Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
REFRIGERATOR WITH PRESSURE EQUALISATION VALVE
Document Type and Number:
WIPO Patent Application WO/2008/025637
Kind Code:
A2
Abstract:
The invention relates to a refrigerator comprising a housing with a chassis (1) and a door (2), enclosing a chilled interior (3). A pressure equalisation valve (7) extends through a wall of the housing (1, 2), in order to permit a flow of ambient air into the interior (3) and to block an outflow of air from the interior (3). A through hole (15) permitting flow in two directions is formed in a wall of the housing, parallel to the pressure equalisation valve (7), the flow of which is less than the pressure equalisation valve in the through flow direction and greater than the leakage flow value of the pressure equalisation valve (7) in the blocked direction.

Inventors:
DIEBOLD JUERGEN (DE)
LAIBLE KARL-FRIEDRICH (DE)
MALISI MICHAELA (DE)
Application Number:
PCT/EP2007/057979
Publication Date:
March 06, 2008
Filing Date:
August 01, 2007
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BSH BOSCH SIEMENS HAUSGERAETE (DE)
DIEBOLD JUERGEN (DE)
LAIBLE KARL-FRIEDRICH (DE)
MALISI MICHAELA (DE)
International Classes:
F25D17/04
Foreign References:
US3167931A1965-02-02
DE10233216A12004-02-12
DE3000202A11980-07-17
Attorney, Agent or Firm:
BSH BOSCH UND SIEMENS HAUSGERÄTE GMBH (München, DE)
Download PDF:
Claims:

Patentansprüche

1. Kältegerät mit einem einen gekühlten Innenraum (3) umgebenden, einen Korpus (1 ) und eine Tür (2) aufweisenden Gehäuse und einem Druckausgleichsventil (7), das sich durch eine Wand des Gehäuses (1 , 2) erstreckt, um einen Zufluss von Luft von der Umgebung in den Innenraum (3) zu ermöglichen und einen Abfluss von Luft aus dem Innenraum (3) zu sperren, dadurch gekennzeichnet, dass parallel zu dem Druckausgleichsventil (7) ein in zwei Richtungen durchlässiger Durchgang (15) in einer Wand des Gehäuses gebildet ist, dessen Leitwert kleiner als der des Druckausgleichsventils in Durchlassrichtung und größer als der Leckleitwert des Druckausgleichsventils (7) in Sperrrichtung ist.

2. Kältegerät nach Anspruch 1 , dadurch gekennzeichnet, dass der Durchgang (15) auf einem gekrümmten Weg durch die Wand verläuft.

3. Kältegerät nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Durchgang (15) in wärmeleitendem Kontakt mit einer Heizung steht.

4. Kältegerät nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass an einer Frontseite (5) des Korpus (1 ) die Heizung angebracht ist und dass der Durchgang (15) in einem von der Heizung beheizten Bereich des Gehäuses (1 , 2) verläuft.

5. Kältegerät nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass ein einen Spalt zwischen Tür (2) und Korpus (1 ) abdichtendes Dichtprofil (4) in einer Nut (19) der Tür (2) verankert ist und dass der Durchgang (15) sich zwischen den

Wänden der Nut (19) und einem in die Nut (19) eingreifenden Verankerungsabschnitt (17) des Dichtprofils (4) erstreckt.

6. Kältegerät nach Anspruch 5, dadurch gekennzeichnet, dass der Durchgang (15) wenigstens einen in Längsrichtung der Nut verlaufenden Abschnitt (31 ; 32) umfasst.

7. Kältegerät nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass in Seitenwände der Nut (19) jeweils eine quer zur Längsrichtung der Nut (19) ausgerichtete Rille (33, 34) eingetieft ist.

8. Kältegerät nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass die Nut (19) durch eine Rippe (20) quergeteilt ist, die in einen Längskanal der Dichtung

(4) eingreift, und dass die Rippe (20) lokal unterbrochen ist, um den Durchgang (30) zu bilden.

9. Kältegerät nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass wenigstens ein Ende des Durchgangs (15) an einer Ecke der Tür (2) angeordnet ist.

Description:

Kältegerät mit Druckausgleichsventil

Die vorliegende Erfindung betrifft ein Kältegerät wie etwa einen Kühl- oder Gefrierschrank mit einem Druckausgleichventil, das dazu dient, die Entstehung eines Unterdrucks im Innenraum des Kältegerätes zu verhindern.

Bei jedem öffnen der Tür eines Kältegerätes gelangt warme Luft in dessen Innenraum, die sich nach dem Schließen der Tür darin abkühlt und einen Unterdruck erzeugt, durch den die Tür gegen die Frontseite des Korpus gesaugt wird. Dieser Unterdruck führt dazu, dass die Tür nach dem Schließen so lange sehr schwer wieder zu öffnen ist, bis der Druck zwischen Innenraum und Umgebung wieder ausgeglichen ist. Es kommt zwar nach längerer Zeit stets wieder zu einem Druckausgleich, da die herkömmlicherweise zwischen der Tür und der Frontseite des Korpus des Kältegerätes angebrachte Dichtung nicht vollkommen luftdicht schließt, doch ist man im Allgemeinen bestrebt, die Leckrate dieser Dichtung möglichst gering zu halten, da Luft, die über Lecks der Dichtung zwischen dem Innenraum und der Umgebung ausgetauscht wird, auch stets zu einem unerwünschten Eintrag von Wärme und Feuchtigkeit in den Innenraum führt. Je präziser das Kältegerät verarbeitet ist und um so kleiner folglich die Leckrate ist, um so länger hält der Unterdruck nach dem Schließen der Tür an.

Um das Problem zu lösen, sind diverse Türöffnungshilfemechanismen vorgeschlagen worden, die über einen Hebelmechanismus oder dergleichen eine von einem Benutzer zum öffnen der Tür auf einen Türgriff ausgeübte Zugkraft verstärken, um die Tür entgegen einem eventuell im Innenraum herrschenden Unterdruck vom Korpus abzuspreizen.

Derartige Türöffnungsmechanismen umfassen notwendigerweise bewegliche Teile, die im Betrieb beträchtlichen Kräften ausgesetzt sind, so dass es zu Verschleiß und Störungen kommen kann.

Um die Tür jederzeit leicht öffnen zu können, ist ferner vorgeschlagen worden, in der Gehäusewand eines solchen Gerätes ein Druckausgleichsventil anzubringen, das im Falle von im Innenraum herrschendem Unterdruck Luft von außen nach innen nachfließen

lässt und das sperrt, sobald der Druck zwischen der Umgebung und dem Innenraum ausgeglichen ist, so dass ein unkontrollierter Eintrag von Wärme und Feuchtigkeit in den Innenraum ausgeschlossen ist.

In der Praxis hat sich gezeigt, dass ein solches Druckausgleichsventil dazu neigt, im Laufe des Betriebs des Kältegerätes festzufrieren, so dass ein Druckausgleich über das Ventil nicht mehr stattfindet.

Aufgabe der Erfindung ist daher, ein Kältegerät mit einem Druckausgleichsventil zwischen Innenraum und Umgebung zu schaffen, bei dem die Gefahr des Festfrierens des Druckausgleichsventils beseitigt oder wenigstens vermindert ist.

Die Aufgabe wird dadurch gelöst, dass parallel zu dem Druckausgleichventil ein in zwei Richtungen durchlässiger Durchgang in einer Wand des Gehäuses gebildet ist, dessen Leitwert kleiner als der des Druckausgleichsventils in dessen Durchlassrichtung, aber größer als Leckleitwert des Druckausgleichsventils in seiner Sperrrichtung ist.

Indem der Leitwert des Durchganges ausreichend niedrig gewählt ist, ist sichergestellt, dass es über den Durchgang nicht zu einem wesentlichen Luftaustausch zwischen der Umgebung und dem Innenraum des Kältegerätes kommt, durch den letzterer uner- wünscht mit Wärme und Feuchtigkeit belastet wird. Andererseits ermöglicht der Durchgang, dass Luftflüsse mit niedriger Strömungsrate, die durch die periodische Abkühlung und Erwärmung des Innenraums aufgrund des intermittierenden Betriebs einer Kältemaschine verursacht werden, über den Durchgang und nicht über das Ausgleichsventil fließen. Es hat sich nämlich überraschenderweise gezeigt, dass das Zufrieren des Druckausgleichsventils in der Regel nicht auf Luftströme zurückgeht, die jeweils nach dem Schließen der Tür durch das Druckausgleichsventil fließen, sondern dass hierfür wesentlich langsamere Luftströme maßgeblich sind. Die Temperatur des Innenraumes des Kältegerätes ist, auch wenn die Tür geschlossen bleibt, nicht exakt konstant, sondern sie schwankt periodisch, und jede Abkühlung ist verbunden mit einem Zustrom von Luft in den Innenraum, während bei einer Erwärmung Luft abfließt, d.h. es kann bildhaft von einem „Einatmen" und „Ausatmen" des Kältegeräts gesprochen werden. Während bei einem Druckausgleich nach Türschließen die Luft zügig durch das Druckausgleichsventil strömt und darin enthaltene Feuchtigkeit kaum Gelegenheit hat,

sich an dem Ventil abzusetzen, ist der Zustrom beim Einatmen erheblich langsamer, so dass die zuströmende Luft sich bereits im Druckausgleichsventil abkühlt und ihre Feuchtigkeit sich darin niederschlägt, mit der Folge, dass das Ventil seine Beweglickeit verliert und verstopft.

Indem parallel zum Druckausgleichsventil ein enger Durchgang geschaffen wird, muss die "eingeatmete" Luft nicht mehr über das Druckausgleichsventil fließen, und die Gefahr des Zufrierens ist beseitigt. Die Enge des Durchgangs trägt dazu bei, einen unkontrollierten Luftaustausch zwischen dem Innenraum und der Umgebung, der über das Ein- und Ausatmen hinausgeht, zu vermeiden.

Um einen Luftaustausch durch den Durchgang, der über das aufgrund der Temperaturschwankungen des Innenraumes unvermeidliche Maß hinausgeht, nach Möglichkeit zu verhindern, ist ferner bevorzugt, dass der Durchgang auf einem gekrümmten Weg durch die Wand verläuft.

Ein solcher gekrümmter Durchgang kann außerdem wesentlich länger sein, als der Dicke der Wand entspricht, durch die er verläuft, so dass in dem Durchgang eine große Oberfläche zur Verfügung steht, auf der sich Feuchtigkeit aus der eingeatmeten Luft niederschlagen kann. So verringert sich die Wahrscheinlichkeit, dass niedergeschlagene Feuchtigkeit den Querschnitt des Durchgangs ausfüllt und die Luftströmung behindert.

Um ein Festfrieren der Feuchtigkeit in dem Durchgang zu vermeiden, ist es zweckmäßig, dass der Durchgang in einem im Wesentlichen frostfreien Bereich des Gehäuses verläuft. Da herkömmlicherweise häufig an einer Frontseite des Korpus eine Heizung angebracht ist, um ein Festfrieren der Tür am Korpus zu verhindern, ist der Durchgang vorteilhafterweise in einem von dieser Heizung beheizten Bereich des Gehäuses angeordnet.

Wenn in an sich bekannter Weise ein einen Spalt zwischen Tür und Korpus abdichtendes Dichtprofil in einer Nut der Tür verankert ist, erstreckt sich der Durchgang vorteilhafterweise zwischen den Wänden der Nut und einem in die Nut eingreifenden Verankerungsabschnitt des Dichtprofils. Ein solcher Durchgang kann auf einfache Weise und ohne Mehrkosten bei der Herstellung der ohnehin benötigten Nut realisiert werden.

Insbesondere kann der Durchgang bequem geschaffen werden, indem in Seitenwände der Nut jeweils eine quer zur Längsrichtung der Nut ausgerichtete Rille eingetieft wird.

Um die Länge des Durchganges groß zu machen, ist vorzugsweise ein Abschnitt des Durchganges in Längsrichtung der Nut geführt. Dieser Abschnitt kann ohne jeglichen Aufwand geschaffen werden, wenn er einerseits von einer Wand der Nut und andererseits von dem Dichtprofil begrenzt ist.

Wenn am Boden der Nut eine Rippe gebildet ist, die in einen Längskanal der Dichtung eingreift, so ist diese Rippe vorzugsweise lokal unterbrochen, um den Durchgang zu bilden.

Vorzugsweise ist ferner wenigstens ein Ende des Durchganges an einer Ecke der Tür angeordnet, da die Ecken im Allgemeinen die wärmsten Bereiche der Tür sind.

Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen unter Bezugnahme auf die beigefügten Figuren. Es zeigen:

Fig. 1 eine schematische perspektivische Ansicht eines Kältegerätes, an dem die vorliegende Erfindung anwendbar ist;

Fig. 2 einen Schnitt durch ein Druckausgleichsventil;

Fig. 3 eine untere Ecke der Innenwand einer Kältegerätetür gemäß der vorliegenden Erfindung;

Fig. 4 einen Schnitt durch die Innenwand und das daran verankerte Dichtprofil entlang der in Fig. 2 mit IV bezeichneten Ebene;

Fig. 5 einen Schnitt entlang der mit V bezeichneten Ebene der Fig. 2;

Fig. 6 eine perspektivische Ansicht einer Ecke der Innenwand einer Kältegerätetür und eines darin aufgenommenen Dichtprofils gemäß einer zweiten Ausgestaltung der Erfindung; und

Fig. 7 einen Schnitt entlang der mit VII bezeichneten Ebene in Fig. 6.

Fig. 1 ist eine schematische perspektivische Ansicht eines Kältegerätes mit einem Korpus 1 und einer daran angeschlagenen Tür 2, die einen gekühlten Innenraum 3 umschließen. An der dem Korpus 1 zugewandten Innenseite der Tür 2 ist in an sich bekannter Weise eine Magnetdichtung 4 angebracht, die in geschlossener Stellung der Tür 2 an einer Frontseite 5 des Korpus 1 dicht anliegt. Die Frontseite 5 ist beheizt durch eine in der Figur nicht sichtbare, im Inneren des Korpus 1 benachbart zur Frontseite 5 rings um den Innenraum 3 verlaufende Kältemittelleitung, die zwischen den Druckausgang eines Verdichters und einen Verflüssiger geschaltet ist und, während der Verdichter arbeitet, von warmem Kältemittel durchströmt ist.

In einer im unteren Bereich der Tür 2 gebildeten öffnung 6 ist ein Druckausgleichsventil angebracht. Ein Beispiel für eine mögliche Struktur des Druckausgleichsventils ist in Fig. 2 dargestellt, die einen perspektivischen Längsschnitt durch das Druckausgleichsventil 7 zeigt. Zwischen einem Außenblech 9 der Tür 2 und einer aus Kunststoff tiefgezogenen Innenwand 10 erstreckt sich eine schaumdicht an der Innenwand 10 durch eine Bajonettverbindung befestigte Hülse 1 1 . Eine im Inneren der Hülse 1 1 unter Biegespannung gehaltene Membran 12 hat an den Wänden der Hülse 1 1 dicht anliegende Ränder und ist durch eine sich quer durch das Innere der Hülse 1 1 erstreckende Zwischenwand 13 und ein überwurfteil 14 in Position gehalten. Im Falle eines Unterdrucks im Innenraum 3 strömt Luft zwischen den Rändern der Membran 12 und der Hülse 1 1 hindurch, um den Unterdruck auszugleichen; ein überdruck im Innenraum 3 hingegen drückt die Membran 12 gegen die Hülse 1 1 und steigert so die Dichtwirkung des Ventils 7.

Um zu verhindern, dass, wenn sich der Innenraum 3 in einer Betriebsphase des Verdichters abkühlt, Luft von außen langsam durch das Ventil 7 fließt und darin enthaltene Feuchtigkeit am Ventil 7 auskondensiert, ist an der Tür 2 ein zu dem Ventil 7

paralleler, in beide Richtungen durchlässiger Durchgang 15 vorgesehen, von dem zwei Enden in Fig. 3 zu sehen sind.

Fig. 3 ist eine perspektivische Ansicht einer unteren Ecke der Innenwand 10 sowie der an der Innenwand 10 befestigten Magnetdichtung 4. Die Magnetdichtung 4 ist ein flexibles Extrusionsprofil mit einer Mehrzahl von Längskammern, von denen eine ein magnetisches Band 16 enthält, das vorgesehen ist, um die Magnetdichtung 4 fest gegen die ferromagnetische Frontseite 5 des Korpus 1 zu drücken.

An einer von der das Band 16 enthaltenen Kammer abgewandten Rückseite der Magnetdichtung 4 sind zwei Vorsprünge 17, 18 geformt, von denen einer, 17, mit Widerhaken besetzt ist. Die Vorsprünge 17, 18 greifen in eine Nut 19 der Innenwand 10 ein, die durch eine in Längsrichtung der Nut 19 verlaufende Rippe 20 in einen inneren und einen äußeren Abschnitt 21 , 22 unterteilt ist. Die Widerhaken des Vorsprunges 17 sind an Hinterschneidungen des inneren Abschnittes 21 verrastet. Eine sich in Breitenrichtung der Magnetdichtung 4 erstreckende, in den Abschnitt 22 hinein vorgewölbte Querwand 23 ist durch die Verrastung in einer biegebelasteten Stellung gehalten, in welcher sie den Vorsprung 18 in den äußeren Abschnitt 22 der Nut 19 hineingedrückt hält. Ein dünner, flexibler Wandabschnitt 24 der Magnetdichtung 4 ist durch eine Kante des äußeren Abschnittes 22 einwärts geknickt, so dass der Wandabschnitt 24 im Wesentlichen dicht an dieser Kante anliegt. An einem entgegengesetzten Rand der Querwand 23 ist eine Lippe 25 geformt, die durch die Verrastung des Vorsprunges 17 dicht gegen eine an den inneren Abschnitt 21 angrenzende Schulter 26 der Innenwand 10 gedrückt ist. Der Wandabschnitt 24, die Lippe 25 sowie die Widerhaken des Vorsprunges 17 bilden mehrere Dichtlinien zwischen der Innenwand 10 und der Magnetdichtung 4.

Diese Dichtlinien erstrecken sich jedoch nicht über die gesamte Länge der Magnetdichtung 4, sondern sie sind an der gezeigten Ecke der Tür 2 durch einen Durchgang 15 unterbrochen. Der Durchgang 15 ist gebildet, indem am Ort des Zusammentreffens eines horizontalen und eines vertikalen Abschnittes der Nut 19 eine Vertiefung an der Innenwand 10 angezogen ist. In Fig. 4, die einen Schnitt durch die Innenwand 10 und die Magnetdichtung 4 entlang der in Fig. 3 mit IV bezeichneten Ebene zeigt, ist ein äußerer Umriss 28 dieser Vertiefung sichtbar.

Fig. 5 zeigt einen Schnitt entlang der unter 45° gegen die Horizontale geneigten, in Fig. 3 mit V bezeichneten Schnittebene. Die Schnittebene verläuft entlang des Durchganges 15, und es ist zu erkennen, dass entlang dieser Schnittebene weder der Wandabschnitt 24 noch die Widerhaken oder die Lippe 25 die Innenwand 10 berühren. So ist ein Luftaustausch zwischen Innen und Außen unter Umgehung des Druckausgleichsventils 7 möglich, wobei der vielfach seine Richtung wechselnde Verlauf des Durchganges 15 in Art einer Labyrinthdichtung einen freien Luftaustausch zwischen dem Innenraum 3 und der Umgebung verhindert. Da der Durchgang 15 einerseits durch die Frontseite 5 beheizt ist und andererseits Luft, die den Durchgang 15 passiert hat, vor Erreichen des Innenraumes 3 noch einen temperaturausgleichenden Spalt 29 zwischen der Innenwand 10 und der Frontseite 5 passieren muss, besteht keine Gefahr des Verstopfens des Durchganges 15 durch übermäßige Kondensation.

Eine weiterentwickelte Ausgestaltung der Erfindung wird anhand der Figuren 6 und 7 beschrieben. Fig. 6 ist wie Fig. 2 eine perspektivische Ansicht einer Ecke der Innenwand 10, wobei die Nut 19 der Innenwand 10 nur auf einem Teil ihrer Länge mit der Magnetdichtung 4 bestückt gezeigt ist, um einen in der die Abschnitte 21 , 22 der Nut 19 voneinander trennenden Rippe 20 gebildeten Ausschnitt 30 zeigen zu können. Die Querschnitte der Nut 19 und der Magnetdichtung sind die gleichen wie in der Ausgestaltung der Fig. 1 bis 5. Wie anhand des zu Fig. 5 analogen Schnittes der Fig. 7 zu erkennen ist, ist in der Schnittebene dieser Figur der Durchgang 15 durch die Rippe 20 unterbrochen. Wie jedoch anhand von Fig. 4 zu erkennen, gibt es in beiden Abschnitten 21 , 22 der Nut 19 jeweils einerseits von den Wänden der Nut 19 und andererseits von der Magnetdichtung 4 selbst begrenzte Längskanäle 31 , 32, von denen in Höhe der in Fig. 6 gezeigten Ecke der eine 31 über einen äußeren Abschnitt 33 des Durchgangs 15 (siehe Fig. 7) mit der Umgebung und der andere 32 über einen inneren Abschnitt 34 des Durchgangs 15 mit dem Innenraum 3 kommuniziert. Die beiden Längskanäle 31 , 32 stehen miteinander über den Ausschnitt 30 in Verbindung. Indem der Ausschnitt 30 in großer Entfernung von der Ecke angeordnet ist, in der die zwei Abschnitte 33, 34 angeordnet sind, kann die Länge des gesamten Durchganges ohne Weiteres größer gemacht werden als die Kantenlänge der Tür 2. Die große Länge des Durchgangs führt trotz eventuell großem Querschnitt der einzelnen Abschnitte des Durchgangs zu einem niedrigen Leitwert, durch den ein Luftaustausch zwischen Innenraum 3 und Umgebung,

der über das durch Temperaturschwankungen des Innenraums 3 verursachte Maß hinausgeht, zuverlässig unterdrückt wird.