Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
REDUCTION OF CARBOXILIC ESTERS
Document Type and Number:
WIPO Patent Application WO/1988/008415
Kind Code:
A1
Abstract:
A method for producing a compound of formula (I) (wherein R1 and R2 each stand for a lower alkyl group; n denotes an integer of 0 to 21; X stands for hydrogen atom or an optionally protected hydroxyl group; and Y stands for an optionally protected hydroxyl group), which comprises by reducing an ester compound of formula (II) (wherein R1, R2, n, X and Y are of the same meaning as defined above, and R3 stands for a lower alkyl group) with a mixture of sodium borohydride and aluminum chloride, gives the desired compound in a high yield, and is advantageous from the industrial point of view.

Inventors:
OKADA TAIITI (JP)
ABE YASUAKI (JP)
Application Number:
PCT/JP1988/000406
Publication Date:
November 03, 1988
Filing Date:
April 26, 1988
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
TAKEDA CHEMICAL INDUSTRIES LTD (JP)
International Classes:
C07C41/01; C07C41/26; C07C43/20; C07C43/23; C07C45/00; C07C45/29; C07C46/02; C07C46/04; C07C46/06; C07C50/28; C07C67/00; C25B3/23; A61K; C07C; (IPC1-7): C07C43/23; C07C50/28; C07C41/26
Foreign References:
FR2269333A11975-11-28
Other References:
Chemical Abstracts, volume 86, no. 19, 9 May 1977, (Columbus, Ohio, US), D.O. Taube et al.: "Difril. Study of methods for the reduction of ethyl 3,3-diphenylpropionate", see page 517
Download PDF:
Claims:
CLAIMS
1. A method for producing a compound of the formula: CI OII [wherein R 1 and R2 each stand for a lower alkyl group;. n denotes an integer of 0 to 21; X stands for hydrogen atom or an optionally protected hydroxyl group; and Y stands for an optionally protected hydroxyl group] , which comprises by reducing an ester compound of the formula: [wherein R 1, R2, n, X and Y are of the same meaning a$ defined above, and R 3 stands for a lower alkyl group] ' with a mixture of sodium borohydride and aluminum chloride.
2. A method as claimed in claim 1, wherein sodium borohydride is used in an amount of not less than 1.5 mole per mole of the starting compound.
3. A method as claimed in claim 1, wherein sodium boro¬ hydride is used in an amount of about 3 moles per mole of aluminum chloride.
4. A method as claimed in claim 1, wherein the reaction is carried out in the presence of water.
5. A method as claimed in claim 4, wherein water is used in an amount of 0.1 to 1.7 mole per mole of aluminum chloride.
6. A method as claimed in claim 1, wherein the desired compound is oxidized by an oxidizing agent to give a compound of the formula: n CI OII wherein R 1 and R2 each stand for a lower alkyl group and n denotes an integer of 0 to 21.
7. A method as claimed in claim 6, wherein the oxidizing agent is nitrosodisulfonic acid dialkali metal salt obtained by subjecting an aqueous solution of hydroxylaminedisulfonic acid dialkali metal salt to electrolytic oxidation.
Description:
- l - SPECIFICATION

REDUCTION OF CARBOXYLIC ESTERS

This invention relates to a method for producing 10-( 2-hydroxy-3 , 4-dimethoxy-6-methylphenyl)decan-l-ol and its analogous compounds useful as intermediates for the synthesis of medicines.

6-( 10-Hydroxydecyl)-2,3-dimethoxy-5-methyl-l,4- benzoquinone(idebenone) has been known as a compound having specific pharmacological activities such as, among others, immunopotentiating activity, smooth muscle relaxant action, enzyme-activation action in impaired tissues, especially in heart muscle and cerebral tissue. And, as a method of producing idebe- none with an industrial advantage, the following method (Toku-Kai-Sho 59-39855) has been known: namely,

(Step 1) - alkyl 9-( 2-hydroxy-3 ,4-dimethoxy-6-methyl- benzoyl)nonanoate is subjected to reduction to give alkyl 10-( 2-hydroxy-3 , 4-dimethoxy-6-methyl- phenyl)decanoate, (Step 2) - this compound is subjected to further reduction with sodium bis( 2-methoxyethoxy) aluminum hydride(Vitride) to- give 10-( 2-hydroxy-3 , 4-dimetho- xy-6-methylphenyl)decan-l-ol, and (Step 3) - this compound is subjected to oxidation to -afford idebenone.

Sodium bis( 2-methoxyethoxy)aluminum hydride employed in the above Step 2 has some problems in respect of its safety, because this compound readily reacts with the moisture in air to generate hydrogen causing ignition, and, besides, this compound is a specific reagent and has a difficult point in its stable supply. In consideration of these points, the present inventors have conducted various investigations and found that, by using a mixture of sodium borohyd- ride and aluminum chloride as the reducing agent,

10-( 2-hyάroxy-3 , 4-dimethoxy-6-methylphenyl)decan-l-ol

and its analogous compounds can be obtained in a good yield with an industrial advantage.

The present invention relates to a method of producing a compound of the formula:

[wherein R 1 and R2 each stand for a lower alkyl group; n denotes an integer of 0 to 21; X stands for hydrogen atom or an optionally protected hydroxyl group; and Y stands for an optionally protected hydroxyl group] , which comprises reducing an ester compound of the formula:

[wherein R , R , n, X and Y are of the same meaning as

3 defined above, and R stands for a lower alkyl group] with a mixture of sodium borohydride and aluminum chloride. Examples of the lower alkyl group shown by R 1, R2 and R in the above formulas [I] and [II] include those having 1 to 4 carbon atoms such as methyl, ethyl, pro- pyl, etc., and examples of the optionally protected hydroxyl group shown by X and Y include other than free hydroxyl group, for example, a lower alkoxy group having 1 to 3 carbon atoms (e.g. methoxy, ethoxy, etc.) , a lower aliphatic carboxylic acyloxy group having 2 to 4 carbon atoms (e.g. acetoxy, propionyloxy, etc.), silyloxy group having 3 to 6 carbon atoms ( trimethylsilyloxy, etc. ) ,

methoxyirethyloxy, etc. The n denotes an integer of 0 to 21, and preferably 8 to 12.

The reduction reaction of the present invention is advantageously conducted in a proper solvent. As the solvent, any one which is capable of dissolving the starting compound [I] and does not hamper the reduction reaction can be employed. Practical examples of such solvent include ethers such as diethyl ether, tetrahy- drofuran, dioxane, etc., and aromatic hydrocarbons such as benzene, toluene, xylene, etc. The reaction tempe¬ ratures usually range from 0°C to 140°C, preferably 10°C to 40°C-. The amount of sodium borohydride is usually, relative to the starting compound [I], not 1.5 to 10 times as much moles, preferably about 2 to 6 times as much moles. Aluminum chloride is preferably employed in such an amount that the molar ratio of aluminum chloride to sodium borohydride is about 1 : 3.

This reaction will bring about more preferable result by allowing a little volume of water to be present in the reaction system. More concretely to state, , the presence of water serves to suppress the formation of an undesired side product, i.e., a com¬ pound of the formula [II] wherein one or both of R and 2 R are hydrogen, thus the yield of the desired compound

[II] being further improved. The volume of water to be used ranges usually from 0.1 to 1.7 times as much moles, preferably 0.2 to 1.5 times as much moles relative to the aluir-inum chloride. When an excess amount of water is used, the desired compound cannot be obtained in a high yield and the reaction time, becomes long.

The object compound [II] of the present invention can be led to a compound o.f the formula:

[wherein each symbol is of the same meaning as defined above], without giving an influence upon alcoholic hydroxy, by using an oxidizing agent capable of conver- ting phenol into quinone, for example silver oxide, ferric chloride, manganese dioxide, nitrosodisulfonate, etc. Among them, nitrosodisulfonic acid dialkali metal salt obtained by subjecting an aqueous solution of hydroxylaminedisulfonic acid dialkali metal salt to electrolytic oxidation is preferable.

The following is an explanation of the oxidation reaction of the compound [II] by using, as an oxidizing agent, nitrosodisulfonic acid dialkali metal salt obtained by subjecting an aqueous solution of hydro- xylaminediΞulfonic acid dialkali metal salt to electro¬ lytic oxidation.

The dialkali metal salt of hydroxylaminedisulfonic acid is exemplified by disodium salt of hydroxylamine¬ disulfonic acid and dipotassiu salt of hydroxylamine- disulfonic acid. While, as the dialkali metal salt of nitrosodisulfonic acid, are exemplified disolium salt of nitrosodisulfonic acid and dipotassium salt of nitrosodisulfonic acid, disodium salt of nitrosodisul¬ fonic acid is preferable. The oxidation of the compound [II] is conducted by dissolving the compound [II] in a water-miscible solvent such as me hanol, ethanol, dioxane, tetrahydro- furan, etc., then adding thereto a dialkali metal salt of nitrosodisulfonic acid. The amount of the dialkali metal salt of nitrosodisulfonic acid employed in the method of the present invention is, stoichiometrically,

3 -

2.0 times ol. relative to the compound [II], but, in taking the stability of dialkali metal salt of nitro¬ sodisulfonic acid into consideration, it is usually 2.6 times mol. or more, preferably 3.0 times mol. or more. The reaction temperature ranges from 20°C to 70°C, preferably about 50°C. When the temperature is too low, the reaction proceeds slowly, and, when the temperature is high, decomposition of the dialkali metal salt of nitrosodisulfonic acid is promoted and undesirable side-reactions are apt to occur, thus being not preferable. The reaction time varies with the concentration of the starting compound [II] , he solvent employed, the amount of the dialkali metal salt of nitrosodisulfonic acid, the reaction temperature, etc., but, usually, when the starting compound is completely consumes, the reaction is terminated. For example, by means of thin-layer chromatography, high performance liquid chromatography, gas chromatography, etc., decrease of the starting material is traced with the passage of time, and when the starting material is not detected any more, the reaction is terminated. In the case of conducting the reaction at 50°C, the reaction usually completes within two hours . The aqueous solution of the dialkali metal salt of nitrosodisulfo- nic acid employed as an oxidizing agent can be obtained by subjecting an aqueous solution of a dialkali metal salt of hydroxylaminedisulfonic acid to electrolytic oxidation which is conducted in a conventional electro¬ chemical cell. This electrochemical cell is optionally equipped with a separator or diaphragm. In general, use of a filter-press type electrochemical cell equip¬ ped with cation-exchange membrane is preferable. The heat generating from the reaction can be suppressed by controlling the rise of cell voltage by having the electrode gap to be narrow and, besides, by cooling outside both anolyte and catholyte circulated through

both chambers with a high speed. The anode and the cathode are prepared from any material commonly used as electrodes in the field of electrochemistry, for example, carbon, platinum, stainless steel, palladium, nickel, nickel alloy, etc. In general, use of stain¬ less steel mesh electrode is preferable. The electro¬ lytic cell can be equipped with a stirring device, and it is also possible to circulate the reaction mixture by the use of a pump. The . electrolytic oxidation can be conducted by applying a voltage of 0.5 to 50 volts to an aqueous solution containing dialkali metal salt of hydroxyl¬ aminedisulfonic acid. In general, the reaction is preferably conducted by using 2 to 20 volts. The electric current passing through the solution is of a current density up to 50 ampere per square decimeter. In general, it is preferable to use a current density of 2 to 20 ampere per square decimeter. For carrying out the electrolytic oxidation more effectively, it is possible to add a conventional electrolyte to the aqueous solution. Examples of such an electrolyte include sodium hydroxide, sodium acetate, sodium carbonate, sodium hydrogen carbonate, sodium phosphate, sodium chloride, etc. In general, the amount of an electrolyte to be added is preferably in the range of from 0.1 to 30 weight % relative to the aqueous solution. The aqueous solution to be subjected to electrolytic oxidation contains, in general, dialkali metal salt of hydroxylaminedisulfonic acid at a concentration of at least 0.1 mol., preferably 0.1 mol. to 2 mol., relative to one liter of the solution. The electrolytic oxida¬ tion can be carried out at temperature ranging from -15°C to 50°C. In general, this reaction is preferably conducted at temperature ranging from 0°C to 35°C. The electrolytic oxidation can be carried out for at least 0.5 hour or a longer period of time. In general, it is

preferable to conduct the oxidation for one to 10 hours.

At the time of starting the electrolytic oxidation, the pH of an aqueous solution of dialkali metal salt of hydroxylaminedisulfonic acid is adjusted at 10 to 13, preferably around 11.5, to thereby bring the yield of dialkali metal salt of nitrosodisulfonic acid into the highest.

The compound [III] has an immuno-potentiating activity, smooth muscle relaxant action, an enzyme-act- ivation action in brain tissue, etc.

The starting compound [I] in the present invention can be obtained by subjecting a compound represented by the general formula:

[wherein each symbol is of the same meaning as defined above] to reduction by a conventional method, for example, Clemensen reduction using zinc amalgam and hydrochloric acid, Wolff-Kishner reduction of hydra- zone, desulfurative reduction of dithioacetal or- catalytic .reduction.

In the present invention, by using a mixture of sodium borohydride and aluminum chloride, the compound

[I] is subjected to reduction to obtain the compound

[II] in a good yield, and, by adding water to the reaction system, the .object compound [II] ' can be produced in a high yield and with a high purity and, besides, with good-reproducibility.

By the following examples and reference examples, the present invention will be described in more detail. Reference Example 1

To a solution of methyl 9- (2-hydroxy-3,4-dimethoxy-6- methylbenzoyl) nonanoate(2.0 kg) in ethyl acetate ( 101 ) were added 5% palladium carbo (water content:50%) (400 g) and sulfuric acid(10 mi,) . The mixture was stirred for 5 hours at 30°C to 40°C in hydrogen streams (hydrogen pressure: ca.

8.5 kg/cm^G) . The catalyst was filtered off, and the ethyl acetate layer was washed with water(10£) , 5% sodium hydrogen carbonate(10£) and water(lθi) , successively. The ethyl acetate layer was concentrated to obtain 10- (2-hydroxy-3,4- dimethoxy-6-methylphenyl) decanoate (1.8 kg) as an oily product

Infrared absorption spectrum λ m fx axi m cm "1 : 3450 (OH) ,1740 (COOCH

C C0 Nuclear mag -netic resonance sp c ectrum δppm 3 : 1.10 to 1.87

(14H, multiplet,-(CH 2 ) 7-) 2.17 to 2.57 (4H,multiplet, ring CH 2 ,CH 2 C0) , 2.27(3H, singlet, ring CH 3 ) , 3.63 (3H, singlet,COOCH 3 ) , 3.80 (3H, singlet, OCH 3 ) , 3.85(3H, singlet, OCH 3 ) , 5.80(1H, singlet, OH) , 6.27 (1H, singlet, ring H) Example 1

In tetrahydrofur n(l.8£) was dissolved methyl 10-(2- hydroxy-3,4-dimeth.oxy-6-iriethylph.enyl) decanoate(881 g ,2.5 mol. To the solution was added a suspension of sodium borohydride (340 g, 9 mol.) in tetrahydrofura (10.1%) , and the mixture was stirred. To the resulting suspension was added water (75 m , 4.16 mol.) . Aluminum chloride(400 g, 3 mol.) was dissolved in tetrahydrofuran(6.05,) . The solution was added dropwise to the above-mentioned suspension at a given rate in the course of 90 minutes, during which period the inner temperature of the reaction mixture was kept at 25 ± 2°C. Then, the reaction mixture was stirred at the same temperatur for further 30 minutes, which was then cooled to about 15°C. To the reaction mixture was added water(22£) dropwise to cause decomposition, to which was then

added dropwise hydrochloric acid(2.7£) . The mixture was subjected to extraction twice with 9 I each portion of toluene. Then, the toluene layers were combined and washed with a 5% aqueous solution of sodium hydrogen carbonate (4.42, followed by further washing with water (4.4 I) . The toluene layer was concentrated under reduced pressure to obtain 10- (2-hydroxy-3,4-dimethoxy-6-m hylphenyl) decan-l-ol(805 g, 2.48 mol., yield 99.2%) as an oily product. Infrared absorption spectrum.v ^^ cm -1 : around 3400 (OH) Nuclear magnetic resonance spectrum δ C p D pm C 9 : 1.10 to 1.80 (16H, multiplet,-(CH 2 ) 8 -) , 2.22(3H, singlet,CH 3 ) , 2.40 to 2.75 '" (2H, multiplet,CH 2 ) , 8.50 to 8.70 (2H, multiplet, CH 2 ) , 3.80(3H, singlet,0CH 3 ) , 8.84(3H, singlet, OCH 3 ) , 6.25(1H, singlet,ring H) Example 2

Investigation was conducted on the relationship of the volume of water added with the yield of 10- (2-hydroxy-3, 4- dimethoxy-6-methylphenyl) decan-1-ol. In tetrahydrofuran (35.7 m2,) was dissolved methyl 10- (2-hydroxy-3 , 4-dimethoχy- 6-methylphenyl) decanoate (methyl decanoate) (17.3 g, 49.1 mmol. The solution was added to a suspension of sodium borohydride (6.8 g, 80 mmol.) in tetrahydrofuran (214.5 ml) , and the mix¬ ture was stirred. A given volume of water was precisely measure (as described in Table 1) , which was added to this suspension. In tetrahydrofuran (142 ml) was dissolved alumi- num "chloride (8.0 g, 60 mmol..) . The solution was added drop- wise to the above-mentioned suspension at the internal tem¬ perature of 25 ± 2°C taking 90 to 120 minutes. The reaciton mixture was then stirred for 30 minutes while keeping its temperature at 25 ± 2°C. The reaction mixture was then coole to 15 ± 2°C, to which was added dropwise water (446 mil) . To the mixture was added dropwise hydrochloric acid(53.5 ml ) gradually, during which time the temperature of the reaction mixture was kept at temperatures not exceeding 20°C. The reaction mixture was then subjected to extraction twice with 178.5 ml each portion of toluene. The toluene layers were

combined and washed twice with water (89.5 i) . The toluene layer was concentrated under reduced pressure to obtain 10- (2-hydroxy-3, 4-dimethoxy-6-methylphenyl) decan-1-ol (decanol compound) as an oily product. The table 1 shows the rela¬ tionship of the volume of water added with the yield of the decanol compound and with the amount of di-OH compound pro¬ duced. Table 1 Relationship of the volume of water added with the yield of the decanol and with the amount of di-OH produced

Volume of water Yield of decanol Yield of di- 0H 2) ! added compound co pound

No. mi molar,, ratio (%) (%)

1 0 0.0 94.2 9.2

2 0 0.0 95.4 6.9

3 0.8 0.74 96.9 3.3

4 0.8 0.74 98.2 2.8

5 1.0 0.93 98.3 1.8 !

6 1.0 0.93 98.3 2.7

7 1.5 1.39 99.2 0.6

8 1.5 1.39 99.2 1.4

9 1.8 1.67 99.0 1.2

10 1.8 1.67 98.7 1.7

11 2.0 1.85 97.6 0.5

12 2.0 1.85 90.4 0.0

13 2.5 2.31 85.3 0.0

14 2.5 2.31 90.6 0.0

Note 1)

Molar ratio = Number of moles of water added

Number of moles of .aluminum chloride Note 2)

Yi .eld of di.-OH comp peak area of di-OH compound „ c ound = —p-e—ak, area of -—d-ecanol com -pound x

di-OH compound : 10- (2,3-dihydroxy-4-methoxy-6-methylphenyl) decan-1-ol

Reference Example 2

Synthesis. of an aqueous solution of disodium salt of hydroxylaminedisulfonic acid

In water (7.51 ) was dissolved sodium nitrit (1875 g) , to which was added dropwise a 35w/w% aqueous solution of sodium hydrogen sulfite (11.52,) , while maintairiing the temperature of the solution at 0°C or below. To the mixture was then added dropwise acetic acid(2,860 rρ.2,) at temperatures not exceeding 5°C, followed by stirring for 90 minutes at 5°C or below. To the resultant was then added dropwise a 30w/w% aqueous solution of caustic soda(3,125 m2,) at 10°C or below, followe by dropwise addition of a 25w/w% aqueous solution of sodium carbonate (20 ) to obtain an aqueous solution of disodium sal of hydroxylaminedisulfonic acid capable of being subjected to immediate electrolytic oxidation. The yield was about 84%. Reference Example 3

Synthesis of an aqueous soltuion of disodium salt of nitrosodisulfonic acid by electrolytic oxidation

Monopolar, tao-αarpartment type and filter press type electrochemica cell (active electrode area: 4.5 dtrr/cell x 2 cells) was charged with a aqueous solution of disodium salt of hydroxylaminedisulfonic acid (6 to 8 as the anolyte and with a 10w/w% aqueous solution of sodium carbonate (6 to 8 ) as the catholyte, then circulation was conducted by means of a pump. By application of an electric current for 2 to 3 hours under given electrolytic conditions (current density: 8A/dm 2 , circulation linear velocity: 10.4cm/ sec, temperature: 15°C) , an aqueous solution of disodium nitrosodisulfonate was obtained in a yield of 90% or higher. Reference Examples 4 to 7

In methanol (5.42,) was dissolved 10- (2-hydroxy-3 , 4-dimeth- oxy-6-methylphenyl) decan-1-ol (271 g) , to which was added an aqueous solution of an aqueous solution of disodium nitroso- disulfonate (6.1 , content 0.359 mol./J) synthesized by means of electrolytic oxidation. The mixture was stirred for two hours while keeping the temperatures at 50±2°C. After con-

firmation of disappearance of the starting material by thin- layer chromatography, water(8.62.) was added to the reaction mixture, followed by extraction twice with toluene (5.52, and 2.72,) . The toluene layers were combined and washed with water. The toluene layer was concentrated under reduced pressure to obtain a crude product, 6- (10-hydroxydecyl) - 2,3-dimethoxy-5-methy1-1,4-benzoquinone (288g, content 94.8%, yield 96.9%) . This crude product(20 g) was recrystallized from a mixture of toluene (60 m.2,) and n-hexane(180 mil) . The crystals were dissolved in toluene(60 mX) , and the solution was allowed to pass through a precoated layer of activated alumina(30 g) . The filtrate was concentrated under reduced pressure, and the concentrate was recrystallized again from a mixture of toluene(55 ml) and n-hexane(165 m2») . The crys- tals-were further recrystallized from 50% ethanol(108 mil)-, followed by drying to obtain 6- (10-hydroxydecyl) - * 2,3-dimeth- oxy-5-methyl-1,4-benzoquinone(16.2 g) as orange-yellow crys¬ tals, m.p.54.0°C. Infrared absorption spectrum v ^ cm "1 : 3550 (OH) , 1660, 1650, 1610 (1, 4-benzoquinone)

Nuclear magnetic resonance spectrum δ n nrn : ■- ■ -■ ~ ° 1-8 (16H, multiplet,-(CH 2 ) a-) , 2.00 (3H,singlet,CH 3 ) , 2.43 (2H,triplet J=7Hz,CH 2 ) , 3.63 (2H,triplet, =6Hz,CH 2 OH) , 3.97 (6H,singlet, 0CH 3 ) Examples using an aqueous solution of disodium nitroso- disulfonate synthesized by means of electrolytic oxidation were described in Table 2 altogether.

prepared by electrolytic oxidation

1 2

Amount Charged Reaction Cond

Example itions 2

1 3 CH 3 OH

No. Temperature Time Yield Yield

( g ) (mol/2,) (2) (°C) (hr) ( g ) (%)

4 271 2.41/6.7 5.4 48-53 2.0 273 96.9

5 262 2.32/6.7 5.2 48-53 2.0 266 97.3

6 308 2.96/7.6 6.1 48-52 2.0 318 98.9

7 372 3.40/7.6 7.6 48-50 2.0 380 98.0

- iΨ

Reference Examples 8 to 10

In methanol(1102.) was dissolved 10- (2-hydroxy-3, 4-dimeth- oxy-6-methylphenyl) decan-1-ol(6.84 kg) . To this solution were added sodium acetate(27.4 kg) and water(1102,) . To the mixture was then added dipotassium nitrosodisulfonate(23.5 kg, content 69.9%) , which was stirred at 50±3°C for 3 hours. After confirming disappearance of the starting material by means of thin-layer chromatography, water(550£) was added to the mixture, which was stirred at 10°C or below for 30 minute or longer, then precipitaitng crystals were separated by centrifuge. Wet crystals thus collected were dissolved in ethyl acetate (402,) , followed by washing with water (25 ,)-; The ethyl acetate layer was concentrated under reduced pres¬ sure to obtain a crude product 6- (10-hydroxydecyl) -2, 3-dimeth oxy-5-meth l-l, 4-benzoquinone (6.70 kg, yield 93.9%) . Referenc examples using dipotassium nitrosodisulfonate(Fremy's salt) were described in * Table 3 altogether.

Table 3 Oxidation of

1 2

Amount Charged Reaction Conditions 2

Reference

Example 1 1) CH 3 C0 2 Na CH 3 OH H 2 0 Temperature Time Yield Yield

No.

(kg) (kg) (kg) ( I ) U) (°C) (hr) (kg) (%)

6.84 16.4 27.4 110 110 48-52 3.0 6.70 93.9

7.57 30.3 120 120 48-51 3.0 7.22 91.4

10 10.03 24.0 40.0 160 160 47-52 3.0 9.71 93.5

1) Meaning substantial amount charged (^apparent amount charged x content)