Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PROCESS FOR THE PREPARATION OF CPLA2 INHIBITORS
Document Type and Number:
WIPO Patent Application WO/2005/012238
Kind Code:
A1
Abstract:
A process for making a compound of formula (I) in which process the compound HC≡C-(CH2)n-NH2 is reacted with the compound R1-SO2Cl to produce an intermediate compound, which intermediate compound is then reacted with the compound of formula (II) to produce the compound of formula (I). The terms R1, R2, R3, R4 and n have the definitions set forth in the claims. The compounds of formula (I) are useful in the preparation of indole derivatives of formula (V) which are cPLA2 inhibitors.

Inventors:
WU YANZHONG (US)
RAVEENDRANATH PANOLIL (US)
Application Number:
PCT/US2004/023247
Publication Date:
February 10, 2005
Filing Date:
July 19, 2004
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
WYETH CORP (US)
WU YANZHONG (US)
RAVEENDRANATH PANOLIL (US)
International Classes:
C07C303/38; C07C303/40; C07C311/13; C07D209/14; C07C311/03; C07C311/05; (IPC1-7): C07C303/40; C07C311/13; C07D209/14; C07D209/22
Domestic Patent References:
WO2003048122A22003-06-12
Other References:
B.M. NILSSON, ET AL.: "Derivatives of the muscarinic agent N-methyl-N-(1-methyl- 4-pyrrolidino-2-butynyl)acetamide", JOURNAL OF MEDICINAL CHEMISTRY, vol. 31, no. 3, March 1988 (1988-03-01), AMERICAN CHEMICAL SOCIETY, WASHINGTON, DC, US, pages 577 - 582, XP002306133
M.C. FAGNOLA, ET AL.: "Solid-phase synthesis of indoles using the palladium-catalysed coupling of alkynes with iodoaniline derivatives", TETRAHEDRON LETTERS, vol. 38, no. 13, 31 March 1997 (1997-03-31), ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, pages 2307 - 2310, XP004056657, ISSN: 0040-4039
J. FUJIWARA, ET AL.: "Nucleophilic aromatic substitution by organoaluminium reagents. Application to the synthesis of indoles", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 105, no. 24, 16 November 1983 (1983-11-16), AMERICAN CHEMICAL SOCIETY, WASHINGTON, DC, US, pages 7177 - 1779, XP002305010, ISSN: 0002-7863
J.E. APPLETON, ET AL.: "A mild and selective C-3 reductive alkylation of indoles", TETRAHEDRON LETTERS, vol. 34, no. 9, 26 February 1993 (1993-02-26), ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, pages 1529 - 1532, XP002305011, ISSN: 0040-4039
DATABASE CAPLUS CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; XP002304761, Database accession no. 1990:532816
JIANPING DENG, ET AL.: "Synthesis and characterisation of poly(N-propargylsulphamides)", MACROMOLECULES, vol. 37, no. 15, 25 June 2004 (2004-06-25), AMERICAN CHEMICAL SOCIETY, WASHINGTON, DC, US, pages 5538 - 5543, XP002304760
Attorney, Agent or Firm:
Calnan, William H. (Patent Law Department Five Giralda Farm, Madison NJ, US)
Download PDF:
Claims:
Claims 1. A process for the preparation of a compound of formula (I) wherein: n is an integer in the range of 0-10; Ri represents a straight or branched Ci-Cioaiky) group or-CH2-phenyl wherein the phenyl optionally has up to two substituents independently selected from the group consisting of C1-C4alky
1. l. C1C4alkoxy, halogen, and nitrile, each alkyl and alkoxy being optionally substituted by from one to the maximum number of halogen atoms; R2 and R3 are each independently selected from the group consisting of H, halogen, nitrile, C1C4alkyl, and C1C4alkoxy ; and R4 represents a straight or branched CiCioaikyi group, wherein Rza and R3a are each independently selected from the group consisting of H, halogen, nitrile, C1C4alkyl, and C1C4alkoxy, said process comprising: a) reacting the compound RiSO2CI with the compound HC=C (CH2)nNH2 or a salt form thereof, where n represents an integer from 010, under alkaline conditions to produce the intermediate compound of formula (ll) and then; b) reacting the compound of formula (ll) with the compound of formula 2. The process of claim 1 wherein reaction step a) is performed in a potassium carbonate solution.
2. 3 The process of claim 1 or 2 wherein reaction step b) is performed in the presence of a catalyst.
3. 4 The process of claim 3 wherein the catalyst comprises copper (I) iodide, dichlorobis (triphenylphosphine) palladium (II), or a combination thereof.
4. 5 The process of any one of claims 1 to 4 wherein R4 is a benzhydryl group.
5. 6 The process of any one of claims 1 to 5 wherein Ri representsCH2 phenyl wherein the phenyl is optionally substituted by up to two halogen, or optionally halogenated C1C4alkyl or C1C4alkoxy substituents.
6. 7 The process of any one of claims 1 to 6 wherein n is 1,2 or 3.
7. 8 The process of claim 7 wherein: in Ri, the phenyl is optionally substituted by up to two halogen, methyl or trifluoromethyl substituents; R2 is H; R3 is Cl ; and R4 is an unsubstituted benzhydryl group.
8. 9 The process of any one of claims 1 to 8 wherein step a) is performed in a solution of K2CO3 in tetrahydrofuran and water.
9. 10 The process of any one of claims 1 to 9 wherein step b) is performed in tetrahydrofuran in the presence of Cul and dichlorobis (triphenylphosphine) palladium (II).
10. 11 The process of any one of claims 1 to 10 further comprising heating the compound of formula (I) to produce an indole compound of formula (vil).
11. The process of claim 11 wherein the compound of formula (l) is heated to a temperature in the approximate range of 100140°C in N methylpyrrolidinone in the presence of Cul.
12. The process of claim 11 or 12 further comprising reacting the compound of formula (III) with an aldehyde compound of formula R5CHO in the presence of a reducing agent under acidic conditions, where R5 represents (CH2) mXphenylC (O) OR6, m is an integer in the range of 14, X is O or CH2, and R6 is C1C4alkyl, to form a compound of formula (IV).
13. The process of claim 13 wherein the aldehyde compound is reacted in a solution comprising triethylsilane, trifluoroacetic acid and water.
14. The process of claim 13 or 14 further comprising converting the compound of formula (IV) to a compound of formula (V) wherein R7 reperents(CH2)mXphenylC(O) OH, m is an integer in the range of 1 4, and X is O or CH2.
15. The process of claim 15, comprising a further step of converting the compound of formula (V) into a pharmaceutical acceptable salt or ester thereof.
16. A product made according to the process of any one of claims 13 or 14.
17. A product made according to the process of any one of claims 1 to 10.
18. A compound selected from the group consisting of: NBut3ynyl1 (3, 4dichlorophenyl) methanesulfonamide ; N{4[2(benzhydrylamino)5chlorophenyl]but3ynyl}1(3,4dichlorophenyl) methanesutfonamide ; N [2 (1benzhydryl5chloro1 Hindol2yl) ethyl]1 (3, 4dichlorophenyl) methane sulfonamide ; and ethyl 4{3[1benzhydryl5chloro2(2{[(34dichlorobenzyl)sulfonyl]amino}ethyl) 1 Hindol3yl] propyl} benzoate.
19. A compound selected from the group consisting of: NBut3ynyl1(2,6dimethylphenyl)methanesulfonamide, N {4 [2 (benzhydrylamino)5chlorophenyl] but3ynyl}1 (2, 6dimethylphenyl) methanesulfonamide, N [2 (1benzhydryl5chloro1 Hindol2yl) ethyl]1 (2, 6dimethylphenyl) methane sulfonamide, ethyl 4 {3 [1benzhydryl5chloro2 (2 { [ (2, 6dimethylbenzyl) sulfonyl] amino} ethyl) 1 Hindol3yl] propyl} benzoate, NBut3ynyl1(2(trifluoromethyl_phenyl)methanesulfonamide, N{4[2(benzhydrylamino)tchlorophenyl]but3ynyl}1(2(trifluoromethyl)phenyl) <BR> <BR> <BR> methanesuWonamide,<BR> <BR> <BR> <BR> <BR> N [2 (1benzhydryl5chloro1 Hindol2yl) ethyl]1 (2 (trifluoromethyl) phenyl) methanesulfonamide, and ethyl 4{3[1benzhydryltchloro2(2{[(2(trifluoromethyl)benzyl)sulfonyl]amino} ethyl)1 Hindol3yl] propyl} benzoate.
20. A compound of formula (I) wherein: n is an integer in the range of 010; Ri represents a straight or branched C1C10alkyl group, orCH2phenyl wherein the phenyl optionally has up to two substituents independently selected from the group consisting of CiC4alkyl, CrC4alkoxy, halogen, and nitrile, each alkyl and alkoxy being optionally substituted by from one to a maximum number of halogen atoms; R2 and R3 are each independently selected from the group consisting of H, halogen, nitrile, C,C4alkyl, and C,C4alkoxy ; and R4 represents a straight or branched C1C1alkyl group, wherein R2a and R3a are each independently selected from the group consisting of H, halogen, nitrile, C1C4alkyl, and C1C4alkoxy.
21. A compound according to claim 21 wherein n is an integer in the range of 04, Ra representsCH2phenyl and the phenyl ring optionally has up to two halogen, alkyl, or perfluoroalkyl substituents, and R4 is a benzhydryl group.
22. A compound of the formula (II) wherein n is an integer in the range of 010, and R, represents a straight or branched CC, Oalkyl group orCH2phenyl wherein the phenyl ring optionally has up to two substituents independently selected from the group consisting of C, C4alkyl, C,C4alkoxy, halogen, and nitrile, each alkyl and alkoxy being optionally substituted by from one to a maximum number of halogen atoms.
23. A compound according to claim 23 wherein n is an integer in the range of 04 and Ri representsCH2phenyl and the phenyl ring optionally has up to two substituents independently selected from the group consisting of Ciatkyi optionally substituted by from one to the maximum number of halogens, and halogen.
Description:
PROCESS FOR THE PREPARATION OF CPLA2 INHIBITORS Field of the Invention This invention relates to processes for the preparation of inhibitors of the enzyme cytosolic phospholipase A2 (cPLA2), and to certain novel intermediates useful in such processes.

Background Of The Invention Compounds which inhibit cytosolic phospholipase A2 and a process for making those compounds have been disclosed in U. S. Publication No.

2003-0144282 A1 filed November 22,2002. These compounds are useful for a variety of purposes, including the relief of pain and inflammation. In order to bring a drug to market, it is necessary to have an economically feasible process for making the compound. Often, a process that works in the laboratory is not practical from a commercial standpoint. It would be desirable to have a relatively inexpensive and efficient method for making at least some of the aforesaid compounds.

Appleton, et al., in Tetrahedron Lett. 1993,34, 1529, teach reductive C-3 alkylation of 3-unsubstituted indoles to produce C-3 functionalized indoles, especially 3-(arylmethyl) indoles and 3- (heteroarylmethyl) indoles. In the reference reaction, the initial indole is reacted with an aldehyde or ketone using triethylsilane and trifluoroacetic acid.

A solid-phase synthesis of indoles using palladium-catalyzed coupling of alkynes with iodoaniline derivatives is described by Fagnola, et al., Tetrahedron Letters, 38 (13), 2307-2310 (1997).

Summary Of The Invention The present invention comprises a process for making a compound of formula (I)

wherein: n is an integer in the range of 0-10; Ri represents a straight or branched Ci-Cio alkyl group, or-CH2-phenyl wherein the phenyl ring optionally has up to two substituents independently selected from the group consisting of Ci-C4 alkyl, Ci-C4 alkoxy, halogen, and nitrile, each alkyl and alkoxy being optionally substituted by from one to the maximum number of halogen atoms; R2 and R3 are each independently selected from the group consisting of H, halogen, nitrile, Cl-C4 alkyl, and Ci-C4 alkoxy ; and R4 represents a straight or branched C-C 0-alkyl group, The process comprises reacting the compound HC-C-(CH2) n-NH2 where n is as defined above, or a salt form thereof, preferably an HCI salt thereof, under mildly alkaline conditions, preferably in a solution of potassium carbonate, with the compound RI-SOUCI wherein Ri is as defined above to produce the intermediate compound of formula (II) and then reacting the compound of formula (ll) with the compound of formula

preferably in the presence of a catalyst.

The compound of formula (I) may be cyclized by heating, preferably in NMP in the presence of a catalytic amount of Cul, to form a compound of formula (lll) The compound of formula (lll) may be reacted with a compound of formula O=CH-R5 in the presence of a reducing agent under acidic conditions, where R5 is- (CH2) m-X- phenyl-C (O) OR6, m is an integer in the range of 1-4, X is O or CH2, and R6 is Ci-C4 alkyl, to form a compound of formula (IV) The compound of formula (IV) may be reacted with LiOH in THF, methanol and water to convert Rr, to R7, where R7 is-(CH2)m-X-phenyl-C(O) OH, wherein m and x are as defined above.

The present invention further comprises compounds of formulae (I) and (II).

Various advantages and objects of the present invention will be apparent to those skilled in the art from the description below and from the appended claims.

Detailed DescriPtion of The Preferred Embodiments This invention provides a novel process for making various compounds in the synthesis of a class of substituted indoles which are useful as inhibitors of cPLA2.

These cPLA2 inhibitors include, for example, 4-[3-[5-chloro-2-[2-[[[(3, 4- dichlorophenyl)-methyl]-sulfonyl] amino] ethyl]-1-(diphenylmethyl)-1 H-indol-3-yl]propyl] benzoic acid and 4- [2- [5-chloro-2- [2- [ [ [ (3, 4-dichlorophenyl) methyl]- sulfonyl] amino] ethyl]-1-(diphenylmethyl)-1H-indol-3-yl] ethoxy] benzoic acid, as well as many other compounds. They are useful for relieving pain and inflammation associated with a variety of conditions or disease states.

In the process of this invention, n may be an integer in the range of 0-10, but is preferably 0-4 and most preferably is 1,2, or 3. Ri is preferably-CH2-phenyl, wherein the phenyl ring optionally has up to two substituents independently selected from the group consisting of Ci-C4 alkyl, Ci-C4 alkoxy, halogen, and nitrile, each alkyl and alkoxy group being optionally substituted by from one to the maximum number of halogen atoms. More preferably, the substituents are halogen, alkyl or perfluoroalkyl.

Especially preferred R1 groups include 3, 4-dichlorophenylmethyl, 2, 6-dimethylphenyl- methyl and 2-(trifluoromethyl)phenylmethyl. R2 and R3 are preferably H, F, C1, or Br.

R4 is preferably a benzhydryl group, especially an unsubstituted benzhydryl group.

Preferably, R6 is methyl or ethyl and m is 2. Examples of highly preferred R5 groups include-(CH2) O-(p) phenyl-C (O) OCH3 and-(CH2) 3-(p) phenyl-C (O) OC2H5.

In the reaction of the alkynylamine and the sulfonylchloride to form a compound of formula (II), it is highly preferred to use a solution of K2CO3 in THF and water. However, other suitable bases or solvents may be used. Those skilled in the art will readily be able to determine which solutions are suitable in carrying out this reaction.

In reacting the compound of formula (II) with the substituted 2- iodophenylamine compound, a suitable catalyst is preferably employed. Preferably, the catalyst is Cul and/or dichlorobis (triphenylphosphine) palladium (II). It is preferable to carry out the reaction in a solvent such as THF, or the like.

In one preferred aspect of the invention, the compound of formula (I) may be converted to a compound of formula (III) by heating, preferably in the presence of a catalyst such as Cul in a solvent such as N-methylpyrrolidinone. Other suitable catalysts and/or solvents known to those skilled in the art may also be employed.

The compound of formula (I) suitably may be heated to approximately 100-140°C, preferably to about 120°C, until the conversion to an indole compound is completed.

In a further aspect of the invention, the compound of formula (III) is reacted with an aldehyde of formula R5CHO in the presence of a reducing agent to make a compound of formula (IV). Preferably, this reaction takes place in an acidic solvent system. Suitable solvent systems include mixtures of a halogenated acid such as chloroacetic acid, di or trichloroacetic acid, trifluoroacetic acid and/or a Lewis acid such as boron trifluoride and dichloromethane, preferably with trifluoroacetic acid.

Suitable reducing agents include triethylsilane, or the like. Those skilled in the art will readily be able to identify other suitable solvent systems and reducing agents to use in the practice of this invention.

The compound of formula (IV) may be converted from an ester to an acid by any means known in the art. A preferred method is to react the ester with LiOH in THF, methanol and water to produce a compound of formula (V) This invention provides a method for making a wide variety of C-2 and C-3 substituted indole compounds, such as compounds of formulae (lll), (IV) and (V), shown above. Scheme 1 illustrates various preferred aspects of this invention. In Scheme 1 below, the terms n, R1, Ra R3, R4, R5 and R7 have the definitions set forth above, THF refers to tetrahydrofuran, NMP refers to N-methylpyrrolidinone and TFA refers to trifluoroacetic acid.

Scheme 1

Scheme 2 illustrates a highly preferred embodiment of the present invention, providing a relatively short synthesis for 4- [3- [5-chloro-2- [2-ff [ (3, 4-dichlorophenyl)- methyll-sulfonyliamino] ethyl]-1-(diphenylmethyl)-1 H-indol-3-yl] propyll benzoic acid (2) and 4-[2-[5-chloro-2-[2-[[[(3,4-dichlorophenyl)emthyl]sulfonyl]- amino]ethyl]-1- (diphenylmethyl)-1 H-indol-3-yl] ethoxy] benzoic acid (3).

Scheme 2

2. X = CH2 3. X=O In Scheme 2, the first intermediate (6) is coupled with benzhydryl- (4-chloro-2- iodophenyl) amine (7) with a catalytic amount of dichlorobis (triphenylphosphine) palladium (II) to give an arylalkyne derivative. Cyclization of this arylalkyne is performed in N-methyl-pyrrolidinone with catalytic amount of Cul to give corresponding indole (9) in two steps. These coupling and cyclization reactions are known as Sonogashira and Castro reactions and are mediated by catalytic palladium and copper salts. The indole (9) can be alkylated with the aldehyde (10) using the reagent combination triethylsilane and trifluoroacetic acid in dichloromethane to yield

the ester (13). Compound (12) is produced when the indole (9) is alkylated with the aldehyde (11) under the same conditions, but the yield typically is smaller.

Hydrolysis of the ester (13) under common basic conditions produces the compound (2), and the ester (12) may be hydrolyzed to produce the compound (3).

Other highly preferred embodiments of the present invention include a process comprising the reactions illustrated in Scheme 2 wherein in compounds 8, 10-13, and 2-3 in place of the 3, 4-dichlorophenyl group is a 2, 6-dimethylphenyl or 2- (trifluoromethyl) phenyl group.

The present invention provides a variety of new compounds. Examples of these new compounds include : <BR> <BR> <BR> N-But-3-ynyl-1- (3, 4-dichlorophenyl) methanesulfonamide,<BR> <BR> <BR> <BR> N- {4- [2- (benzhydrylaminoy5-chlorophenyl] but-3-ynyl)-l- (3, 4-dichlorophenyl)- methanesulfonamide, N- [2- (1-benzhydryl-5-chloro-1 H-indol-2-yl) ethyl]-1- (3, 4-dichlorophenyl) methane- sulfonamide, and ethyl 4- 3- (1-benzhydryl-5-chloro-2- (2- [ (3, 4-dichlorobenzyl) sulfonyl] amino} ethyl)-1 H- indol-3-yl] propyl} benzoate.

Other examples include : <BR> <BR> <BR> N-But-3-ynyl-1-(2, 6-dimethylphenyl) methanesulfonamide,<BR> <BR> <BR> <BR> N- {4- [2- (benzhydrylamino)-5-chlorophenyl] but-3-ynyl}-1- (2, 6-dimethylphenyl)- methanesulfonamide, N- [2- (1-benzhydryl-5-chloro-1 H-indol-2-yl) ethyl]-1- (2, 6-dimethylphenyl) methane- sulfonamide, ethyl 4-{3-[1-benzhydryl-5-chloro-2-(2-{[(2,60dimethylbenzyl)sulfo nyl]amino}ethyl)-1 H- indol-3-yl] propyl} benzoate, N-But-3-ynyl-1-(2-(trifluoromethyl)phenyl)methanesulfonamide , <BR> <BR> <BR> N*-[2-(benzhydrylamino)-5-chlorophenyl] but-3-ynylF1-(2-(trifluoromethyl) phenyl)- methanesulfonamide, N- [2- (1-benzhydryl-5-chloro-1 H-indol-2-yl) ethyl]-1- (2- (trifluoromethyl) phenyl)- methane-sulfonamide, and

ethyl 4- {3- [l-benzhydryl-5-chloro-2- (2-f [ (2- (trifluoromethyl) benzyl) sulfonyl] amino}- ethyl)-1 H-indol-3-yl] propyl} benzoate.

Unless the context dictates otherwise, the following terms have the meanings set forth below wherever they appear in this specification or the appended claims.

Halogen and halo-refer to F, Cl, Br and 1. Alkyl refers to a saturated hydrocarbon substituent or group containing from one to twenty carbon atoms and having straight or branched chains. Alkenyl refers to a hydrocarbon substituent or group containing from one to twenty carbon atoms, at least one carbon-carbon double bond, and having straight or branched chains. Alkynyl refers to a hydrocarbon substituent or group containing from one to twenty carbon atoms, at least one carbon-carbon triple bond, and having straight or branched chains. Alkoxy refers to an alkyl group bonded to an oxygen atom by a single oxygen-carbon bond.

Aryl refers to an unsaturated hydrocarbon ring system containing from one to three fused rings, in which each ring is composed of 5-7 atoms and has conjugated double bonds. Heteroaryl refers to an unsaturated ring system which differs form aryl in that at least one ring atom is nitrogen, oxygen or sulfur.

Pharmaceutically acceptable salts can be formed from organic and inorganic acids, for example, acetic, propionic, lactic, citric, tartaric, succinic, fumaric, maleic, malonic, mandelic, malic, phthalic, hydrochloric, hydrobromic, phosphoric, nitric, sulfuric, methanesulfonic, naphthalenesuHonic, benzenesuHonic, toluenesulfonic, camphorsulfonic, and similarly known acceptable acids when a compound of this invention contains a basic moiety. Salts may also be formed from organic and inorganic bases, preferably alkali metal salts, for example, sodium, lithium, or potassium, when a compound of this invention contains an acidic moiety.

Pharmaceutically acceptable esters can be formed from reaction with an alcohol, for example, a Ci-C6alkanol, when a compound of this invention contains an acidic moiety.

The following examples are presented to illustrate certain embodiments of the present invention, but should not be construed as limiting the scope of this invention.

Example 1 N-But-3-vnvl-1- (3. 4-dichlorophenvl) methanesulfonamide To a mixture of potassium carbonate (40.2 g, 296 mmol) in water (50 mL) and THF (50 mL) at 15-20 °C was added but-3-ynylamine hydrogen chloride (10.4 g, 98.5 mmol). Then, (3, 4-dichlorophenyl) methanesulfonyl chloride (5,30. 7 g, 118 mmol) was added in portions during of a period of 30 min. The mixture was stirred for 4 h at rt. THF is evaporated. The mixture is extracted with EtOAc (2x200 mL). The combined organic extracts were dried over Na2SO4. The solvent is evaporated to give a white solid (20.5 g, 71%). %).'H NMR (CDCI3) : 87. 53 (d, 1H, J = 2.0 Hz), 7.47 (d, 1H, J = 4.2 Hz), 7.27 (m, 1H), 4.52 (t, 1H, J = 6.2 Hz), 4.22 (s, 2H), 3.17 (dd, 2H, J = 6.2 Hz, 12.5 Hz), 2.41 (m, 2H), 2.07 (m, 1H) Examole 2 N-{4-[2-(benzhydrylamino)-5-chlorophenyl]but-3-ynyl}-1-(3,4- dichlorophenyl)- methanesulfonamide To a mixture of benzhydryl- (4-chloro-2-iodophenyl) amine (2.0 g, 4.76 mmol), dichlorobis (triphenylphosphine) palladium (II) (66. 8 mg, 0.0952 mmol), copper (I) iodide (18. 0 mg, 0.0952 mmol), and triethylamine (0.72 g, 7.14 mmol) was added N- but-3-ynyl-l- (3, 4-dichlorophenyl) methanesuffonamide- (1.67 g, 5.71 mmol). The mixture was stirred for 18 h at rt. Then, N-but-3-ynyl-1- (3, 4- dichlorophenyl) methanesuifonamide (0.42 g) was added. The mixture was stirred for 3 hours. The solvent was evaporated. The residue was purified by column chromatography, using a mixture of heptane and EtOAc (3: 1) as elute to give a white solid (2.20 g, 81%. 1H NMR (CDC13) : 87. 2-7.6 (m, Ph, CHPh2), 6.98 (m, 1H), 6.30 (d, 1H, J=8. 9Hz), 5.49 (d, 1H. J=4.6 Hz), 5.06 (d, 1H, J=4. 5Hz), 4.38 (t, 1H, J= 6.24 Hz), 4.14 (s, 2H), 3.14 (dd, 2H, J = 6.4, 12.6 Hz), 2.61 (t, 2H, J = 6.3 Hz).

Example 3 <BR> <BR> <BR> <BR> N-r2- (1-benzhvdrvl-5-chloro-1 H-indol-2-vl) ethvll-1- (3, 4-dichlorophenvllmethane- sulfonamide A mixture of Nd4-[2-(benzhydrylamino)-5-chlorophenyl] but-3-ynylF1-(3, 4- dichlorophenyl)-methanesulfonamide (1.0 g, 1.71 mmol) and copper (I) iodide (0.30 g, 1.58 mmol) was heated to 120 °C and stirred for 7 h, and then cooled to room temperature. Water (50 mL) was added. The mixture was extracted with EtOAc (2x50 mL). The combined organic extracts were dried over Na2SO4. The solvent was evaporated. The residue was purified by column chromatography, using a mixture of heptane and EtOAc (2: 1) as elute to give a white solid (0.76 g, 76%). 1H NMR (CDCI3) : 66. 7-7.6 (m, Ph, CHPh2), 6.58 (d, 1 H, J = 8.9 Hz), 4.20 (m, 1 H), 3.99 (s, 2H), 3.10 (dd, 2H, J = 6.9, 13.3 Hz), 2.94 (t, 2H, J = 6.7 Hz).

Example Ethyl 4-{3-[1-benzhydryl-5-chloro-2-(2-{[(3,4- dichlorobenzyl)sulfonyl]amino}ethyl)-1H-indol-3-yl]propyl}be nzoate To a solution N- [2- (1-benzhydryl-5-chloro-1H-indol-2-yl) ethyl]-1- (3, 4- dichlorophenyl)-methanesulfonamide (3.0 g, 5.14 mmol), triethylsilane (1.79 g, 15.4 mmol), and 4- (3-oxopropyl) benzoic acid ethyl ester (1.26 g, 6.16 mmol) in dichloromethane (30 mL) at-20 to-25 °C was added trifloroacetic acid (2.93 g, 25.7 mmol) during a period of 1 min. The mixture was warmed to-10 °C and stirred for 4 h. Saturated aqueous NaHCO3 (20 mL) was added. The mixture was extracted with EtOAc (150 mL). The organic extract was dried over Na2SO4. The solvent is evaporated. The residue is purified by column chromatography, using a mixture of heptane and EtOAc (4: 1) as elute to give a white solid (2.25 g, 56%).'H NMR (CDCI3) : 86. 9-7.6 (m, Ph, CHPh2), 7.97 (d, 1 H, J = 1.6 Hz), 7.41 (d, 1 H, J = 1.9 Hz), 6.50 (d, 1H, J = 8.9 Hz), 4.35 (dd, 2H, J = 7.1, 14.3 Hz), 4.13 (m, 1H), 3.92 (s, 2H), 2.95 (m, 2H), 2.71 (m, 6 H), 1.96 (m, 2H), 1.38 (t, 3H, J = 7.1 Hz).

Example 5 4-3-r5-chloro-2- [fr (3, 4-dichloroahenvl)-methvll-sulfonvllaminolethvll-1- (diphenvlmethvl)-1H-indol-3-vilnropvll benzoic acid A solution of ethyl 4-{3-[1-benzhy-dryl-5-chloro-2(2-{[(3, 4- dichlorobenzyl) sulfonyl]-amino} ethyl)-1 H-indol-3-yl] propyl} benzoate (0.50 g, 0.65 mmol), LiOH (0.24 g, 10.0 mmol), methanol (5 mL), THF (5 mL) and water (5 mL) was stirred for 18 h at rt, then diluted with water (200 mL). 1 N HCI (10 mL) was added. The reaction mixture was extracted with EtOAc (2x50 mL). The organic extracts were dried over Na2SO4. The solvent is evaporated to give a white solid (0.46 g, 96%).'H NMR (DMSO-d6) : 512. 80 (br. s, 1H), 7.89 (d, 2H, J=2Hz), 7.59 (d, 1H, J=1. 5Hz), 7.53 (d, 1H, J=6Hz), 7.48 (d, 1H, J=1. 5Hz), 7.38 (m, 9H), 7.20 (m, 5H), 6.77 (dd, 1H, J=6.9 & 1.5Hz), 6.46 (d, 1H, J=6.9Hz), 4.36 (s, 2H), 3.18 (m, 2H), 2.96 (m, 2H), 2.76 (m, 4H), 1.90 (m, 2H).

Many variations of the present invention not illustrated herein will occur to those skilled in the art. The present invention is not limited to the embodiments illustrated and described herein, but encompasses all the subject matter within the scope of the appended claims.