Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
STERILITY TEST METHOD AND TOTALLY ENCLOSED BACTERIAL AMPOULE INCUBATOR USED BY IT
Document Type and Number:
WIPO Patent Application WO/2012/000309
Kind Code:
A1
Abstract:
A sterility test method includes: selecting bacterial species and culture medium, making bacterial liquid, transcribing fingerprinting feature thermal spectrum curve of every bacterial species as identification feature, extracting thermodynamics parameters of the thermal spectrum curve, determining positive index of bacterial species, sterility detecting sample, and so on. A totally enclosed bacterial ampoule incubator used by the method is also disclosed. The incubator includes bacterial ampoule system, sample& liquid injecting system and peristaltic liquid excretory system. The sample& liquid discharging system is connected with the bacterial ampoule system by liquid inlet pipe, and the bacterial ampoule system is connected with the peristaltic liquid excretory system by liquid outlet pipe. The method for detecting bacterial contaminated sample is fast, high sensitive and very automatic. The detecting result is accurate and can provide microorganism growth curve of whole detecting process. The curve has better fingerprinting feature and can be used in qualitative analysis for microorganism contamination.

Inventors:
YAN DAN (CN)
XIAO XIAOHE (CN)
ZHANG PING (CN)
REN YONGSHEN (CN)
JIN CHEN (CN)
Application Number:
PCT/CN2011/001062
Publication Date:
January 05, 2012
Filing Date:
June 28, 2011
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
302 MILITARY HOSPITAL CHINA (CN)
YAN DAN (CN)
XIAO XIAOHE (CN)
ZHANG PING (CN)
REN YONGSHEN (CN)
JIN CHEN (CN)
International Classes:
C12Q1/04; G01N25/20
Foreign References:
CN1772917A2006-05-17
Attorney, Agent or Firm:
BEIJING EASTKING PATENT AGENT FIRM (CN)
北京东正专利代理事务所(普通合伙) (CN)
Download PDF:
Claims:
O 2012/000309 , 一, _ . , ,、 PCT/CN2011/001062

权 利 要 求 书

1、 一种无菌检查方法, 其特征在于, 该方法包括以下步骤:

( 1 )制备菌液: 将不同菌种在无菌培养基中进行培养, 获得各个 菌种不同浓度、 不同生存状态的菌液, 作为录制菌种的指纹特征热谱 曲线的阳性控制物; 获得各个菌种不同浓度的菌液方法是, 将菌种新 鲜培养物洗脱得到洗脱液,用 0. 9%灭菌氯化钠溶液将洗脱液按 10倍系 列稀释; 获得各个菌种不同生存状态的菌液的方法是, 将培养物过滤 洗脱得到洗脱液, 将洗脱液分别置于 -70 °C冰箱和 60 °C水浴中保持 2h 后, 再用 0. 9%灭菌氯化钠溶液按 10倍系列稀释;

( 2 )录制各个菌种的指纹特征热谱曲线作为鉴别特征:将步骤( 1 ) 获得的菌液置于微量量热仪中, 记录各个菌种不同浓度、 不同生存状 态的菌液的热谱曲线, 获得不同菌种的指紋特征热谱曲线;

( 3 )提取步骤(2 ) 所获热谱曲线的热动力学参数, 确定菌种阳 性判定指标; 热动力学参数包括, 随时间变化的检测通道热功率 Pi及 与其同时刻的空白对照通道热功率 P。、 最大发热功率 Ρ 、 达到最大发 热功率时间 Tmax、 总发热量 Htla l, 以及各曲线指数生长段每 15min斜率 k; 菌种阳性判定指标是: 记录 k 0的出现时间, 并以 k 0为检出样 品微生物污染的必要条件, 同时建立微生物生长的阳性判断时间指标;

( 4 )对待测样品进行无菌检查: 将待测样品进行过滤, 用无菌清 洗液冲洗滤膜上的过滤物; 将样品的过滤物和培养基混合后置入微量 量热仪的检测通道, 记录其热谱曲线; 通过与步骤(2 ) 的不同菌种的 指纹特征热谱曲线以及步骤( 3 ) 的菌种阳性判定指标进行比对, 检查 待测制剂是否被微生物污染。

2、 根据权利要求 1所述的无菌检查方法, 其特征在于, 步骤(2 ) 中将菌液置于微量量热仪中的具体步骤是:

( 2-1 )按步骤( 1 ) 的方法取各菌种 10— 3、 10—5、 10—'、 10"8 10— 9、 1(T°、 10—11倍系列浓度的稀释培养物;

( 2-2 )将等体积的各菌种的系列浓度稀释培养物加入无菌培养基 中, 作为微量量热仪的阳性检测通道;

( 2-3) 另取一份无菌培养基, 作为微量量热仪的空白对照通道。

3、 根据权利要求 1所述的无菌检查方法, 其特征在于, 步骤( 3) 中的微生物生长的阳性判断时间指标按以下方法确定: 检测通道热功 率 Pi与同时刻空白通道热功率 P。之间的差值大于 P。绝对值 3倍的时间 为检出样品微生物污染的时间点(L ), 即:

4、一种实施权利要求 1所述方法时使用的全封闭集菌安瓿培养器, 其特征在于, 集菌安瓿培养器由集菌安瓿系统、 加样加液系统和蠕动 排液系统组成,所述加样加液系统与集菌安瓿系统之间通过进液管( 4 ) 连接在一起, 集菌安瓿系统和蠕动排液系统通过排液管 (5 )连接在一 起; 集菌安瓿系统包括安瓿瓶身 (1 ) , 瓿瓶身是玻璃结构或透明硬质 塑料结构, 在安瓿瓶身上标有刻度线(9 ) , 在安瓿瓶身的瓶口上密封 固定橡胶密封塞 (3 ) , 进液管 (4 ) 、 排液管 (5 ) 和排气管 (6 ) 穿 透橡胶密封塞后伸入安瓿瓶身内, 安瓿瓶身内置一滤器(2 ) , 滤器的 底部铺有滤膜 (15 ) , 滤器的顶部与安瓿瓶内的进液管口连接, 安瓿 瓶内的排液管口越过滤器伸至安瓿瓶底部, 在安瓿瓶身外部的进液管、 排液管和排气管上分别安装有进液控制阀 (7 ) 、 排液控制阀 (8 ) 和 排气控制阀 (17 ) , 排气管顶部连接空气过滤器(16) ; 所述加样加液 系统包括样品 /培养基容器( 12 )和带空气过滤器( 16 )的进液装置( 10); 所述蠕动排液系统包括一蠕动泵 ( 13 ) , 蠕动泵的出口连接废液收集 器 (14) 。

5、 根据权利要求 4 所述的全封闭集菌安瓿培养器, 其特征在于, 在进液控制阀和加样加液系统之间的进液管上安装一进液管道连接器

( 11), 断开该管道连接器时, 可将加样加液系统与集菌安瓿系统分离; 在排液控制阀和蠕动排液系统之间的排液管上安装一排液管道连接器

( 18), 断开该管道连接器时, 可将蠕动排液系统与集菌安瓿系统分离。

6、 根据权利要求 5 所述的全封闭集菌安瓿培养器, 其特征在于, 进液管道连接器 (11 ) 和排液管道连接器 (18) 为塞口式, 进液管道连 接器管和排液管管道连接器的塞口可对接形成密封管道连接器 (19) 。

7、 根据权利要求 4所述的全封闭集菌安瓿培养器, 其特征在于, 进液管、 排液管和排气管为硅胶软管, 并且排气管顶端连接空气过滤 装置的不锈钢针头, 进液控制阀、 排液控制阀和排气控制阀为卡口阀。

8、 根据权利要求 4 所述的全封闭集菌安瓿培养器, 其特征在于, 进液管伸入安瓿瓶身的部分为上细下粗的锥形管 (20) , 滤器 (2 ) 固 定在锥形管的下端。

9、 根据权利要求 8 所述的全封闭集菌安瓿培养器, 其特征在于, 所述锥形管的上端外表面为螺紋结构 ( 21 ) , 橡胶密封塞的下表面进 液管口处固定一内螺紋接口 (22 ) , 锥形管可通过螺纹结构与该内螺 紋接口连接。

Description:
一种无菌检查方法及其使用的全封闭集菌安瓿 培养器

技术领域

本发明涉及药品、 食品、 生物制品、 医疗器械等无菌产品检查领 域, 具体涉及一种无菌检查方法及其使用的全封闭 集菌安瓿培养器。 背景技术

无菌检查是确保无菌产品使用安全的必检项目 , 也是决定无菌产 品生产周期的重要环节之一。 如在药品领域中, 各国药典对注射剂无 菌检查均有严格要求, 并基本形成了国际一致的检查标准与操作规程 , 有效地提高了制剂无菌保证水平。

但是现行无菌检查方法具有一定的局限性。 首先, 无菌检查周期 较长, 制约企业生产效率的提高: 各国药典均规定无菌检查的培养周 期为 14天,如果不能判定结果的需经转种培养 7天,如果判断出现 "假 阳性"结果则需复试一次, 延长了产品的出厂等待时间和生产周期。 其 次, 现行药典中对无菌检查的结果判断为肉眼观察 微生物大量生长所 产生的培养基浑浊, 受观察人员的操作经验影响较大, 具有一定的主 观性, 自动化程度低。 另外, 单纯依靠培养基浑浊判定样品无菌状况 仍存在以下风险: 肉眼观察对与非微生物生长引起的培养基浑浊 则不 易排除, 对于生长緩慢、 在规定检查时间内不引起培养基浑浊的微生 物污染更无从识别, 由此可能产生假阳性和假阴性判断, 影响结果的 准确性和可靠性。

鉴于上述问题, 建立一种能够快速识别无菌制剂微生物污染的 方 法, 提高检查灵敏度、 准确度、 缩短检查时间、 提高检查自动化程度, 以补充或替代现有方法, 已经成为国内外无菌制剂研究的关注焦点, 并形成了微生物激光散射检测法、 生物发光检测法、 PCR扩增检测法等 新方法。 以上各种方法提高了微生物污染的检查能力; 但是由于受微 生物粒径大小、 其他微粒干扰、 操作复杂、 仪器设备及试剂昂贵或方 法缺乏普适性 (仅针对某种微生物, 检测面窄) 等因素的制约影响其 推广应用, 因而需要根据微生物的生命、 生长特征尝试建立新的检测 方法。

根据生物热力学理论, 一切生命活动均伴随着能量和物质的代谢 与转化, 这种能量能够为微量量热系统所监视。 微量量热法是一种灵 敏、 快速、 操作简便、 多通道、 实时在线监测的仪器系统, 近年来发 明人所在课题组应用微量量热法检测微生物生 长过程中的热效应, 用 于药物质量控制和效用评价取得了一定的经验 和成果。 研究表明, 在 适宜的条件下, 微生物的生长呈现明显的规律性和特征性, 由此启示 可以尝试采用微量量热法建立一种无菌检查的 新方法。

本发明的原理是, 利用微量量热仪可检测微生物生长过程中的热 效应的功能, 在微量量热仪中录制不同种类不同生存状态微 生物的指 紋特征热谱曲线, 建立数据分析的标准档案。 然后录制待测样品的热 谱曲线, 如果样品未灭菌或灭菌不彻底, 被微生物污染, 在样品的热 谱曲线中就会出现微生物生长的趋向, 这时与已经建立的标准档案进 行比较, 即可快速将已经被污染的样品选检出来, 并可初步分辨出样 品被何种微生物污染。

微量量热仪通常操作是将微生物菌种置入特定 的培养基的微量量 热安瓿中, 然后将安瓿置于微量量热仪检测通道中, 记录微生物生长 产生的热量变化。 但在使用微量量热仪进行无菌检测时, 存在一个操 作环节的重大缺陷, 即进行无菌检查时, 由于微量量热仪中配套使用 的安瓿结构无法实现样品和培养基注入时的密 封操作, 不能满足产品 微生物污染检查(无菌检查)所要求的隔绝外 界环境(避免二次污染)、 富集微生物同时消除产品抑菌性能的要求, 导致操作过程中可能因外 界因素污染样品, 而致使做出假阳性判断。 因此, 使用微量量热法进 行无菌检查时, 需要对微量量热仪的安瓿进行改进。 本发明全封闭集 菌安瓿培养器的设计原则包括: (1 ) 无菌性: 釆用合适灭菌方法确保 集菌器自身的无菌性; (2 ) 密封性: 确保系统内部与外界环境的有效 隔离; (3) 集菌性: 配置必要的集菌装置, 实现对样品微生物富集及 抑菌性消除, 并可根据待检样品性质配置适宜的滤膜; (4) 热敏性: 系统材料能够使微生物生长代谢热量能够为量 热仪灵敏地检测; ( 5 ) 耐压性: 系统能够满足集菌过程负压要求并避免微生物 损伤; (6)耐 受性: 系统应能满足无菌检查样本量需要, 有足够的检查能力; (7) 简便性: 系统应操作简便, 自动化性能好, 具自动提示结果功能; (8) 经济型: 系统应经济易得, 可批量生产并推广应用。 发明内容

本发明的目的是为了解决现有无菌检查方法周 期较长、 灵敏度低、 检测结果受观察人员的主观性影响较大、 以及微量量热仪中安瓿不能 实现全封闭无菌操作的缺陷。

实现上述目的的本发明的技术方案为, 一种无菌检查方法, 该方 法包括以下步骤:

( 1)制备菌液: 将不同菌种在无菌培养基中进行培养, 获得各个 菌种不同浓度、 不同生存状态的菌液, 作为录制菌种的指紋特征热谱 曲线的阳性控制物;

( 2 )录制各个菌种的指紋特征热谱曲线作为鉴别 征:将步骤( 1 ) 获得的菌液置于微量量热仪中, 记录各个菌种不同浓度、 不同生存状 态的菌液的热谱曲线, 获得不同菌种的指紋特征热谱曲线;

( 3)提取步骤(2) 所获热谱曲线的热动力学参数, 确定菌种阳 性判定指标;

(4)对待测制剂进行无菌性检查: 将待测制剂样品进行过滤, 用 无菌清洗液沖洗滤膜上的过滤物; 将样品的过滤物和培养基混合后置 入微量量热仪的检测通道, 记录其热谱曲线; 通过与步骤(2) 的不同 菌种的指紋特征热谱曲线以及步骤( 3)的菌种阳性判定指标进行比对, 检查待测制剂是否被微生物污染。

在以上步骤中, 步骤 (1) 至步骤( 3)是建立检测标准的步骤, 当通过实验获得了各个菌种的指紋特征热谱曲 线和相关的热动力学参 数, 并建立起菌种阳性判定指标后, 这些图语及数据公式就可以作为 以后检测工作的标准来使用。 也就是说, 步骤 ( 1 ) 至步骤 ( 3) 建立 标准的操作只需要一次, 标准建立后, 以后对待测样品的检测只需要 实施步骤 (4 ) 的操作程序并与标准进行比较即可。

步骤(1 ) 中, 获得各个菌种不同浓度菌液的方法是, 将菌种新鲜 培养物过滤洗脱得到洗脱液,用 0.9%灭菌氯化钠溶液将洗脱液按 10倍 系列稀释; 获得各个菌种不同生存状态的菌液的方法是, 将培养物过 滤洗脱得到洗脱液, 将洗脱液分别置于 -70°C冰箱和 60°C水浴中保持 2h后, 再用 0.9%灭菌氯化钠溶液按 10倍系列稀释。

步骤(2 ) 中将菌液置于微量量热仪中的具体步骤是:

( 2-1 )按步骤(1 ) 的方法取各菌种 10— 3 、 10— 5 、 10— 7 、 1 ' 10' ΐ(Γ°、 10— 11 倍系列浓度的稀释培养物;

( 2-2 )将等体积的各菌种的系列浓度稀释培养物加 无菌培养基 中, 作为微量量热仪的阳性检测通道;

( 2-3) 另取一份无菌培养基, 作为微量量热仪的空白对照通道。 步骤( 3) 所述热谱曲线的热动力学参数包括, 随时间变化的检测 通道热功率 Pi及与其同时刻的空白对照通道热功率 P。、 最大发热功率 P max 、 达到最大发热功率时间 T„ ax 、 总发热量 H t tal , 以及各曲线指数生 长段每 15min斜率 k。

步骤(3)所述菌种阳性判定指标可以是: 记录 k 0的出现时间, 并以 k 0为检出样品微生物污染的必要条件, 同时建立微生物生长的 阳性判断时间指标。

微生物生长的阳性判断时间指标按以下方法确 定: 检测通道热功 率 Pi与同时刻空白通道热功率 P。之间的差值大于 P。绝对值 3倍的时间 为检出样品微生物污染的时间点 L , 即: T d = Time[(Pi-Po)/|Pol ^3] 0 步骤(4) 中将样品过滤物和培养基进行混合时, 按照适合菌种生 长的条件选择培养基。 步骤(4 ) 中将样品过滤物和培养基混合并置入微量量热 仪的安瓿 中时, 安瓿中按照体积比例保留促使菌种快速生长的 气体环境。

优选方案是, 步骤(4 )将安瓿放入微量量热仪的检测通道时, 检 测通道的温度按照适合菌种生长的温度设定, 检测通道的温度可以设 定为 2 3 °C ~ 37 °C。

本发明还包括一种实施上述方法时使用的全封 闭集菌安瓿培养 器, 所述集菌安瓿培养器由集菌安瓿系统、 加样加液系统和蠕动排液 系统组成, 所述加样加液系统与集菌安瓿系统之间通过进 液管连接在 一起, 集菌安瓿系统和蠕动排液系统通过排液管连接 在一起。

集菌安瓿系统包括安瓿瓶身, 在安瓿瓶身的瓶口上密封固定橡胶 密封塞, 进液管、 排液管和排气管穿透橡胶密封塞后伸入安瓿瓶 身内, 安瓿瓶身内置一滤器, 滤器的底部铺有滤膜, 滤器的顶部与安瓿瓶内 的进液管口连接, 安瓿瓶内的排液管口越过滤器伸至安瓿瓶底部 , 在 安瓿瓶身外部的进液管和排液管上分别安装有 进液控制阀和排液控制 阀, 排气管顶部连接空气过滤器。

加样加液系统包括样品 /培养基容器和带空气过滤器的进液装置。 蠕动排液系统包括一蠕动泵, 蠕动泵的出口连接废液收集器。

在进液控制阀和加样加液系统之间的进液管上 安装一进液管道连 接器, 断开该管道连接器时, 可将加样加液系统与集菌安瓿系统分离; 在排液控制阀和蠕动排液系统之间的排液管上 安装一排液管道连接 器, 断开该管道连接器时, 可将蠕动排液系统与集菌安瓿系统分离。

进液管道连接器和排液管道连接器为塞口式, 进液管道连接器和 排液管道连接器的塞口可对接形成密封管道连 接器。

安瓿瓶身为玻璃结构或硬质塑料结构, 在安瓿瓶身上标有刻度线。 进液管、 排液管和排气管为硅胶软管, 进液控制阀、 排液控制阀 和排气控制阀为卡口阀。

排气管为顶端带空气过滤装置的不锈钢针头。

进液管伸入安瓿瓶身的部分可以是上细下粗的 锥形管, 滤器固定 在锥形管的下端。 所述锥形管的上端外表面为螺纹结构, 橡胶密封塞 的下表面固定一内螺纹接口, 锥形管可通过螺紋结构与该内螺纹接口 连接。

本发明微量量热无菌检测法与现有技术的集菌 观察法相比, 具有 以下优点: ①检测时间上, 微量量热法快于集菌观察法: 微量量热法 检出时间集中分布在 0 ~ 18h, 而集菌观察法判断阳性时间集中分布在 1 0 - 36h; ②灵敏度上, 微量量热法高于集菌观察法: 微量量热法可以 检出低于 1 0— i a ~ 10— 11 稀释度的微生物生长, 而观察法未检出同等条件 下该稀释度的阳性菌生长; ③定量性及指紋特征鉴别性上, 微量量热 法优于观察法: 微量量热法可提供具有微生物菌种指纹特征性 的生长 热谱曲线及可定量的热动力学参数及阳性菌检 出判断标准方程, 而观 察法仅依靠肉眼观察培养基浑浊度, 不可定量且无菌种判断特征; ④ 自动化及准确性上, 微量量热法优于观察法: 微量量热法通过对微生 物生长过程中热量代谢的检测与记录, 方法灵敏准确, 并可通过对热 动力学参数的分析报告阳性检查结果, 自动化程度高; 同时可以避免 集菌观察法反复人工介入观察带来的工作量增 加及再次污染风险; 避 免常规观察方法中可能存在的非微生物生长引 起培养基浑浊的假阳性 判断 (如药物与培养基混合产生的浑浊等)及微生 物生长难以引起培 养基浑浊的假阴性判断 (如白色念珠菌、 枯草芽孢杆菌生长过程中难 以在较短时间内引起培养基的显著浑浊, 结果较难断定) 。

本发明全封闭集菌安瓿培养器和普通微量量热 安瓿相比, 可以在 全封闭无菌体系中实现样品微生物富集 (集菌功能) 、 冲洗薄膜消除 样品抑菌活性干扰(抗扰功能) 、 加入培养基培育复苏微生物 (培养 功能) 以及置入量热仪通道记录微生物生长热代谢状 况(记录功能) , 从取样到培养整个操作过程都排除了外界因素 污染样品或培养基的可 能性, 消除样品误判为微生物污染阳性的可能 (假阳性) , 显著提高 了检测的准确性。

本发明全封闭集菌安瓿培养器与现有无菌检查 集菌培养器相比的 优点是: ①本发明可用于微量量热法无菌检查, 而现有无菌检查集菌 器仅适合普通观察法; ②较之现有集菌培养器依靠肉眼观察, 需要重 复多次观察(14 天) 、 劳动量大、 人力成本高的缺点; 本发明通过微 量量热仪实时、 在线、 多通道、 自动化地记录检测样品中 ^敖生物生长 代谢热量的变化, 自动化程度高, 可以降低劳动强度和人力成本; ③ 采用本发明通过微量量热法检查样品微生物污 染物的热量代谢, 可以 更灵敏、 快速地判断微生物污染; 较现有现有集菌培养器依靠肉眼观 察培养基浑浊的的方法更为灵敏, 能够早期检出微生物污染, 从而节 约检查时间; ④采用本发明通过微量量热法检查样品微生物 污染物的 热量代谢, 可以结合样品无菌状态定量判别方程, 从而准确、 定量地 判断样品的无菌状态; 较之现有的采用肉眼观察培养基浑浊方法判断 样品无菌状态的集菌培养器法, 方法更为准确, 能够有效避免现有方 法肉眼观察可能产生的结果误判; ⑤采用本发明通过微量量热法可以 全程记录检查样品微生物污染物的热量代谢曲 线, 具有一定的特征指 纹性; 较之现有仅提供结果判断的肉眼观察法, 能够提供更全面的信 息, 并可用于污染微生物种类的初步鉴定。 附图说明

图 1是用本发明方法录制的不同浓度金黄色葡萄 菌生长图谱; 图 2是用本发明方法录制的不同浓度大肠埃希菌 长图谱; 图 3是用本发明方法录制的不同浓度铜绿假单胞 生长图谱; 图 4是用本发明方法录制的不同浓度生孢梭菌生 图谱;

图 5是用本发明方法录制的不同浓度志贺氏痢疾 菌生长图谱; 图 6是用本发明方法录制的不同浓度枯草芽孢杆 生长图谱; 上图中, A: 无菌硫乙醇酸盐流体培养基; B: 1 (Γ 3 稀释度; C: 1 0— 5 稀释 度; D: 1 0— 7 稀释度; Ε: 1 (Γ 8 稀释度; F: 1 (Γ 9 稀释度; G: 1 0 _1 °稀释度; H: 1 G— 11 稀释度;

图 7是用本发明方法录制的不同浓度黑曲霉生长 谱; 图 8是用本发明方法录制的不同浓度白色念珠菌 长图谱; 上图中, A: 无菌改良马丁培养基; B: 10_ 3 稀释度; C: 10— 5 稀释度; D: 1(T稀释度; Ε: 1(Γ 8 稀释度; F: 10— 9 稀释度; G: 10— lfl 稀释度; H: 1Q- 11 稀释度;

图 9 是用本发明方法录制的不同状态金黄色葡萄球 菌生长图谱; 图中, A: 无菌硫乙醇酸盐流体培养基; B: 无菌生理盐水; C: 35°C10_ 5 稀释度; D: 35°C1(T 7 稀释度; E: - 70°C10— 5 稀释度; F: -7(TC10— 7 稀释 度; G: 60°C10_ 5 稀释度; H: 6(TC10— 7 稀释度;

图 10是对不同灭菌条件复方茵陈注射液使用本发 方法进行无菌 检查的热谱曲线;

图中, A: 正常样品 +硫乙醇酸盐流体培养基; B:金黄色葡萄球菌 +硫乙 醇酸盐流体培养基; C:未灭菌样品 +硫乙醇酸盐流体培养基; D:灭菌不 彻底样品 +硫乙醇酸盐流体培养基; E: 正常样品 +改良马丁培养基; F: 白色念珠菌 +改良马丁培养基; G:未灭菌样品 +改良马丁培养基; H:灭菌 不彻底样品 +改良马丁培养基;

图 11本发明无菌检查法阳性判断指标的各参数关 的示意图; 图中, Pi: 供试样品热功率; P。: 与 Pi同时刻的无菌培养基热功率; k: 热谱曲线每 15min段斜率; L: 指数生长期 k 0的出现时间(Time of exponential growth); T d : 检出样品 t生物污染阳性的时间点(Time of Detect ion );

图 12是本发明全封闭集菌安瓿培养器的结构图;

图 13是进液管道连接器和排液管道连接器塞口对 形成密封管道 连接器, 并拔出排气管后的全封闭集菌安瓿培养器结构 示意图;

图 14是进液管伸入安瓿瓶身内部分变形为锥形管 结构示意图; 图 15是锥形管的结构示意图;

上图中, 1、 安瓿瓶身; 2、 滤器; 3、 橡胶密封塞; 4、 进液管; 5、 排 液管; 6、 排气管; 7、 进液控制阀; 8、 排液控制阀; 9、 刻度线; 10、 进液装置; 11、 进液管道连接器; 12、 样品 /培养基容器; 13、 蠕 动泵; 14、 废液收集器; 15、 滤膜; 16、 空气过滤器; 17、 排气控制 阀; 18、 排液管道连接器; 19、 密封管道连接器; 20、 锥形管; 21、 锥形管上端的螺紋结构; 22、 橡胶密封塞的内螺纹接口。 具体实施方式

本发明技术方案不局限于以下所列举的具体实 施方式, 还包括各 具体实施方式间的任意组合。

具体实施方式一、 本发明提供的对无菌制剂进行无菌性检查的方 法按照以下步骤进行:

一、 实验材料

1、药品与试剂 复方茵陈注射液(规格 50mL/瓶,批号 20100120 ), 包括正常样品(Norm— sterilized Samples, Norm- SS)、 未灭菌样品 (Non-steri 1 ized Samples, Non-SS) 、 灭 菌 不 彻 底 样 品 (Sub-sterilized Samples, Sub-SS) ( 100°C流通蒸汽灭菌 lOmin) 均 由解放军第 302医院药学部提供。

2、 仪器与材料 3114 型 TAM air 等温微量量热仪(Isotherma 1 microcalor imeter) ( TA Instrument, US) , TAM Assistant工作站, 检测限为 4μΨ, 24h基线漂移小于 ±20μΨ, 检测量程为 ±600mW, 工作温 度为 5 ~ 90°C。 SW- CT- 2FD双人单面净化台(苏州净化设备厂); NS01-2 型全封闭无菌试验过滤培养器 (北京牛牛基因技术有限公司, 批号 20090910 ); TH2-22台式恒温振荡器(江苏太仓市实验设备厂 ); ΗΤΥ-ΠΙ 型智能集菌仪(杭州泰林医疗器械有限公司) ; 303AB- 6型隔水培养箱 (上海树立仪器仪表公司) , G.45μιη醋酸纤维素酯微孔滤膜 (北京化 学厂) , 0.9%无菌氯化钠溶液 (石家庄四药集团) 。

3、 菌种与培养基 金黄色葡萄球菌 [Staphylococcus aureus (S. aureus) , CMCC (B) 26003] , 大肠埃希菌 [Escheichia col i (E. coli) , CMCC (B) 44102] , 铜绿假单胞菌 [Pseudomonas aeruginosa (P. aeruginosa) , CMCC (B) 10104] , 志 贺 氏 痢 疾杆 菌 [Shigella dysenteriae, ( S. dysenter iae ) , CMCC (B) 51252] , 枯草芽孢杆菌 [Bacillus subtilis (B. subtilis), CMCC (B) 63501] , 生孢梭菌 [Clostridium sporogenes (C. sporogenes) , CMCC (B) 64941] , 白色 念珠菌 [Candida albicans (C. albicans), CMCC (F) 98001] , 黑曲霉 [Aspergillus niger (A. niger), CMCC (F) 98003] , 均由中国药品生 物制品检定所提供; 疏乙醇酸盐流体培养基 [Thioglycollate medium (TM),(简称"硫乙"),批号 091020],改良马丁培养基 [Modified martin medium (MMM),(简称"马丁"),批号 090915] ,营养肉汤培养基(Nutrient Broth Medium, 批号 090922) , 琼脂粉( Powered Agar, 批号 091022 ) , 玫瑰红钠培养基( Sodium Rose Bengal Medium, 批号 090912 ) , 蛋白 胨 (Peptone, 4比号 090708 ) , 均购于中国药品生物制品检定所。

二、 菌液制备

接种金黄色葡萄球菌、 大肠埃希菌、 铜绿假单胞菌、 志贺氏痢疾 杆菌、 枯草芽孢杆菌的新鲜培养物至营养肉汤中, 接种生孢梭菌的新 鲜培养物至硫乙醇酸盐培养基中, 30~ 35 °C培养 18~24h ; 接种白色 念珠菌的新鲜培养物至改良马丁琼脂培养基中 , 23~28 °C培养 24 ~ 48h , 上述培养物用 0.9 %灭菌氯化钠溶液进行 10倍系列稀释, 制成 含菌数小于 100cfu · ml/ 1 的菌悬液;

接种黑曲霉的新鲜培养物至改良马丁琼脂培养 基斜面中, 23~ 28 °C培养 5~7天 , 加入 3~ 5mL 0.9%无菌氯化钠溶液, 将孢子洗脱。 洗 脱液用 0.9%无菌氯化钠溶液液行 10 倍系列稀释制成含孢子数小于 100cfu . ml/ 1 的孢子悬液。

取新鲜金黄色葡萄球菌培养物 5mL, 分别置于 - 70°C冰箱和 60°C水 浴中保持 2h, 加入 0.9 %灭菌氯化钠溶液行 10倍系列稀释。

上述各微生物不同浓度稀释液作为无菌检查的 阳性控制物。

三、 获取受试菌种的指紋特征热谱曲线

取各菌种 10— 3 、 10 _5 、 10— 7 、 10— 8 、 10_ 9 、 10— 1 。、 ΙίΓ 11 的稀释培养物各 lmL,分别注入微量量热仪安瓿中,然后分别导 9mL相应无菌培养基, 作为检测阳性通道; 另取一只安瓿直接导入对应无菌培养基, 作为 白对照通道。

其中, 金黄色葡萄球菌、 大肠埃希菌、 铜绿假单孢菌、 枯草芽孢 杆菌、 生孢梭菌、 痢疾杆菌的稀释培养物中加入硫乙醇酸盐流体 培养 基, 置 35°C微量量热仪中, 记录各菌株生长热谱曲线 (heat flow); 白色念珠菌及黑曲霉的稀释培养物中加入改良 马丁培养基, 置 28°C微 量量热仪中, 记录各菌株生长热谱曲线, 如图 1至图 8所示。

取金黄色葡萄球菌新鲜培养物、 - 70°C保藏培养物与 60°C保藏培养 物 1(Γ 5 、 1(Γ 7 的稀释培养物各 lmL注入微量量热仪安瓿中, 然后分别导 入 9mL无菌硫乙醇酸盐流体培养基, 作为不同状态微生物检查通道; 另取两只安瓿分别导入无菌硫乙醇酸盐流体培 养基和无菌生理盐水各 lOmL, 作为空白对照通道, 各安瓿置 35°C微量热仪中, 记录各菌株生 长热谱曲线, 如图 9所示。

四、 提取热谱曲线的热动力学参数, 确定菌种阳性判定指标 提取各曲线热动力学参数: 随时间变化的检测通道热功率 Pi及与 其同时刻的空白对照通道热功率 P0、最大发热功率 P max 、 达到最大发热 功率时间 T max 、 总发热量 H t ul ; 提取各曲线指数生长段每 15min斜率 k 值, i己录 k 0的出现时间(Time of exponential growth, T e )。

各菌种不同浓度情况下提取到的参数如下: 其中, Dilution: 稀 释度; cfu: colony forming unit, 菌落形成单位; T e : k^O 出现时 间; k: 热谱曲线每 15min段斜率; T d :微生物检出时间; Pi: 不同稀释 度菌液生长发热功率; P。: 与 同时刻的无菌培养基热功率; P max , 最 大发热功率; T max , 达到最大发热功率时间; H tQtal , 总发热量。

表 1A不同浓度金黄色葡萄球菌生长的热动力学参

Dilution cfu re(h) *(min"') Td(h) /Ό(μ ) 7"m»i(h)

0 0 - 0.0050 74.900 1.011 279.746

10 3 10' 8.25 0.0155 10.300 21.092 84.450 2079.002 20.453 15521.674

10 10 5 8.75 0.0104 10.539 18.501 74. 161 2349.857 21.658 14630.561

10- 7 765 8.75 0.0121 10.864 19.507 78.052 1977.391 23.575 15214.055

10 8 75 5.25 0.0241 10.994 20.520 82.263 2082.762 24.786 14686.436 lo- 7 36 9.00 0.0225 13.536 68.729 275.166 1127.010 17.528 15430.693 ιο· 8 3 9.50 0.0072 15.242 63.895 256.033 1065.710 19.683 15480.996

<1 12.75 0.0075 17.672 57.831 231.328 1078.571 22.269 15249.404

10-'

<1 14.25 0.0088 18.953 55.945 223.794 1020.511 23.478 14994.583

10 10

<1 -0.0048 1.035

10 " 未检出 136.633 1.028 211 表 IF 不同浓度痢疾杆菌生长的热动力学参数

表 1G 不同浓度黑曲霉生长的热动力学参数

表 1Η 不同浓度白色念珠菌生长的热动力学参数

金黄色葡萄球菌不同生存状态下提取参数如下 :

表 2 不同状态金黄色葡萄球菌生长的热动力学参数

TM 0 -0.0004 142.725 1.003 1446.990

Phys 0 0.0000 210.286 1.003 -164.582

35Ό10 5 10 5 10.25 0.0093 12.853 23.532 94.177 479.526 18.989 10094.389

35Ό10" 7 750 10.50 0.0074 15.169 20.825 83.434 401.608 23.219 8278.074

-70 "CIO 5 10 5 18.00 0.0058 22.628 16.876 67.555 222.876 55.903 8501.300

-70"C10" 7 280 19.50 0.0051 23.694 17.403 69.617 169.815 32.350 8623.707

60 10 5 10 4 19.50 0.0004 37.308 15.657 62.669 285.059 52.178 9163.460

60Ό10- 7 38 78.50 0.0086 82.108 7.482 29.950 59.617 90.042 2425.452 通过对大量数据的分析和整理, 得出本发明方法判断微生物污染 的判定指标为, 以 k 0为检出受试菌种的必要条件, 并规定检查通道 热功率 P i值与同时刻空白通道热功率 P。差值大于 P。绝对值 3倍的时间 为检出受试菌种阳性的检出时间点(Time of Detection, T d ) , 即: T d = Time Pi- P。)/|P。| 3]。 按照这个判定指标对以上实验数据进行分 析, 结果表明:

(1)各菌种生长热谱曲线具有明显的指紋特征性 , 可用于不同菌 种的特征鉴别; 其中最大发热功率(P raa J、 总发热量(H t ul )以及曲线峰 形结构最能够代表各菌种间特征差异, 并具有稳定性。

(2) 随稀释度降低, 各菌种热谱曲线峰形基本不变, 达到最大发 热功率时间(T max )均匀推迟, 指数生长期 (L)推迟;

随菌种浓度(Dilution)降低, 大肠杆菌及痢疾杆菌的最大发热功 率降低;

随稀释度降低, 各菌种检出时间 (T d )逐渐推迟, 并呈良好的线性 关系; '

(3) 除白色念珠菌检出时间较长外 (大于 36h) , 其它各菌种基 本于 18h 内检出, 且检出时间与菌液浓度呈明显的线性关系; 提示微 示白色念珠菌为生长緩慢微生物, 而其它微生物在该条件下生长迅速, 能够快速检出。

(4) 不同状态金黄色葡萄球菌检出时间为: 新鲜培养物 (<18h) 〈冷冻保藏培养物 (<24h) 〈高温保藏培养物 (〉36h) ; 结果提示在该 检测条件下不同状态微生物复苏时间随其受损 伤的程度而延长, 本发 明方法可以灵敏地检出不同状态下生长的微生 物。

( 5 ) 活菌计数结果表明: 本发明方法能够检出低于 lcuf 的各种 微生物, 方法灵敏度高; 其中, 可以检出金黄色葡萄球菌、 铜绿假单 胞菌、 黑曲霉等微生物低于 10— 11 的稀释培养物。

以上步骤完成后, 就获得了各个菌种的指紋特征热谱曲线和相关 的热动力学参数, 并建立起菌种阳性判定指标, 这些图谱及数据公式 既是本发明的技术分析资料, 也可以作为以后检测工作的标准来使用。 也就是说, 以上建立标准的操作只需要进行一次, 标准建立后, 以后 的每次检测只需重复本发明步骤( 5 )的操作, 并与标准进行比对即可。

例如, 待测制剂为复方茵陈注射液, 对其进行无菌检查时, 只需 将样品进行过滤、 培养, 在微量量热仪中录制样品的热谱曲线。 将样 品的热谱曲线与步骤(4 )获得的菌种阳性判定指标进行比较, 当样品 热谱曲线中出现符合菌种阳性判定指标的表征 时, 可判定样品中有微 生物污染, 然后根据步骤( 3 )获得的菌种指紋特征热谱曲线, 可判断 样品中污染菌种的类型。

五、 受试制剂的无菌性检查

为了检验本发明方法的可靠性和灵敏度, 以下检查程序中除选取 复方茵陈注射液的正常灭菌样品作为受试样品 外, 还选取复方茵陈注 射液的未灭菌样品、 灭菌不彻底样品、 正常灭菌样品 +小于 l OOcfu 的 金黄色葡萄球菌、 正常灭菌样品 +小于 l OOcfu 的白色念珠菌作为受试 样品的对照物, 采集其数据并进行数据分析。 具体操作方法如下:

取复方茵陈注射液未灭菌样品、 灭菌不彻底样品和正常灭菌样品 各 200mL,.薄膜过滤,滤膜用 0. 1%蛋白胨水溶液冲洗三次,每次 l OOmL, 排净冲洗液, 在安瓿中注入 10mL硫乙醇酸盐流体培养基; 另取上述样 品, 照前法操作, 排净沖洗液后导入 l QmL改良马丁培养基。

另取正常灭菌样品两份各 200mL, 照前法操作, 排净沖洗液后在两 个安瓿中分别导入 l OmL硫乙醇酸盐流体培养基和 10mL改良马丁培养 基;并在硫乙醇酸盐流体培养基中加入小于 l OOcfu的金黄色葡萄球菌, 在改良马丁培养基中加入小于 l OOcfu的白色念珠菌稀释培养物, 作为 阳性对照。

各安瓿分别置相应微量量热仪通道, 记录热谱曲线。 录制好的热 谙曲线如图 10 所示。 各曲线中提取到的数据如下表所列, 其中, k: 热谱曲线每 15min段斜率; T e: k 0出现时间; T d :微生物检出时间;

P max : 最大发热功率; T max : 达到最大发热功率时间; H t tal : 总发热量。 表 3.本发明方法对复方茵陈注射液无菌检查的参 提取与结果判定

数据分析如下: :

( 1 ) 热谱曲线显示正常样品通道(正常样品 +硫乙醇酸盐流体培 养基, 正常样品 +改良马丁培养基)热谱曲线呈平緩下降趋势 热动力 学参数显示正常样品 k值呈持续负值状态, 表明正常样品无微生物污 染且培养基无菌性良好;

( 2 ) 热谱曲线显示阳性对照通道(金黄色葡萄球菌 +硫乙醇酸盐 流体培养基, 白色念珠菌 +改良马丁培养基)微生物生长良好, 表明该 条件适合复方茵陈注射液无菌检查, 具有较好的灵敏性;

( 3 )未灭菌样品及灭菌不彻底样品中微生物污染 在 10. 5h内检 出, 热动力学参数显示未灭菌样品 P max 高于灭菌不彻底样品, 提示其污 染程度较高, 也表明该无菌检查方法对样品污染程度差异的 敏感性。

以上是使用本发明方法进行无菌检测的步骤及 获得的实验数据。 为了将本发明与现有技术进行比对, 以下提供与上述方法同样的实验 条件下使用集菌观察法进行无菌检查的数据, 并与本发明实验数据进 行比较:

1、 不同菌种不同浓度下两种方法检出微生物所需 时间比较如下: 表 4A 各类微生物所属种类与培养条件汇总表

表 4B 本发明方法的各细菌检出时间表

60Ό金葡 I I 821 未检出 I I I I I 结果表明: ( 1 ) 除白色念珠菌外, 其它各微生物使用集菌观察法 检出时间虽然小于 36h, 但平均检出时间较微量量热法长(微量量热法 集中分布在 0~ 18小时, 集菌观察法集中分布在 10~ 36小时) ; (2 ) 集菌观察法检出最低稀释度为 1( °, 未检出各微生物 10— 11 稀释度; 同 时各微生物检出最低浓度均较微量量热法高, 检出灵敏度较微量量热 法低; ( 3) 白色念珠菌在检查过程中不引起培养基的明显 浑浊, 集菌 观察法难以准确判断是否有微生物生长; ( 4 )使用集菌观察法低温( -70 °C ) 及高温 ( 60°C ) 保藏金黄色葡萄球菌各稀释度培养物检出时间 较 微量量热法长, 且未检出 60°C时 10— 8 稀释培养物; (5 )所选微生物菌 种嚢括好氧菌 /厌氧菌 /兼性菌、 革兰氏阳性菌 /革兰氏阴性菌、 芽孢杆 菌 /酵母菌 /真菌等自然界常见微生物类型 (也为常见微生物污染源) , 微量量热法均能检出以上微生物, 表明方法具有良好的普适性, 符合 无菌检查需要。

2、 以复方茵陈注射液为样品的无菌性检查, 两种方法检查结果的 比较如下:

本发明方法的判定结果如表 3所示。 .

集菌观察法的判定结果如下表所示:

表 5.集菌观察法对复方茵陈注射液进行无菌检查 判定结果

两种方法准确检出微生物污染所需时间总结对 比如下: 表 6 本发明方法和集菌观察法检出复方茵陈注射液 微生物污染所需时 间对比表

结果表明: 本发明方法比集菌观察法更快速、 灵敏。 对于生长不 明显引起培养基浑浊的微生物污染 (白色念珠菌、 枯草芽胞杆菌等) 其检查灵敏性相对更高。

本发明方法和现有技术集菌观察法全面比较总 结如下表:

表 7微量量热法和集菌观察法检测数据比较

以上比较内容提示: 采用本发明微量量热法进行无菌检查比常规 集菌观察法更加快速、 灵敏, 且有较高的自动化程度和客观性, 可以 作为无菌检查的新方法。

具体实施方式二: 本实施方式的步骤 ( 1 ) 至步骤 (4 ) 与具体实 施方式一相同。

在步骤( 5 )对样品进行过滤和注入培养基的操作过程中 为了隔 绝外界环境 (避免因二次污染而做出假阳性判断) 、 满足富集微生物 同时消除产品抑菌性能的要求, 本实施方式采用一种全封闭集菌安瓿 培养器, 其结构及使用方法如下:

如图 12所示, 全封闭集菌安瓿培养器由集菌安瓿系统、 加样加液 系统和蠕动排液系统组成, 所述加样加液系统与集菌安瓿系统之间通 过进液管 4 连接在一起, 集菌安瓿系统和蠕动排液系统通过排液管 5 连接在一起。

优选结构为, 集菌安瓿系统包括安瓿瓶身 1 , 在安瓿瓶身的瓶口上 密封固定橡胶密封塞 3。 进液管 4、 排液管 5和排气管 6穿透橡胶密封 塞后伸入安瓿瓶身内。 安瓿瓶身内置一滤器 2, 滤器的底部铺有滤膜 15 , 滤器的顶部与安瓿瓶内的进液管口连接, 安瓿瓶内的排液管口越 过滤器伸至安瓿瓶底部。 滤膜可根据过滤对象的不同预先设置为不同 的材质。 在安瓿瓶身外部的进液管和排液管上分别安装 有进液控制阀 7、 排液控制阀 8和排气控制阀 17 , 排气管顶部连接空气过滤器 16。

优选结构为, 加样加液系统包括样品 /培养基容器 12 和带空气过 滤器的进液装置 10。

优选结构为, 蠕动排液系统包括一蠕动泵 1 3 , 蠕动泵的出口连接 废液收集器 14。

优选结构为, 在进液控制阀和加样加液系统之间的进液管上 安装 一进液管道连接器 11 , 断开该管道连接器时, 可将加样加液系统与集 菌安瓿系统分离; 在排液控制阀和蠕动排液系统之间的排液管上 安装 一排液管道连接器 18, 断开该管道连接器时, 可将蠕动排液系统与集 菌安瓿系统分离。

进液管道连接器和排液管道连接器为塞口式, 进液管道连接器和 排液管道连接器的塞口可对接形成密封管道连 接器 19。

在集菌安瓿培养器中完成过滤和培养基的注入 程序后, 从进液管 道连接器 11塞口处将加样加液系统与集菌安瓿系统分离 从排液管道 连接器 18塞口处将蠕动排液系统与集菌安瓿系统分离 然后将进液管 道连接器塞口和排液管道连接器塞口对接形成 密封管道连接器 19, 使 集菌培养容器处于密封状态, 如图 13所示。

优选结构为, 在安瓿瓶身上标有刻度线 9。 可根据需要决定标示精 度, 如可以标示 5mL、 10mL、 15mL等刻度线。

优选结构为, 安瓿瓶身为玻璃结构或硬质塑料结构, 透明材料可 以保证外部观察的准确性。

优选结构为, 进液控制阀、 排液控制阀和排气控制阀为卡口阀。 优选结构为, 进液管、 排液管和排气管为硅胶软管。

优选结构为, 排气管为由硅胶软管连接的顶端带空气过滤装 置、 尾端中空侧壁开口的不锈钢针头。

另外, 本发明还提供一种进液管的变形结构。

如图 14和图 15所示, 进液管伸入安瓿瓶身的部分可以是上细下 粗的锥形管 20, 滤器固定在锥形管的下端。 所述锥形管的上端外表面 为螺纹结构 21, 橡胶密封塞的下表面固定一内螺紋接口 22, 锥形管可 通过螺纹结构 21与该内螺紋接口连接。

上述全封闭集菌安瓿培养器的使用方法为:

①、 将加样加液系统、 集菌安瓿系统、 蠕动排液系统顺次连接在 一起, 也就是将进液装置 10连接在样品 /培养基容器 12上, 将进液管 道连接器 11的塞口对接好, 样品 /培养基容器 12内是待检样品; 再将 排液管道连接器 18的塞口也对接好;

②、 关闭排气控制阀 17, 打开进液控制阀 7、 排液控制阀 8、 蠕动 泵 13, 调整流速, 緩慢过滤样品并排除药液; 上述步骤完成后, 打开 排气通道控制阀 17, 关闭蠕动泵 13、 进液控制阀 7、 排液控制阀 8;

③、 替换样品 /培养基容器为无菌清洗液容器, 关闭排气通道控制 阀 17, 打开进液控制阀 7、 排液控制阀 8、 蠕动泵 13, 调整流速, 清 洗滤膜并排除废液;

④、 关闭蠕动泵 13、 排液控制阀 8、 进液控制阀 7, 打开排气控制 阀 17, 替换样品 /培养基容器 12内样品为对应培养基;

⑤、 关闭排气控制阀 17, 打开排液控制阀 8、 蠕动泵 13, 使瓶内 呈负压状态; 并抽破滤膜 15 , 使滤器 2与瓶内联通;

⑥、 关闭排液控制阀 8、 蠕动泵 1 3, 打开进液控制阀 7 , 使培养基 加至相应刻度, 关闭进液控制阀 7 ;

⑦、 如果培养过程中需要一定比例的空气促使微生 物快速生长, 就打开排气控制阀 17向集菌安瓿培养器内按比例注入空气, 然后拔出 排气通道 6 ; 如果培养过程不需要空气, 就完成步骤⑥后直接拔出排气 通道 6;

⑧、 打开进液管道连接器 11和排液管道连接器 18的塞口, 并将 这两个管道连接器的塞口组合对接在一起, 形成密封管道连接器 19 , 使集菌安瓿培养器处于密封状态;

⑨、 将密封状态的集菌安瓿培养器置于相应的检测 仪器 /环境中, 获取样品的检测结果。

具体到使用全封闭集菌安瓿对受试制剂复方茵 陈注射液进行无菌 检查的方法为:

①、 将进液装置 10连接在样品 /培养基容器 12上, 将进液管道连 接器 11的塞口对接好, 样品 /培养基容器 12内是待检的复方茵陈注射 液样品; 然后将排液管道连接器 18的塞口也对接好;

②、 关闭排气控制阀 17 , 打开进液控制阀 7、 排液控制阀 8、 蠕动 泵 13 , 调整流速, 緩慢过滤复方茵陈注射液样品并排除药液; 上述步 骤完成后, 打开排气通道控制阀 17, 关闭蠕动泵 13、 进液控制阀 7、 排液控制阀 8;

③、 替换复方茵陈注射液容器为无菌清洗液容器, 关闭排气通道 控制阀 17, 打开进液控制阀 7、 排液控制阀 8、 蠕动泵 13, 调整流速, 清洗滤膜并排除废液;

④、 关闭蠕动泵 1 3、 排液控制阀 8、 进液控制阀 7, 打开排气控制 阀 17 , 替换样品 /培养基容器 12 内注射液样品为硫乙醇酸盐流体培养 基或改良马丁培养基;

⑤、 关闭排气控制阀 17, 打开排液控制阀 8、 蠕动泵 13, 使瓶内 呈负压状态; 并抽破滤膜 15, 使滤器 2与瓶内联通;

⑥、 关闭排液控制阀 8、 蠕动泵 13 , 打开进液控制阀 7, 使培养基 加至相应刻度, 关闭进液控制阀 7 ;

⑦、 打开排气控制阀 17向集菌安瓿培养器内注入空气, 然后拔出 排气通道 6 ;

⑧、 打开进液管道连接器 11和排液管道连接器 18的塞口, 并将 这两个管道连接器的塞口组合对接在一起, 形成密封管道连接器 19, 使集菌安瓿培养器处于密封状态;

⑨将密封状态的集菌安瓿培养器置于微量量热 仪中, 获取复方茵 陈注射液样品的热 i普曲线。

上述技术方案仅体现了本发明技术方案的优选 技术方案, 本技术 领域的技术人员对其中某些部分所可能做出的 一些变动均体现了本发 明的原理, 属于本发明的保护范围之内。