Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PROCESS FOR PRODUCING MESOPHASE PITCH BY HYDROGENATION OF HIGH-TEMPERATURE COAL TAR
Document Type and Number:
WIPO Patent Application WO/2013/104092
Kind Code:
A1
Abstract:
Disclosed is a process for producing mesophase pitch by hydrogenation of high-temperature coal tar, comprising removing salts and quinoline insolubles from the high-temperature coal tar to obtain a clear oil; using the clear oil as a hydrogenation feed oil, or pre-distilling the clear oil to obtain a bottom component with a boiling point higher than 230°C and formulating the bottom component into a hydrogenation feed oil; refining the hydrogenation feed oil by catalytic hydrogenation to obtain a refined hydrogenated oil; distilling the refined hydrogenated oil to obtain hydrogenated pitch; subjecting the hydrogenated pitch to thermal condensation polymerisation to obtain the mesophase pitch. The process has features such as an easily controllable degree of hydrogenation, complete removal of impurities, good raw material flowability, not being susceptible to carbon deposition and coking during the process, and not tending to block the reactor. The product has a high mesophase content, a low softening point and a low impurity content.

Inventors:
ZHAO HONGMEI (CN)
QIU JIESHAN (CN)
XIAO JINCHENG (CN)
LI BAOMING (CN)
LV JUNDE (CN)
XIAO NAN (CN)
Application Number:
PCT/CN2012/000451
Publication Date:
July 18, 2013
Filing Date:
April 06, 2012
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ECO ENVIRONMENTAL ENERGY RES INST LTD (CN)
UNIV DALIAN TECH (CN)
ZHAO HONGMEI (CN)
QIU JIESHAN (CN)
XIAO JINCHENG (CN)
LI BAOMING (CN)
LV JUNDE (CN)
XIAO NAN (CN)
International Classes:
C10C3/02; C10C3/00; C10C3/08
Foreign References:
JPS63162784A1988-07-06
JPH0733514B21995-04-12
JPS63150377A1988-06-23
CN1072442A1993-05-26
CN85107441A1986-04-10
CN87103787A1987-12-23
CN85105609A1987-01-28
CN200610032060A2006-08-03
CN101074381A2007-11-21
US4116815A1978-09-26
Other References:
XIAO; RUIHUA: "Coal Chemistry Product Technology", September 2008, METALLURGICAL INDUSTRY PRESS, pages: 201 - 230
See also references of EP 2818535A4
Attorney, Agent or Firm:
BEIJING ARETE INTELLECTUAL PROPERTY AGENCY (CN)
北京嘉和天工知识产权代理事务所(普通合伙) (CN)
Download PDF:
Claims:
权利要求

1 . 一种由高温煤焦油生产中间相沥青的方法, 包括:

( 1 ) 将所述高温煤焦油脱除盐分和喹啉不溶物, 得到澄清油;

(2) 将所述澄清油经由下述两个方式之一得到加氢进料油:

(2a) 将澄清油作为加氢进料油; 或

(2b) 将澄清油预蒸馏得到沸点大于 230'C的塔底组份, 将所述塔底组份与调配 油混合得到加氢进料油, 其中所述调配油包括下述组中的一个或多个组份: 煤焦油的熘份 油、 煤焦油馏份油的加氢产物;

将所述加氢进料油催化加氢精制得到加氢精制油;

(3 ) 将所述加氢精制油蒸熘后得到氢化沥青;

(4) 将所述氢化沥青经热缩聚得到中间相沥青。

2. 根据权利要求 1所述的方法, 其中所述步骤 (1 ) 包括:

( la)脱除盐分的步骤, 所述脱除盐分的步骤包括将去离子水和芳族溶剂与所述高温 煤焦油混合并离心去除含盐水份, 得到脱盐后的含芳族溶剂的高温煤焦油; 其中, 所述芳 族溶剂包括下述组中的一个或多个组份: 苯、 甲苯、 二甲苯、 煤焦油的馏份油、 煤焦油馏 份油的加氢产物。 3. 根据权利要求 2所述的方法, 其中在所述脱除盐分的步骤 (la) 中, 所述高温煤 焦油与所述芳族溶剂的体积比为 1:0.2-2, 所述去离子水的体积是所述高温煤焦油的 0.5-3 倍, 所述去离子水用于水洗所述高温煤焦油, 水洗 1-3次。

4. 根据权利要求 3所述的方法, 其中所述高温煤焦油与所述芳族溶剂的体积比为 1 :0.2-0.8。

5. 根据权利要求 2或 3所述的方法, 其中所述步骤 (1 ) 包括-

( lb)脱除喹啉不溶物的步骤, 所述脱除喹啉不溶物的步骤包括在所述脱盐后的含芳 族溶剂的高温煤焦油中添加脂族溶剂和可选的所述芳族溶剂,混合离心或静置沉降脱除喹 啉不溶物, 所述脂族溶剂包括 C4-C16脂族化合物, 其中所述高温煤焦油、 所述芳族溶剂和 所述脂族溶剂的最终的体积比为 1:0.2-2:0.2-1。

6. 根据权利要求 5所述的方法, 其中所述高温煤焦油、 所述芳族溶剂和所述脂族溶 剂的最终的体积比为 1 :0.3-0.8:0.3-0.8。

7. 根据权利要求 5所述的方法, 其中所述脂族溶剂是正辛垸或正庚垸。

8. 根据权利要求 1所述的方法, 其中在所述步骤 (2b) 中, 所述预蒸熘包括回收脂 族溶剂的步骤。

9. 根据权利要求 1所述的方法, 其中在所述步骤 (2b) 中, 所述预蒸馏包括获取轻 油、 酚油和萘油中的至少一个的步骤。 10. 根据权利要求 1所述的方法, 其中在所述步骤 (2) 中, 在所述催化加氢精制之 前还包括滤除粒径大于 ΙΟμιη的颗粒的过滤步骤。

11. 根据权利要求 1所述的方法, 其中在所述步骤 (2) 中, 所述催化加氢精制是在 总压为 12.0MPa-20.0 MPa、 平均反应温度为 320'C-400°C、 液时体积空速 O h^CO Ιιτ·1以 及氢油比为 600:1-1500:1的条件下进行的。

12. 根据权利要求 11所述的方法, 其中在所述步骤(2) 中, 所述催化加氢精制是在 总压为 14.0MPa-18.0 MPa、 平均反应温度为 34(TC-390°C、液时体积空速 O.Sh^-lJ h 1以 及氢油比为 800:1-1200:1的条件下进行的。

13. 根据权利要求 11所述的方法, 其中在所述步骤(2) 中, 所述催化加氢精制是在 存在如下催化剂的条件下进行的:

加氢精制催化剂 A: 以氧化铝或含硅氧化铝为载体, 比表面积为 120-300m2/g, 孔容 为 0.4-1.4mL/g, 孔径为 8-20nm, 表面酸含量 0.05-0. lmmol/g, 金属活性组份为第 VIB族 金属 Mo或W、 第 VIII族金属 Co或 Ni, 以所述加氢精制催化剂 A的总重量计, 第 VIB 族金属含量以氧化物计为 15-45wt%, 第 VIII族金属含量以氧化物计为 1.5-5wt%。

14. 根据权利要求 11所述的方法, 其中在所述步骤(2) 中, 所述催化加氢精制是在 存在如下两种催化剂的条件下进行的:

加氢精制催化剂 A: 以氧化铝或含硅氧化铝为载体, 比表面积为 120-300m2/g, 孔容 为 0.4-1.4mL/g, 孔径为 8-20nm, 表面酸含量 0.05-0. lmmol/g; 金属活性组份为第 VIB族 金属 ]\10或\¥、 第 VIII族金属 Co或 Ni, 以所述加氢精制催化剂 A的总重量计, 第 VIB 族金属含量以氧化物计为 15-45wt%, 第 VIII族金属含量以氧化物计为 1.5-5wt%。

加氢精制催化剂 B: 以氧化铝或含硅氧化铝为载体, 比表面积为 120-300m2/g, 孔容 为 0.4-1.2m g, 孔径为 7-15nm; 金属活性组份为第 VIB族金属 Mo或 W、第 VIII族金属 Co或 Ni, 以加氢精制催化剂 B的总重量计, 第 VIB族金属含量以氧化物计为 10-22wt%, 第 VIII族金属含量以氧化物计为 2-5wt%。

15. 根据权利要求 11所述的方法, 其中在所述步骤(2) 中, 所述加氢进料油是在经. 过保护催化剂和脱金属催化剂之后进行所述催化加氢精制的,所述脱金属催化剂以氧化铝 为载体, 孔容为 0.5-1.5mL/g, 比表面积为 180-350m2/g, 孔轻为 10-50nm, 以所述脱金属 催化剂的总重量计, 所述脱金属催化剂包含 7-20wt%的氧化钼, 2-5wt%的氧化镍。

16. 根据权利要求 1所述的方法, 其中在所述步骤 (3 ) 中, 所述蒸馏包括获得沸点 范围为 300-360Ό的氢化重质溶剂和沸点范围为 80-300°C加氢馏份油的步骤。

17. 根据权利要求 16所述的方法, 其中所述步骤 (1 ) 包括:

( la)脱除盐分的步骤, 所述脱除盐分的步骤包括将去离子水和芳族溶剂与所述高温 煤焦油混合并离心, 去除含盐水份, 得到脱盐后的含芳族溶剂的高温煤焦油, 其中所述芳 族溶剂是所述氢化重质溶剂。

18. 根据权利要求 16所述的方法, 其中所述步骤 (1 ) 包括:

( lb)脱除喹啉不溶物的步骤, 所述脱除喹啉不溶物的步骤包括在所述脱盐后的含芳 族溶剂的高温煤焦油中添加脂族溶剂以及可选的芳族溶剂, 混合, 离心或沉降脱除喹啉不 溶物, 所述脂族溶剂包括 c4-c16脂族化合物, 所述芳族溶剂是所述氢化重质溶剂, 其中所 述高温煤焦油、 所述芳族溶剂和所述脂族溶剂的最终的体积比为 1:0.3-0.8:0.3-0.8。

19. 根据权利要求 18所述的方法, 其中所述高温煤焦油、 所述氢化重质溶剂和所述 脂族溶剂的最终的体积比为 1 :0.5-0.8:0.5-0.8。

20. 根据权利要求 16所述的方法, 其中在所述步骤 (2b) 中, 所述调配油包括所述 氢化重质溶剂和所述加氢馏份油。 21. 根据权利要求 16所述的方法, 其中在所述步骤 (2b) 中, 所述调配油包括所述 氢化重质溶剂、 轻油、 洗油和所述加氢馏份油。

22. 根据权利要求 21所述的方法, 其中轻油或洗油: 氢化重质溶剂: 加氢熘份油: 塔底组份的体积比是 0.2-1 :0-1 :0-1:1。

23. 根据权利要求 22所述的方法, 其中轻油或洗油: 氢化重质溶剂: 加氢熘份油: ±荅底组份的体积、比是 0.2-0.4:0-0.5:0-0.5:1。

24. 根据权利要求 16所述的方法, 其中在所述步骤(4) 中, 所述热缩聚包括获取闪 蒸油的步骤。

25. 根据权利要求 24所述的方法, 进一步包括-

(5 )将所述氢化重质溶剂与所述闪蒸油混合后催化加氢裂化得到加氢裂化油的步骤。 26. 根据权利要求 25所述的方法,其中所述催化加氢裂化在总压 12.0MPa-20.0 MPa、 平均反应温度为 340°C-420°C、 液时体积空速 0.51^-2.0 hr 以及氢油比为 600:1-1500:1的 条件下进行。

27. 根据权利要求 26所述的方法,其中所述催化加氢裂化在总压 14.0MPa-18.0 MPa、 平均反应温度为 350°C-390'C、 液时体积空速 O h^-l hr-1以及氢油比为 800:1-1200:1的 条件下进行。

28. 根据权利要求 25所述的方法, 其中所述催化加氢裂化是在存在如下催化剂的条 件下进行的:

加氢裂化催化剂: 以氧化铝、 无定形硅铝和微孔、 中孔分子筛作为载体, 其中, 以所 述加氢裂化催化剂的总重量计, 中孔分子筛 10-15wt %, 微孔分子筛 5-10wt %, 无定形硅 铝 15-40wt%, 氧化铝 35-70wt %, 比表面积为 150-350m2/g, 孔容为 0.1-l.OmL/g; 负载后 催化剂含有 10-35wt %的 Mo03和 /或 W03, 2-5wt %的 NiO和 /或 CoO。

29. 根据权利要求 25所述的方法, 其中所述催化加氢裂化是在存在如下两种催化剂 的条件下进行的:

加氢裂化催化剂: 以氧化铝、 无定形硅铝和微孔、 中孔分子筛作为载体, 其中, 以所 述加氢裂化催化剂的总重量计, 中孔分子筛 10-15wt %, 微孔分子筛 5-10wt %, 无定形硅 铝 15-40wt%, 氧化铝 35-70wt %, 比表面积为 150-350m2/g, 孔容为 0.1-1. OmL/g; 负载后 催化剂含有 10-35wt %的 Mo03和 /或 W03, 2-5wt %的 NiO和 /或 CoO。

加氢精制催化剂 B: 以氧化铝或含硅氧化铝为载体, 比表面积为 120-300m2/g, 孔容 为 0.4-1.2mL/g, 孔径为 7-15nm; 金属活性组份为第 VIB族金属 Mo或 W、第 VIII族金属 Co或 M, 以加氢精制催化剂 B的总重量计, 第 VIB族金属含量以氧化物计为 10-22wt%, 第 VIII族金属含量以氧化物计为 2-5wt%。

30. 根据权利要求 25所述的方法, 其中在所述步骤(3 ) 中, 所述加氢精制油与所述 加氢裂化油以体积比为 1 :0.2-0.5混合后再进行所述蒸馏。 31. 根据权利要求 25所述的方法, 其中在所述步骤(3 ) 中, 在所述蒸馏前还包括滤 除粒径大于 ΙΟμπ 的颗粒的过滤步骤。

32. 根据权利要求 1所述的方法, 其中所述步骤 (3 ) 包括获取石脑油、 汽油调和组 份和柴油调和组份的步骤。

33. 根据权利要求 1所述的方法, 其中在所述步骤 (4) 中, 所述热缩聚在压力为绝 压 0.01-3.0MPa、 温度为 380-460°C、 搅拌速度为 10-60 rpm并包括氢气、 氮气或氩气在反 应器的底部和顶部吹扫的条件下进行 180-1200分钟。 34.根据权利要求 33所述的方法,其中在所述步骤 (4)中,所述热缩聚在 0.01-1.0MPa、 温度 400-440'C、 搅拌速度 20-40rpm并包括氮气在反应器底部和顶部吹扫的条件下进行 180-600分钟。

35. 根据权利要求 33所述的方法, 其中所述步骤 (4) 中包括在线粘度分析。

36. 根据权利要求 1所述的方法, 其中在所述步骤(3 )和 (4)之间包括溶剂萃取步 骤。

37. 根据权利要求 36所述的方法, 其中所述溶剂是包括苯、 甲苯、 吡啶、 喹啉或四 氢呋喃的芳族溶剂。

Description:
高温煤焦油加氢生产中间相沥青的方法 技术领域 本发明属于新型碳材料、 燃料化工领域, 具体涉及适用于工业规模的、 由高温煤焦油 制备中间相沥青的方法。 背景技术 中国是世界焦炭生产大国, 统计资料显示 2010年焦炭产量 38800万吨, 占世界焦炭 产量 60%。 煤焦油资源丰富, 从炼焦煤气中回收的煤焦油产量 1800万吨。 中国高温煤焦油加工技术路线基本是以焦油蒸 熘加工轻油、酚油、萘油、洗油、蒽油、 沥青的线路, 产品数量少。 近年来, 30 万吨煤焦油加工规模的项目的实施, 其精制化学 产品的数量不断增加,但由于这些产品的收率 很低, 实际产品只能围绕酚油、萘油、洗油、 蒽油精制加工。然而此类加工工艺线路带来的 主要问题是环境污染严重, 沥青只能进一步 生产附加值低的中温沥青、 改质沥青、 沥青焦等产品, 沥青的价值没有得到体现, 造成项 目整体产品附加值低, 效益不理想。 随着技术进步及环境保护要求的日益提高, 全球对新材料的需求不断增加, 尤其在高 级碳素材料的需求迅速扩大, 沥青基炭纤维、 泡沫炭、 C/C复合材料、 炭微球等展现了广 阔的应用前景。但是新型碳材料的工业化方面 尤其是高级碳材料前驱体中间相沥青迟迟没 有进展, 大多为实验室研究成果, 形成工业化的技术案例鲜见, 现有中间相沥青工业生产 技术一直存在技术难度大, 成本高的问题, 制约了新型碳素材料的应用推广。 从煤焦油沥青出发生产针状焦、 中间相沥青一直是中国工程技术工作者的研究 热点。 经过多年的努力, 在针状焦工业化方面取得了积极进展。在中间 相沥青方面进行了广泛的 研究, 但由于煤焦油沥青本身固有的局限性, 成功案例极少, 要么生产成本极高、 要么工 业化难度极大。 中国专利 CN85107441A介绍一种不含喹啉不溶物 (QI) 的煤焦油或煤焦油沥青生产 超级针状焦的方法, 但此法催化加氢深度低, 煤焦油或煤焦油沥青直接加氢技术难度大, 催化剂寿命短, 该工艺没有充分利用所副产加氢溶剂油优化工 艺, 损失了大量有价值的 β 树脂, 沥青收率低, 对于轻质组份加氢程度低。 中国专利 CN87103787A介绍了一种煤焦油或石油渣油通过热 理、 溶剂加氢工艺生 产高性能炭纤维用中间相沥青的方法, 此法需要大量二甲苯、 加氢蒽油、 洗油溶剂, 不能 项目自生, 生产成本高。 由于采用多段热解闪蒸热处理工艺, 极易造成系统结焦堵塞, 大 规模连续化生产难度大。 中国专利 CN85105609A公开了一种氢化煤焦油或煤焦油沥青 方法, 但催化剂金属 负载量小, 活性低, 脱除沥青杂原子能力差, 采用单一轻度催化加氢手段, 难以改变沥青 的分子结构, 而且煤焦油或煤焦油沥青的胶质及沥青质含量 高, 在固定床催化条件下催化 剂易积碳, 寿命短, 加氢难度大, 难以实现长时间有效加氢。 中国专利 ZL200610032060.7介绍了一种煤焦油加氢生产燃料 的方法, 但需要将高 温煤焦油全部馏份转化为石脑油、 汽油、 柴油, 催化剂活性及加氢反应条件要求高。 中国专利 CN101074381A介绍了一种煤焦油加工利用的方法, 以汽油柴油为目标产 品, 未对沥青进行研究说明, 煤焦油预处理需要优化。 本发明的目的在于克服现有技术不足, 提出了高温煤焦油加工利用的新途径, 提供一 种可以工业化应用的由高温煤焦油催化加氢生 产中间相沥青,副产酚油、工业萘、石脑油、 汽油柴油调和组份的方法, 以大幅度提高煤焦油加工产品的价值。

本发明的一个方面提供一种由髙温煤焦油生 产中间相沥青的方法, 包括:

( 1 ) 将高温煤焦油脱除盐分和喹啉不溶物, 得到澄清油;

(2) 将澄清油经由下述两个方式之一得到加氢进料 油:

(2a) 将澄清油作为加氢进料油; 或

(2b) 将澄清油预蒸馏得到沸点大于 230°C的塔底组份, 将所述塔底组份与调配 油混合得到加氢进料油, 其中调配油包括下述组中的一个或多个组份: 煤焦油的馏份油、 煤焦油馏份油的加氢产物;

将加氢进料油催化加氢精制得到加氢精制油;

(3 ) 将加氢精制油蒸熘后得到氢化沥青;

(4) 将氢化沥青经热缩聚得到中间相沥青。 在一些实施方案中, 步骤 (1 ) 包括:

( la)脱除盐分的步骤, 所述脱除盐分的步骤包括将去离子水和芳族溶 剂与高温煤焦 油混合并离心去除含盐水份, 得到脱盐后的含芳族溶剂的高温煤焦油; 其中, 芳族溶剂包 括下述组中的一个或多个组份: 苯、 甲苯、 二甲苯、 煤焦油的馏份油、 煤焦油馏份油的加 氢产物。 在一些实施方案中, 在脱除盐分的步骤(la) 中, 高温煤焦油与芳族溶剂的体积比为 1 :0.2-2, 去离子水的体积是高温煤焦油的 0.5-3倍, 去离子水用于水洗高温煤焦油, 水洗 1-3次。 优选地, 高温煤焦油与芳族溶剂的体积比为 1 :0.2-0.8。 在一些实施方案中, 步骤 (1 ) 包括:

( lb)脱除喹啉不溶物的步骤, 所述脱除喹啉不溶物的步骤包括在脱盐后的含 芳族溶 剂的高温煤焦油中添加脂族溶剂和可选的芳族 溶剂, 混合离心或静置沉降脱除喹啉不溶 物, 脂族溶剂包括 C 4 -C 16 脂族化合物, 其中高温煤焦油、 芳族溶剂和脂族溶剂的最终的体 积比为 1:0.2-2:0.2-1。 优选地, 高温煤焦油、 芳族溶剂和脂族溶剂的最终的体积比为 1 :0.3-0.8:0.3-0.8。 在一些实施方案中, 脂族溶剂是正辛垸或正庚垸。 在一些实施方案中, 在步骤 (2b) 中, 预蒸熘包括回收脂族溶剂的步骤。 在一些实施方案中, 在步骤(2b) 中, 预蒸熘包括获取轻油、 酚油和萘油中的至少一 个的步骤。 在一些实施方案中, 在步骤(2) 中, 在催化加氢精制之前还包括滤除粒径大于 ΙΟμπι 的颗粒的过滤步骤。 在一些实施方案中, 在步骤 (2) 中, 催化加氢精制是在总压为 12.0MPa-20.0 MPa、 平均反应温度为 320°C-400°C、 液时体积空速 O.Shr'^.O hr— 1 以及氢油比为 600:1-1500:1的 条件下进行的。 优选地, 催化加氢精制是在总压为 14.0MPa-18.0 MPa、 平均反应温度为 340°C-390°C、 液时体积空速 O.Shr'LlJ h 1 以及氢油比为 800:1-1200:1的条件下进行的。 在一些实施方案中, 在所述步骤 (2) 中, 催化加氢精制是在存在如下催化剂的条件 下进行的:

加氢精制催化剂 A: 以氧化铝或含硅氧化铝为载体, 比表面积为 120-300m 2 /g, 孔容 为 0.4-1.4mL/g, 孔径为 8-20nm, 表面酸含量 0.05-0. lmmol/g; 金属活性组份为第 VIB族 金属 1^ 0 或\^、 第 VIII族金属 Co或 Ni, 以所述加氢精制催化剂 A的总重量计, 第 VIB 族金属含量以氧化物计为 15-45wt%, 第 VIII族金属含量以氧化物计为 1.5-5wt%。 在一些实施方案中, 在步骤 (2) 中, 催化加氢精制是在存在如下两种催化剂的条件 下进行的:

加氢精制催化剂 A: 以氧化铝或含硅氧化铝为载体, 比表面积为 120-300m 2 /g, 孔容 为 0.4-1.4mL/g, 孔径为 8-20nm, 表面酸含量 0.05-0. lmmol/g; 金属活性组份为第 VIB族 金属 ]^0或\^、 第 VIII族金属 Co或 Ni, 以所述加氢精制催化剂 A的总重量计, 第 VIB 族金属含量以氧化物计为 15-45wt%, 第 VIII族金属含量以氧化物计为 1.5-5wt%。

加氢精制催化剂 B: 以氧化铝或含硅氧化铝为载体, 比表面积为 120-300m 2 /g, 孔容 为 0.4-1.2mL/g, ? L径为 7-15nm ; 金属活性组份为第 VIB族金属 Mo或 W、第 VIII族金属 Co或 Ni, 以加氢精制催化剂 B的总重量计, 第 VIB族金属含量以氧化物计为 10-22wt%, 第 VIII族金属含量以氧化物计为 2-5wt%。 在一些实施方案中, 在步骤 (2) 中, 加氢进料油是在经过保护催化剂和脱金属催化 剂之后进行催化加氢精制的, 脱金属催化剂以氧化铝为载体, 孔容为 0.5-1.5mL/g, 比表 面积为 180-350m 2 /g, 孔径为 10-50nm, 以脱金属催化剂的总重量计, 脱金属催化剂包含 7-20wt%的氧化钼, 2-5wt%的氧化镍。 在一些实施方案中, 在步骤(3 ) 中, 蒸馏包括获得沸点范围为 300-360°C的氢化重质 溶剂和沸点范围为 80-300'C加氢馏份油的步骤。 在一些实施方案中, 步骤 (1 ) 包括:

( la)脱除盐分的步骤, 所述脱除盐分的步骤包括将去离子水和芳族溶 剂与高温煤焦 油混合并离心, 去除含盐水份, 得到脱盐后的含芳族溶剂的高温煤焦油, 其中所述芳族溶 剂是氢化重质溶剂。 在一些实施方案中, 步骤 (1 ) 包括-

( lb)脱除喹啉不溶物的步骤, 所述脱除喹啉不溶物的步骤包括在脱盐后的含 芳族溶 剂的高温煤焦油中添加脂族溶剂以及可选的芳 族溶剂,混合,离心或沉降脱除喹啉不溶物, 脂族溶剂包括 C 4 -C 16 脂族化合物, 芳族溶剂是氢化重质溶剂, 其中高温煤焦油、 芳族溶剂 和脂族溶剂的最终的体积比为 1:0.3-0.8:0.3-0.8。 优选地, 高温煤焦油、 芳族溶剂和脂族溶 剂的最终的体积比为 1 :0.5-0.8:0.5-0.8。 在一些实施方案中, 在步骤 (2b) 中, 调配油包括氢化重质溶剂和加氢馏份油。 在一些实施方案中, 在步骤 (2b) 中, 调配油包括氢化重质溶剂、 轻油、 洗油和加氢 熘份油。 在一些实施方案中, 轻油或洗油: 氢化重质溶剂: 加氢馏份油: 塔底组份的体积比是 0.2-1 :0-1 :0-1 :1。 优选地, 轻油或洗油: 氢化重质溶剂: 加氢馏份油: 塔底组份的体积比是 0.2-0.4:0-0.5:0-0.5:1 在一些实施方案中, 在步骤 (4) 中, 热缩聚包括获取闪蒸油的步骤。 在一些实施方案中, 进一步包括:

(5 ) 将氢化重质溶剂与闪蒸油混合后催化加氢裂化 得到加氢裂化油的步骤。 在一些实施方案中, 催化加氢裂化在总压 12.0MPa-20.0 MPa、 平均反应温度为 340°C-420°C、 液时体积空速 0.51^-2.0 h^ 1 以及氢油比为 600:1-1500:1的条件下进行。 优 选地, 催化加氢裂化在总压 14.0MPa-18.0 MPa、 平均反应温度为 350°C-390t:、 液时体积 空速 O^hr- ^h 1 以及氢油比为 800:1-1200:1的条件下进行。 在一些实施方案中, 催化加氢裂化是在存在如下催化剂的条件下进 行的: 加氢裂化催化剂: 以氧化铝、 无定形硅铝和微孔、 中孔分子筛作为载体, 其中, 以所 述加氢裂化催化剂的总重量计, 中孔分子筛 10-15wt %, 微孔分子筛 5-10wt %, 无定形硅 铝 15-40wt%, 氧化铝 35-70wt %, 比表面积为 150-350m 2 /g, 孔容为 0.1-1. OmL/g; 负载后 催化剂含有 10-35wt %的 Mo0 3 和 /或 W0 3 , 2-5wt °/。的 NiO和 /或 CoO。 在一些实施方案中, 催化加氢裂化是在存在如下两种催化剂的条件 下进行的- 加氢裂化催化剂: 以氧化铝、 无定形硅铝和微孔、 中孔分子筛作为载体, 其中, 以所 述加氢裂化催化剂的总重量计, 中孔分子筛 10-15wt %, 微孔分子筛 5-10wt %, 无定形硅 铝 15-40wt%, 氧化铝 35-70wt %, 比表面积为 150-350m 2 /g, 孔容为 0.1-l.OmL/g; 负载后 催化剂含有 10-35wt %的 Mo0 3 和 /或 W0 3 , 2-5wt %的 NiO和 /或 CoO。

加氢精制催化剂 B: 以氧化铝或含硅氧化铝为载体, 比表面积为 120-300m 2 /g, 孔容 为 0.4-1.2mL/g, 孔径为 7-15nm; 金属活性组份为第 VIB族金属 Mo或 W、第 VIII族金属 Co或 Ni, 以加氢精制催化剂 B的总重量计, 第 VIB族金属含量以氧化物计为 10-22wt%, 第 VIII族金属含量以氧化物计为 2-5wt%。 在一些实施方案中, 在步骤 (3 ) 中, 加氢精制油与加氢裂化油以体积比为 1 :0.2-0.5 混合后再进行蒸馏。 在一些实施方案中, 在步骤 (3 ) 中, 在蒸馏前还包括滤除粒径大于 ΙΟμηι 的颗粒的 过滤步骤。 在一些实施方案中, 步骤 (3 ) 包括获取石脑油、 汽油调和组份和柴油调和组份的步 骤。 在一些实施方案中, 在步骤 (4 ) 中, 热缩聚在压力为绝压 0.01-3.0MPa、 温度为 380-460°C、搅拌速度为 10-60 rpm并包括氢气、氮气或氩气在反应器的底部和 顶部吹扫的 条件下进行 180-1200分钟。优选地,在步骤(4)中,热缩聚 0.01-1.0MPa、温度 400-440 °C、 搅拌速度 20-40rpm并包括氮气在反应器底部和顶部吹扫的 件下进行 180-600分钟。 在一些实施方案中, 步骤 (4) 中包括在线粘度分析。 在一些实施方案中, 在步骤 (3 ) 和 (4) 之间包括溶剂萃取步骤。 在一些实施方案中, 溶剂是包括苯、 甲苯、 吡啶、 喹啉或四氢呋喃的芳族溶剂。 本申请的发明人通过煤焦油在氢化溶剂存在的 临氢条件下催化加氢可以提高煤焦油 沥青 H/C比, 调整煤焦油沥青分子结构, 脱除 S、 N、 0及金属杂质, 以加氢后的煤焦油 沥青生产中间相沥青可以大幅度提高中间相沥 青品质,为工业化规模生产提供了可行的工 艺路线。 所得产品中间相含量高, 软化点低, 杂质含量低。 附图说明 图 1为本发明由高温煤焦油生产中间相沥青的方 的示意图;

图 2为本发明具体实施方案的流程图;

图 3A和图 3B示出了由实施例 1获得的净化沥青与氢化沥青红外光谱谱图, 说明经 过加氢过程后, 氢化沥青除保持较高的芳香性外, 其结构单元还形成较高浓度的烷基侧链 以及环垸结构, 使其更易于形成广域结构中间相;

图 4示出了由实施例 1获得的氢化沥青核磁共振氢谱;

图 5A和图 5B示出了本发明获得的中间相沥青的偏光显微 片图。 具体实施方式 以下结合附图, 对本发明的方法进行描述。 按图 1所示, 本发明由髙温煤焦油生产中间相沥青的方法包 括如下步骤:

步骤 100是将所述高温煤焦油脱除盐分和喹啉不溶物 , 得到澄清油;

具体地, 步骤 100包括脱除盐分的步骤 101和脱除喹啉不溶物的步骤 102。 所述脱除 盐分的步骤 101包括将去离子水和芳族溶剂与所述高温煤焦 油混合并离心去除含盐水份, 得到脱盐后的含芳族溶剂的髙温煤焦油; 其中, 所述芳族溶剂包括下述组中的一个或多个 组份: 苯、 甲苯、 二甲苯、 煤焦油的馏份油、 煤焦油馏份油的加氢产物; 所述脱除喹啉不 溶物的步骤 102 包括在所述脱盐后的含芳族溶剂的高温煤焦油 中添加脂族溶剂以及可选 的芳族溶剂, 混合, 离心或沉降脱除喹啉不溶物, 所述脂族溶剂包括 C 4 -C 16 脂族化合物, 所述芳族溶剂是所述氢化重质溶剂, 其中所述高温煤焦油、所述芳族溶剂和所述脂 族溶剂 的最终的体积比为 1 :0.2-2:0.2-1。

步骤 200是将所述澄清油经由下述两个方式之一得到 加氢进料油,经催化加氢精制得 到加氢精制油 (步骤 210) , 在一个实施方案中, 将澄清油作为加氢进料油; 在另一个实 施方案中, 将澄清油预蒸馏得到沸点大于 230°C的塔底组份 (步骤 221 ) , 将所述塔底组 份与调配油混合 (步骤 222) 得到加氢进料油 (步骤 220) , 其中所述调配油包括下述组 中的一个或多个组份: 煤焦油的馏份油、 煤焦油馏份油的加氢产物;

步骤 300是将所述加氢精制油蒸馏后得到氢化沥青;

步骤 400是将所述氢化沥青经热缩聚得到中间相沥青 。 具体地, 本发明涉及一种煤焦油在氢化溶剂存在的临氢 条件下催化加氢制备氢化沥 青、 氢化沥青热缩聚生产中间相沥青, 副产石脑油、 汽柴油调和组份、 酚油、 工业萘的方 法, 以下以氢化重质溶剂为芳族溶剂, 以正辛垸为脂族溶剂, 结合图 2对所述四个步骤进 行详细说明。 本领域技术人员能够理解, 当以本说明书列出的其他芳族溶剂如苯, 甲苯, 二甲苯以及以其他脂族溶剂如正庚烷生产中间 相沥青时, 以下工艺流程需要进行相应调 整。 当澄清油直接作为加氢进料油时, 以下工艺流程也需要进行相应调整。

1 )在脱盐工段(1 ) 中, 高温煤焦油与芳族溶剂(为氢化重质溶剂)及 去离子水以一 定比例充分混合水洗后进入离心机, 脱除其中的大部分含盐水份, 再在脱除喹啉不溶物 (QI)工段(2)与一定比例的脂族溶剂混合进入离 心机脱除喹啉不溶物(QI), 得到净化 的煤焦油和溶剂的混合物, 即澄清油;

2 ) 澄清油加热后进入蒸发器 (3 ), 分离出水和一段轻油, 分离水进污水再生处理系 统(未示出), 一段轻油进入一段轻油罐(未示出), 器底得到的无水澄清油再经加热进入 预蒸熘塔(4)。 预蒸馏塔顶轻质脂肪溶剂回收循环使用, 中部的二段轻油、 酚油和萘油分 别进入各自储罐 (未示出), 预蒸馏塔 (4) 塔底组份在加氢进料调配槽 (5 ) 与来自一段 二段轻油罐的轻油或加氢馏份油或氢化重质溶 剂混合, 经过滤器组 (6) 过滤后进入加氢 进料缓冲罐 (未示出);

3 ) 加氢进料缓冲罐的加氢进料油与氢气混合加热 后进入装填加氢保护催化剂、 脱金 属催化剂的反应器进一步脱除杂质和金属离子 ,然后进入装填加氢精制催化剂 A的精制反 应器进行加氢精制得到精制油,上述保护脱金 属精制反应可以设在一个一体的保护脱金属 精制反应器 (7) 中进行反应, 也可以分别设置反应器进行各级反应。 与此同时, 来自后 工段减压塔(12) 的一部分氢化重质溶剂及合成反应釜(14)顶部 分离的闪蒸油进入装填 裂化催化剂的裂化反应器 (8) 加氢裂化反应得到裂化油。 催化剂装填方式如下:

精制反应: 精制催化剂 A装填在反应器上部, 精制催化剂 B装填在反应器下部; 或 反应器装填精制催化剂 A,在精制热髙分上部装填精制催化剂 B,下部装填精制催化剂 A。

裂化反应: 裂化反应器装填裂化催化剂, 精制催化剂 B装填在反应器下部; 或裂化反 应器装填裂化催化剂, 裂化热高分装填精制催化剂 B。

4)加氢精制油液相及裂化油液相混合经过滤器 9)的金属滤材过滤,进入初馏塔(10) 分离出沸点 < 120°C的石脑油馏份、 水份和酸性气体后进入常压熘份塔(11 )。 常压馏份塔 ( 11 )顶分馏出沸点范围在 18CTC以前的熘份进入汽油调和组份储罐(未示 ), 中部分馏 出沸点范围在 180〜300°C的馏份进入柴油调和组份储罐 (未示出), 塔底组份经补热后进 入减压塔 (12)。 减压塔 (12) 分离出氢化重质溶剂及氢化沥青, 氢化重质溶剂是减压塔 ( 12)分离出的沸点范围 300〜360°C组份, 氢化重质溶剂一部分作为煤焦油脱盐脱 QI的 溶剂及加氢进料调配组份, 其余作为加氢裂化反应器(8 )进料。 氢化沥青在萃取塔(13 ) 中经溶剂萃取进一步脱除杂质或不经过溶剂萃 取进入合成反应釜(14)经热缩聚后得到中 间相沥青产品, 反应釜(14)顶部油气经冷却分离, 气体洗涤后排放, 分离后的闪蒸油作 为裂化进料进行加氢裂化。 中间相沥青调制需要低杂质含量的纯净有机物 料。要求无固体杂质, 尽可能低的金属 元素含量, 尽可能低的 0、 S、 N杂环化合物, 调制适宜的分子量及分子结构。

1 ) 固体杂质

煤焦油中固态杂质主要指原生喹啉不溶物(QI) , 如炭黑 (游离炭)、 煤尘、 焦粉、 铁 锈等, 这些原生 QI杂质对中间相成核、 成长和转化成体状各向异性的结构是不利的, 虽 然可促使中间相小球的初生, 但因极易吸附在初生小球体的表面, 在中间相沥青生长期阻 碍中间相小球的成长与融并, 不能得到流变性能好的中间相沥青。 在炼焦煤的高温干馏过程中, 焦炉荒煤气在炭化室高温作用下有游离炭析出 , 这些游 离炭会随之被带入到煤焦油中, 形成一些以游离炭为核心, 外面层层包裹着一些由重质组 份形成的胶束或胶质体。根据相似相溶原理, 需要一些重质油才能将这些胶束层层溶解 "剥 离", 暴露出游离炭, 并在预处理过程中脱除。 由于煤焦油是一种非常粘稠的液体,煤焦油所 含的固体杂质容易造成煤焦油深加工设 备的堵塞。 对煤焦油先进行净化处理, 脱除其所含的原生 QI杂质和固体杂质是非常关键 的一步。 由于煤焦油是一种密度大、 粘度高、 组份复杂的重质油, 在预处理过程中加入一些降 低粘度的溶剂油, 可以改善处理条件, 使得预处理过程能够顺利进行。

2) 金属元素

沥青中 Na、 K:、 Mg、 Ca、 Fe、 Cu、 Al、 V、 Ni等, 在中间相形成时快速融并产生镶 嵌结构,在生产碳素材料时形成杂质,部分金 属离子在炭化石墨化过程中逸出,形成缺陷。 因此必须除去金属原子,通过预处理洗涤和加 氢脱金属催化剂可以将杂质脱除到要求的范 围。

3 ) 氧、 氮、 硫杂环化合物

氧、 硫、 氮杂环化合物的 0、 S、 N原子负电性大, 易在分子内产生极性, 在中间相 成形阶段会加速脱氢缩聚反应, 有利于小球体初生, 但由于 0、 S、 N的交联作用, 使体 系粘度提高, 有碍小球体的成长与融并, 使分子的积层取向性降低。 同时氧、 氮、 硫杂环 化合物热稳定高, 易浓聚在初生的小球内, 生成镶嵌结构, 而不是希望的各向异性广域型 的结构。 在中间相沥青生产碳素产品石墨化时会发生" 胀", 使产品产生微裂纹, 影响产 品品质, 这些杂质原子通过催化加氢处理, 可以比较大幅度去除。 4) 分子量及分子结构

碳质中间相的 H/C原子比为 0.35〜0.5, 含挥发分 15%〜20%, 密度为 1.4〜1.6/cm 3 , 与各向同性原料沥青相比, 其分子量约高 3〜4倍, 平均为 2000左右, 软化点也提高约 10(TC。 当然这些数值随原料沥青及热处理条件而有所 变化, 在软化点温度以上时一般具 有较低的熔体粘度, 而且能在较长时间内保持稳定不分解。 形成中间相沥青的分子要求适宜的分子量、 H/C比、 适宜的芳香度及环垸烃、 带有短 的侧链结构。 具有上述特征的分子结构, 在特定的条件下缩聚形成中间相沥青时, 才能获 得希望的各向异性中间相沥青结构。 一般而言, 经过加氢精制的氢化沥青的特征是 5〜10 个芳环构成, 平均 1.5个取代基(甲基为主),含有 1〜5个环垸结构, 分于量为 250〜400。 因此, 煤系中间相沥青的生产实际上是对煤焦油沥青 净化及调制的过程, 由于煤沥青 本身的局限性, 从煤焦油出发, 净化及调制中间相沥青会变得更加可行。 从工艺流程上来看, 本发明的方法分为预处理、 加氢精制、 中间相沥青制备等主要工 艺单元。 分别描述如下:

(一) 煤焦油预处理:

煤焦油预处理单元的主要目的调制适合于加氢 单元的原料, 调节加氢原料的粘度、密 度, 脱除机械杂质及除去焦油中喹啉不溶物 QI, 脱水、 脱盐、 脱酚, 提取附加值较高的 萘油, 获得适宜加氢精制的物料, 避免系统腐蚀及堵塞。 在脱除原生喹啉不溶物的同时, 尽可能避免脱除 β 树脂 (即甲苯不溶-喹啉可溶 (TI-QS))、 γ树脂(即庚垸不溶 -甲苯可溶物(HI-TS) ), 以提高中间相沥青的收率, 保留 有效组成, 但对于热敏组份则需要脱除, 避免热敏组份在催化剂床层积碳。 从煤焦油脱除 QI较煤沥青脱除 QI可以减少 β树脂和 γ树脂的损失。 煤焦油有大量盐类溶解在煤焦油水份中, 其中固定铵盐(主要为 NH 4 C1)在加热时会 产生强腐蚀性游离酸, 腐蚀管道和设备, 并对催化剂产生不利的影响。 由于必须控制沥青 的金属含量, 不能用碱法脱盐, 可以通过水洗的方法脱除铵盐及金属盐类, 同时尽可能脱 水达到无水原料标准, 减少煤焦油固定铰盐及金属盐的含量。 煤焦油中含氧化合物主要集中在酚油中, 切取酚油可以减少加氢过程氢耗, 避免酚油 加氢过程中所产生的化合水对系统压力控制以 及对催化剂的影响。 不提取经济价值髙的洗油是由于洗油及其氢化 物是重要溶剂,不切洗油还可以降低蒸 馏气化温度, 减少原料高分子化合物在进入加氢还原条件前 的缩聚。

( 1 ) 煤焦油脱盐

煤焦油中除金属盐外, 含有大量铵盐。 挥发性铵盐在最终脱水阶段被除去, 而大部分 固定铵盐仍留在脱水煤焦油中。 由于中间相沥青要求严格控制金属离子含量, 不能通过碱 法中和固定铵盐, 因此, 采用水洗的方法是有效的脱盐手段。 水洗脱盐还可以减轻脱金属 催化剂的负荷。 固定铵盐、金属盐主要以盐酸盐、硫酸盐、亚 硫酸盐、硝酸盐、硫氰酸盐的形式存在, 通过水洗可以达到脱除大部分铵盐和金属盐的 目的。但煤焦油是一种密度高、含有大量胶 质沥青质的重质油, 水与煤焦油的相溶性差, 形成大量乳化油, 在脱水时必须破乳。 实际上芳族溶剂如轻油、 加氢轻油、 洗油、 加氢洗油、 蒽油、 加氢蒽油、 氢化重质溶 剂, 由于能够溶解胶质沥青质胶团而具有破乳功能 。 通过实验表明, 以上各种芳族溶剂均 具有良好的破乳性能, 辅助离心脱水后, 煤焦油含水量可控制在<2%, 而盐含量大幅降 低。 氢化重质溶剂是加氢精制油裂化油混合蒸熘沸 点范围 300〜360°C的馏份。 考虑到水 洗后混合油与水的分离及脱渣脂族溶剂的回收 , 脱盐采用重质芳族溶剂更加合理, 选用洗 油、 加氢洗油、 蒽油、 加氢蒽油、 氢化重质溶剂对煤焦油密度变化影响小, 调配混合油密 度 1.05 1.1, 便于油水分离。 由于对设备腐蚀、破坏催化剂性能主要是氯化 铵的分解形成的盐酸, 因此水洗指标以 氯离子含量为控制指标, 水洗后煤焦油氯离子小于 5ppm。

(2) 煤焦油脱渣 (QI)

由于煤焦油脱渣需要配入脂肪族溶剂,脂肪族 溶剂的配入导致混合油密度小于 1的情 况发生, 脱盐脱渣不能同时进行, 也不能先脱渣后脱盐。 根据美国专利 US4116815介绍,煤焦油或煤焦油沥青用芳族溶剂 脂族溶剂按不同比 例调配时会根据溶剂比例不同形成油区、 结晶区、 沥青区、 浆区, 在浆区可以通过自然沉 降的方法脱除 QI。 上述美国专利介绍常用的芳族溶剂有苯、 甲苯、 二甲苯、 杂酚油、 洗油、 蒽油以及通 过煤焦油蒸馏得到的沥青油, 脂族溶剂是正己垸、 石油石脑油、 石油煤油和汽油等。 本申 请的发明人在重复上述实验时以正辛垸、 正庚烷等脂族溶剂, 分别采用了洗油、 蒽油以及 轻油、加氢轻油、加氢洗油、加氢蒽油、氢化 重质溶剂以及煤焦油馏份油的加氢后馏份油, 结果显示加氢轻油、 加氢洗油、 加氢蒽油由于含有脂肪性较轻油、 洗油、 蒽油具有更好的 脱除 QI的效果, 尤其氢化重质溶剂更适合作为脱 QI芳族溶剂, 理由如下:

a)氢化重质溶剂脱 QI效果好, 主要表现在脂族溶剂比例少,煤焦油比例高, 成本低。 另外,

b) QI形态固化程度好, 脱渣后澄清油 QI含量更低。

c)在脱除 QI的同时, 热不稳定大分子也基本去除, 煤焦油收率达 85 %, 热不稳定大 分子的去除, 使得加氢过程中催化剂积碳现象大幅减缓。

d) 结晶区范围宽, 离心辅助分离脱渣效率高。

e) 以氢化重质溶剂脱盐脱渣有利于脂肪族溶剂回 收利用; 避免与轻质馏份形成共沸 物。

f)在氢化重质溶剂存在的条件下, 沥青氢化程度更好, 有利于加氢顺利进行, 操作条 件和缓。

(3 ) 氢化重质溶剂

氢化重质溶剂是本发明重要内容之一,氢化重 质溶剂是精制油裂化油混合物沸点范围 300〜360°C的组份,主要分子结构通过质谱分析 主要是 2〜5个苯环,其中含有 1〜3个 4〜 6元环垸结构、 1〜3个甲基、 少量乙基的分子。 氢化重质溶剂的运用达到以下目的:

a)便于脱盐时破坏沥青胶团成为独立的沥青质 质, 达到破乳效果及在脂肪族溶剂 的作用下将 QI及热不稳定大分子分离。

b) 以氢化重质溶剂为溶剂脱盐脱渣有利于脂肪族 溶剂回收利用。

c)在加氢过程中许多环垸结构是可逆的加氢脱 过程, 便于向沥青分子氢转移, 使 得催化加氢在溶剂加氢的伴生条件下进行, 降低催化加氢温度, 减少催化剂积碳, 延长催 化剂寿命。

d)氢化重质溶剂分散了沥青分子, 可以阻碍沥青分子在加氢过程中的聚合。

e)氢化重质溶剂中重质组份进入沥青时, 由于其分子结构含有环垸基甲基, 有利于 沥青的合成。 (4) 澄清油预蒸馏

煤焦油经脱盐脱 QI的混合油为澄清油, 澄清油预蒸熘的目的是回收脂族溶剂、 提取 焦油中附加值高的萘油、 脱除混合焦油中的水份至无水焦油标准、 回收酚油。 澄清油二次气化温度不宜过高, 目的除了是回收脂族溶剂, 切取酚油、 萘油, 更是防 止加氢精制前大分子化合物由于热解作用聚合 形成新的甲苯不溶物(TI)和次生喹啉不溶 物 (QI)。

(5 ) 加氢进料调配及过滤

加氢进料调配目的是减缓加氢精制过程的催化 剂积碳,达到在加氢溶剂存在的临氢条 件下催化加氢的目的。 采用的工艺手段, 一是经预蒸馏的塔底重质组份调配轻油、 加氢熘 份油、 氢化重质溶剂, 二是保护过滤。 由于在预蒸熘单元切取了轻油、 酚油、 萘油组份, 澄清油密度加大, 粘度增加, 同时 形成新的 TI、 生成次生 QI的几率增加, 需要对预蒸馏澄清油塔底组份进行溶剂调配, 以 达到加氢进料要求。其中所采用的调配油包括 下述组中的一个或多个组份: 煤焦油的馏份 油、煤焦油馏份油的加氢产物、上述煤焦油的 熘份油或煤焦油馏份油加氢产物与脂族溶剂 的混合油。 所述煤焦油的馏份油包括, 但不限于, 轻油、 洗油、 蒽油, 以及在肖瑞华等主 编, 《煤化学产品工艺学》 , 冶金工业出版社, 2008年 9月第 2版, 中第 201-230页中所 涉及的煤焦油的馏份油。 所述煤焦油馏份油的加氢产物包括, 但不限于, 加氢轻油、 加氢 洗油、 加氢蒽油、 氢化重质溶剂以及加氢产物 80~300°C馏份。 所述脂族溶剂油包括环垸 类溶剂、 柴油。 所述调配油还可以包括苯、 甲苯、 二甲苯。 澄清油塔底组份调配主要作用有两类, 一是降低密度、 粘度, 分散沥青质胶质, 这类 配入的溶剂主要包括苯族溶剂、 煤焦油馏份油、 煤焦油馏份油的加氢产物、 少量的脂族溶 剂。 二是在加氢过程中配入氢化溶剂, 使得煤焦油在氢化溶剂存在的条件下催化加氢 , 使 得催化加氢、 溶剂加氢同时进行, 这类溶剂主要包括煤焦油馏份油加氢产物、 脂族溶剂。 由于澄清油塔底组份含有较多的沥青质和胶质 成分,配入大量的脂族溶剂在温度较低 的情况下会使加氢进料油产生沥青质沉淀, 因此, 其中脂族溶剂的配入以加氢进料油无沥 青沉淀为前提, 不宜单独以脂族溶剂调配澄清油塔底组份。 加入轻油、 洗油及加氢馏份油主要是降低加氢进料粘度、 密度, 降低了胶质沥青质分 子浓度, 分散胶质沥青质, 使其难以聚合成胶团在催化剂沉积, 提高大分子在催化剂中的 吸附脱附的速度, 同时对催化剂有自清洁功能, 达到延缓催化剂积碳, 延长催化剂活性的 目的。 加入氢化重质溶剂及加氢馏份油调配的目的是 在催化加氢条件下氢化重质溶剂发生 向沥青质氢转移的功能, 同时, 由于氢化重质溶剂是分子量 150〜280的多环芳烃含有 1〜 3个 4〜6元环垸结构的混合物, 其也具有降低胶质沥青质浓度的功能, 达到降低催化加 氢反应条件, 延缓催化剂积碳的目的。 过滤主要是保安过滤工艺管道设备及焦油未能 清除的 > 10μπι杂质, 保护催化剂。 (二) 加氢精制与裂化

加氢精制原料与高压氢气混合加热进入加氢保 护脱金属反应器、精制反应器进行催化 加氢精制反应, 精制反应油液相组份与裂化反应油液相组份混 合再次过滤后进入分熘系 统。 同与此时, 由分馏系统减压塔分馏的氢化重质溶剂一部分 作为煤焦油脱盐、 脱 QI、 调配加氢进料使用, 其余与中间相沥青热缩聚产生的闪蒸油一起作 为催化加氢裂化原料。

( 1 ) 加氢精制段的主要作用

a)进一步脱除煤焦油中 QI。 在预处理阶段, 虽然脱除了大量的 QI, 但仍有微量 粒径在 0.5~2μιη的 QI,, 刚进入催化保护剂时, 在高温情况下, 这些 QI会沉积在保 护催化剂表面剂孔道内, 尽管有大量溶剂阻止这种情况的发生, 仍需要在精制初期去 除。

b)脱除微量金属组份 Na、 K、 Mg、 Ca、 Fe、 Cu、 Al、 V、 Ni等, 其中 Na、 Fe、 V、 Ni尤为重要, 其他金属组份大部分在预处理阶段脱除, 而 Na、 Fe会形成金属络 和物, 需要通过脱金属催化剂脱除。煤焦油中 V、 Ni含量甚微, 对催化剂无明显影响。

c)脱除大分子官能团上的 0、 N、 S杂质原子。

d)对大分子侧链及易聚合的分子加氢饱和,形 甲基侧链,降低分子的反应活性; 多环芳烃部分芳环环垸化, 促进环烷结构的生成; 同时在氢化溶剂作用下也会发生氢 转移作用, 促进分子结构的调整, 形成分子结构及组成符合合成中间相沥青希望 的氢 化沥青。

e) 由于氢化溶剂加氢脱氢是可逆的, 在氢化溶剂存在的条件下催化加氢精制有利 于沥青分子结构上氢含量增加。

f) 不含 QI煤焦油组份加氢后,沥青中轻质组份由于饱 ,蒸馏时不易发生聚合而 更容易从沥青中分离, 使得合成中间相沥青的氢化沥青分子量分布更 窄。

g)含有环垸及甲基侧链结构对于氢化沥青族组 向可溶组份变化有利, 而分子量 变化较小。 由于氢化沥青分子含有的环烷及甲基侧链结构 利于中间相小球融并, 对氢 化沥青的分子量分布要求也变宽, 大的分子变得可溶, 较小的分子由于具有环垸及侧 链结构也参与合成, 形成较多的渺位缩合多环大分子, 降低了中间相沥青软化点, 利 于形成可溶中间相沥青。

(2) 加氢裂化段的主要作用

a)对 300〜360'C精制油组份及中间相沥青热缩聚产生 闪蒸油加氢裂化, 使重质馏 份进一步开环、 断健, 使较大分子芳核结构形成更多的环烷及侧链结 构, 提高溶剂油的 H/C比例, 进一步脱硫、 脱氮, 生产符合要求的氢化重质溶剂。

b)通过加氢裂化, 其中大部分 (约 50%〜70% ) 组份生成汽油、 柴油调和组份。 其 余>300 裂化馏份油与 300〜360°C精制馏份油一起作为氢化重质溶剂。

(3 ) 加氢精制要求指标

a) 由于加氢精制油组份复杂, 所述精制催化剂只要求具有适度的加氢功能, 过度氢 化会造成有效组份分子结构的破坏降低中间相 沥青收率, 也对催化剂要求高, 提高精制成 本。

b)脱 S率约 70〜90%, 氢化沥青含 S量应小于 0.2%; 脱 N率约 50〜90%, 氢化沥 青含 N量应控制在小于 0.3 % ;脱 0率约 50〜90%,氢化沥青含 0量应控制在小于 0.3 % ; c) Na含量小于 lOppm; Fe含量小于 lOppm; 总金属离子含量小于 50ppm;

d) 氢化沥青 H/C的变化是氢化效果的主要标志, 与净化沥青相比, H/C增加 20%即 可满足合成中间相沥青的目的,较高的氢化沥 青的 H/C有利于中间相沥青的合成, 降低软 化点、 增加可溶组份含量, 但过高的中间相沥青的 H/C比会在纺丝时产生气泡而断丝。 (4) 加氢精制条件

加氢精制反应器的操作条件为总压 12.0MPa~20.0MPa,平均反应温度为 320°C~400°C, 液时体积空速 O.Shr^Z.Oh 氢油体积比为 600:1~1500:1为宜。 分别说明如下:

a)温度

将沥青加热至足以使其热分解的温度是沥青有 效加氢的必要条件,此时沥青分子发生 裂解反应, 使一些不稳定的分子裂解成具有自由基性质的 分子碎片, 这些活泼的自由基在 催化条件下从氢气获得氢, 也可以从加氢溶剂获得氢, 自由基结构得到饱和而稳定下来, 生成分子结构优化的氢化沥青, 从而达到对净化沥青有效加氢的目的。

沥青分子在 400~420°C裂解较为明显, 有效地获得氢原子, 但超过此温度效果变差, 此时带来的副作用是活泼的沥青分子容易聚合 在催化剂上造成积碳, 影响催化剂活性, 副 反应成为主要反应, 氢化作用反而次之。 催化条件下, 沥青分子裂解温度会显著降低, 理 想的温度范围应控制在 320~400°C, 避免超过 400°C。 低于 390 °C时, 催化剂积碳缓慢, 可保护催化剂寿命。 温度过低(<300°C ), 无法有效分解和去除有机钠化合物, 无法激活 沥青形成自由基。

b)氢分压

精制反应器压力应控制在 12.0〜20.0MPa, 适当提髙氢分压可以提高精制效果, 也可 以减缓催化剂结焦速率, 延长催化剂寿命。

c) 体积空速

体积空速过高,加氢效果差,催化剂活性要求 高; 体积空速过低反应时间长, 负荷小, 催化剂产生积碳的几率增加, 体积空速控制在 O.S Z.Ohr' 1 为宜。

d)氢油比

精制反应程度所需化学耗氢量为依据, 600~1500:1为宜。 ( 5 ) 催化剂

加氢进料是经过预处理后脱除喹啉不溶物等杂 质的澄清油或切割酚油和萘油后经调 配的加氢进料油。尽管在预处理阶段已经除去 大部分杂质,但仍有少量杂质包括金属离子、 喹啉不溶物等, 在加氢过程中很容易沉积在催化剂的外表面以 及内部孔道。 另外, 焦油中 所含的不饱和烯烃和热不稳定大分子, 尤其是杂环化合物, 由于活性强, 是积碳的主要物 质,很容易在加热条件下结焦并沉积在催化剂 表面,堵塞催化剂的孔道,造成催化剂失活。 煤焦油中所含的有机铁和有机钙等金属离子对 加氢精制和加氢裂化催化剂都有影响。 油溶性有机铁加氢反应速度很快, 对于常规小孔催化剂, 硫化铁主要沉积在催化剂之间或 者呈环状分布在催化剂表面, 并且不在催化剂上移动, 铁沉积量的增加只是增加铁在催化 剂表面的沉积厚度, 并没有渗透到催化剂内部。 因此可认为其影响多在表面, 对催化剂孔 容等影响较小。 但铁沉积量增加到一定程度, 会使催化剂相互粘结在一起, 并在催化剂表 面形成一层硬壳, 这将导致床层压降增加和催化剂利用率降低, 因此脱金属催化剂的设计 要求大孔和高的床层空隙率。 有机钙盐和有机铁盐类似, 极易脱除, 一般不需要催化剂的加氢活性组份, 其反应主 要是热裂化进程,脱除的钙优先沉积在催化剂 颗粒外表面,并且形成了较大的晶粒。因此, 加氢脱钙保护剂, 应使脱钙反应主要发生在保护剂床层, 并且钙大部分沉积在脱金属催化 剂颗粒孔道内, 从而保证床层压降不增加或增加幅度较小。 有机钠盐主要以苯酚钠和环垸酸钠的形式出现 , 对催化剂失活有较大影响, 同时也影 响中间相沥青质量。 为了保证装置长期稳定的运转, 在主催化剂之前应装填保护催化剂及脱金属催 化剂, 以便脱除原料中的结垢物和金属离子, 达到保护主催化剂的目的。装有加氢保护剂及 脱金 属剂反应器可以两台并联, 上部装加氢保护催化剂, 下部装脱金属催化剂, 以便切换。 加氢原料经过加氢保护及脱金属催化剂减少了 在主催化剂中的积碳反应,精制催化剂 中高分压的气态氢能部分抑制煤焦油中的重质 部分的积碳, 但较长时间上看, 积碳还是不 可能完全避免的。其原因是煤焦油中含有微量 的烯烃及较多的胶质和沥青质, 这些物质热 解很容易产生活泼的自由基,这些活泼的自由 基极易缩合积碳,堆积在催化剂上堵塞床层, 增加催化剂床层压降。 此时如果有氢分子或氢原子存在, 就会稳定这些活泼的自由基, 从 而抑制和缓和积碳反应, 提高氢分压可以显著的增加活性氢原子的浓度 , 但投资和操作费 用显著增加。 一种有效的方法就是加入分散胶质、沥青质的 溶剂, 如本申请的方法中产生的加氢馏 份油和氢化重质溶剂、 轻油等, 这些液态的供氢溶剂除了能自身提供活泼氢原 子外, 还能 促进气态氢向液相的传递, 加速加氢反应的速率, 并能降低反应物料的粘度, 分散胶质沥 青质分子, 提高吸附脱附速度, 减少积碳, 使得加氢精制反应能够平稳进行。 另外, 在有 供氢溶剂的存在下, 可以降低精制反应条件, 能更好的控制加氢精制反应的程度, 防止一 些大分子过度裂化成小分子, 降低沥青产品的收率。轻油等轻组份的配入主 要是降低加氢 进料粘度密度, 分散胶质沥青质使其难以聚合成胶团在催化剂 沉积, 提高催化剂吸附脱附 速度, 有利于大分子在催化剂中的脱附, 对催化剂有自清洁功能。 如前面所述, 通过加入 本申请的方法中产生的轻油、 洗油、 加氢轻质馏份油、 氢化重质溶剂, 能很好的抑制催化 剂的结焦问题, 延长催化剂寿命。 煤焦油中所含的8、 N、 0等杂原子化合物对中间相小球的成核、 生长、 转化有影响, 不利于生成细纤维状的或针状的结构。 例如硫是强的脱氢剂, 加速芳烃脱氢缩合, 有利于 小球初生; 同时, 硫也是交联剂, 使分子失去平面性形成交联结构, 导致粘度上升, 不利 于小球的生长、 融并以及转化成各向异性的结构, 而是生成镶嵌结构。 在煤焦油沥青中如果含有一定数量的环垸结构 和脂肪族短侧链,这对中间相的形成是 非常有利的。这是因为在热解过程中环烷氢可 以发生氢的转移, 能够有效地稳定自由基的 反应活性, 保持中间相产物的流动性和溶解性, 易于得到大面积的光学各向异性组织。 此处加氢精制催化剂的主要作用是, 脱除煤焦油中所含的 S、 N、 0等杂原子; 加氢 饱和不饱和组份, 使之形成带环垸结构的多环芳烃; 将原料中带有较长的垸基侧链活泼芳 烃的侧链断裂, 使之成为带短侧链的活性较稳定的芳烃; 同时在临氢条件下及时提供氢源 给供氢溶剂, 完成供氢溶剂的及时再生, 促进气态氢及时向液相的传递, 加速加氢反应。 因此精制催化剂特点是: 适宜的孔容、 孔径、 容垢量大、 适当的反应性。 催化加氢精 制也可以在其它具有强精制弱裂化作用适宜孔 容孔径的催化剂存在的条件下进行。 根据煤焦油加氢的特点, 为保证加氢运行稳定, 不片面追求(也不可能要求)过高的 催化剂性能, 过长的寿命, 当然, 各类催化剂寿命应有所区别。 (三) 中间相沥青的制备

1 ) 氢化沥青的制备

加氢精制油及裂化油混合经过滤进入初熘塔, 分离出的石脑油轻组份、水份和酸性气 体后进入常压熘份塔。 常压镏份塔顶分馏出汽油调和组份作为产品进 入汽油调和组份储 罐,中部分馏出柴油调和组份进入柴油调和组 份储罐,塔底重质组份经补热后进入减压塔。 减压塔分离出氢化重质溶剂及氢化沥青, 氢化重质溶剂一部分作为煤焦油脱盐脱 QI的溶 剂及加氢进料调配组份, 其余作为加氢裂化反应器进料。氢化沥青经溶 剂萃取进一步脱除 杂质后进入反应釜经热缩聚后得到中间相沥青 产品,反应釜顶部油气经冷却分离洗涤后排 放, 分离后的闪蒸油进入裂化进料缓冲罐作为加氢 裂化原料。

( 1 ) 过滤

在初馏塔前设置金属滤材过滤器, 过滤精制油及裂化油, 脱除催化剂颗粒。 在预处理煤焦油得到的 QI经激光粒度仪分析显示,煤焦油中 QI在 0.3~1μιη之间呈正 态分布, 经元素分析, 这些小粒径原生 QI主要是游离炭及其他无机物, 粒径〉 0.3μηι。 精制油经长时间沉降分离得到的沉积物用 500目滤网过滤, 滤网残留物含量极少, 经 元素分析及激光粒度分析仪分析表明主要是催 化剂颗粒, 粒径 >30μπι。

500目滤网滤后油分别用 2〜5μιη、 5〜10μπι、 10〜15μπι砂芯漏斗抽滤, 10〜15μιη砂 芯漏斗全部通过, 其余均有抽余物。 对以上抽余物分别用喹啉、 甲苯、 正庚垸溶解, 正庚 垸基本不溶, 甲苯部分可溶,喹啉可溶,进一步说明抽余物 为甲苯不溶喹啉可溶(TI-QS ), 是大分子烃类聚合物。 由于加氢精制油裂化油温度髙, 液相粘度低, 采用孔径 10〜25μηι金属滤材, 脱除催 化剂粉末。烧结金属过滤组份两组并联操作, 根据流量选择过滤组数,以常压熘份塔 120〜 180°C馏份油或轻油、 洗油为浸泡及反冲洗溶剂。

(2) 蒸馏

蒸馏单元设置初馏塔、 常压馏份塔、 减压塔, 经过滤后的加氢混合油首先进入初馏塔 分离出的石脑油 (< 120°C )、 水份和酸性气体后进入常压馏份塔。 常压馏份塔顶分熘出汽 油调和组份 (120〜180°C ) 作为产品进入汽油调和组份储罐, 中部分馏出柴油调和组份 ( 180〜300°C )进入柴油调和组份储罐, 塔底重质组份经补热后进入减压塔。 减压塔分离 出沸点范围 300〜360'C氢化重质溶剂及 > 360°C氢化沥青。

(3 ) 氢化沥青萃取

氢化沥青在 120〜180°C条件下, 以甲苯或喹啉、 吡啶、 四氢呋喃为溶剂, 氢化沥青: 溶剂油为 1 :5~10, 萃取油用 5〜10μιη金属过滤器过滤, 然后蒸馏份离出萃取剂及萃取后 氢化沥青。

2 ) 中间相沥青的制备

由氢化沥青制备中间相沥青是一个控制的热处 理过程,常用热处理方法有惰性气体鼓 泡热处理或加压法、减压法热处理。其原理都 是将原料沥青在聚合釜内于一定温度和压力 下保持一定的时间进行热缩聚, 使沥青的各项指标达到所需要的质量要求。 主要的操作因素有: 初始温度、 最终温度、 升温速度、 恒温时间、 搅拌速度、 惰性气 体压力、 惰性气体流量等, 这些因素需要根据氢化沥青的性质确定。 各个因素对过程的影 响分析如下。

( 1 ) 温度的影响

合成温度在 380-460°C区间, 恒温时间 180-1200分钟, 优选为 400~440°C, 180-600 分钟, 升温速度慢利于小球体的成长与融并, 得到各向异性区域大的流变性能好中间相沥 青, 也可以采用先高温短时间后低温长时间等方式 。

(2 ) 压力的影响

提高热处理压力, 可抑制低分子馏份的快速逸出, 提高炭化率。 同时较低分子量馏份 在压力下凝聚于液相中, 使粘度得到改善, 流变性变好, 从而利于小球体的融并和晶体的 重排, 使各向异性程度提高, 但压力过高有碍小球体的融并。 减压热处理可以加快合成反 应速度。

( 3 ) 体系搅拌情况的影响

在制备过程中进行搅拌不仅可以在中间相形成 过程中保持反应体系各组份的均匀性, 可改善中间相沥青与母液相沥青的相溶性, 提高流动度, 使生成的中间相结构比较均匀, 还可以在中间相形成初期抑制小球体的过早融 并, 并促进发展后期体中间相的形成。 由于中间相沥青分子量较大, 体系过度的扰动会引起沥青内部结构混乱程度 增强, 不 利于形成广域体中间相。

(4) 气体吹扫

采用惰性气流于反应釜底部及顶部吹扫, 沥青中轻质组份被吹出, 形成的中间相沥青 分子量更窄, 适宜大小的芳烃组份堆积成有相当溶解度而且 呈各向异性的中间相。 此外, 大气流搅拌还可使扁平芳烃分子沿气流方向平 行排列, 有利于中间相小球体的融并。

( 5 ) 体系粘度的在线分析

在中间相沥青的合成过程中, 除了温度压力等因素外, 设计中采用在线粘度测量的方 法, 将实际粘温曲线与理论粘温曲线进行比较, 以校正合成的程度。 本发明与现有技术相比具有如下优点: 本发明由煤焦油为原料生产中间相沥青,采用 适于煤焦油自身特点的自制脱金属催化 剂、 加氢精制催化剂及加氢裂化催化剂, 加氢深度易于控制, 杂质脱除彻底, 原料流动性 好、 工艺过程不易积碳结焦, 不易堵塞反应器。 本发明中作为溶剂法脱除 QI不溶物的主要的芳族溶剂和加氢反应中氢化 剂的氢化 重质溶剂由本生产工艺自生, 其脱除杂质效果好、 供氢能力强、 成本低、 易于实现连续化 生产。 本工艺主产物为高附加值碳材料优质前驱体中 间相沥青, 同时副产汽油柴油调和组 份、 酚油、 工业萘, 中间相沥青生产成本低、 工艺过程简单、 对设备要求不高, 参数容易 控制, 整个工艺经济合理。 下面通过实施例对本发明进一步说明。需要说 明的是, 下面的实施例为本发明的优化 组合, 仅用来说明本发明, 而不用来限制本发明。 在不偏离本发明主旨或范围的情况下, 可进行本发明构思内的其他组合和各种改良。 在本文的上下文中, 除非特别说明, 所有的百分数均为重量百分数。 本说明书中所使用的试剂为购自天津市大茂化 学试剂厂的化学纯试剂,所使用的高温 煤焦油来自于鞍山钢铁集团公司。 本说明书中所做表征分别使用了下列仪器: 红外光谱仪 (FT-IR 430, 日本分光

JASCO)、 核磁共振 (AVANCE II 400, 瑞士布鲁克公司)、 元素分析仪 (vario EL III, 德 国 elementar公司)、 气相色谱 -质谱联用仪(HP 6890GC/5973MSD, 美国惠普)、 偏光显微 镜(XP-600E, 中国上海长方光学仪器有限公司)、 离子色谱仪(ICS-90, 美国戴安公司)、 蒸汽压式渗透压计 (K-7000, 德国 Knauer GmbH:)、 电感耦合等离子发射光谱仪(Optima 2000 DV, 美国 Perkin Elmer公司)、 化学吸附仪 (CHEMBET 3000, 美国康塔)、 全自动 比表面积及微孔物理吸附分析仪(ASAP 2020, 美国麦克仪器公司) 以及 X射线荧光光谱 仪 (XRF-1800, 日本岛津公司)。 实施例 1 参考图 2。 来自煤焦油储罐的煤焦油与去离子水及氢化重 质溶剂进入脱盐工段 (1 ) 进行充分混合后, 经离心机脱除含盐废水, 脱盐后煤焦油 Cr含量在 5ppm以下, 废水进入 废水再生系统。 脱盐后煤焦油与脂族溶剂(正辛垸)及氢化重 质溶剂混合进入脱喹啉不溶 物 (QI) 工段 (2), 经离心、 沉降脱除焦油 QI至 500ppm得到澄清油, QI去废渣处理系 统。 澄清油经加热送至一段蒸发器 (3 ) 脱除水份及一段轻油, 无水澄清油经加热送至预 蒸馏塔预蒸馏 (4) 回收脂族溶剂、 分离出二段轻油、 酚油、 萘油, 脂族溶剂回脱 QI工段 (2)循环使用。 预蒸馏塔(4)塔底组份与一段轻油、 二段轻油、 氢化重质溶剂及其他轻 质油混合进入加氢调配槽 (5 ) 调配混合加氢进料粘度、 密度。 调配后加氢进料油经过滤 器 (6) 过滤后与氢气混合后送至装有保护催化剂、 脱金属催化剂、 精制催化剂 A以及精 制催化剂 B的保护脱金属反应器和精制反应器 (7) 催化加氢精制。 精制后液相组份与来 自裂化反应器 (8 ) (其中在裂化反应器上部装有裂化催化剂, 下部装有精制催化剂 B) 的 液相组份混合经过滤器 (9) 过滤后进入初馏塔 (10) 分离出石脑油、 水份及酸性气体。 初馏塔塔底油经补热进入常压馏份塔(11 )分离出汽油、 柴油调和组份。 常压塔塔底油经 再次补热进入减压塔(12)分离出氢化重质溶剂 及氢化沥青, 氢化重质溶剂用于煤焦油脱 盐、 脱 QI、 加氢进料调配, 剩余部分与合成反应釜闪蒸油一起与氢气混合 后进入裂化反 应器(8)。 氢化沥青经萃取工段(13 )萃取得到萃取氢化沥青, 萃取氢化沥青进入合成反 应釜 (14) 热缩聚合成中间相沥青。 以表 1-1所示高温煤焦油与表 1-2所示在本例的催化剂及加氢精制条件下轻油 与蒽油 按 0.4:1加氢精制得到的沸点 >300°C氢化重质溶剂及去离子水以体积比 1 :0.5:0.5充分混合 水洗后进入离心机, 脱除其中的大部分含盐水份, 水洗 3次。 水洗后煤焦油进入脱 QI调 配槽中, 并向其中添加正辛垸, 调整体积比例至焦油 : 氢化重质溶剂: 正辛院 = 1 :0.5:0.5, 搅拌后混合物进入离心机脱除 QI, 得到净化的澄清油, 以上操作条件温度 8(TC, 搅拌速 度 120rpm, 搅拌时间 5min, 离心速度 4000rpm。 取部分澄清油蒸馏得到净化沥青, 澄清 油及净化沥青分析见表 1-3。 剩余澄清油用蒸馏装置分离出水和一段轻油, 正辛烷, 二段 轻油、 酚油和萘油, 器底组份与一段轻油二段轻油的混合油及外加 轻油以 1 :0.4混合得到 加氢进料油。 加氢精制裂化反应在一套双反应管连续加氢反 应装置上进行, 两个 200ml 反应管可 串、 并联使用, 放在固定的铝块加热炉里, 铝块控制反应管温度, 并共用一套进料系统和 冷却分离系统, 由一台计算机进行自控、监控操作。保护、脱 金属催化剂装第一根反应管, 与装填精制催化剂 A、精制催化剂 B的第二根反应管串联使用进行加氢精制反应 需要加 氢裂化反应时,换成装有 200ml装填裂化催化剂、精制催化剂 B的反应管在装置上独立进 行反应。 来自加氢进料罐的加氢进料油加热至 80Ό经金属滤材过滤后与氢气混合进入装填加 氢保护催化剂、 表 1-4所示脱金属催化剂 TJS1的反应器进一步脱除杂质和金属离子。 然 后进入上部装填表 1-4所示加氢精制催化剂 JZ1、 下部装填表 1-4所示精制催化剂 JZ6的 反应器进行加氢精制, 加氢精制反应器的操作条件为总压 16.0MPa, 平均反应温度为 350°C , 液时体积空速 1.0hr , 氢油体积比为 1000:1。 以精制油蒸馏得到的 300〜36(TC馏份为原料进入上部装填表 1-5所示裂化催化剂 LH1 及下部精制催化剂 JZ6 的加氢裂化反应器在操作条件为总压 16.0MPa, 平均反应温度为 370°C , 液时体积空速 l.Oh 1 , 氢油体积比为 1000:1加氢裂化反应得到裂化油。 加氢精制油与裂化油按 1:0.35混合经金属滤材过滤, 过滤器的操作压力 0.2MPa (表 压), 温度 200°C, 过滤器绝对精度 10μηι。滤后油在常压蒸馏装置上分离出水份 < 120°C 石脑油组份、 120〜180°C汽油调和组份、 180〜300'C柴油调和组份后进入减压蒸馏装置, 沸点范围在 300〜360°C的馏份作为氢化重质溶剂及加氢裂化 原料, 沸点 >360°C的是氢化 沥青。 镏份油的分析见表 1-6, 氢化重质溶剂分析与表 1-2分析结果一致, 氢化沥青分析 见表 1-7, 氢化沥青红外光谱、 核磁共振分析见图 3B、 图 4。 表 1-7所示氢化沥青用吡啶在索氏抽提器抽提, 得到萃取油用旋转蒸发仪分离出萃取 氢化沥青, 分析结果见表 1-8。 萃取氢化沥青进入反应釜经热缩聚后得到中间 相沥青产品,反应釜顶部油气经冷却分 离洗涤后放空, 分离后的闪蒸油作为裂化进料组份。反应釜合 成条件: 常压, 温度 430°C, 反应时间 300分钟, 搅拌速度 30rpm及底部氮气吹扫。 分离后的闪蒸油分析见表 1-9, 中 间相沥青分析见表 1-10。 表 1-1 : 煤焦油基础分析

表 1-2 S ί七重质溶 ϋ分析

密度 动力粘度

C H 0 N S 馏程 (¾20°C (¾20。C

g/cm 3 CP wt% wt% wt% wt% wt%

300〜360°C 0.99 55.7 89.17 9.5 0.51 0.70 0.12

气质联用分析

典型的分子结

表 1-3澄清油及净化沥青性质

表 1-4脱金属、 精制催化剂性质

表 1-5裂化催化剂性质

表 1-6加氢精制油馏份分听

HS: 庚垸可溶物; m-Ts: 庚垸不溶-甲苯可溶物;

TI-PS : 甲苯不溶-吡啶可溶物; PI-QS: 吡啶不溶 -喹啉可溶物 QI: 喹啉不溶物 表 1-8氢化沥青与萃取后沥青分子量及族组成分析

表 1-9合成釜闪蒸油分析

表 1-10中间相沥青性质分析

实施例 2

以表 1-1所示高温煤焦油用轻油、 洗油、 蒽油在实施例 1加氢精制条件得到的加氢轻 油、 加氢洗油、 加氢蒽油脱盐脱 QI得到澄清油, 见表 2-1。 表 2-1煤焦油氢化馏份得到的澄清油分析

以上述澄清油蒸馏分离<230 镏份得到塔底组份①②③分别与轻油、 < 120°C加氢熘 份油、 氢化重质溶剂以表 2-2条件调配得到加氢进料油④⑤⑥, 由于澄清油蒸馏塔底组份 ③富含氢化重质溶剂, 所以加氢原料油可以不配氢化重质溶剂。

由加氢进料油④⑤分别按实施例一所述步骤用 保护催化剂及表 1-4所示脱金属催化剂 TJS2, 精制催化剂 JZ3、 JZ7在压力 18MPa, 反应器上部 350〜355°C, 反应器下部 340〜 345'C体积空速 O.Shr— 1 , 氢油比 800:1条件下加氢反应分别进行加氢精制得到精 油①②。 由加氢进料油⑥按实施例一所述步骤用保护催 化剂及表 1-4所示脱金属催化剂 TJS2, 精制催化剂 JZ4、 JZ7在压力 14MPa, 反应器上部 385〜390°C, 反应器下部 375〜380°C体 积空速 1.2111 氢油比 1200: 1条件下进行加氢精制反应得到精制油③。 精制油①②蒸馏得到 300〜360°C熘份按实施例一所述步骤用表 1-5 所示裂化催化剂 LH2在压力 18MPa, 反应器上部 350〜355'C, 反应器下部 340〜345°C, 体积空速 Ο.δΐιτ· 1 , 氢油比 800: 1条件下分别进行加氢裂化得到裂化油①②。 精制油③蒸馏得到 300〜360'C馏份按实施例一所述步骤用表 1-5所示裂化催化剂 LH3 在压力 14MPa, 反应器上部 385〜390°C, 反应器下部 370〜375°C, 体积空速 1.5h^, 氢 油比 1800:1条件下进行加氢裂化得到裂化油③。 加氢精制油①与裂化油①、加氢精制油②与裂 化油②、加氢精制油③与裂化油③按实 施例一所述步骤混合、 过滤、 蒸熘得到表 2-3所示氢化沥青①②③。 表 2-3氢化沥青分子量及族组成分析

氢化沥青①②未经萃取直接在压力 O.OlMPa (绝压),温度 410°C,反应时间 600分钟, 搅拌速度 20rpm, 氮气底部吹扫条件下合成中间相沥青①②, 中间相沥青分析见表 2-4。 氢化沥青③未经萃取直接在压力 l.OMPa (绝压), 温度 440°C, 反应时间 180分钟, 搅拌速度 40rpm, 氢气底部吹扫条件下合成中间相沥青③, 中间相沥青分析见表 2-4。 表 2-4中间相沥青性质分析

实施例 3

以表 1-1煤焦油为原料, 分别表 1-6所示加氢馏份油为芳族溶剂, 以表 3-1为条件得 到澄清油。

表 3-1煤焦油氢化馏份油得到的澄清油分析

上述澄清油以实施例 1催化剂加氢, 加氢精制反应器的操作条件为总压 16.0MPa, 平 均反应温度为 380Ό , 液时体积空速 l.Ohr , 氢油体积比为 1000:1精制得到加氢精制油, 精制油经 ΙΟμηι砂氏滤斗抽滤, 蒸馏分别得到氢化沥青①②③, 见表 3-2。 表 3-2氢化沥青分子量及族组成分析

氢化沥青进入反应釜经热缩聚后得到中间相沥 青产品,反应釜顶部油气经冷却分离洗 涤后放空, 分离后的闪蒸油作为裂化进料组份。 反应釜合成条件: 常压, 温度 43(TC, 反 应时间 300分钟, 搅拌速度 30rpm及顶部氮气吹扫得到表 3-3所示中间相沥青①②③。 表 3-3中间相沥青性质分析

所制备的中间相沥青先用环氧树脂包覆固定, 研磨和抛光后用偏光显微镜拍照得到图

5A和图 5B。