Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
RIGID HIGH POWER AND HIGH SPEED LASING GRID STRUCTURES
Document Type and Number:
WIPO Patent Application WO/2017/019990
Kind Code:
A1
Abstract:
Disclosed herein are various embodiments for stronger and more powerful high speed laser arrays. For example, an apparatus is disclosed that comprises (1) a single laser emitting epitaxial structure that comprises a plurality of laser regions, each laser region of the single laser emitting epitaxial structure being electrically isolated within the single laser emitting epitaxial structure itself relative to the other laser regions of the single laser emitting epitaxial structure, and (2) an electrical waveguide configured to provide current to the laser regions.

Inventors:
JOSEPH JOHN RICHARD (US)
Application Number:
PCT/US2016/044813
Publication Date:
February 02, 2017
Filing Date:
July 29, 2016
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
OPTIPULSE INC (US)
International Classes:
H01S5/022; H01L21/3213; H01S5/183; H01S5/42
Foreign References:
US20100303113A12010-12-02
US20030091084A12003-05-15
US20130272330A12013-10-17
US20040190580A12004-09-30
US5978408A1999-11-02
US20110176567A12011-07-21
Other References:
YOSHIKAWA ET AL.: "High Power VCSEL Devices for Free Space Optical Communications", PROC. OF ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE, vol. 2, 2005, pages 1353 - 58, XP010808832, DOI: 10.1109/ECTC.2005.1441445
See also references of EP 3329562A4
Attorney, Agent or Firm:
VOLK, JR., Benjamin L. et al. (US)
Download PDF:
Claims:
WHAT IS CLAIMED IS:

1. An apparatus comprising:

a single laser emitting epitaxial structure that comprises a plurality of laser regions, each laser region of the single laser emitting epitaxial structure being electrically isolated within the single laser emitting epitaxial structure itself relative to the other laser regions of the single laser emitting epitaxial structure; and

an electrical waveguide configured to provide current to the laser regions.

2. The apparatus of claim 1 wherein the electrical waveguide comprises a plurality of electrical contacts located on a second platform or chip.

3. The apparatus of any of claims 1-2 wherein the single laser emitting epitaxial structure comprises a single vertical cavity surface emitting laser (VCSEL) epitaxial structure.

4. The apparatus of claim 3 wherein the single VCSEL epitaxial structure does not include a plurality of mesas.

5. The apparatus of any of claims 1-4 wherein the single laser emitting epitaxial structure further comprises a plurality of holes extending therethrough, each hole having a layer of oxidation around it, the holes and the oxidation layers being positioned to define and electrically isolate the laser regions.

6. The apparatus of any of claims 1-4 wherein the single laser emitting epitaxial structure further comprises a plurality of conductive regions formed by ion implantation, the ion implantation being positioned to define and electrically isolate the laser regions.

7. The apparatus of any of claims 1-6 further comprising:

a chip on which the single laser emitting epitaxial structure is located; and

a ground region on the chip, wherein the ground region surrounds or almost surrounds the single laser emitting epitaxial structure and is separated from the single laser emitting epitaxial structure by an isolation gap.

8. The apparatus of claim 6 further comprising: a first conductive contact that contacts a plurality of the laser regions in parallel; and a second conductive contact that contacts the ground region.

9. The apparatus of any of claims 1-8 wherein the electrical waveguide is positioned to connect the single laser emitting epitaxial structure to a signal pad located on the electrical waveguide and a ground mesa to a ground pad located on the electrical waveguide.

10. The apparatus of any of claims 1-9 further comprising:

an array of microlenses arranged to direct beams to or from a single location.

11. The apparatus of any of claims 1-9 wherein a single lens is connected to the laser emitting grid structure so that the positions of the laser emissions are directed to or from a single or multiple locations.

12. The apparatus of any of claims 1-9 wherein a diffractive optical element is arranged to direct laser beams from the laser regions so that the positions of the laser emissions are directed to or from a single or multiple locations.

13. The apparatus of any of claims 1-12 further comprising:

a chip on which the single laser emitting epitaxial structure is located; and

a plurality of ground structures on the chip to define a ground region, wherein the ground region surrounds or almost surrounds the single laser emitting epitaxial structure and is separated from the single laser emitting epitaxial structure by an isolation gap.

14. The apparatus of any of claims 1-13 further comprising:

a plurality of the single structures each with multiple lasers all of which are electrically connected to a single pad and all of which are formed on a single chip and all of which share one or more ground structures.

15. The apparatus of any of claims 1-14 further comprising:

a diffractive Bragg Reflector (DBR) for output from epitaxial regions of the single structure, wherein the DBR is completed using dielectric layers located on the back of the laser chip.

16. The apparatus of claim 15 further comprising:

an optical element etched into the back of the laser chip where the reflective completed output mirror of dielectric coatings are located on top of the one or more optical elements.

17. The apparatus of any of claims 15-16 further comprising:

an area outside an output mirror which is angled to reflect the light from any laser in the single grid structure to its neighboring laser aperture to create a phased laser grid structure.

18. The apparatus of any of claims 15-16 further comprising:

an external optical element to complete a cavity on or near the bottom of an external element and use an optical element on the top to direct beams to or from a location. 19. The apparatus of any of claims 1-18 wherein the apparatus is configured as a top emitting laser array.

20. The apparatus of any of claims 1-18 wherein the apparatus is configured as a back emitting laser array.

21. The apparatus of any of claims 1-20 wherein the single laser emitting epitaxial structure and the single ground structure do not include a plurality of mesas.

22. An apparatus comprising:

a single laser emitting epitaxial structure that comprises a plurality of conductive regions and a plurality of non-conductive regions, each of a plurality of the conductive regions defining a laser region of the single laser emitting epitaxial structure, wherein the laser regions of the single laser emitting epitaxial structure are electrically isolated within the single laser emitting epitaxial structure itself relative to each other via the non-conductive regions of the single laser emitting epitaxial structure; and

an electrical waveguide positioned to connect the single laser emitting epitaxial structure to a signal pad located on the electrical waveguide and a ground mesa to a ground pad located on the electrical waveguide.

23. A method comprising:

etching a pattern into a single laser emitting epitaxial structure, the pattern defining a plurality of laser regions within the single laser emitting epitaxial structure;

forming the single laser emitting epitaxial structure with the pattern etched therein into a multi-laser grid array; and

connecting the multi-laser grid array with an electrical waveguide.

24. The method of claim 23 further comprising implanting a plurality of ions into the etched pattern to render portions of the single laser emitting epitaxial structure non- conductive and thereby define the laser regions.

25. The method of claim 23 further comprising oxidizing the single laser emitting epitaxial structure within the pattern etched therein to generate one or more oxidation layers about the etched pattern to render portions of the single laser emitting epitaxial structure non- conductive and thereby define the laser regions.

26. The method of any of claims 23-25 wherein the forming step comprises forming the multi-laser grid array such that the multi-laser grid array does not include a plurality of mesas.

27. A method comprising:

operating the apparatus of any of claims 1-22 such that the apparatus produces a plurality of laser emissions. 28. A method comprising:

making the apparatus of any of claims 1-22.

Description:
Rigid High Power and High Speed Lasing Grid Structures

Cross Reference and Priority Claim to Related Patent Applications:

This patent application claims priority to US provisional patent application serial number 62/199,117, filed July 30, 2015, the entire disclosure of which is incorporated herein by reference.

This patent application also claims priority to US provisional patent application serial number 62/272,242, filed December 29, 2015, the entire disclosure of which is incorporated herein by reference.

Introduction:

Laser arrays are becoming important in the field of communications, light detection and ranging (LiDaR), and materials processing because of their higher operational optical power and high frequency operation as compared to single lasers, fiber lasers, diode pumped solid state (DPSS) lasers, and light emitting diodes (LEDs).

Laser arrays are commonly used in printing and communications, but in configurations which have a single separate connection to each laser device in the array for parallel communication where each laser could have a separate signal because it had a separate contact from the other devices in the array.

When array elements were tied together and driven with a single signal, the structures had too much capacitance or inductance. This high capacitance/inductance characteristic slowed the frequency response for the laser array down, thereby making such laser arrays slower as they added more elements. This is evidenced in the referenced works by Yoshikawa et al., "High Power VCSEL Devices for Free Space Optical Communications", Proc. of Electronic Components and Technology Conference, 2005, pp. 1353-58 Vol. 2, and US Pat No. 5,978,408.

High speed laser arrays based on multi-mesa structures are described in the inventor's previous work, US Pat App. Pub. 2011/0176567. US Pat App. Pub. 2011/0176567 describes a multi-mesa array of semiconductor lasers and their connections to a high speed electrical waveguide for high frequency operation. However, the multi-mesa structures described in US Pat App. Pub. 2011/0176567 suffers from a number of shortcomings. One problem with mesa structures as described in US Pat App. Pub. 2011/0176567 is they are typically brittle. This is a problem if there is any mechanical procedure to bond to or touch the laser after the mesa is formed. The mesas structures can be as small as 5 to 10 microns in diameter and consist of an extremely fragile material such as GaAs or AlGas, or other similar crystalline materials. These mesas must be bonded after processing and pressure is applied under heat so that the submount and the tops of the laser mesas are bonded electrically with solder. When bonding an array of back emitting devices a typical failure mechanism at bonding is a cracked mesa which renders the laser useless and can cause a rejection of the entire device. If there are 30 lasers on the chip and after bonding 2 are broken, those 2 devices will not light up. The testing still must be done causing an expensive process to remove failures.

Another problem is that the multi-mesa structure yields relatively low lasing power as a function of chip real estate because of spacing requirements for the multiple mesas that are present on the laser chip.

Another problem with the multiple mesa arrays produced by mesa isolation is that the lasers are separated by a distance which limits the overall size of the array due to frequency response-dependent design parameters that prefer shorter distance for a signal to travel across a contact pad. Later, arrays were used with elements which add in power such as the multi Vertical Cavity Surface Emitting Laser (VCSEL) arrays which were used for infrared (IR) illumination. However these IR sources did not support high frequency operation, so their pulse width was limited to illumination instead of LIDAR, which needs fast pulse widths.

In an effort to satisfy needs in the art for stronger and more powerful high speed laser arrays, the inventor discloses a number of inventive embodiments herein. For example, embodiments of the invention described below incorporate a high frequency electrical waveguide to connect lasers of the array together while reducing capacitance by forming the signal pad on the substrate which employs the electrical waveguide. Embodiments of the invention also comprise the use of multi-conductive current confinement techniques in a single structure to produce multiple areas that are conducting compared to non-conducting part of the structures. The conducting parts form lasing areas or grids of lasing forming lasers without etching around the entire structure of the lasing point. Unlike the design described in the above-referenced US Pat No. 5,978,408, embodiments of the invention disclosed herein are designed and processed so that the laser array is integrated with a high speed electrical waveguide to enable high frequency operation. Embodiments of the present invention support new and unique opportunities in the design of a high power high speed light sources by exhibiting both high frequency operation and a rigid structure, thus enhancing performance and reliability over other designs known in the art.

In an example embodiment disclosed herein, a unique structure processed from a Vertical Cavity Surface Emitting Laser (VCSEL) epitaxial material forms a grid of laser points from a single rigid structure which is conducive to high speed operation by reducing capacitance, increasing structural integrity, and decreasing the fill factor as compared to the typical mesa structures formed in VCSEL arrays such as those mentioned in US Pat App. Pub. 2011/0176567. It should be understood that the VCSEL embodiment is only an example, and such a design can work with other laser types, such as Resonant Cavity Light Emitting Diodes (RCLEDs), LEDs, or Vertical Extended (or External) Cavity Surface Emitting Lasers (VECSELs).

The single contiguous structure described herein forms areas of electrical isolation of apertures using implanting of ions or areas of nonconductive oxidation through microstructures or holes while keeping the structural integrity of the material that is typically etched away. The formation of the new structure also allows a high speed signal to be distributed between the different isolated laser conduction points or grid. All of the P-contact areas of the laser grid can be connected in parallel to the signal portion of a ground-signal- ground (GSG) integrated electrical waveguide. The signal or current being switched on and off in the waveguide is distributed between all of the conductive paths which form lasers. It should be understood that other types of electrical waveguides could be used such as a micro- strip waveguide.

The single contiguous structure has other benefits such as a larger base for heat distribution within a larger plating structure. The lasing grid is closer together than the array structures to each other. The farther the lasers are apart the slower the frequency response or the speed which limits the ultimate bandwidth of the device due to the distance the signal must travel to every single point in an array.

Accordingly, examples of advantages that arise from embodiments of the invention include: 1. Rigid structure has a higher reliability in the chip bonding process

2. Rigid structure has a higher fill factor possibility

3. Rigid structure has higher reliability metal contacts

4. Rigid structure is simpler to process

5. Rigid structure has shorter distance between contacts enabling higher frequency high power beams

6. Rigid structure is a better surface topology for a single lens or lens array to be attached

7. Rigid mesa structure produces another area for leads and contacts which offer separation from potentials lowering capacitance.

8. Rigid structures allow higher integration with sub mounts because of the 3D nature of the contacts.

Furthermore, with an example embodiment, a laser grid is formed by more than one lasing area enabled by confining the current to isolated regions in the structure where conductivity exists as compared to the nonconductive ion implanted areas. The conductive and nonconductive areas form a grid of light which has a single metal contact on the single solid structure for the active Positive contact and a single N Contact on the surrounding ground structure which is shorted to the N contact area at the bottom of the trench isolating the two areas. By way of example, Figure 7C shows how an opening in the frame would help increase the speed.

These P and N contacts are then bonded to a high speed electrical contact The 2 substrate and laser chips are aligned by a bonder then heat and pressure are applied to bond the solder that has been deposited on one chip or the other. The high speed is enabled because the p pad is separated from the n wafer ground by plating and solder heights but mostly by removing it off the laser substrate and placing it on an electrical waveguide substrate. The physical separations dramatically reduces capacitance increasing the frequency response which is limited by the capacitance of the circuit. This enables the lasing grid to achieve high frequency operation. A single lens formed on the back of the substrate or a single Lens attached or bonded to the back of the grid structure could direct each lasing point from a convergence point or to a convergence point. This is ideal in collimating the beam output as if it were from a single source.

These and other features and advantages of the present invention will be described hereinafter to those having ordinary skill in the art.

Brief Description of the Drawings:

Figures 1-5 show various views of an example top-emitting implant embodiment. Figure 6 shows a view of an example bottom-emitting implant embodiment.

Figure 7 shows a view of an example top-emitting oxidation embodiment.

Figures 8-14c show various views of an example bottom-emitting oxidation embodiment.

Figure 15 shows a view of an example microstrip embodiment.

Figure 16 shows a view of an example phase coherent embodiment.

Figure 17 shows a view of an example embodiment that employs diffractive optical elements.

Figure 18 shows a view of an example embodiment that employs pattern diffractive grating.

Figure 19 shows a view of an example microlens embodiment.

Figure 20 shows a view of an example tenth embodiment.

Figure 21 shows a view of an example eleventh embodiment.

Figure 22 shows a view of an example twelfth embodiment.

Figure 23 shows an example of an additional pattern for a lasing grid with respect to various embodiments.

Figure 24 comparatively shows current flow as between an example embodiment designed as described herein and that taught by US Pat App. Pub. 2011/0176567. Detailed Description of Example Embodiments:

Embodiment 1 - Top-Emitting Implant

Figure 1 shows an example of a first embodiment of the invention. In this example, a single solid structure is isolated from a surrounding ground with an etch, and where the single solid structure has within it ion implants. The ion implants create areas of the semiconductor material that are non-conductive, and these areas of non-conductivity force current flow through the lasing areas 2. Thus, the ion implants form a laser grid of multiple lasing areas 2 where current is confined to isolated regions in the structure where conductivity exists as compared to the nonconductive ion-implanted areas. The conductive and nonconductive areas form a grid of light which has a single metal contact on the single solid structure for the active positive (P) contact and a single negative (N) contact on the surrounding ground structure which is shorted to the N contact area at the bottom of the trench isolating the two areas or to negative metal on the surrounding ground structure which is shorted to the N contact area at the bottom of the trench isolating the two areas (as in, for example, Figure 7C (see reference numbers 781 and 782). These P and N contacts are then bonded to a high speed electrical contact, thereby enabling the lasing grid to achieve high frequency operation.

While Figure 1 shows the lasing areas 2 arranged in a grid pattern, it should be understood that many shapes and patterns of lasing areas 2 could be formed. This allows many forms of structures with shapes/patterns of lasing areas 2 such as a honeycomb structure pattern (see, for example, Figure 23 which illustrates another pattern which is one of many allowing different laser shapes or patterns; there are many patterns that can be used for etching or implanting to leave conductive areas 41 for lasers in a single mesa structure versus non- conductive areas 42) and other structure patterns which are more rigid while improving bonding. Heat removal can still be accomplished by depositing materials with high thermal conductivity materials in the holes that are etched into the single mesa structure to produce the multiple lasers (see, e.g., holes 7005 in Figure 7) which are closer to the junctions. Examples of additional structure patterns can include arrangements like squares or circles on lines, etc.

Figure 1 shows a top view of the epitaxial side of a laser chip. A single laser-emitting epitaxial structure 1 has an ion-implanted area, all except the lasing areas 2 (which are shown as disks in Figure 1) where the ion implant was masked. Figure 1 thus represents the chip after implant, and etch. Relative to the prior design of US Pat App Pub 2011/0176567 which has multiple epitaxial mesas with each mesa corresponding to a single lasing region, the design of Figure 1 shows a single contiguous structure 1 that does not have multiple mesas and can instead be characterized as a single mesa, where this single mesa includes multiple lasing regions 2. The illustration of Figure 1 is meant to show the single mesa structure and not the electrical contacts. This structure 1 could be either bottom emitting or top emitting depending on the design and reflectance on the N mirror as compared to the P mirror.

Figure 1 shows:

1 Single Active Mesa Structure which will produce multiple lasing points

2 Areas where implant is masked so that implant does not affect epitaxial region under mask.

3 Etched isolation trench separating the Single Active Mesa Structure and the Single Ground Structure

4 Single Ground Structure

Figure 2 is a cutaway view of the laser chip shown by Figure 1, where the single active mesa structure 1 shown by Figure 1 is numbered as 11 in Figure 2 and where the masked implant areas 2 shown by Figure 1 are numbered as 12 in Figure 2. Figure 2 represents the chip after implant, and etch but no top metal. Etched region 13 isolates the single mesa structure 12 from the "frame" or N mesa 14 (where the single ground structure 4 from Figure 1 is shown as the frame/N mesa 14 in Figure 2). Figure 2 shows:

11 Implanted area of Single Active Mesa Structure isolating multiple lasing points

12 Areas of the Epitaxy Masked from Implant which will produce lasing

13 Etched isolation trench separating the Single Active Mesa Structure 11 and the Single Ground Structure 14

14 Single Ground Structure

15 Quantum wells between the top P mirror and the bottom N mirror - this is an active region where Photons are emitted

16 N mirror which has N contact layer or highly doped layers for N metal electrical contact location 17 Laser substrate

Figure 3 is a perspective view of the chip shown by Figures 1 and 2. The implanted region is invisible. The metal contacts are not shown. This illustration is to show the topology of the single mesa etch, which can be used for either top-emitting or bottom-emitting implanted devices. The process of implant can take place before or after top metal or etch.

Figure 4 shows a top view of the epitaxial side of an example top emitting VCSEL grid structure. The view is through a square hole in the top electrical waveguide which is bonded by a solder process to the laser chip. The isolation etched region is hidden in this view by the electrical waveguide. The round disks on this illustration are the holes in the top metal contact or plated metal contact region over the single solid mesa structure. Figure 4 shows:

41 Hole in substrate with waveguide underneath

42 Holes in the top P metal so laser beams can emit through

43 Top of waveguide substrate

44 Top spreading metal on laser chip

Figure 5 illustrates a cutaway view of the bonded electrical waveguide and laser chip shown by Figure 4. The signal contact for the electrical waveguide is opened to allow the beams to propagate through the opening. Another option of this embodiment would be to have a transparent or transmitting substrate material for the waveguide instead of a hole for the lasers to propagate through. A transparent material such as CVD (Chemical Vapor Deposited) diamond or sapphire or glass could be an example of that material. This figure shows the embodiment with a substrate such as AIM which is opaque and thus needs a hole or opening. Notice the isolation region is separating the single mesa structure from the single mesa ground or structure or "frame" structure which is shorted to ground.

These P and N contacts are bonded to a high speed electrical contact (see also Figure 7B, reference numbers 751 through 754). The ground-signal-ground (GSG) electrical waveguide substrate and laser chips are aligned (see Figure 14B) so that the negative mesa is bonded to the negative part of the waveguide and the positive active areas which lase are aligned to the signal pad. This alignment is defined by a bonder, then heat and pressure are applied to bond the solder that has been deposited on one chip or the other (see Figure 15) The high speed nature of this contact arises because the p pad is separated from the n wafer ground by plating and solder heights but mostly by removing it off the laser substrate and placing it on an electrical waveguide substrate. The physical separations dramatically reduce capacitance, thereby increasing the frequency response (where the frequency response is limited by the capacitance of the circuit) and yielding high frequency operation for the lasing grid.

In an example embodiment, for high speed operation, the surface connects to the electrical contact at the bottom of epi design, which is accomplished through the isolation trench (see, for example, Figure 7 A reference number 702) surrounding the single structure (see, for example, Figure 7A (reference number 717)). This structure is not based on mesa topology but is simply shorted to the electrical region of the N contact metal (see Figure 7A (reference number 703)) through the metal plating (such as in Figure 7C reference number 782). This is not a built up structure or raised structure as described in US Pat App. Pub. 2011/0176567 but rather uses the chip surface and the epi material to be a surface for bonding, which also makes the device much more stable and robust at bonding.

Returning to Figure 5, the GSG Signal Pad 51 has Solder 52 electrical connecting the P Contact Metal on the top of the Active Single Mesa Structure. This allows the signal or current to be injected into the metal contact structure with holes in it for laser propagation and then the current flows through the non-implanted regions of the epitaxial structures forcing current to be confined to just those defined regions. The top P mirror region has a slightly lower reflectance than the bottom N mirror allowing the light to emit from the top of the epitaxial structure. The current flows on through the quantum wells which produce the light and heat in there junction, and into the n mirror where it proceeds to the N contact region in or near the n mirror. The current would then proceed up the shorted frame structure which is bonded and in electrical contact to the ground portion of the GSG electrical waveguide. This structure which utilizes top emitting design can be used for lower wavelength output designs which are lower than the transmission cutoff of the GaAs or laser substrate material. Back emitting structures can typically only be designed for wavelengths above ~905nm. This top emitting structure could be used with ~850nm or lower to the limits of the epitaxial material set.

A single solid structure isolated from a surrounding ground with an etch where the single solid structure has within it ion implants; the implants are invisible but cause the semiconductor material to be nonconductive because of the crystal damage it causes. In order to make an implanted device you must mask the areas that are to be protected from the damage first.

Small mesas are formed with photoresist positioned by a photolithographic process which protects the epitaxial material from damage then is washed off after the implant takes place. The implant happens in an ion implant machine which accelerates ions down a tube and you put the wafer in front of the stream of ions.

Implanted ions can create areas of the semiconductor material that are non-conductive. These areas of non- conductive material will force the current flow through the lase areas. These non-conductive areas can also be created by etching a pattern similar to Figure 1 and oxidizing the single structure as described below in connection with Embodiment 2. Figure 5 shows:

50 Non Conducting Electrical Waveguide Substrate

51 Signal metal of electrical waveguide

52 Solder metal for bonding electrical waveguide to laser chip

53 Plated Metal shorted to F Contact Layer and electrically connected to Signal pad of GSG electrical waveguide

54 P Output Mirror -Diffractive Bragg Reflector

55 Active Region- Quantum Wells

56 N Mirror where low resistance contact Layer is located

57 Plated Metal shorting or in electrical contact with N Contact layer and to Ground Mesas

58 Solder in Electrical contact with Ground pad of electrical high speed

waveguide and in electrical contact with Grounded Mesa structure

59 Area on Plated metal connected to P Metal on single mesa structure for

contacting signal pad on high speed electrical waveguide

Figure 24 shows a comparative view of different current flows as between an embodiment such as Embodiment 1 and the design taught by US Pat App. Pub. 2011/0176567. With US Pat App. Pub. 2011/0176567, each mesa is surrounded by an N metal contact area. This takes precious space or real estate on the chip as the processing to define those footstep metal n contacts around each mesa require photolithography which limits how closely you can space the mesas together. These limits lead to a lower power output per unit area than the new method. Therefore the goal of this old apparatus was an array for highest power and speed yet did not take into account the vast improvement in power/area which would also be an improvement in the ultimate goal of highest Power with the highest Speed. Also, this old method's N contact had to be large because of the structural limitations from the old method has been removed with the new single structure.

With the new design described herein, a single structure has several lasers on it and only one contact around that single structure. The new structure reduces that N metal area to the outside of the structure making the area per light element much smaller. This involves a large N contact layer calculated to carry the current load of the single structure. The higher current flow from the single contact can be realized through thicker metal and or thicker N contact region.

Embodiment 2 -Bottom-Emitting Implant

Figure 6 illustrates a cutaway view of an example of a second embodiment, where the second embodiment is a bottom-emitting device with implanted regions for current confinement. The GSG electrical waveguide can be seen solder bonded to the frame -ground structure and the active single laser mesa structure. Figure 6 shows:

601 Electrical Waveguide Substrate

602 Ground Contact and Signal Contact in that order of GSG Electrical Waveguide

603 Solder -Bonding GSG Waveguide to Laser Chip

604 Plating Metal electrically connecting Signal pad of Electrical Waveguide to Lasers P contact

605 P contact Metal

606 Implanted Region that has been rendered non conductive

607 P mirror

608 Active region (quantum wells)

609 N Mirror

610 Conducting Layers in N Mirror where Implant has not reached 611 Laser Beams Propagating through Laser Substrate

612 Plating Metal shorted to N contact region

613 Frame Area Shorted to N Contact region

614 Solder electrically contacting N contact on Laser to Ground on Electrical Waveguide

615 Etched region isolating large single mesa from Ground Frame

Process for Embodiments 1 and 2

An example embodiment of the process steps to create the single structure for embodiments 1 and 2 with implant current confinement can be as follows.

Step 1. Use photolithography to mask areas which will not have P Metal deposited.

Step 2. Deposit P Metal (typically TiPtAu -2000A)

Step 3. Photolithography lift off and wafer cleaning. 02 descum or ash all organics off wafer.

Step 4. Dielectric deposit (typically SiNx ~<1000A ) used as an etch mask

Step 5. Photolithographic masking using either photoresist or metal deposited in areas to protect the epi material from being damaged from the implant which makes the unprotected regions non-conductive through ion bombardment. This step can be performed later in the process but may be more difficult due to more varied topology.

Step 6. Implant- Those skilled in the art of calculating the implant doses will determine the dose and species of implant needed to disrupt the materials structures to the depth which will isolate the p regions and the quantum wells from each other- Step 7 Cleaning this photolithography is difficult due to the implant and a deposition of metal over the photolithography such as plating could help to make it easier to clean off the resist. Step 8. Use photolithography to mask areas of dielectric which will not be etched . This is the unique part which is the design of the mask which creates a large isolated structure

down implants within that structure define where current cannot flow.

Step 9. Use plasma etch to etch through dielectric (typically Fl based etchant) can use wet etch such as BOE (buffered oxide etch).

Step 10. Etch pattern into Laser or Light Emitting Diode Epitaxial material. Stop on Substrate or doped electrical contact layer. This isolates a single large structure from the N shorted regions around the chip

Step 11. Clean off mask. 02 descum or ash all organics off wafer.

Step 12. Use photolithography to mask areas which will not have N Metal deposited.

Step 13. Deposit N Metal (Typically GeAu/Ni/Au eutectic composition of

80%Au/20%Ge by atomic weight. Total thickness of AuGe layer -3000 A or more with -200A Ni or more of other diffusion barrier metal and -5000A of Au or more This is also unique hear where the n metal is deposited in the n contact etched region and also up and over the N contact structure shorting the structure to the n-contact.

Step 14. Clean off mask (typically called lift off). 02 descum or ash all organics off wafer.

Step 15. Dielectric deposit (typically SiNx -2000 A ) used as a non-conductive isolation barrier

Step 16. Use photolithography to mask areas of dielectric which will not be etched.

Step 17. Use plasma etch to etch through dielectric (typically Fl based etchant) can use wet etch such as BOE (buffered oxide etch).

Step 18. Clean off mask. 02 descum or ash all organics off wafer. Step 19. Use photolithography to mask areas which will not have Plated Metal deposited. Step 20. Plate areas with ~4-5um of Metal (typically Au) or Cu if diffusion barrier can be deposited first.

Step 21. Use photolithography to mask areas which will not have Solder deposited. Step 22. Deposit Solder Metal (Typically AuSn/Au eutectic composition of

80%Au/20%Sn by atomic weight. Total thickness of AuSn layer -40000A (4 microns)or more with -500A Au on top to stop any oxidation of Sn. This layer can be patterned and deposited on the submount with electrical waveguide which is bonded to the laser grid.

Embodiment 3 -Top-Emitting Oxidation

In a third embodiment, oxidation rather than ion implantation is used to create the grid of top- emitting lasing regions within the single structure. For example, a patterned etch can isolate conductive paths in a single structure, creating a grid of light sources. This structure exhibits multiple laser emission points from the single structure. The lasing structure is isolated with an etched region from the ground contact that forms the outside perimeter of the chip. This structure for Embodiment 3 is top emitting. The conductive areas of the grid are where light will be emitted. The positive electrical contact can be a grid with openings where the light is emitted.

The epitaxial material of the laser wafer can be a VCSEL design, and most VCSELs are top emitting. The distribution of the signal using a p type waveguide pad is typically on the laser wafer, but it should be understood that in an oxidated single structure embodiment that has a back emitting design, the waveguide can be on a separate substrate that is separated from the laser n material or layer.

Figure 7, which shows an example of Embodiment 3, illustrates an example pattern etched into a wafer to create a single structure which allows multiple point lasing. The single structure of an embodiment such as that shown by Figure 7 is much more rigid than the thin columns made of fragile crystal material as taught by US Pat App. Pub. 2011/0176567. Also, as explained with respect to an embodiment discussed above, it should be understood that pattern of lasing areas other than that shown by Figure 7 may be employed if desired by a practitioner.

In Figure 7, the diagonally striped areas are preferably etched down to create the patterned single mesa structure in the middle of the isolation trench. All diagonally striped areas are preferably etched down to the bottom N electrically conductive layer 705 in Figure 7A or typically the larger isolation trench will be etched to the electrical contact buried in the epitaxial design, while the smaller patterned etch areas must go deeper than the active region which isolates the lasing points. The patterned structure in the middle of the isolation trench is a single structure with "shaped" holes etched into it. The holes in the large single mesa are large in this case. These holes allow the oxidation process environment to oxidize the layers in the epitaxial region. The oxide layer or layers has high aluminum content and forms A10 2 that grows laterally through the layer until taken out of the oxidation process. White areas are the surface of the chip, dotted lines are where oxidation limits current flow to unoxidized areas only. The holes in the large single mesa are large in this case. These holes allow the oxidation process environment to oxidize the layers in the epitaxial region. The oxidation layer can be formed by using a high Al content layer in the epi design structure which is buried below the surface. The etched areas expose that layer which is then placed in an oxidation chamber allowing the exposed layer to oxidize inward, where A10 2 grows laterally through the layer until taken out of the oxidation process. As the length of the oxidation grows in that thin layer, it isolates or closes off the current paths with a dielectric material of A10 2 that is formed during the oxidation process. If the areas 7005 are etched, then the oxidation will continue to grow until only areas 7008 are conductive and the area or part of the epitaxial layers which conduct the current through that section. Electrically conductive areas allow current flow through the quantum wells (see Figure 7A reference number 707) and produce lasing as the light is trapped in the cavity between the p mirror 709 and N mirror 706.

The oxidation length can be seen in Figure 7 as dotted lines, all about the same distance from any one exposed edge or holes in the large single structure that has holes formed in it. Figure 7 also shows the large single mesa ground structure. Three views of cross sections are illustrated to identify where Figures 7A, 7B, and 7C are located. Note 7B which clearly shows through this cross section that the mesa in the center is a single structure.

Figure 7 shows:

7001 Frame (Single Shorted Mesa) for Electrical Contact to Ground of Electrical Waveguide

7002 Etched region isolating large single mesa from Ground Frame

7003 Single Mesa Structure with Etched Holes

7004 Indents in Edges to keep edges of Single Mesa Structure Oxidized and Non Conductive

7005 Etched Hole in Single Mesa Structure

7006 Oxidation Pattern around any Etched Edges

7007 Overlapped Oxidized Areas not allowing Current Flow

7008 Laser Aperture where Current Flows freely (same as 761 in Figure 7B)

7009 Gap in Shorted Mesa Structure to Reduce Capacitance from Ground to Signal Pad on Electrical Waveguide

Figures 7A, 7A2 and 7B are side views of the example Figure 7 embodiment.

Figure 7A2 shows the etched holes 727 that allow the oxidation 731 to form, which confines the current into region 761 of Figure 7B, for formation of laser beams 763.

Reference number 706 in Figure 7A is a p mirror diffractive Bragg reflector (DBR) which has one or more layers in it with very high aluminum content 708 which when exposed to hot damp conditions oxidizes 708 confining the current to the areas 761 shown by Figure 7B, which are where the laser beams come out. The N mirror DBR 709 has a conductive layer 705 to take the current flow out through the N metal ohmic contact 703 to the plating 782 (see Figure 7C) which goes up and over the single ground mesa structure 718 (see Figure 7A) to the solder 717 and electrically connecting to the N plating on the GSG waveguide 716 and into the N contact 715 of the waveguide. Current confinement is a major part of a semiconductor laser. The concept is to force the current flow away from the edges of the structure so there is not an issue with current flowing near rough surface states that may exist from the etch. The current flow is also ideally concentrated to create lasing by increasing the current density in the material The current confinement occurs either by oxidation through allowing the high concentrate layers of Al to get exposed by hot damp conditions in the oxidation process enabled by the drilled holes (e.g., this Embodiment 3), or by the implant to render all other areas nonconductive (e.g., see Embodiments 1 and 2).

Figure 7 A shows:

701 Electrical Waveguide Substrate

702 Etched region isolating large single mesa from Ground Frame

703 N Metal contact electrically contacting N contact layer

704 N Mirror

705 N Contact layer in N mirror (low resistance for ohmic contact)

706 N Mirror above N contact region

707 Active region (quantum wells)

708 Oxidized Layer Closing off Current in these Regions

709 P mirror

710 Di el ectri c Lay er

711 Plating on top of P contact Metal

712 Aperture in P Contact Metal and Plating Metal for laser beam exit

713 Electrical Waveguide Substrate

714 Ground Contact of GSG Electrical Waveguide

715 Signal Contact of GSG Electrical Waveguide

716 Solder -Bonding GSG Waveguide to Laser Chip

717 Solder -Bonding GSG Waveguide to Laser Chip

718 Frame structure electrically connected to N contact region of laser chip

Figure 7A2 is a continuation of Figure 7A above, and it further shows:

721 Ground Contact of GSG Electrical Waveguide

722 Plating on Ground Contact of GSG Electrical Waveguide 723 Solder -Bonding GSG Waveguide to Laser Chip

724 Signal Contact of GSG Electrical Waveguide

725 Solder -Bonding GSG Waveguide to Laser Chip

726 Plating on Signal Contact of GSG Electrical Waveguide

727 Etched Hole Regions in Single Mesa Substrate permits oxidation to form

Current Confinement Apertures

728 Plating on top of P contact Metal

729 Opening in Dielectric layer for electrical contact from Plating to P Contact Layer on Laser Single Mesa Structure

730 Dielectric Layer

731 Oxidation Layer closing off current near Etched Hole Regions

Figure 7B is a Figure 7 cutaway view that also shows the electrical connections and electrical waveguide that are not shown in Figure 7. Figure 7B illustrates the cross section through the apertures created by the oxidized layer. The oxidized layer is exposed to the oxidation process through the holes in the single structure illustrated in Figure 7A. This view also shows that the Active Mesa Structure is truly a Single Mesa Structure. Figure 7B depicts:

751 Ground Contact of GSG Electrical Waveguide

752 Plating on Ground Contact of GSG Electrical Waveguide

753 Solder -Bonding Ground of GSG Waveguide to Laser Chip

754 Signal Contact of GSG Electrical Waveguide

755 Plating on Signal Contact of GSG Electrical Waveguide

756 P contact Metal on Laser Chip

757 Opening in plating and P Contact Metal over Laser Aperture

758 Plating on P Contact Metal

759 Solder -Bonding Signal of GSG Waveguide to Laser Chip

760 Dielectric Layer Protecting Active Mesa Structure from N Contact

761 Current Confinement Aperture formed by opening in Oxidation Layer

762 Oxidation Layer Dielectric

763 Laser Beam Propagating through Metal Opening

Figure 7C is a cross sectional view of the area where the P Contact or Signal of the GSG waveguide is positioned below the Laser Chip where the N Contact Frame or single structure mesa grounded to the N contact of the laser is above the GSG Electrical Waveguide. The large gap between the Laser Ground and the P Signal Pad reduces the capacitance of the circuit enabling higher frequency operation. Figure 7C depicts:

780 Dielectric Layer

781 N Type Ohmic Contact Metal

782 Plating Shorting N Metal Contact to Single Ground Mesa Structure

784 N Contact Layer in Epitaxial Growth

785 Plating Electrically Contacted to Signal Pad on Electrical Waveguide

786 Metal Signal Pad Lead on GSG Electrical Waveguide

787 Plating on Ground Pad of GSG Electrical Waveguide

788 Electrical Waveguide Substrate

789 Gap between Conductive Signal Pad Structure and N Contact Layer Reduces

Capacitance

Process for Embodiment 3

An example embodiment of the process steps to create the single structure for embodiment 3 with oxidation current confinement can be as follows.

Step 1. Use photolithography to mask areas which will not have P Metal deposited.

Step 2. Deposit P Metal (typically TiPtAu -2000A)

Step 3. Photolithography lifts off and wafer cleaning. 02 descum or ash all organics off wafer.

Step 4. Dielectric deposit (typically SiNx ~<1000A ) used as an etch mask

Step 5. Use photolithography to mask areas of dielectric which will not be etched.

Step 6. Use plasma etch to etch through dielectric (typically Fl based etchant) can use wet etch such as BOE (buffered oxide etch). Step 7. Etch pattern into Laser or Light Emitting Diode Epitaxial material. Stop on Substrate or doped electrical contact layer. Typically the etch is CI based with some (high percentage) amount of BC13.

Step 8. Clean off mask. 02 descum or ash all organics off wafer.

Step 9. Use photolithography to mask areas which will not have N Metal deposited.

Step 10. Deposit N Metal (Typically GeAu/Ni/Au eutectic composition of

80%Au/20%Ge by atomic weight. Total thickness of AuGe layer -3000 A or more with -200A Ni or more of other diffusion barrier metal and -5000A of Au or more

Step 11. Clean off mask (typically called lift off). 02 descum or ash all organics off wafer.

Step 12. Dielectric deposit (typically SiNx -2000A) used as a non-conductive isolation barrier

Step 13. Use photolithography to mask areas of dielectric which will not be etched.

Step 14. Use plasma etch to etch through dielectric (typically Fl based etchant) can use wet etch such as BOE (buffered oxide etch).

Step 15. Clean off mask. 02 descum or ash all organics off wafer.

Step 16. Use photolithography to mask areas which will not have Plated Metal deposited.

Step 17. Plate areas with ~4-5um of Metal (typically Au) or Cu if diffusion barrier can be deposited first.

Step 18. Use photolithography to mask areas which will not have Solder deposited. Step 19. Deposit Solder Metal (Typically AuSn/Au eutectic composition of

80%Au/20%Sn by atomic weight. Total thickness of AuSn layer ~40,000A (4 microns) or more with -500A Au on top to stop any oxidation of Sn. This layer can be patterned and deposited on the submount with electrical waveguide which is bonded to the laser grid.

Step 20. Separate laser chips from wafer with cleaving or dicing.

Step 21. Design and Fabricate electrical waveguide to align to laser chip with the design to allow high frequency operation.

Step 22. Align and Flip Chip Bond the laser chip to the Submount electrical waveguide Embodiment 4 -Bottom-Emitting Oxidation

In a fourth embodiment, an oxidated single structure with multiple lasing regions is designed as a bottom-emitter rather than a top emitter. Figures 8 through Figure 14C provide details about Embodiment 4 and illustrate the process which can be used to make this embodiment. The lasing grid's light is emitted through the substrate forming a back emitter.

Light is transmissive in GaAs from wavelengths around 900nm and greater. If the wavelength of the light engineered in the epitaxial design is in the range ~900nm and above, the GaAs substrate transmits the light or is transparent to the light. If the epitaxial design includes an N mirror that is less reflective than the P mirror, a laser such as a VCSEL can emit the light from the N mirror through the substrate. The laser beams will propagate through the material, and the substrate can be a platform for optical components to collimate, spread, diverge, converge or direct the light. This enables integrated optical circuits with extremely high bright power to be formed. The single structure and the ground contact can then be integrated to a high speed electrical waveguide substrate enabling high frequency responses from the entire grid. A ground signal ground electrical waveguide is ideal for this high speed electrical waveguide. Another type of electrical waveguide that may be used is a microstrip waveguide (see Figure 15), where the signal pad is separated from the ground pad by a thin dielectric layer on a substrate. Figure 8 is an illustration of a typical epitaxial design. Any high speed design can be used for VCSEL devices. Figure 8 shows:

81 GaAs substrate

82 Possible position for low resistance contact layer

83 N Mirror layer after contact region

84 Low resistance N contact region

85 N Mirror layer after quantum wells

86 Quantum Well Region

87 Oxidation layers

88 P Mirror

89 Low resistance P Contact layer Figure 9 is an illustration of the first process performed, which is P metal deposit. This is typically a Ti/Pt/Au Layer on top of the highly P doped Contact Layer forming an ohmic contact. Figure 9 shows:

91 P Metal forming Ohmic Contact after annealing process

92 Low Resistance P Contact Layer

Figure 10 is a top view of the etch of the epitaxial layer down to the N contact layer. Figure 10 shows: 1001 Etched Area to N Contact Layer

1002 Single Mesa Ground Structure

1003 Single Mesa Active Structure

1004 Etch Hole to Allow Oxidation Process to form Apertures

1005 Area in between all holes where there will be no oxidation which forms

conductive current confinement

Figure 1 OA is a cross section view A of Figure 10 formed before oxidation process, and Figure 10A2 is a cross section view A of Figure 10 formed after oxidation process. Figure 10A2 shows: 120 Oxidation completely closes off conductive path near any etched regions that were exposed during the oxidation process. Figure 1 OB is a cross sectional view B of Figure 10 illustrating where the current confinement apertures were formed in the areas shown. This view represents a section of the single mesa where no holes are penetrating the cross section, and clearly shows that the mesa structure is a Single Mesa Structure enabling a more robust structure preferred at the bonding process. Figure 10B shows:

125 Current Confinement Aperture is conductive region of Single Mesa Structure

126 Oxidized Layer forming as dielectric layer near where holes where etched

127 P Metal Contact Layer Figure 11 illustrates the dielectric layer deposited and patterned with opened via "holes" for electrical contact to the epitaxial contact layers and sealing the semiconductor for reliability purposes. Figure 11 shows:

1101 Dielectric Layer patterned with openings or "vias"

1102 Opening in Dielectric Layer to P Contact Metal

1103 Contact Layer on Single Mesa Ground Structure

Figure 12 shows the N metal contact after it has been deposited. Figure 12 depicts: 1201 N Contact Metal is deposited over the N Contact via hole to make an electrical connection to the N Contact Layer.

Figure 13 illustrates the next step of plating metal which shorts the N contact region to the top of the single grounded frame region, which will be bonded and electrically conductive to the ground pad of the GSG waveguide. The plating also adds height to the active region reducing capacitance and it removes heat from the active region of the devices to give the devices better performance. The plating over the active single structure is isolated from the N mirror and N contact region by the dielectric layer. Figure 13 shows: 1301 Dielectric Layer preventing the Plating covering the Active Region and extending into the holes of the single mesa structure

1302 Plating Covering Single Grounded Mesa Structure Shorted to N Contact Region through N Contact Metal

1303 Plating Covering Active Structure and extending into the holes of the active region where cooling can occur through a higher thermal conductance of the plating metal

1304 Plated Metal extending over single frame structure for bonding and electrically connecting to ground of GSG electrical waveguide.

Figure 14a illustrates solder deposited on the laser chip. This serves as the electrical conductive bonding adhesion layer between the laser chip and the high speed electrical waveguide. Figure 14a shows:

1401 Solder deposit

Figure 14b illustrates the alignment of the GSG electrical waveguide before bonding. Figure 14b shows:

1403 Submount for GSG Electrical High Speed Waveguide

1404 Ground Pad for GSG Electrical High Speed Waveguide

1405 Signal Pad for GSG Electrical High Speed Waveguide

1406 Plating Metal Deposited on Conductive areas of GSG Electrical High Speed Waveguide

Figure 14C illustrates the bonded laser chip to the GSG electrical waveguide. The gap in the single grounded mesa enables high speed operation by reducing capacitance.

Embodiment 5

In a fifth embodiment, a microstrip or strip line electrical waveguide is used rather than the GSG waveguide, as shown by Figure 15. This embodiment can also have the gap mentioned in Figure 14c above. This electrical waveguide can also be formed by a ground layer below a thin dielectric with a signal lead on the top of the dielectric forming a strip line or microstrip waveguide. Openings in the dielectric can be used to contact the ground portion of the lasing grid. The width of the lines and thickness of the dielectric can be controlled to produce a specific impedance value for circuit matching characteristics. It should be understood that this technique can also be used for other embodiments, such as Embodiment 2 or any of the embodiments discussed below. The view in Figure 15 shows a cross section across the active single mesa structure:

151 Wavegui de sub strate

152 Metal Ground Pad across the entire waveguide

153 Dielectric layer separating the Ground from the signal pads

154 Metal Signal Pad

155 Metal Plating on Signal pad

156 Solder electrically connecting the signal pad to the single active mesa shown here with gaps or holes etched into it.

157 Metal Plating on the Ground Pad

158 Solder electrically connecting the ground pad to the single grounded mesa

Embodiment 6

Figure 16 shows a sixth embodiment. In Figure 16 the structure is unique in that it leaves paths for a portion of the light of each lase point to be directed to another laser next to it in order to keep the lasing in phase. In this example the laser 161 has some of its outer mode structure reflected 162 down to the laser aperture next to it 163 which produces light in phase with 162. The laser which is in phase is 164 and in turn reflects from an angled reflective surface 165 back to the aperture of the laser next to it 167 which is also in phase with 164 and 161 and so on. An angular and or reflective area 164 just outside of the lens or output area can divert a small portion of the light which is overflowing from the lens or output diameter to the lasing grid adjacent to it, enabling a coherent lasing grid. Some of the light from the neighboring lasing points is injected into the lasing point which sets up the lasing points in a phase relation with each other. This allows a coherent operation of all lasing points when the structure directs some of the light from each laser to its neighbor. The reflectance, distance and angles are very precisely calculated by one skilled in the art of optical modeling. Coherent operation is a benefit which has eluded laser array operation for many years. Figure 16 shows:

161 Large aperture laser with wide divergence only emitting a portion of the light

162 A portion of the light from laser 161 is reflected to aperture 163

163 Aperture of laser where reflectance conforms to the phase of the light from 162

164 Large aperture laser with wide divergence only emitting a portion of the light

165 Angled reflective surface on the back of the laser chip just outside the output aperture

166 the reflected beam in phase with laser grid 164

167 Large aperture laser with wide divergence only emitting a portion of the light

Embodiment 7

Figure 17 shows a seventh embodiment. In Figure 17, the back side of the lasing grid chip has etched patterns to redirect the laser light 172 to particularly beneficial areas. This is accomplished by diffractive optical elements (DOE) 171, which have the surface etched in a way that when light travels through that portion, the angle of the surface and redirects 175 beams or light depending on the angle of the surface of the DOE. This can be used to collimate or diverge, direct or homogenize the light. Figure 17 does not illustrate the electrical waveguide. The mode can be controlled by the aperture sizes and characteristics of the reflective surface 173 and 174. Figure 17 shows: 171 Redirected Laser Grid Beam from beam 172

172 Laser Grid Beam emitted from apertures

173 Contact and back of mirror for back emitting laser grid

174 Contact and back of mirror for back emitting laser grid

175 Redirected beams from laser grid Embodiment 8

Figure 18 shows an eighth embodiment. In Figure 18, a patterned diffractive grating 184 (this is the opposite angular pattern than Figure 17's DOE) is placed or etched over the emission points 181 on the backside of the laser wafer in a back emitting VCSEL design which directs the lasing points outward 185 from the grid. From the lens it looks like all the lasers are coming from a single point 186 behind the chip to form a virtual point source where a macro lens 187 can be used to collimate the beam from the virtual converged source behind the chip. Figure 18 shows:

181 Contact and back of mirror for back emitting laser grid

182 Aperture creating laser characteristics

183 Laser Beam from laser grid

184 Surface of Diffractive Optical Element (DOE) angled for specific total beam grid characteristics

185 Redirected beams from laser grid

186 Converged virtual light source from all beams as seen from lens 187

187 macro lens with focal point on virtual convergence point 186 Embodiment 9

Figure 19 shows a ninth embodiment. Figure 19 illustrates a cross section of the bonded etched and oxidized Embodiment 3, except it has microlens which have been processed on the back of the laser chip and positioned so that one is aligned to the other and one is slightly misaligned on purpose in order to redirect the laser beam emitted from the single mesa structure. While embodiment 3 is referenced for this arrangement, it should be understood that any of the above back emitting embodiments and a microlens array attached to the chip or positioned above the output grid can be used. The microlens array can have values related to the pitch of the light conducting grid points but with a slightly different pitch lens 74 forcing the light emitted by the lasing points to be directed to a single area where the beams come together or seem like they come together in front of the chip or behind the chip as in a virtual point source. If the microlens pitch is smaller than the laser pitch, it will guide the outlying lasers to a point in front of the chip or directed inward. If the microlens arrays pitch is larger than the lasers' grids' pitch, the light will be directed outward as in Figure 19.

Figure 19 shows:

71 Laser Substrate

72 N Mirror

73 N Contact Region

74 MicroLens slightly offset from laser directing laser light outward

75 Active region or quantum wells

76 Oxidized layers creating current confinement into the active area

77 Etched trench creating isolation from the single ground structure and the active single mesa structure

78 P Metal Contact

79 Hole Etched into the single mesa structure to allow oxidation to occur

80 solder electrically connecting the laser chip and the High speed electrical waveguide

81 Signal pad of the GSG electrical waveguide

82 P mirror

83 GSG Waveguide substrate

84 Plating shorting the N metal located on the N contact layer and the single ground mesa which is in electrical contact to the Ground Pad of the GSG electrical waveguide

85 Ground Pad of the GSG electrical waveguide

Embodiment 10

Figure 20 shows a tenth embodiment. Figure 20 illustrates that an extended cavity laser design can be implemented using the single grid structure by reducing the reflectivity of the N epitaxial output mirror 230 to a point where it will not lase, then adding the reflectivity to a reflective surface 231 on the back of the lasing grid which extends the cavity. This structure reduces feedback of the higher mode structure 233 in the cavity, thereby forming a more fundamental mode structure for the output beam 235 from the grid. Figure 20 shows:

230 Arrow pointing to incomplete N output mirror epitaxial region. 231 Reflective region made of dielectrically layers with varying indexes of refraction.

232 Cavity of laser beam now includes laser wafer material extending the cavity for modal rejection.

233 Reflected higher order modes which are not reflected back into the cavity

234 Single or lower order modes in the cavity

235 single or lower order modes outputted from the Extended Cavity Device

Embodiment 11

Figure 21 shows an eleventh embodiment. In Figure 21, a VCSEL structure can be adapted to the laser grid design like the above embodiment, and the back of the lasing chip where the output reflector (deposited on top of lens shape 241) of the lasing grid emits light can have convex 241 or concave features under the reflector to form better a focused (focus arrows 243) feedback mechanism which rejects high modes and can be designed to have a single mode lasing output 245 from each grid area. The overall lasing structure will then have low M2 values. A lens or microlens can be added to collimate the output. Figure 21 shows:

240 Arrow pointing to incomplete N output mirror epitaxial region.

241 Reflective region made of dielectrically layers with varying indexes of refraction deposited on top of microlens structure etched into the laser substrate or wafer

242 Single mode beam being reflected within the extended cavity

243 light from edges being directed back into the single mode cavity from the optical element on the surface of the chip

244 single mode beam has more power and is more selective of the single mode than Figure 20' s single mode beam

245 Output of high quality single mode beams

246 highly reflective epitaxial mirror

Embodiment 12

Figure 22 shows a twelfth embodiment. In Figure 22, a VCSEL structure can be adapted to the laser grid design like the above embodiment except that the beams which exit straight out of the lens go through an external microlens array which has been designed with different pitch microlens than the laser pitches to allow redirection of the beams either to or from a single location like many of the above embodiments. Other forms of this technique could use a concave lens formed on the bottom of the external lens array which are aligned and have the same pitch as the laser grid, while a convex laser array with a different pitch than the laser grid is at the top. Another technique to direct beams would be to use DOEs as the top optical element instead of the convex microlens which are on the top of the external lens array. 252 is light reflected back into the center of the aperture making a stronger single mode beam while 253 has the reflective coatings which complete the laser output mirror cavity. 254 is the cavity and would have an antireflective coating deposited on the inside of the external lens cavity while also depositing an anti -reflective coating on the top microlens array. Another technique would be to use the flat reflective properties such as in Figure 20 to complete the cavity mirror and have the microlens array offset on the top or a DOE on top to redirect the beams. Figure 22 shows:

250 Arrow pointing to incomplete N output mirror epitaxial region.

251 Single mode beam being reflected within the extended cavity

252 light from edges being directed back into the center creating strong single mode cavity from the optical element on the surface of the chip

253 Reflective region made of dielectrically layers with varying indexes of refraction deposited on top of microlens structure etched into the laser substrate or wafer

254 Cavity for etched lens to not touch external lens array

255 External lens array transmissive material

256 Single Mode beam outputted by extended cavity laser

257 Microlens from lens array with different pitch than laser pitch directing beams

258 Directed single mode beam

While the present invention has been described above in relation to example embodiments, various modifications may be made thereto that still fall within the invention's scope, as would be recognized by those of ordinary skill in the art. Such modifications to the invention will be recognizable upon review of the teachings herein. As such, the full scope of the present invention is to be defined solely by the appended claims and their legal equivalents.