H); 0,99 (s, 3H); 1,06 (s, 3H); 2,16 (t, 2H); 3,07 (d, OH);

3,96 (m, IH); 4,07 (m, 2H); 5,30 (dd, IH); 5,79 (d, IH); 5,80 (d, IH); 6,26 (d, IH)

Beispiel 41

(7£,22£)-(lR,3R,24S)-20-Methyl-25-(l-oxoheptyl)-26,27-c yclo-19-nor-9,10-secocholesta- 5,7,22-trien-l,3,24-triol (90a) und (7£,22£)-(lR,3R,24R)-20-Methyl-25-(l-oxoheptyl)- 26,27-cyclo- 19-nor-9, 10-secocholesta-5,7,22-trien- 1 ,3,24-triol (90b)

a) Man setzt 250 mg 78 analog 20a) mit 1-Hexyllithium (aus 1-Iodhexan und t-Butyllithium) um und erhält nach Chromatographie an Kieselgel mit Essigester/Hexan 174 mg (7E,22£)- (lR,3R)-l,3-Bis[[dimethyl(l,l-dimethylethyl)silyl]oxy]-20-me thyl-25-(l-oxoheptyl)-24ξ- [(tetrahydro-2H-pyran-2-yl)oxy]-26,27-cyclo-19-nor-9, 10-secocholesta-5,7,22-trien 88 als farblosen Schaum.

b) Man behandelt 169 mg 88 analog 26i) und erhält 68 mg (7E,22E)- 1R,3R)-1,3- Bis[[dimethyl( 1 , 1 -dimethylethyl)silyl]oxy]-20-methyl-25-( 1 -oxoheptyl)-26,27-cyclo- 19-nor- 9,10-secocholesta-5,7,22-trien-24-ol 89 als farblosen Schaum.

Η-NMR (300 MHz, CDC1 3 ): δ= 0,06 ppm (s, 12H); 0,56 (s, 3H); 0,88 (s, 18H); 0,89 (t, 3H); 1,01/1,02 (2x s, 3H); 1,07/1,08 (2x s, 3H); 2,14/2,15 (2x t, 2H); 3,25/3,30 (2x d, OH); 4,08 (m, 3H); 5,33/5,34 (2x dd, IH); 5,79 (d, IH); 5,81 (d, IH); 6,17 (d, IH)

c) Man behandelt 66 mg 89 analog le) und erhält nach Chromatographie an Kieselgel mit Essigester/Hexan sowie Diastereomerentrennung über HPLC an chiraler Phase mit Hexan/Isopropanol Ethanol nacheinander 8 mg 90b und 11 mg 90a als farblose Schäume.

Η-NMR (300 MHz, CD 2 C1 2 ):

90b δ= 0,54 ppm (s, 3H); 0,88 (t, 3H); 1,01 (s, 3H); 1,07 (s, 3H); 2,17 (t, 2H); 3,11 (brs, OH); 3,97 (m, IH); 4,04 (m, 2H); 5,30 (dd, IH); 5,78 (d, IH); 5,80 (d, IH); 6,26 (d, IH) 90a δ= 0,54 ppm (s, 3H); 0,88 (t, 3H); 1,02 (s, 3H); 1,08 (s, 3H); 2,17 (t, 2H); 3,06 (d, OH); 3,97 (m, IH); 4,05 (m, IH); 4,06 (m, IH); 5,30 (dd, IH); 5,79 (d, IH); 5,80 (d, IH); 6,26 (d, IH)

Beispiel 42

(7£,22£)-( lR,3R,24S)-20-Methyl-25-( 1 -oxooctyl)-26,27-cyclo- 19-nor-9, 10-secocholesta- 5,7,22-trien-l,3,24-triol (93a) und (7£,22£)-(lR,3R,24R)-20-Methyl-25-(l-oxooctyl)-26,27- cyclo- 19-nor-9, 10-secocholesta-5,7,22-trien- 1 ,3,24-triol (93b)

a) Man setzt 250 mg 78 analog 20a) mit 1-Heptyllithium (aus 1-Iodheptan und t- Butyllithium) um und erhält nach Chromatographie an Kieselgel mit Essigester/Hexan 191 mg (7£,22£)-(lR,3R)-l,3-Bis[[dimethyl(l,l-dimethylethyl)silyl ]oxy]-20-methyl-25-(l-oxooctyl)- 24ξ-[(tetrahydro-2H-pyran-2-yl)oxy]-26,27-cyclo-19-nor-9,10 -secocholesta-5,7,22-trien 91 als farblosen Schaum.

b) Man behandelt 186 mg 91 analog 26i) und erhält 67 mg (7£,22£)-(lR,3R)-l,3- Bis[[dimethyl(l,l-dimethylethyl)silyl]oxy]-20-methyl-25-(l-o xooctyl)-26,27-cyclo-19-nor- 9,10-secocholesta-5,7,22-trien-24-ol 92 als farblosen Schaum.

Η-N R (300 MHz, CDC1 3 ): δ= 0,06 ppm (s, 12H); 0,55 (s, 3H); 0,88 (s, 18H); 0,89 (t, 3H); 1,01/1,02 (2x s, 3H); 1,07/1,08 (2x s, 3H); 2,14/2,15 (2x t, 2H); 3,25/3,30 (2x d, OH); 4,08 (m, 3H); 5,34/5,35 (2x dd, IH); 5,80 (d, IH); 5,80 (d, IH); 6,16 (d, IH)

c) Man behandelt 65 mg 92 analog le) und erhält nach Chromatographie an Kieselgel mit Essigester/Hexan sowie Diastereomerentrennung über HPLC an chiraler Phase mit Hexan Isopropanol Ethanol nacheinander 6 mg 93b und 8 mg 93a als farblose Schäume.

Η-NMR (300 MHz, CD 2 C1 2 ):

93b δ= 0,54 ppm (s, 3H); 0,88 (t, 3H); 1,02 (s, 3H); 1,06 (s, 3H); 2,17 (t, 2H); 3,11 (brs, OH); 3,98 (m, IH); 4,03 (m, 2H); 5,30 (dd, IH); 5,79 (d, IH); 5,80 (d, IH); 6,26 (d, IH) 93a δ= 0,54 ppm (s, 3H); 0,88 (t, 3H); 1,01 (s, 3H); 1,07 (s, 3H); 2,17 (t, 2H); 3,07 (d, OH); 3,97 (m, IH); 4,08 (m, 2H); 5,30 (dd, IH); 5,80 (d, IH); 5,80 (d, IH); 6,26 (d, IH)

Beispiel 43

(5Z,7£,22£)-[lS,3R,25(S)]-l,3-Dihydroxy-25-(l-hydroxy-2 ,2,3,3,4,4,5,5,5-nonafluorpentyl)- 26,27-cyclo-9,10-secocholesta-5,7,10(19),22-tetraen-24-on (106a) und (5Z,7£,22£)- [ 1S,3R,25(R)]- 1 ,3-Dihydroxy-25-( 1 -hydroxy-2,2,3,3,4,4,5,5,5-nonafluorpentyl)-26,27-cyclo- 9, 10-secocholesta-5,7, 10( 19),22-tetraen-24-on (106b)

a) Man löst 18,7 g 1 -( 1 -OxoethvDcvclopropancarbonsäuremethvlester 94 [D.F. Taber et a. J. Org. Chem. 57, 436 (1992)] in 500 ml Benzol, fugt 30 ml Ethylenglykol und 500 mg p- Toluolsulfonsäure hinzu und erhitzt unter Argon am Wasserabscheider für 12 h zum Sieden. Nach dem Abkühlen wird die organische Phase mit Natriumhydrogencarbonat-Lösung und Natriumchlorid-Lösung gewaschen, über Natriumsulfat getrocknet und das Solvens entfernt. Der Rückstand wird im Vakuum destilliert, wobei 18,6 g l-(2-Methyl-l,3-dioxolan-2- yl)cyclopropancarbonsäuremethylester 95 als farbloses Öl anfallen (Sdp.: 90°C, 1 mbar).

Η-N R (300 MHz, CDC1 3 ): δ= 1,02 ppm (m, 2H); 1,16 (m, 2H); 1,61 (s, 3H); 3,69 (s, 3H); 3,92 (m, 4H)

b) Man löst 24 g 95 in 700 ml Toluol, kühlt unter Argon auf 0°C und tropft dann 620 ml DTBAH-Lösung (1.2 M in Toluol) zu. Man rührt 2 h bei dieser Temperatur und gibt dann 15 ml Isopropanol und 150 ml Wasser zu und läßt über Nacht nachrühren. Anschließend wird filtriert, gründlich mit Toluol nachgewaschen, die organische Phase über Natriumsulfat getrocknet und das Solvens entfernt. Das Produkt l-(2-Methyl-l,3-dioxolan-2- yl)cyclopropanmethanol 96 (gelbliches Öl) wird direkt weiter umgesetzt.

Η-NMR (300 MHz, CDC1 3 ): δ= 0,47 ppm (m, 2H); 0,72 (m, 2H); 1,41 (s, 3H); 2,92 (t, OH); 3,53 (d, 2H); 3,97 (m, 4H)

c) Man löst 10 g 96 in 500 ml Methylenchlorid und fügt 3,7 g Natriumacetat (wasserfrei) sowie 19,3 g Pyridiniumchlorochromat hinzu. Unter Argon wird nun 2 h gerührt. Man verdünnt mit 1 1 Diethylether und filtriert anschließend über Celite. Einengen des Lösungsmittels gefolgt von chromatographischer Reinigung über Kieselgel mit Essigester/Hexan ergibt 8,1 g l-(2-Methyl-l,3-dioxolan-2-yl)cyclopropancarbaldehyd 97 als farbloses Öl.

Η-NMR (300 MHz, CDC1 3 ): δ= 1,16 ppm (m, 4H); 1,57 (s, 3H); 3,97 (m, 4H); 9,49 (s, IH)

d) Man legt 1,2 g 97 und 3,92 ml Perfluorbutyliodid in 40 ml Diethylether unter Argon vor und tropft bei -78°C Methyllithium Lithiumbromid-Komplex (1.5 M in Diethylether) zu. Nach 30 min wird mit Natriumchlorid-Lösung gequencht und mit Essigester verdünnt. Extraktion mit Essigester, Waschen der vereinigten organischen Phasen mit Natriumchlorid-Lösung, Trocknen über Natriumsulfat, Entfernen des Solvens und Chromatographie an Kieselgel mit Essigester/Hexan ergibt 2,1 g l-(2-Methyl-l,3-dioxolan-2-yl)-α-(l,l,2,2,3,3,4,4,4-nonaflu or- butyl)cyclopropanmethanol 98 als farbloses Öl.

Η-NMR (300 MHz, CDC1 3 ): δ= 0,80 ppm (m, IH); 0,97 (m, IH); 1,22 (m, 2H); 1,38 (s, 3H); 3,80 (d, IH); 3,98 (s, 4H)

e) Man löst 3,2 g 98 in 50 ml Methylenchlorid/Methanol 1:1 und fügt 750 mg p- Toluolsulfonsäure hinzu. Es wird unter Argon 2 h bei Raumtemperatur gerührt. Man gibt Natriumchlorid-Lösung zu, extrahiert mit Methylenchlorid, wäscht die organische Phase mit Natriumhydrogencarbonat- und Natriumchlorid-Lösung, trocknet über Natriumsulfat und engt ein. Der Rückstand wird an Kieselgel mit Essigester/Hexan chromatographiert, wobei man 2,7 g l-[l-(l-Hydroxy-2,2,3,3,4,4,5,5,5-nonafluo entyl)cyclopropyl]ethanon 99 als farbloses Öl erhält.

Η-NMR (300 MHz, CDC1 3 ): δ= 1,24 ppm (m, 2H); 1,57 (m, 2H); 1,95 (s, 3H); 3,80 (ddd, IH); 5,01 (d, OH)

f) Man löst 7,5 g (5£,7£)-(lS,3R)-l,3-Bis[[dimethyl(l,l-dimethylethyl)silyl] oxy]-9,10- secopregna-5,7,10(19)-trien-20-carbaldehyd 100 [M. J. Calverley Tetrahedron 43, 4609 (1987)] in 200 ml Toluol, fügt 2 g Anthracen und 0,5 ml Triethylamin zu und bestrahlt unter Stickstoffdurchleitung in einer Pyrex- Apparatur mit einer Quecksilberhochdrucklampe für 30 min. Anschließend filtriert man, engt ein und chromatographiert den Rückstand an Kieselgel mit Essigester/Hexan, wobei man 7,1 g (5Z,7£)-(1S,3R)-1,3-Bis[[dimethyl(l,l- dimethylethyl)silyl]oxy]-9,10-secopregna-5,7,10(19)-trien-20 -carbaldehyd 101 als farblosen Schaum erhält.

Η-NMR (300 MHz, CDC1 3 ): δ= 0,05 ppm (m, 12H); 0,55 (s, 3H); 0,88 (s, 18H); 1,11 (d, 3H); 2,37 (m, IH); 4,18 (m, IH); 4,37 (m, IH); 4,84 (brs, IH); 5,17 (brs, IH); 6,00 (d, IH); 6,22 (IH); 9,58 (d, IH)

g) Man stellt aus 5,0 ml Diisopropylamin und 12 ml n-Butyllithium-Lösung (2.5 M in Hexan) in 60 ml THF unter Argon Lithiumdiisopropylamid her und tropft 4 g 99 in 10 ml THF zu. Nach 30 min bei dieser Temperatur werden 3,5 g 101 in 5 ml THF zugetropft und 2 h weitergerührt. Man quencht mit Natriumchlorid-Lösung, extrahiert mit Essigester, wäscht die organische Phase mit Natriumchlorid-Lösung, trocknet über Natriumsulfat und entfernt das Solvens. Chromatographie an Kieselgel mit Essigester/Hexan ergibt 2,9 g (5Z,7£)-(1S,3R)- l,3-Bis[[dimethyl(l,l-dimethylethyl)silyl]oxy]-22-hydroxy-25 -(l-hydroxy-2,2,3,3,4,4,5,5,5- nona-fluorpentyl)-26,27-cyclo-9,10-secocholesta-5,7,10(19)-t rien-24-on 102 als farblosen Schaum.

h) Man rührt eine Mischung aus 1,3 g 102. 3,8 ml Triethylamin, 2,1 ml Acetanhydrid und einer Spatelspitze DMAP in 50 ml Methylenchlorid für 2 h unter Argon bei Raumtemperatur. Danach wird gesättigte Natriumhydrogencarbonat-Lösung zugegeben und 30 min nachgerührt. Extraktion mit Essigester, Waschen der organischen Phase mit Natriumhydrogencarbonat- und Natriumchlorid-Lösung, Trocknen über Natriumsulfat, Einengen und Chromatographie an Kieselgel mit Essigester/Hexan liefern 850 mg (5Z,7£)- (lS,3R)-22-(Acetyloxy)-25-[l-(acetyloxy)-2,2,3,3,4,4,5,5,5-n onafluorpentyl]-l,3- bis[[dimethyl(l,l-dimethylethyl)silyl]oxy]-26,27-cyclo-9,10- secocholesta-5,7,10(19)-trien- 24-on 103.

i) 850 mg 1O3 werden in 5 ml Toluol gelöst und mit 8 ml Diazabicycloundecan (DBU) versetzt. Man rührt 1 h bei 40°C, verdünnt dann mit Essigester und wäscht die organische Phase mit verdünnter Salzsäure sowie Natriumhydrogencarbonat- und Natriumchlorid- Lösung. Trocknen über Natriumsulfat, Einengen und Chromatographie an Kieselgel mit Essigester/Hexan liefern 460 mg (5Z,7£,22£)-(lS,3R)-25-[l-(Acetyloxy)-2,2,3,3,4,4,5,5,5- nonafluoφentyl]-l,3-bis[[dimethyl(l,l-dimethylethyl)silyl]o xy]-26,27-cyclo-9,10- secocholesta-5,7, 10(19),22-tetraen-24-on 104.

j) Man löst 110 mg 104 in 5 ml Methanol, gibt 83 mg Kaliumcarbonat zu und rührt 1 h bei Raumtemperatur unter Argon. Anschließend gibt man Natriumchlorid-Lösung zu, extrahiert mit Essigester, wäscht mit Natriumchlorid-Lösung, trocknet über Natriumsulfat, engt ein und chromatographiert an Kieselgel mit Essigester/Hexan, wobei 39 mg (5Z,7£,22£)-(lιS',3R)- l,3-Bis[[dimethyl(l,l-dimethylethyl)silyl]oxy]-25-(l-hydroxy -2,2,3,3,4,4,5,5,5- nonafluorρentyl)-26,27-cyclo-9, 10-secocholesta-5,7, 10(19),22-tetraen-24-on 105 als farbloser Schaum anfallen.

k) Man rührt eine Mischung aus 35 mg 105 und 350 mg Dowex-Ionentauscher (sauer, vorbehandelt mit Salzsäure und Methanol) in 10 ml Methylenchlorid/Methanol (1:9) unter Argon über Nacht. Man filtriert, wäscht gründlich mit Essigester nach, wäscht dann die organische Phase mit Natriumhydrogencarbonat- sowie Natriumchlorid-Lösung, trocknet über Natriumsulfat, engt ein und chromatographiert an Kieselgel mit Essigester/Hexan, wobei man nacheinander 12 mg 106a und 9 mg 106b als farblose Schäume erhält.

Η-NMR (300 MHz, CD 2 C1 2 ):

106a δ= 0,58 ppm (s, 3H); 1,08 (d, 3H); 3,63 (m, IH); 4,17 (m, IH); 4,38 (m, IH); 4,97 (s,

IH); 5,19 (d, OH); 5,30 (m, IH); 5,83 (d, IH); 6,01 (d, IH); 6,37 (IH); 6,92 (dd, IH)

106b δ= 0,50 ppm (s, 3H); 0,99 (d, 3H); 3,63 (m, IH); 4,17 (m, IH); 4,38 (m, IH); 4,97 (s,

IH); 5,18 (d, OH); 5,30 (m, IH); 5,89 (d, IH); 6,01 (d, IH); 6,37 (IH); 6,97 (dd, IH)

Beispiel 44

(5Z,7£,22£)-(3S,24R)-25-(l-Oxopentyl)-26,27-cyclo-9,10- secocholesta-5,7,10(19),22- tetraen-3,24-diol (113b)

a) Man unterzieht 5 g (5£,7£)-(3S)-3-[[Dimethyl(l,l-dimethylethyl)silyl]oxy]-9,1 0- secopregna-5,7,10(19)-trien-20-carbaldehyd 107 [Darstellung siehe M. J. Calverley Tetrahedron 43, 4609 (1987), Verzicht auf die Stufen zur lα-Funktionalisierung] der in 43f) beschriebenen Prozedur und erhält nach Chromatographie an Kieselgel mit Essigester/Hexan 4,2 g (5Z,7£)-(3S)-3-[[Dimethyl(l,l-dimethylethyl)silyl]oxy]-9,10 -secopregna-5,7,10(19)- trien-20-carbaldehyd 108 als farblosen Schaum.

Η-N R (300 MHz, CDC1 3 ): δ= 0,08 ppm (s, 6H); 0,60 (s, 3H); 0,89 (d, 9H); 1,14 (d, 3H); 3,83 (m, IH); 4,78 (s, IH); 5,01 (s, IH); 6,03 (d, IH); 6,18 (d, IH); 9,59 (s, IH)

b) Analog 19a) werden 4,2 g 108 umgesetzt, wobei man 5,3 g des Rohproduktes (5Z,7£,22£)-(3S)-3-[[Dimethyl(l,l-dimethylethyl)silyl]oxy] -24-oxo-26,27-cyclo-9,10- secocholesta-5,7,10(19),22-tetraen-25-carbonsäure 109 als gelbliches Öl erhält.

c) Analog 19b) setzt man 2,5 g 109 um und erhält nach Chromatographie mit Essigester/Hexan an Kieselgel 1,5 g (5Z,7£,22£)-(3S)-N,N-Dimethyl-3-[[dimethyl(l,l- dimethylethyl)silyl]oxy]-24-oxo-26,27-cyclo-9,10-secocholest a-5,7,10(19),22-tetraen-25- carbonsäureamid 110 als farblosen Schaum.

Η-NMR (300 MHz, CDC1 3 ): δ= 0,06 ppm (s, 6H); 0,55 (s, 3H); 0,87 (d, 9H); 1,07 (d, 3H); 2,94 (s, 3H); 2,99 (s, 3H); 3,80 (m, IH); 4,75 (s, IH); 4,99 (s, IH); 5,98 (d, IH); 6,13 (d, lH); 6,18 (d, IH); 6,84 (dd, IH)

d) Man setzt 3,16 g 110 analog lb) um und erhält nach Chromatographie an Kieselgel mit Essigester/Hexan 2,06 g (5Z,7£,22£)-(3S)-N,N-Dimethyl-3-[[dimethyl(l,l-dimethyleth yl)- silyl]oxy]-24-hydroxy-26,27-cyclo-9, 10-secocholesta-5,7, 10(19),22-tetraen-25- carbonsäureamid 111 als farblosen Schaum.

Η-NMR (300 MHz, CDC1 3 ): δ= 0,05 ppm (s, 6H); 0,53 (s, 3H); 0,88 (d, 9H); 1,02 (d, 3H); 3,04 (brs, 6H); 3,80 (m, IH); 4,00 (m, IH); 4,77 (s, IH); 5,00 (s, IH); 5,30/5,32 (2x dd, IH); 5,55/5,57 (2x dd, IH); 5,99 (d, IH); 6,14 (d, IH)

e) Man setzt 200 mg Hl analog 21a) mit n-Butyllithium um und erhält nach Chromatographie an Kieselgel mit Essigester/Hexan 132 mg des Diastereomerengemisches bezüglich C-24, das durch mehrmalige Chromatograpie an Aluminiumoxid-Platten mit Essigester/Hexan in 60 mg (5Z,7£,22£)-(3S,24S)-3-[[Dimethyl(l,l-dimethylethyl)silyl] oxy]- 25-(l-oxopentyl)-26,27-cyclo-9,10-secocholesta-5,7,10(19),22 -tetraen-24-ol 112a sowie 42 mg (5Z,7£,22£)-(3S,24R)-3-[[Dimethyl( 1 , 1 -dimethylethyl)silyl]oxy]-25-(l -oxopentyl)-26,27- cyclo-9,10-secocholesta-5,7,10(19),22-tetraen-24-ol 112b aufgetrennt wird.

Η-NMR (300 MHz, CD 2 C1 2 ):

112a δ= 0,04 ppm (s, 6H); 0,52 (s, 3H); 0,85 (d, 9H); 0,86 (t, 3H); 1,00 (d, 3H); 2,15 (t,

2H); 3,20 (d, OH); 3,81 (m, IH); 4,10 (t, IH); 4,72 (s, IH); 4,99 (s, IH); 5,30 (dd, IH); 5,50

(dd, IH); 5,98 (d, IH); 6,14 (d, IH)

112b δ= 0,04 ppm (s, 6H); 0,52 (s, 3H); 0,85 (d, 9H); 0,86 (t, 3H); 1,01 (d, 3H); 2,14 (t,

2H); 3,04 (d, OH); 3,81 (m, IH); 4,03 (t, IH); 4,72 (s, IH); 4,99 (s, IH); 5,33 (dd, IH); 5,44

(dd, IH); 5,98 (d, IH); 6,14 (d, IH)

f) Man behandelt 42 mg 112b analog le) und erhält nach Chromatographie an Kieselgel mit Essigester/Hexan 18 mg 113b.

»H-NMR (300 MHz, CD 2 C1 2 ): δ= 0,53 ppm (s, 3H); 0,88 (t, 3H); 2,18 (t, 2H); 3,10 (brs, OH); 3,88 (m, IH); 4,05 (m, IH); 4,79 (s, IH); 5,03 (s, IH); 5,34 (dd, IH); 5,48 (dd, IH); 6,01 (d, IH); 6,22 (d, IH)

Beispiel 45

(5Z,7£,22£)-(3S,24S)-25-(l-Oxopentyl)-26,27-cyclo-9,10- secocholesta-5,7,10(19),22- tetraen-3,24-diol (113a)

Man behandelt 60 mg 112a analog le) und erhält nach Chromatographie an Kieselgel mit Essigester/Hexan 22 mg 113a.

Η-NMR (300 MHz, CD 2 C1 2 ): δ= 0,54 ppm (s, 3H); 0,88 (t, 3H); 2,18 (t, 2H); 3,05 (d, OH); 3,88 (m, IH); 4,13 (m, IH); 4,78 (s, IH); 5,03 (s, IH); 5,33 (dd, IH); 5,52 (dd, IH); 6,01 (d, IH); 6,22 (d, IH)

Beispiel 46

[5Z,7£,22£,25(£)]-(lS,3R,24S)-25-[3-(l,l-Dimethylethox y)-3-oxo-l-propenyl]-24-methoxy- 26,27-cyclo-9, 10-secocholesta-5,7, 10(19),22-tetraen- 1 ,3-diol (114a) und

[5Z,7£,22£,25(£)]-(lS,3R,24R)-25-[3-(l,l-Dimethylethox y)-3-oxo-l-propenyl]-24- methoxv-26.27-cvclo-9.10-secocholesta-5.7.10(19).22-tetraen- 1.3-diol (114b)

Man löst 260 mg 25b (siehe 16a) in 20 ml Methylenchlorid/Methanol (1:9), gibt 2 g Dowex- WX8-Ionentauscher (sauer) hinzu und rührt unter Argon bei Raumtemperatur für 3 Tage. Anschließend wird filtriert, eingeengt und an Kieselgel mit Essigester/Hexan chromatographiert. Der Rückstand wird via HPLC an chiraler Phase mit Hexan/Isopropanol Ethanol aufgetrennt, wobei 6 mg 114a neben 5 mg 114b als farblose Schäume anfielen.

Η-NMR (300 MHz, CDC1 3 ):

114a: δ= 0,57 ppm (s, 3H); 1,05 (d, 3H); 1,47 (s, 9H); 3,30 (s, 3H); 3,40 (d, IH); 4,22 (m,

IH); 4,43 (m, IH); 5,00 (s, IH); 5,23 (dd, IH); 5,32 (s, IH); 5,52 (dd, IH); 5,68 (d, IH);

6,02 (d, IH); 6,38 (d, IH); 6,79 (d, IH)

114b: δ= 0,57 ppm (s, 3H); 1,07 (d, 3H); 1,48 (s, 9H); 3,28 (s, 3H); 3,38 (d, IH); 4,23 (m,

IH); 4,44 (m, IH); 5,00 (s, IH); 5,23 (dd, IH); 5,32 (s, IH); 5,51 (dd, IH); 5,68 (d, IH);

6,02 (d, IH); 6,38 (d, IH); 6,79 (d, IH)

Beispiel 47

(5Z,7£,22£)-(lS,3R,24R)-25-Hydroxymethyl-26,27-cyclo-9, 10-secocholesta-5,7,10(19),22- tetraen-l,3,24-triol (115b)

Man behandelt 100 mg 21b (siehe 14b) analog le) und erhält nach Chromatographie an Kieselgel mit Essigester/Hexan 36 mg 115b als farblosen Schaum.

Η-NMR (300 MHz, CDC1 3 ): δ= 0,57 ppm (s, 3H); 1,06 (d, 3H); 3,32 (dd, IH); 3,84 (br s, OH); 3,88 (dd, IH); 4,23 (m, IH); 4,43 (m, IH); 5,00 (s, IH); 5,32 (s, IH); 5,47 (dd, IH); 5,57 (dd, IH); 6,02 (d, IH); 6,38 (d, IH);

Beispiel 48

[5Z,7£,22£,25(£)]-( lS,3R,24R)-25-(3-Oxo- 1 -heptenyl)-26,27-cyclo-9, 10-secocholesta- 5.7.10(19).22-tetraen-1.3.24-triol (117b)

a) Man setzt 70 mg des Aldehydes 22b analog 14d) mit (2-Oxohexyl)- phosphonsäuredimethylester [P. Mathey Tetrahedron 34, 649 (1978)] und Natriumhydrid um und erhält nach Chromatographie an Kieselgel mit Essigester/Hexan 59 mg [5Z,7£,22£,25(£)]-(l5,3R,24R)-25-(3-Oxo-l-heptenyl)-l,3,2 4-tris-[[dimethyl(l,l-dimethyl- ethyl)silyl]oxy]-26,27-cyclo-9,10-secocholesta-5,7,10(19),22 -tetraen 116b als farblosen Schaum.

Η-NMR (300 MHz, CDC1 3 ): δ= 0,06 ppm (s, 18H); 0,55 (s, 3H); 0,90 (s, 27H); 0,92 (t, 3H); 1,05 (d, 3H); 2,50 (t, 2H); 3,85 (d, IH); 4,20 (m, IH); 4,38 (m, IH); 4,88 (s, IH); 5,18 (s, IH); 5,33 (dd, IH); 5,47 (dd, IH); 5,97 (d, IH); 6,02 (d, IH); 6,23 (d, IH); 6,93 (d, IH)

b) Man behandelt 45 mg 116b analog le) und erhält nach Chromatographie an Kieselgel mit Essigester/Hexan 12 mg 117b.

Η-NMR (300 MHz, CDC1 3 ): δ=0,58 ppm (s, 3H); 0,92 (t, 3H); 1,07 (d, 3H); 2,50 (t, 2H); 3,94 (d, IH); 4,23 (m, IH); 4,43 (m, IH); 5,00 (brs, IH); 5,22 (brs, IH); 5,42 (dd, IH); 5,60 (dd, IH); 6,00 (d, IH); 6,08 (d, IH); 6,38 (d, IH); 6,89 (d, IH)

Beispiel 49

[5Z,7£,22£,25(£,£)]-(lS,3R,24R)-25-(l-Oxo-2,4-hexadie nyl)-26,27-cyclo-9,10- secocholesta-5 , 7,10(19),22-tetraen- 1 ,3 ,24-triol (118b)

5,94 ml n-Butyllithium (1.6 M in Hexan) werden bei 0°C zu 1,46 ml Diisopropylamin in 67 ml THF unter Stickstoff getropft. Nach 15 min wird die Reaktionsmischung auf -78°C gekühlt und es werden 540 mg 7b (siehe 3) in 2,2 ml THF zugetropft. Nach Erwärmung auf 0°C rührt man die Reaktionsmischung in gesättigte Ammoniumchlorid-Lösung ein, extrahiert mit Essigester, trocknet die organische Phase über Natriumsulfat und engt ein. Chromatographie an Kieselgel mit Essigester/Hexan liefert 65 mg 118b als farblosen Schaum.

.RSATZBLATT (REGEL 26)

-H-NMR (300 MHz, CDC1 3 ): δ=0,57 ppm (s, 3H); 0,97 (m, 2H); 1,05 (d, 3H); 1,20 (m, 2H); 1,88 (d, 3H); 3,50 (m, IH); 4,10 (m, IH); 4,23 (m, IH); 4,43 (m, IH); 5,00 (brs, IH); 5,32 (brs, IH); 5,42 (dd, IH); 5,53 (dd, IH); 5,92 (d, IH); 6,00 (d, IH); 6,18 (m, IH); 6,38 (d, IH); 7,30 (dd, IH)

ERSATZBLAπ (REGEL 26)

9b 10b

16b

17b

b

12k

ERSATZBLAπ (REGEL 26)

ERSATZBLAπ (REGEL 26)

ERSATZBLAπ (REGEL 26) '

2έR=Bu 3 R=Pent 40 R=Hex 42 R=Hept

ERSATZBLAπ (REGEL 26)

ERSATZBLAπ (REGEL 26)

55aR=Me 5_5bR=Me

5_8aR=Bu 5 bR=Bu filaR=Pent 61b R=Pent

£4aR=Hex 64b =Hex

67a R=Hept 67bR=Hept

70aR=Oct 70bR=Oct

ERSATZBLAπ (REGEL 26)

ERSATZBLAπ (REGEL 26)

28 22

ERSATZBLAπ (REGEL 26)

ERSATZBLAπ (REGEL 26)

U3 113b

ERSATZBLAπ (REGEL 26)

ERSATZBLAπ (REGEL 26)