Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
STRATIFICATION OF ACUTE MYELOID LEUKAEMIA PATIENTS FOR SENSITIVITY TO KINASE PATHWAY INHIBITOR THERAPY
Document Type and Number:
WIPO Patent Application WO/2018/234404
Kind Code:
A1
Abstract:
The invention relates to the treatment of acute myeloid leukaemia (AML) in patients. In particular, the invention concerns improved methods for identifying AML patients who may be effectively treated with kinase pathway inhibitors, and improved methods for predicting whether a kinase pathway inhibitor may be efficacious for treatment of AML in an individual patient. The invention also comprehends a method of screening a plurality of patients suffering from acute myeloid leukaemia, to determine whether the acute myeloid leukaemia of any one or more of the patients may be effectively treated with a kinase pathway inhibitor. The invention further provides methods for the treatment of such patients with kinase pathway inhibitors, and kinase pathway inhibitors for use in such methods.

Inventors:
CASADO IZQUIERDO PEDRO MARIA (GB)
CUTILLAS PEDRO RODRIGUEZ (GB)
Application Number:
PCT/EP2018/066472
Publication Date:
December 27, 2018
Filing Date:
June 20, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
UNIV LONDON QUEEN MARY (GB)
International Classes:
G01N33/574; A61K38/00
Domestic Patent References:
WO2016193745A12016-12-08
Other References:
PEDRO CASADO ET AL: "Phosphoproteomics data classify hematological cancer cell lines according to tumor type and sensitivity to kinase inhibitors", GENOME BIOLOGY, BIOMED CENTRAL LTD., LONDON, GB, vol. 14, no. 4, 29 April 2013 (2013-04-29), pages R37, XP021151895, ISSN: 1465-6906, DOI: 10.1186/GB-2013-14-4-R37
PEDRO CASADO ET AL: "Proteomic and genomic integration identifies kinase and differentiation determinants of kinase inhibitor sensitivity in leukemia cells", LEUKEMIA., 7 April 2018 (2018-04-07), US, XP055497478, ISSN: 0887-6924, DOI: 10.1038/s41375-018-0032-1
BENNETT ET AL.: "Proposed revised criteria for the classification of acute myeloid leukaemia", ANN INTERN MED, vol. 103, no. 4, 1985, pages 620 - 625
YOHE ET AL., J CLIN MED., vol. 3, 4 March 2015 (2015-03-04), pages 460 - 478
BURGESS, BLOOD, vol. 124, no. 26, 2014, pages 3947 - 3955
ZOLA ET AL.: "CD molecules 2006--human cell differentiation molecules", J IMMUNOL METHODS, vol. 319, no. 1-2, 2007, pages 1 - 5, XP005835602, DOI: doi:10.1016/j.jim.2006.11.001
HASTIE ET AL., NAT PROTOC., vol. 1, no. 2, 2006, pages 968 - 71
BAIN ET AL., BIOCHEM J., vol. 408, no. 3, 15 December 2007 (2007-12-15), pages 297 - 315
WILKES EH; TERFVE C; GRIBBEN JG; SAEZ-RODRIGUEZ J; CUTILLAS PR: "Empirical inference of circuitry and plasticity in a kinase signaling network", PROC NATL ACAD SCI U S A, vol. 112, no. 25, 2015, pages 7719 - 7724, XP055292512, DOI: doi:10.1073/pnas.1423344112
VIZCAINO JA; CSORDAS A; DEL-TORO N ET AL.: "2016 update of the PRIDE database and its related tools", NUCLEIC ACIDS RES., vol. 44, no. 22, 2016, pages 1 1033
CASADO P; RODRIGUEZ-PRADOS JC; COSULICH SC ET AL.: "Kinase-substrate enrichment analysis provides insights into the heterogeneity of signaling pathway activation in leukemia cells", SCI SIGNAL., vol. 6, no. 268, 2013, pages rs6, XP009193140, DOI: doi:10.1126/scisignal.2003573
CASADO P; RODRIGUEZ-PRADOS JC; COSULICH SC ET AL.: "Kinase-substrate enrichment analysis provides insights into the heterogeneity of signaling pathway activation in leukemia cells", SCI SIGNAL, vol. 6, no. 268, 2013, pages rs6, XP009193140, DOI: doi:10.1126/scisignal.2003573
GRUHLER A, OLSEN JV, MOHAMMED S, MORTENSEN P, FAERGEMAN NJ, MANN M: "QUANTITATIVE PHOSPHOPROTEOMICS APLLIED TO THE YEAST PHEROMONE SIGNALING PATHWAY", MOLECULAR & CELLULAR PROTEOMICS : MCP, vol. 4, no. 3, 2005, pages 310 - 27, XP055244853, DOI: doi:10.1074/mcp.M400219-MCP200
LARSEN MR; THINGHOLM TE; JENSEN ON; ROEPSTORFF P; JORGENSEN TJ: "Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns", MOLECULAR & CELLULAR PROTEOMICS : MCP, vol. 4, no. 7, 2005, pages 873 - 86
MONTOYA A; BELTRAN L; CASADO P; RODRIGUEZ-PRADOS JC; CUTILLAS PR: "Characterization of a TiO(2) enrichment method for label-free quantitative phosphoproteomics", METHODS, vol. 54, no. 4, 2011, pages 370 - 8
PERKINS DN; PAPPIN DJ; CREASY DM; COTTRELL JS: "Probability-based protein identification by searching sequence databases using mass spectrometry data", ELECTROPHORESIS, vol. 20, no. 18, 1999, pages 3551 - 67, XP002319572, DOI: doi:10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2
BANDURA DR; BARANOV I; ORNATSKY OI; ANTONOV A; KINACH R; LOU X ET AL.: "Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry", ANALYTICAL CHEMISTRY, vol. 81, no. 16, 2009, pages 6813 - 22, XP055188509, DOI: doi:10.1021/ac901049w
Attorney, Agent or Firm:
BERESFORD CRUMP LLP (GB)
Download PDF:
Claims:
CLAIMS

1. A method for predicting the efficacy of a kinase pathway inhibitor for treatment of acute myeloid leukaemia in an individual patient, which kinase pathway inhibitor inhibits a signalling pathway that is involved in cell proliferation or cell survival, said method comprising the steps of :

(a) determining the differentiation status of the patient's leukaemia by :

(1) analysing data relating to the phosphorylation in leukaemia cells obtained from the patient of one or more phosphorylation sites in any one, two, three, four, five, six, seven, eight, nine, ten or more of : FES, PKC and protein kinase C isoforms including PKC5 (KPCD), PRKCA, PRKCB, and PRKCD, PKA, PAK including PAK1 and PAK2, STK10, GSK3A, RSK2, RAS, RAF, MEK including MEKl (MAP2K1), ERK including MAPK3 (ERK1) and MAPK1 (ERK2), PI3K, AKT including AKT1, MTOR, S6 kinase, STAT5, CAMKK, SYK (KSYK), LYN, P38A, CDK1 , CK2A1, PKACA, IRAK4, PKCB iso2, Cot, PKCD, PKCA, PKCB, PKCG, PKCH, BRAF, MEK2, PDK1, CDK2, PTN6, D3 (PLD3), IQGAP1, GRB2, RHOA, RHOG and S10AB; and/or

(2) analysing data relating to the surface expression on leukaemia cells obtained from said patient of a panel of cell surface marker proteins including one or more of CD3, CD7, CD l ib, CDl lc (integrin a-X, ITAX), CD 14, CD 15, CD 16, CD 18 (integrin β, ITB2), CD19, CD33, CD34, CD35 (CR1), CD38, CD44, CD45, CD64, CD97,

CD117, CD123, CD180, CD184, HLA-C (1C02), APOBR, the platelet membrane receptor Gi24 (VSIR) and HLA-DR and/or any cell surface proteins which are expressed in conjunction with said one or more cell surface marker proteins; wherein phosphorylation or phosphorylation at a high level of the one or more

phosphorylation sites and/or the expression of said panel of cell surface marker proteins at a high level on said leukaemia cells indicates an advanced differentiation status; and

(b) if the differentiation status of the leukaemia is advanced, predicting that the acute myeloid leukaemia in the patient may be effectively treated with said kinase pathway inhibitor.

2. A method of screening a plurality of patients with acute myeloid leukaemia to determine whether the acute myeloid leukaemia of any one or more of said plurality of patients may be effectively treated with a kinase pathway inhibitor, which kinase pathway inhibitor inhibits a signalling pathway that is involved in cell proliferation or cell survival, comprising the steps of :

(a) for each patient, determining the differentiation status of the patient's leukaemia by :

(1) analysing data relating to the phosphorylation in leukaemia cells obtained from the patient of one or more phosphorylation sites in any one, two, three, four, five, six, seven, eight, nine, ten or more of : FES, PKC and protein kinase C isoforms including PKC5 (KPCD), PRKCA, PRKCB, and PRKCD, PKA, PAK including PAK1 and PAK2, STK10, GSK3A, RSK2, RAS, RAF, MEK including MEK1 (MAP2K1), ERK including MAPK3 (ERK1) and MAPK1 (ERK2), PI3K, AKT including AKT1, MTOR, S6 kinase, STAT5, CAMKK, SYK (KSYK), LYN, P38A, CDK1 , CK2A1, PKACA, IRAK4, PKCB iso2, Cot, PKCD, PKCA, PKCB, PKCG, PKCH, BRAF, MEK2, PDK1, CDK2, PTN6, D3 (PLD3), IQGAP1, GRB2, RHOA, RHOG and S10AB; and/or

(2) analysing data relating to the surface expression on leukaemia cells obtained from said patient of a panel of cell surface marker proteins including one or more of CD3, CD7, CD l ib, CDl lc (integrin a-X, ITAX), CD 14, CD 15, CD 16, CD 18 (integrin β, ITB2), CD19, CD33, CD34, CD35 (CR1), CD38, CD44, CD45, CD64, CD97, CD117, CD123, CD180, CD184, HLA-C (1C02), APOBR, the platelet membrane receptor Gi24 (VSIR) and HLA-DR and/or any cell surface proteins which are expressed in conjunction with said one or more cell surface marker proteins; wherein phosphorylation or phosphorylation at a high level of the one or more

phosphorylation sites and/or the expression of said panel of cell surface marker proteins at a high level on said leukaemia cells indicates an advanced differentiation status; and

(b) identifying any one or more patients having leukaemia with an advanced differentiation status as having leukaemia suitable for effective treatment with the kinase pathway inhibitor.

3. A method as claimed in claim 1 or claim 2, wherein said panel of cell surface marker proteins comprises :

(i) any one, two, or three, or four, or five, or six, or seven, or eight, or nine, or ten, or eleven, or twelve, or thirteen, or fourteen, or fifteen, or sixteen, or seventeen, or eighteen, or all of CD1 lb, CD1 lc (integrin a-X, ITAX), CD14, CD15, CD16, CD18 (integrin β, ITB2),

CD33, CD35 (CRl), CD38, CD44, CD45, CD64, CD97, CD123, CD180, HLA-C (1C02), APOBR, the platelet membrane receptor Gi24 (VSIR) and HLA-DR; or

(ii) any one, two, three, four, five, six, seven, eight, nine, ten or all of CD1 lb, CD14, CD15, CD16, CD33, CD38, CD44, CD45, CD64, CD123 and HLA-DR; or (iii) any one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen or all of CD3, CD7, CDl lb, CD14, CD15, CD16, CD19, CD33, CD34, CD38, CD44, CD45, CD64, CD117, CD123, CD184, and HLA-DR.

4. A method as claimed in any of claims 1-3, wherein said panel of cell surface marker proteins comprises CDl lb, CD14, CD15, CD16, CD33, CD38, CD44, CD45, CD64, CD123 and HLA-DR.

5. A method as claimed in any of claims 1-4, wherein said phosphorylation sites are phosphorylation sites in :

(i) any one, two, three, or four of PKC, ERK, PAK1 and P38a; or

(ii) any one, two, three, four or five of PKCD, PKC A, PKACA, IRAK4 and CK2A1; or

(iii) any one, two, three, four, five or six of MAPK1, MAPK2, AKT, AKT1S1, MAP2K1 and MAP2K2; or

(iv) any one, two, three, four, five, six, seven, eight or nine of GSK3A, PRKCA, PRKCB, PRKCD, STK10, PAK1, PAK2, MAPK1 and MAPK3. 6. A method as claimed in any of claims 1-5, wherein said phosphorylation sites are :

(i) any one, two, three, four, five, six, seven, eight, nine, ten or more than ten of the phosphorylation sites set out in Table 1 ; or (ii) any one, two, three, four, five, six, seven, eight, nine, ten or more than ten of the phosphorylation sites set out in Table 2; or

(iii) any one, two, three, four, five, six, seven, eight, nine, ten or more than ten of PAK1 at S144, PAK2 at S141, MAPK1 at Y187, MAPK1 at T185, RPS6KA1 at S380, MAPK3 at T202, MAPK3 at Y204, MAP3K3 at SI 66, SYK at S295 and S297, IRAK3 at

SI 10, PKN1 (379-396 + phospho ST), STK10 (447-464 + phospho ST), RIPK3 at S410, PRKCD at T218, PRKCD at T295, PRKCD at Y313, PRKCD at T507, PRKCD at T645, PRKCD at S664, PRKCD atT2638, MARK2 at S535, MAP3K2 at S535, PRKD2 (710-730 + phospho Y), NRK at s805, PRKAR2A at S58, ZAK (591-616 + phospho ST), MAP4K4 at S900, CDK9 at S347, RPS6KA4 (681-699 + 2 phospho ST), MAST3 (1254-1274 + phospho

ST), NEK9 (10-39 + phospho ST), GSK3A (19-50 + phospho ST), RPS6KA3 at S369, RIPK2 at S531, AAKl at T606, TYK2 at Y292, PDPK2 at S214, PRKAAl (3-8 + phospho ST), STK11P at S772, BAZ1B at S1468, CLK1 at S140, MAP4K2 at S328, WNK1 (1996- 2021 + phospho ST), CDK11A at S271, FES at Y713, and/or TNIK at S769; or (iv) PAK1 at S144, PAK2 at S141, MAPK1 at Y187 and/or T185, and RPS6KA1 at

S380; or

(v) MAPK1 at Y187, PAK2 at S141 and PRKCD at Y313; or

(vi) FES at Y713, MAPK3 at T202/Y204, MAPK1 at T185/Y187, PAK1 at S144, MEK1 at S222, PAK2 at S141 and PRKCD at S645; or (vii) GSK3A at S21 and/or PRKCD at T507, T295, T218, Y313, T507, and/or S664 and/or STK10 at S20 and/or S13, and/or PAK1 at S144, and/or PAK2 at S141.

(viii) one or more phosphorylation sites on MAPK1 including MAPK1 at Y 187 and/or T185, and MAPK3 at T202 and/or Y204, and GSK3A at S21.

7. A method as claimed in any preceding claim, wherein step (a) comprises : (i) determining the differentiation status of the patient's leukaemia by analysing data relating to the phosphorylation of one or more phosphorylation sites in MAPK1 and/or MAPK3 in leukaemia cells obtained from the patient; and/or (ii) determining the differentiation status of the patient's leukaemia by analysing data relating to the surface expression on leukaemia cells obtained from said patient of a group of CD markers consisting of CDl lb, CD14, CD15, CD16, CD33, CD38, CD44, CD45, CD64, CD 123 and HLA-DR; wherein phosphorylation or phosphorylation at a high level of the one or more

phosphorylation sites and/or the expression of said group of CD markers at a high level on said leukaemia cells indicates an advanced differentiation status.

8. A method as claimed in any preceding claim, wherein the kinase pathway inhibitor is a kinase inhibitor selected from a MEK inhibitor, a FLT3/PKC inhibitor and a PAK inhibitor. 9. A method as claimed in any preceding claim, wherein the kinase pathway inhibitor is a MEK inhibitor such as trametinib; step (a) further comprises determining the mutational status of NRAS, KRAS, HRAS or BRAF in leukaemia cells obtained from the patient by analysing data relating to the genotype of the leukaemia cells; and step (b) comprises predicting that the acute myeloid leukaemia of the patient may be effectively treated with the kinase pathway inhibitor if the differentiation status of the leukaemia is advanced or if any one of NRAS, KRAS, HRAS or BRAF in the leukaemia cells has an activating mutation.

10. A method as claimed in any preceding claim, wherein the kinase pathway inhibitor is a MEK inhibitor such as trametinib, and step (a) further comprises :

(i) determining the mutational status of FLT3 in leukaemia cells obtained from the patient by analysing data relating to the genotype of said leukaemia cells and/or

(ii) determining the activation in the leukaemia cells of a FLT-3 driven signalling pathway that is involved in cell proliferation or cell survival other than the RAS-RAF-MEK- ERK pathway, such as the PKC pathway, the PI3K-AKT-MTOR-S6K pathway, the PAK pathway, the JAK-STAT pathway, or the CAMKK pathway, by analysing data relating to activity markers of the FLT3-driven kinase signalling pathway in said leukaemia cells; and/or

(iii) determining the level of phosphorylation of one or both of TOP2A and/or KDM5C in the leukaemia cells, by analysing data relating to the phosphorylation of TOP2A and/or KDM5C in the leukaemia cells; and wherein step (b) comprises predicting that the acute myeloid leukaemia of the patient may be effectively treated with the MEK inhibitor if :

(1) the differentiation status of the leukaemia is advanced; and

(2) FLT3 in the leukaemia cells does not have an activating mutation, or the FLT3 -driven kinase signalling pathway is not activated in the leukaemia cells, or TOP2A and/or KDM5C are not phosphorylated or are phosphorylated at a low level in the leukaemia cells.

11. A method as claimed in any preceding claim, wherein the kinase pathway inhibitor is a MEK inhibitor such as trametinib, and wherein step (a) comprises :

(i) determining the differentiation status of the patient's leukaemia and/or determining the mutational status of NRAS, KRAS, HRAS or BRAF in leukaemia cells obtained from the patient by analysing data relating to the genotype of the leukaemia cells; and

(ii) determining the mutational status of FLT3 in leukaemia cells obtained from the patient by analysing data relating to the genotype of said leukaemia cells and/or determining the activation in the leukaemia cells of a FLT-3 driven kinase signalling pathway that is involved in cell proliferation or cell survival other than the RAS-RAF-MEK-ERK pathway, by analysing data relating to activity markers of the FLT3-driven kinase signalling pathway in said leukaemia cells; and/or determining the level of phosphorylation of one or both of TOP2A and/or KDM5C in the leukaemia cells, by analysing data relating to the phosphorylation of TOP2A and/or KDM5C in the leukaemia cells; and wherein step (b) comprises predicting that the acute myeloid leukaemia in the patient may be effectively treated with said MEK inhibitor where : (1) the differentiation status of the leukaemia is advanced or any one of NRAS, KRAS, HRAS or BRAF in the leukaemia cells has an activating mutation, and (2) FLT3 in the leukaemia cells does not have an activating mutation or the FLT3 -driven kinase signalling pathway is not activated or TOP2A and/or KDM5C are not phosphorylated or are phosphorylated at a low level in the leukaemia cells.

12. A method as claimed in claim 10 or claim 11, wherein said activity markers of the FLT3 -driven kinase signalling pathway include one or more phosphorylation sites which are selectively phosphorylated by the FLT3-driven kinase signalling pathway, and the data relating to said activity markers comprises data relating to the phosphorylation of the one or more phosphorylation sites, where phosphorylation or a high level of phosphorylation of the one or more phosphorylation sites indicates that the FLT3 -driven kinase signalling pathway is activated.

13. A method as claimed in claim 12, wherein said one or more phosphorylation sites include phosphorylation sites in one or both of STAT5A and CAMKKl, such as STAT5A at S780 and/or S128, and/or CAMKKl at S548.

14. A method as claimed in any of claims 10-13, wherein said data relating to the phosphorylation of TOP2A and/or KDM5C in the leukaemia cells comprises data relating to the phosphorylation of TOP2A and/or KDM5C, such as data relating to the phosphorylation of TOP2A at S1213 and/or the phosphorylation of KDM5C at S317.

15. A method as claimed in any of claims 1-8, wherein the kinase pathway inhibitor is a FLT3/PKC pathway inhibitor such as midostaurin, and step (a) involves determining the differentiation status of the patient's leukaemia by :

(i) analysing data relating to the phosphorylation of phosphorylation sites in one or more of GSK3A, PRKCA, PRKCB, PRKCD, STK10, PAKl, PAK2MAPK1 and/or MAPK3 in leukaemia cells obtained from the patient; and/or

(ii) analysing data relating to the surface expression on leukaemia cells obtained from said patient of a group of CD markers consisting of CD1 lb, CD14, CD15, CD16, CD33,

CD38, CD44, CD4PKC5, CD64, CD123 and HLA-DR; wherein either : phosphorylation or a high level of phosphorylation in the leukaemia cells of any one or more of GSK3A, PRKCA, PRKCB, PRKCD, STK10, PAKl, PAK2, MAPK1 and/or MAPK3; or expression by the leukaemia cells of said group of CD markers at a high level; indicates an advanced differentiation status.

16. A method for predicting the efficacy of midostaurin for treatment of acute myeloid leukaemia in an individual patient, comprising the steps of :

(a) (i) analysing data relating to the expression on the surface of the patient's

leukaemia cells of a group of CD markers consisting of CD1 lb, CD14, CD15, CD16, CD33, CD38, CD44, CD45, CD64, CD123 and HLA-DR to determine whether said group of CD markers is expressed at a high level on the surface of the patient's leukaemia cells; and/or

(ii) analysing data relating to phosphorylation in the leukaemia cells at one or more phosphorylation sites selected from : GSK3A at pS21; PRKCD at Y313, pT507, pT295, pT218, and/or pS664 of PRKCD; STK10 at pS20 and/or pS13 of STK10; PAK1 at pS144 of PAK1; PAK2 at pS141 of PAK2; MAPK1 at Y187 and/or T185; and MAPK3 at T202 and/or Y204 to determine whether one or more of said phosphorylation sites is phosphorylated or is phosphorylated at a high level in the patient's leukaemia cells; and

(b) where said group of CD markers is expressed at a high level on the surface of the patient's leukaemia cells, and/or one or more of said phosphorylation sites in the leukaemia cells is phosphorylated or is phosphorylated at a high level, predicting that the acute myeloid leukaemia in the patient may be effectively treated with midostaurin.

17. A method for predicting the efficacy of trametinib for treatment of acute myeloid leukaemia in an individual patient, comprising the steps of :

(a) (i) analysing data relating to the expression on the surface of the patient's

leukaemia cells of a group of CD markers consisting of CD1 lb, CD14, CD15, CD16, CD33, CD38, CD44, CD45, CD64, CD123 and HLA-DR to determine whether said group of CD markers is expressed at a high level on the surface of the patient's leukaemia cells; and/or

(ii) analysing data relating to phosphorylation in the leukaemia cells at one or more MEK-related phosphorylation sites selected from MAPK1 at Y187 and/or T185 and MAPK3 at T202 and/or Y204, to determine whether one or more of said MEK-related phosphorylation sites is phosphorylated or is phosphorylated at a high level in the patient's leukaemia cells; and/or

(iii) analysing data relating to the presence or absence of any activating mutation in any one or more of NRAS, KRAS, HRAS or BRAF in the leukaemia cells of the patient, to determine whether there is an activating mutation in any one or more of NRAS, KRAS, HRAS or BRAF in the patient's leukaemia cells; and

(b) (i) analysing data relating to phosphorylation in the leukaemia cells at one or more marker sites selected from STAT5A at pS780 and/or pS128, CAMKK1 at pS548, TOP2A at pS1213 and KDM5C at pS317 of KDM5C, to determine whether said marker site is phosphorylated or is phosphorylated at a high level in the patient's leukaemia cells; and/or

(ii) analysing data relating to the presence or absence of any activating mutation in FLT3 in the leukaemia cells of the patient, to determine whether there is an activating mutation in FLT3 in the patient's leukaemia cells; and

(c) where : (A) said group of CD markers is expressed at a high level on the surface of the patient's leukaemia cells, and/or one or more of said MEK-related

phosphorylation sites in the leukaemia cells is phosphorylated or is phosphorylated at a high level, and/or there is an activating mutation in any one or more of NRAS, KRAS, HRAS or BRAF in the leukaemia cells of the patient; and

(B) said marker site is not phosphorylated or is not phosphorylated at a high level in the patient's leukaemia cells, and/or there is no activating mutation in FLT3 in the patient's leukaemia cells, predicting that the acute myeloid leukaemia in the patient may be effectively treated with trametinib.

18. A method for screening a plurality of patients with acute myeloid leukaemia to determine whether the acute myeloid leukaemia of any one or more of said plurality of patients may be effectively treated with midostaurin, comprising the steps of :

(a) for each patient :

(i) analysing data relating to the expression on the surface of the patient's

leukaemia cells of a group of CD markers consisting of CD1 lb, CD14, CD15, CD16, CD33, CD38, CD44, CD45, CD64, CD123 and HLA-DR to determine whether said group of CD markers is expressed at a high level on the surface of the patient's leukaemia cells; and/or

(ii) analysing data relating to phosphorylation in the leukaemia cells at one or more phosphorylation sites selected from : GSK3A at pS21; PRKCD at Y313, pT507, pT295, pT218, and/or pS664 of PRKCD; STK10 at pS20 and/or pS13 of STK10; PAK1 at pS144 of PAK1; PAK2 at pS141 of PAK2; MAPK1 at Y187 and/or T185; and MAPK3 at T202 and/or Y204 to determine whether one or more of said phosphorylation sites is phosphorylated or is phosphorylated at a high level in the patient's leukaemia cells; and

(b) identifying any one or more patients having leukaemia cells which express said group of CD markers and/or which display phosphorylation or phosphorylation at a high level at one or more of said phosphorylation sites in the leukaemia cells as having leukaemia suitable for effective treatment with midostaurin.

19. A method for screening a plurality of patients with acute myeloid leukaemia to determine whether the acute myeloid leukaemia of any one or more of said plurality of patients may be effectively treated with trametinib, comprising the steps of :

(a) for each patient :

(i) analysing data relating to the expression on the surface of the patient's

leukaemia cells of a group of CD markers consisting of CD1 lb, CD14, CD15, CD16, CD33, CD38, CD44, CD45, CD64, CD123 and HLA-DR to determine whether said group of CD markers is expressed at a high level on the surface of the patient's leukaemia cells; and/or (ii) analysing data relating to phosphorylation in the leukaemia cells at one or more MEK-related phosphorylation sites selected from MAPK1 at Y187 and/or T185 and MAPK3 at T202 and/or Y204, to determine whether one or more of said MEK-related phosphorylation sites is phosphorylated or is phosphorylated at a high level in the patient's leukaemia cells; and/or

(iii) analysing data relating to the presence or absence of any activating mutation in any one or more of NRAS, KRAS, HRAS or BRAF in the leukaemia cells of the patient, to determine whether there is an activating mutation in any one or more of NRAS, KRAS, HRAS or BRAF in the patient's leukaemia cells; and

(b) for each patient :

(i) analysing data relating to phosphorylation in the leukaemia cells at one or more marker sites selected from STAT5A at pS780 and/or pS128, CAMKK1 at pS548, TOP2A at pS1213 and KDM5C at pS317 of KDM5C, to determine whether said marker site is phosphorylated or is phosphorylated at a high level in the patient's leukaemia cells; and/or

(ii) analysing data relating to the presence or absence of any activating

mutation in FLT3 in the leukaemia cells of the patient, to determine whether there is an activating mutation in FLT3 in the patient's leukaemia cells; and

(c) identifying any one more patients where :

(A) said group of CD markers is expressed at a high level on the surface of the patient's leukaemia cells, and/or one or more of said MEK-related phosphorylation sites in the leukaemia cells is phosphorylated or is phosphorylated at a high level, and/or there is an activating mutation in any one or more of NRAS, KRAS, HRAS or BRAF in the leukaemia cells of the patient; and (B) said marker site is not phosphorylated or is not phosphorylated at a high level in the patient's leukaemia cells, and/or there is no activating mutation in FLT3 in the patient's leukaemia cells, as having leukaemia suitable for effective treatment with trametinib.

20. A computer-implemented method for predicting the efficacy of a kinase pathway inhibitor for treatment of acute myeloid leukaemia in an individual patient according to claim 1 or any claim dependent thereon, the method comprising:

(a) receiving in a computer data identifying an individual patient who is suffering from acute myeloid leukaemia and data representing the differentiation status of the individual patient's leukaemia, and determining whether the differentiation status of the patient's leukaemia is advanced;

(b) if the differentiation status of the leukaemia is advanced, generating output data associated with the individual patient to indicate that the acute myeloid leukaemia in the patient may be effectively treated with said kinase pathway inhibitor.

21. A computer-implemented method of screening a plurality of patients with acute myeloid leukaemia according to claim 2 or any claim dependent thereon, to determine whether the acute myeloid leukaemia of any one or more of said plurality of patients may be effectively treated with a kinase pathway inhibitor, comprising the steps of :

(a) receiving in a computer data identifying each of the plurality of patients and data representing the differentiation status of each patient's leukaemia, and determining whether the differentiation status of each patient's leukamia is advanced; and

(b) where the differentiation status of a patient's leukaemia is advanced, generating output data identifying that patient as suitable for effective treatment with the kinase pathway inhibitor.

22. Software for performing the method of claim 20 or claim 21.

23. A kinase pathway inhibitor, which kinase pathway inhibitor inhibits a signalling pathway that is involved in cell proliferation or cell survival, for use in a method of treating acute myeloid leukaemia in an individual patient, wherein the treatment comprises : (a) determining the differentiation status of the patient's leukaemia by :

(1) analysing data relating to the phosphorylation in leukaemia cells obtained from the patient of one or more phosphorylation sites in any one, two, three, four, five, six, seven, eight, nine, ten or more of : FES, PKC and protein kinase C isoforms including PKC5 (KPCD), PRKCA, PRKCB, and PRKCD, PKA, PAK including PAKl and PAK2, STK10, GSK3A, RSK2, RAS, RAF, MEK including MEK1 (MAP2K1), ERK including MAPK3 (ERK1) and MAPK1 (ERK2), PI3K, AKT including AKT1, MTOR, S6 kinase, STAT5, CAMKK, SYK (KSYK), LYN, P38A, CDK1 , CK2A1, PKACA, IRAK4, PKCB iso2, Cot, PKCD, PKCA, PKCB, PKCG, PKCH, BRAF, MEK2, PDK1, CDK2, PTN6, D3 (PLD3), IQGAP1, GRB2, RHOA, RHOG and S10AB; and/or

(2) analysing data relating to the surface expression on leukaemia cells obtained from said patient of a panel of cell surface marker proteins including one or more of CD3, CD7, CD l ib, CDl lc (integrin a-X, ITAX), CD 14, CD 15, CD 16, CD 18 (integrin β, ITB2), CD19, CD33, CD34, CD35 (CR1), CD38, CD44, CD45, CD64, CD97, CD117, CD123, CD180, CD184, HLA-C (1C02), APOBR, the platelet membrane receptor Gi24 (VSIR) and HLA-DR and/or any cell surface proteins which are expressed in conjunction with said one or more cell surface marker proteins; wherein phosphorylation or phosphorylation at a high level of the one or more

phosphorylation sites and/or the expression of said panel of cell surface marker proteins at a high level on said leukaemia cells indicates an advanced differentiation status; and

(b) if the differentiation status of the leukaemia cells is advanced, administering the kinase pathway inhibitor to the patient for treatment of acute myeloid leukaemia.

24. A kinase pathway inhibitor, which kinase pathway inhibitor inhibits a signalling pathway that is involved in cell proliferation or cell survival, for use in a method of treating acute myeloid leukaemia in a patient, wherein the patient has leukaemia cells with an advanced differentiation status, characterised by (a) phosphorylation or phosphorylation at a high level of one or more phosphorylation sites in any one, two, three, four, five, six, seven, eight, nine, ten or more of : FES, PKC and protein kinase C isoforms including PKC5 (KPCD), PRKCA, PRKCB, and PRKCD, PKA, PAK including PAKl and PAK2, STK10, GSK3A, RSK2, RAS, RAF, MEK including MEK1 (MAP2K1), ERK including MAPK3 (ERK1) and MAPK1 (ERK2), PI3K, AKT including AKT1, MTOR, S6 kinase, STAT5, CAMKK, SYK (KSYK), LYN, P38A, CDK1, CK2A1, PKACA, IRAK4, PKCB iso2, Cot, PKCD, PKCA, PKCB, PKCG, PKCH, BRAF, MEK2, PDK1, CDK2, PTN6, D3 (PLD3), IQGAP 1 , GRB2, RHOA, RHOG and S 1 OAB; and/or surface expression at a high level of a panel of cell surface marker proteins including one or more of CD3, CD7, CD1 lb, CD1 lc (integrin a-X, ITAX), CD14, CD15, CD16, CD18 (integrin β, ITB2), CD19, CD33, CD34, CD35 (CRl), CD38, CD44, CD45, CD64, CD97, CD117, CD123, CD180, CD184, HLA-C (1C02), APOBR, the platelet membrane receptor Gi24 (VSIR) and HLA-DR and/or any cell surface proteins which are expressed in conjunction with said one or more cell surface marker proteins.

25. Midostaurin for use in a method of treating acute myeloid leukaemia in a patient, wherein the patient has leukaemia with an advanced differentiation status, defined by :

(i) surface expression at a high level on the leukaemia cells of the patient of a group of CD markers consisting of CDl lb, CD14, CD15, CD16, CD33, CD38, CD44, CD45,

CD64, CD 123 and HLA-DR; and/or

(ii) phosphorylation or a high level of phosphorylation in the leukaemia cells of the patient of any one or more of : pS21 of GSK3A; pY313, pT507, pT295, pT218, and/or pS664 of PRKCD; pS20 and/or pS 13 of STK10; pS144 ofPAKl; pS141 ofPAK2;

Y187 and/or T185 of MAPK1; and T202 and/or Y204 of MAPK3.

26. Trametinib for use in a method of treating acute myeloid leukaemia in a patient, wherein the patient has leukaemia with an advanced differentiation status, defined by : (a) (i) surface expression at a high level on the leukaemia cells of the patient of a group of CD markers consisting of CDl lb, CD14, CD15, CD16, CD33, CD38, CD44, CD45, CD64, CD123 and HLA-DR; and/or

(ii) phosphorylation or a high level of phosphorylation in the leukaemia cells of the patient at any one or more of Y187 and/or T185 of MAPK1; and T202 and/or Y204 of MAPK3;

(iii) activating mutations in any one or more of NRAS, KRAS, HRAS or BRAF in the leukaemia cells of the patient; and

(b) (i) phosphorylation or a high level of phosphorylation at one or more of pS780 and pS128 of STAT5A, pS548 of CAMKK1, pS1213 of TOP2A and pS317 of KDM5C; and/or

(ii) the absence of any activating mutations in FLT3 in the leukaemia cells of the patient.

27. A method of treating acute myeloid leukaemia in an individual patient, comprising the steps of :

(a) determining the differentiation status of the patient's leukaemia; and

(b) if the differentiation status of the leukaemia is advanced, administering to the patient a kinase pathway inhibitor which inhibits a signalling pathway that is involved in cell proliferation or cell survival, for treatment of acute myeloid leukaemia in the patient. 28. A method of treating acute myeloid leukaemia in an individual patient suffering from acute myeloid leukaemia, comprising the steps of :

(a) obtaining a biological sample comprising leukaemia cells from the patient;

(b) determining by in vitro laboratory testing that the differentiation status of the leukaemia cells in the sample obtained in (a) is advanced; and (c) where the differentiation status of the leukaemia cells is advanced, administering a kinase pathway inhibitor to the patient, which kinase pathway inhibitor inhibits a signalling pathway that is involved in cell proliferation or cell survival.

29. The method of claim 28, wherein the biological sample is a peripheral blood sample or a bone marrow sample.

30. The method of claim 28, wherein the kinase pathway inhibitor is selected from a MEK pathway inhibitor, a FLT3/PKC pathway inhibitor and a PAK pathway inhibitor. 31. The method of treating acute myeloid leukaemia according to claim 28, wherein step

(b) comprises detecting morphological and/or cytochemical features of the leukaemia cells in the sample obtained from the patient, where an M4 classification under the French- American- British (FAB) classification system indicates an advanced differentiation status.

32. The method of claim 31 , wherein said step of detecting morphological and/or cytochemical features of the leukaemia cells includes preparing the cells for microscopical analysis and visually observing the cells under a light microscope to detect morphological signs of differentiation; and/or assaying the behaviour, activity or response of the cells to specific conditions or test reagents such as such as Sudan black B and/or peroxidase and/or specific or non-specific esterases. 33. The method of treating acute myeloid leukaemia according to claim 28, wherein step

(b) comprises performing an in vitro assay to detect the expression level of one or more cell surface differentiation markers on the surface of the leukaemia cells in the sample obtained from the patient, which cell surface differentiation markers are typically expressed or over- expressed in healthy myelomonocytic cells and which cell surface differentiation markers are not typically expressed or over-expressed in undifferentiated myeloblasts, where the expression of said one or more cell surface differentiation markers at a high level on the surface of the leukaemia cells indicates an advanced differentiation status.

34. The method of claim 33, wherein said assay is an LC-MS/MS assay or an

immunochemical assay such as a Western blot assay, an ELISA assay or a reversed phase protein assay.

35. The method of treating acute myeloid leukaemia according to claim 33, wherein said cell surface differentiation markers comprise a panel of cell surface marker proteins including one or more of CD3, CD7, CDl lb, CD1 lc (integrin a-X, ITAX), CD14, CD15, CD16, CD18 (integrin β, ITB2), CD19, CD33, CD34, CD35 (CR1), CD38, CD44, CD45, CD64, CD97, CD117, CD123, CD180, CD184, HLA-C (1C02), APOBR, the platelet membrane receptor Gi24 (VSIR) and HLA-DR; and/or any cell surface proteins which are expressed in conjunction with said one or more cell surface marker proteins.

36. The method of treating acute myeloid leukaemia according to claim 35, wherein the panel of cell surface marker proteins comprises :

(i) any one, two, or three, or four, or five, or six, or seven, or eight, or nine, or ten, or eleven, or twelve, or thirteen, or fourteen, or fifteen, or sixteen, or seventeen, or eighteen, or all of CDl lb, CDl lc (integrin a-X, ITAX), CD14, CD15, CD16, CD18 (integrin β, ITB2), CD33, CD35 (CR1), CD38, CD44, CD45, CD64, CD97, CD123, CD180, HLA-C (1C02), APOBR, the platelet membrane receptor Gi24 (VSIR) and HLA-DR; or

(ii) any one, two, three, four, five, six, seven, eight, nine, ten or all of CD1 lb, CD14, CD15, CD16, CD33, CD38, CD44, CD45, CD64, CD123 and HLA-DR; or

(iii) any one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen or all of CD3, CD7, CDl lb, CD14, CD15, CD16, CD19, CD33, CD34, CD38, CD44, CD45, CD64, CD117, CD123, CD184, and HLA-DR.

37. The method of treating acute myeloid leukaemia according to claim 28, wherein step (b) comprises performing an in vitro assay to detect the expression and/or activation and/or phosphorylation of one or more functional differentiation markers in the leukaemia cells in the sample obtained from the patient, which functional differentiation markers are typically expressed, over-expressed, activated and/or phosphorylated in healthy monomyelocytic cells, and which functional differentiation markers are not typically expressed, over-expressed, activated and/or phosphorylated in undifferentiated myeloblasts; wherein the expression, activation and/or phosphorylation of said one or more functional differentiation markers in the leukaemia cells indicates an advanced differentiation status.

38. The method of claim 37, wherein said assay is an LC-MS/MS assay or an

immunochemical assay such as a Western blot assay, an ELISA assay or a reversed phase protein assay.

39. A method as claimed in claim 37, wherein said one or more functional differentiation markers comprises a panel of protein markers including one or more enzymes, integrins, kinases, phosphatases, signal transduction regulators, cytoplasmic proteins and phosphoproteins, membrane proteins and phosphoproteins, including cytoplasmic and membrane phosphoproteins that are involved in GTPase or other forms of cell signalling, which protein markers are typically expressed, over-expressed and/or activated in healthy monomyelocytic cells, and are not typically expressed, over-expressed and/or activated in undifferentiated myeloblasts; and wherein the expression and/or activation of said panel of protein markers in the leukaemia cells indicates an advanced differentiation status.

40. A method as claimed in claim 39, wherein the panel of protein markers includes any one, two, three, four or five of lysozyme C (LYZ), neutrophil cytosol factor 2 (NCF2), myeloid cell nuclear differentiation antigen (MNDA), AK1C4, and ERG.

41. A method as claimed in claim 37, wherein said one or more functional differentiation markers comprises a panel of kinase pathway activity markers including one or more kinases, phosphatases, phospholipoases, integrins, signal transduction regulators, G proteins, transmembrane receptors, phosphopeptides and/or other kinase signalling molecules that are typically expressed and/or activated and/or phosphorylated in a kinase signalling pathway in healthy monomyelocytic cells but are not typically expressed and/or activated and/or phosphorylated in undifferentiated myeloblasts; and wherein the expression and/or activation and/or phosphorylation of the panel of kinase pathway activity markers in the leukaemia cells indicates an advanced differentiation status. 42. A method as claimed in claim 41 , wherein the panel of kinase pathway activity markers comprises markers of a kinase signalling pathway that is inhibited by the kinase pathway inhibitor.

43. A method as claimed in claim 41 , wherein the panel of kinase pathway activity markers comprises any one, two, three, four, five, six, seven, eight, nine, ten or more of FES, PKC and protein kinase C isoforms including PKC5 (KPCD), PRKCA, PRKCB, and

PRKCD, PKA, PAK including PAKl and PAK2, STK10, GSK3A, RSK2, RAS, RAF, MEK including MEK1 (MAP2K1), ERK including MAPK3 (ERK1) and MAPK1 (ERK2), PI3K, AKT including AKT1, MTOR, S6 kinase, STAT5, CAMKK, SYK (KSYK), LYN, P38A, CDK1, CK2A1, PKACA, IRAK4, PKCB iso2, Cot, PKCD, PKCA, PKCB, PKCG, PKCH, BRAF, MEK2, PDK1, CDK2, PTN6, D3 (PLD3), IQGAP1, GRB2, RHOA, RHOG and S10AB, and any kinases, phosphatases, phospholipoases, integrins, signal transduction regulators, G proteins, transmembrane receptors and/or other kinase signalling molecules that are selectively expressed or activated therewith.

44. A method as claimed in claim 43, wherein the panel of kinase pathway activity markers comprises :

(i) any one, two, three, or four of PKC, ERK, PAK1 and P38a;

(ii) any one, two, three, four or five of PKCD, PKC A, PKACA, IRAK4 and CK2A1; or

(iii) any one, two, three, four, five or six of MAPK1, MAPK2, AKT, AKT1S1, MAP2K1 and MAP2K2.

45. A method as claimed in claim 41 , wherein the panel of kinase pathway activity markers comprises a panel of one or more phosphorylation sites which are typically phosphorylated or are typically phosphorylated at a high level in a kinase signalling pathway in healthy monomyelocytic cells but are not typically phosphorylated or are not typically phosphorylated at a high level in undifferentiated myeloblasts; and wherein phosphorylation or a high level of phosphorylation at the panel of phosphorylation sites in the leukaemia cells indicates an advanced differentiation status.

46. A method as claimed in claim 45, wherein the panel of phosphorylation sites comprises :

(i) any one, two, three, four, five, six, seven, eight, nine, ten or more than ten of the phosphorylation sites set out in Table 1 ; or

(ii) any one, two, three, four, five, six, seven, eight, nine, ten or more than ten of the phosphorylation sites set out in Table 2; or

(iii) any one, two, three, four, five, six, seven, eight, nine, ten or more than ten of PAK1 at S144, PAK2 at S141, MAPK1 at Y187, MAPK1 at T185, RPS6KA1 at S380, MAPK3 at T202, MAPK3 at Y204, MAP3K3 at SI 66, SYK at S295 and S297, IRAK3 at SI 10, PKN1 (379-396 + phospho ST), STK10 (447-464 + phospho ST), RIPK3 at S410, PRKCD at T218, PRKCD at T295, PRKCD at Y313, PRKCD at T507, PRKCD at T645, PRKCD at S664, PRKCD atT2638, MARK2 at S535, MAP3K2 at S535, PRKD2 (710-730 + phospho Y), NRK at s805, PRKAR2A at S58, ZAK (591-616 + phospho ST), MAP4K4 at S900, CDK9 at S347, RPS6KA4 (681-699 + 2 phospho ST), MAST3 (1254-1274 + phospho ST), NEK9 (10-39 + phospho ST), GSK3A (19-50 + phospho ST), RPS6KA3 at S369, RIPK2 at S531, AAK1 at T606, TYK2 at Y292, PDPK2 at S214, PRKAA1 (3-8 + phospho ST), STK11P at S772, BAZ1B at S1468, CLK1 at S140, MAP4K2 at S328, WNK1 (1996- 2021 + phospho ST), CDK11A at S271, FES at Y713, and/or TNIK at S769; or

(iv) PAK1 at S144, PAK2 at S141, MAPK1 at Y187 and/or T185, and RPS6KA1 at S380; or

(v) MAPK1 at Y187, PAK2 at S141 and PRKCD at Y313; or

(vi) FES at Y713, MAPK3 at T202/Y204, MAPK1 at T185/Y187, PAK1 at S144, MEK1 at S222, PAK2 at S141 and PRKCD at S645; or

(vii) GSK3A at S21 and/or PRKCD at T507, T295, T218, Y313, T507, and/or S664 and/or STK10 at S20 and/or S13, and/or PAK1 at S144, and/or PAK2 at S141.

(viii) one or more phosphorylation sites on MAPK1 including MAPK1 at Y 187 and/or T185, and MAPK3 at T202 and/or Y204, and GSK3A at S21.

47. The method of treating acute myeloid leukaemia according to claim 28, wherein the kinase pathway inhibitor inhibits any one or more of the FLT3 pathway, the PKC pathway, the RAS-RAF-MEK-ERK pathway, the PI3 K- AKT-MTOR- S 6K pathway, the PAK pathway, the JAK-STAT pathway, the CAMKK pathway, or any kinase signalling pathway parallel thereto.

48. The method of treating acute myeloid leukaemia according to claim 28, wherein the kinase pathway inhibitor is a MEK inhibitor, or a FLT3/PKC inhibitor, or a PAK inhibitor.

49. The method of treating acute myeloid leukaemia according to claim 48, wherein step (b) comprises :

(i) performing an in vitro assay to detect and/or quantify the phosphorylation of one or more phosphorylation sites in MAPK1 and/or MAPK3 in the leukaemia cells in the sample obtained from the patient; and/or (ii) performing an in vitro assay to detect and/or quantify the surface expression on the leukaemia cells in the sample obtained from said patient of a group of CD markers consisting of CDl lb, CD14, CD15, CD16, CD33, CD38, CD44, CD45, CD64, CD123 and HLA-DR; wherein phosphorylation or phosphorylation at a high level of the one or more

phosphorylation sites and/or the expression of said group of CD markers at a high level on said leukaemia cells indicates an advanced differentiation status.

50. The method of treating acute myeloid leukaemia according to claim 28, wherein the kinase pathway inhibitor is a FLT3/PKC pathway inhibitor such as midostaurin, and step (b) comprises :

(i) performing an in vitro assay to detect and/or quantify the phosphorylation of phosphorylation sites in one or more of GSK3A, PRKCA, PRKCB, PRKCD, STK10, PAKl, PAK2MAPK1 and/or MAPK3 in the leukaemia cells in the sample obtained from the patient; and/or

(ii) performing an in vitro assay to detect and/or quantify the surface expression of a group of CD markers consisting of CDl lb, CD14, CD15, CD16, CD33, CD38, CD44, CD4PKC5, CD64, CD 123 and HLA-DR on the surface of the leukaemia cells in the sample obtained from the patient; wherein either : phosphorylation or a high level of phosphorylation in the leukaemia cells of any one or more of GSK3A, PRKCA, PRKCB, PRKCD, STK10, PAKl, PAK2, MAPK1 and/or MAPK3; or expression at a high level by the leukaemia cells of said group of CD markers; indicates an advanced differentiation status.

51. The method of treating acute myeloid leukaemia according to claim 28, wherein the kinase pathway inhibitor is a MEK inhibitor such as trametinib, and wherein step (b) further comprises performing an in vitro assay to detect the genotype of the leukaemia cells obtained from the patient and determining that any one of NRAS, KRAS, HRAS or BRAF in the leukaemia cells in the sample obtained from the patient has an activating mutation.

52. The method of claim 51 , wherein said assay involves sequencing NRAS, KRAS, HRAS or BRAF in the leukaemia cells in the sample obtained from the patient, and identifying an activating mutation in the sequence data thereby obtained.

53. The method of claim 51 , wherein step (b) comprises :

(i) performing an in vitro assay to detect the phosphorylation of one or more phosphorylation sites in MAPK1 or MAPK3 in the leukaemia cells in the sample obtained from the patient; and/or

(ii) performing an in vitro assay to detect the surface expression of a group of CD markers consisting of CDl lb, CD14, CD15, CD16, CD33, CD38, CD44, CD45, CD64, CD 123 and HLA-DR on the leukaemia cells in the sample obtained from the patient; wherein phosphorylation or a high level of phosphorylation of the one or more

phosphorylation sites and/or the expression of said group of CD markers at a high level on said leukaemia cells indicates an advanced differentiation status.

54. The method of treating acute myeloid leukaemia according to claim 28, wherein the kinase pathway inhibitor is a MEK inhibitor such as trametinib, and step (b) further comprises :

(i) performing an in vitro assay to detect the genotype of the leukaemia cells in the sample obtained from the patient and determining that FLT3 in the leukaemia cells does not have an activating mutation; and/or

(ii) performing an in vitro assay to detect the expression or activation in the leukaemia cells in the sample obtained from the patient of one or more activity markers of a FLT-3 driven signalling pathway that is involved in cell proliferation or cell survival other than the RAS-RAF-MEK-EPvK pathway, such as the PKC pathway, the PI3K-AKT-MTOR-S6K pathway, the PAK pathway, the JAK-STAT pathway, or the CAMKK pathway, and determining that the FLT3 -driven kinase signalling pathway is not activated in the leukaemia cells; and/or

(iii) performing an in vitro assay to detect the level of phosphorylation of one or both of TOP2A and/or KDM5C in the leukaemia cells in the sample obtained from the patient and determining that TOP2A and/or KDM5C are not phosphorylated or are phosphorylated at a low level in the leukaemia cells.

55. The method of treating acute myeloid leukaemia of claim 28, wherein the kinase pathway inhibitor is a MEK inhibitor such as trametinib, and wherein step (b) comprises :

(i) performing an in vitro assay to detect the genotype of the leukaemia cells in the sample obtained from the patient and determining that any one of NRAS, KRAS, HRAS or BRAF in the leukaemia cells has an activating mutation; and/or determining that the differentiation status of the leukaemia cells in the sample obtained from the patient is advanced; and

(ii) performing an in vitro assay to detect the genotype of the leukaemia cells in the sample obtained from the patient and determining that FLT3 in the leukaemia cells does not have an activating mutation; and/or performing an assay to detect the expression or activation in the leukaemia cells in the sample obtained from the patient of one or more activity markers of a FLT-3 driven signalling pathway that is involved in cell proliferation or cell survival other than the RAS-RAF-MEK-ERK pathway, such as the PKC pathway, the PI3K-AKT-MTOR-S6K pathway, the PAK pathway, the JAK-STAT pathway, or the CAMKK pathway, and determining that the FLT3 -driven kinase signalling pathway is not activated in the leukaemia cells; and/or performing an assay to detect the level of

phosphorylation of one or both of TOP2A and/or KDM5C in the leukaemia cells in the sample obtained from the patient and determining that TOP2A and/or KDM5C are not phosphorylated or are phosphorylated at a low level in the leukaemia cells.

56. The method of claim 54 or claim 55, wherein said activity markers of the FLT3- driven kinase signalling pathway include one or more phosphorylation sites which are selectively phosphorylated by the FLT3-driven kinase signalling pathway, and wherein phosphorylation or a high level of phosphorylation of the one or more phosphorylation sites indicates that the FLT3 -driven kinase signalling pathway is activated.

57. The method of claim 56, wherein said one or more phosphorylation sites include phosphorylation sites in one or both of STAT5A and CAMKKl, such as STAT5A at S780 and/or S128, and/or CAMKKl at S548.

58. The method of claim 54 or claim 55, wherein said step of detecting the level of phosphorylation of one or both of TOP2A and/or KCM5C in the leukaemia cells comprises detecting the phosphorylation of TOP2A at S1213 and/or the phosphorylation of KDM5C at S317. 59. A method of treating acute myeloid leukaemia in an individual patient suffering from acute myeloid leukaemia, comprising the steps of :

(a) obtaining a biological sample comprising leukaemia cells from the patient;

(b) (i) performing an in vitro assay to detect the expression on the surface of the leukaemia cells in the sample obtained from the patient of a group of CD markers consisting of CD l ib, CD14, CD15, CD16, CD33, CD38, CD44, CD45, CD64,

CD 123 and HLA-DR; and/or

(ii) performing an in vitro assay to detect the phosphorylation in the leukaemia cells of one or more phosphorylation sites selected from : GSK3A at pS21; PRKCD at Y313, pT507, pT295, pT218, and/or pS664 of PRKCD; STK10 at pS20 and/or pS13 of STK10; PAK1 at pS144 of PAK1; PAK2 at pS141 of PAK2; MAPK1 at

Y187 and/or T185; and MAPK3 at T202 and/or Y204; and

(c) where said group of CD markers is expressed at a high level on the surface of the patient's leukaemia cells, and/or one or more of said phosphorylation sites in the leukaemia cells is phosphorylated or is phosphorylated at a high level, administering midostaurin to the patient for treatment of acute myeloid leukaemia.

60. A method of treating acute myeloid leukaemia in an individual patient suffering from acute myeloid leukaemia, comprising the steps of :

(a) obtaining a biological sample comprising leukaemia cells from the patient;

(b) (i) performing an in vitro assay to detect the expression on the surface of the leukaemia cells in the sample obtained from the patient of a group of CD markers consisting of CDl lb, CD14, CD15, CD16, CD33, CD38, CD44, CD45, CD64, CD 123 and HLA-DR; and/or (ii) performing an in vitro assay to detect the phosphorylation in the leukaemia cells of one or more MEK-related phosphorylation sites selected from MAPK1 at Y187 and/or T185 and MAPK3 at T202 and/or Y204; and/or

(iii) performing an in vitro assay to detect the genotype of the leukaemia cells to determine whether there is an activating mutation in any one or more of NRAS, KRAS, HRAS or BRAF in the patient's leukaemia cells;

(c) (i) performing an in vitro assay to detect the phosphorylation in the leukaemia cells at one or more marker sites selected from STAT5A at pS780 and/or pS128, CAMKK1 at pS548, TOP2A at pS1213 and KDM5C at pS317 of KDM5C; and/or

(ii) performing an in vitro assay to detect the genotype of the leukaemia cells to determine whether there is an activating mutation in FLT3 in the patient's leukaemia cells; and

(d) where : (A) said group of CD markers is expressed at a high level on the surface of the patient's leukaemia cells, and/or one or more of said MEK-related

phosphorylation sites in the leukaemia cells is phosphorylated or is phosphorylated at a high level, and/or there is an activating mutation in any one or more of NRAS, KRAS, HRAS or BRAF in the leukaemia cells of the patient; and

(B) said marker site is not phosphorylated or is not phosphorylated at a high level in the patient's leukaemia cells, and/or there is no activating mutation in FLT3 in the patient's leukaemia cells, administering trametinib to the patient for treatment of acute myeloid leukaemia.

Description:
STRATIFICATION OF ACUTE MYELOID LEUKAEMIA PATIENTS FOR SENSITIVITY TO KINASE PATHWAY INHIBITOR THERAPY

[0001] The present invention relates to the treatment of acute myeloid leukaemia (AML) in patients. In particular, the invention concerns improved methods for identifying

AML patients who may be effectively treated with kinase pathway inhibitors, and improved methods for predicting whether a kinase pathway inhibitor may be efficacious for treatment of AML in an individual patient. The invention also comprehends a method of screening a plurality of patients suffering from acute myeloid leukaemia, to determine whether the acute myeloid leukaemia of any one or more of the patients may be effectively treated with a kinase pathway inhibitor. The invention further provides methods for the treatment of such patients with kinase pathway inhibitors, and kinase pathway inhibitors for use in such methods.

Acute myeloid leukaemia - disease characteristics and classification

[0002] Acute myeloid leukaemia (AML), also known as acute myelogenous leukaemia, acute myeloblastic leukaemia, acute granulocytic leukemia or acute

nonlymphocytic leukemia, is an aggressive cancer of the blood and bone marrow. AML is characterised by excessive production of immature white blood cells, known as myeloblasts, by bone marrow. In healthy individuals, blasts normally develop into mature white blood cells. In AML, however, the blasts do not differentiate normally but remain at a premature arrested state of development.

[0003] In AML, the bone marrow may also make abnormal red blood cells and platelets. The number of these abnormal cells increases rapidly, and the abnormal cells begin to crowd out the normal white blood cells, red blood cells and platelets that the body needs. If left untreated, acute myeloid leukaemia is rapidly fatal. [0004] Various classification systems have been devised for classifying AML into disease subtypes, with the aim of enabling more accurate prognosis of disease progression and identification of the optimal form of treatment. The earliest system was the French- American-British (FAB) classification, first devised in the 1970s by a group of French, American and British leukaemia experts. This system divides AML into subtypes according to the type of cell from which the leukaemia has developed, and the stage of maturity reached by the myeloblast cells at the point of arrest. Subtypes M0 to M5 originate from precursors of white blood cells and range from undifferentiated myeloblasts leukaemia (MO) to monocytic leukaemia (M5). Subtype M6 originates in very early forms of red blood cells (erythroid leukaemia), whilst subtype M7 AML starts in early forms of cells that form platelets (megakaryoblastic leukaemia).

[0005] Under the FAB system, AML is categorised by visual inspection of cytomorphological features under the microscope, and by identification of various chromosomal abnormalities. An updated version of the FAB categorisation was published in 1985 - see Bennett et al, Proposed revised criteria for the classification of acute myeloid leukaemia, Ann Intern Med 1985; 103(4) : 620-625.

[0006] Since the FAB system was first devised in the 1970s, the level of knowledge in the field has moved on considerably. Whilst the system has been updated to incorporate some of this knowledge, it was felt to be necessary to create a new classification system, taking into account additional factors now known to affect prognosis and to be determinative in optimising effective treatment.

[0007] The World Health Organization (WHO) classification system accordingly divides AML into several broad groups. These include :-

• AML with recurrent genetic abnormalities, meaning with specific chromosomal changes

• AML with multilineage dysplasia

• AML, related to previous therapy that is damaging to cells, including chemotherapy and radiotherapy, also called therapy-related myeloid neoplasm

• AML that is not otherwise categorized - including :-

"Undifferentiated AML (M0) °AML with minimal maturation (Ml) 0 AML with maturation (M2) °Acute myelomonocytic leukemia (M4) °Acute monocytic leukemia (M5) °Acute erythroid leukemia (M6) °Acute megakaryoblastic leukemia (M7) °Acute basophilic leukemia °Acute panmyelosis with fibrosis

"Myeloid sarcoma (also known as granulocytic sarcoma or chloroma) [0008] In addition to these two main classification systems, AML is further categorised and subtyped by reference to specific molecular markers which are found to correlate with certain phenotypes and outcomes. For example, patients with mutations in the NPM1 gene or CEBPA genes are known to have a better long term outcome, whilst patients with certain mutations in FLT3 have been found to have a worse prognosis - see Yohe et al, J Clin Med. 2015 Mar 4(3): 460-478.

Current treatment regimes

[0009] Conventional treatment for AML includes chemotherapy and radiation therapy, as well as stem cell and bone marrow transplants. Most patients respond well at first to such therapy, but there is a high rate of relapse and patients typically become refractory to primary treatments. Overall, the 5 year survival rate for AML patients undergoing conventional therapy is around 26%.

[0010] Historically, with the exception of acute promyelocytic leukaemia, therapy for

AML has not been targeted to the disease subtype. Rather, classification of AML according to the above-mentioned systems has principally served to inform clinical decisions as to the appropriate intensity of treatment. More recently, however, efforts have been made to identify targeted forms of treatment suitable for specific disease types and patient subgroups. Kinase pathway inhibitors have been the subject of particular interest as possible new personalised therapeutics in AML. Recently, the FLT3 inhibitor midostaurin has been approved by the FDA for treatment of adult patients having newly-diagnosed AML with certain activating mutations in the FLT3 gene. The pre-clinical efficacy of MEK inhibitors for treating AML with oncogenic NRAS mutations has also been investigated (Burgess at al, Blood 2014; 124(26): 3947-3955). However, kinase pathway inhibitors are not yet used routinely for treatment of AML, and the sensitivity of these screening protocols for reliably identifying patients who are susceptible to kinase pathway inhibitor treatment has not been fully tested. [0011] There remains therefore a need for improved methods for targeted treatment of

AML, and in particular for identifying patients who will be responsive to treatment with kinase pathway inhibitors, and those who will not be responsive to such treatment. Accurate and sensitive stratification is needed not only to ensure that patients who will respond to a particular treatment can be identified as such and treated appropriately, but also to ensure that patients who will not respond are not treated unnecessarily.

Summary of the invention

[0012] The present inventors have integrated proteomic, kinomic and genomic profiling to investigate the mechanisms that sensitise primary AML cells to kinase pathway inhibitors, thus permitting identification of biomarker panels which accurately identify sensitive cells. The inventors have found that leukaemia cells with an advanced

differentiation status show higher sensitivity to kinase pathway inhibitors than less differentiated leukaemia cells. The differentiation status of leukaemia cells, which may be assessed according to protocols and criteria described herein, thus provides an effective biomarker for identification of leukaemia cells and patients that are sensitive to kinase pathway inhibitors. This enables new and effective stratification of patients for kinase inhibitor therapy. The inventors have further identified correlations between specific gene mutations and kinase pathway inhibitor sensitivity. These have the potential, inter alia, for providing effective companion diagnostic tests for use in conjunction with kinase pathway inhibitor therapy.

[0013] In a first aspect, therefore, the present invention provides a method for predicting the efficacy of a kinase pathway inhibitor for treatment of acute myeloid leukaemia in an individual patient, which kinase pathway inhibitor inhibits a kinase signalling pathway that is involved in cell proliferation or cell survival, comprising the steps of :

(a) determining the differentiation status of the patient's leukaemia; and

(b) if the differentiation status of the leukaemia is advanced, predicting that the acute myeloid leukaemia in the patient may be effectively treated with said kinase pathway inhibitor. [0014] In a second aspect, the present invention provides a method of treating acute myeloid leukaemia in an individual patient, comprising the steps of : (a) determining the differentiation status of the patient's leukaemia; and

(b) if the differentiation status of the leukaemia is advanced, treating the patient with a kinase pathway inhibitor which inhibits a kinase signalling pathway that is involved in cell proliferation or cell survival. [0015] In a third aspect, the present invention provides a method of screening a plurality of patients with acute myeloid leukaemia to determine whether the acute myeloid leukaemia of any one or more of said plurality of patients may be effectively treated with a kinase pathway inhibitor, which kinase pathway inhibitor inhibits a kinase signalling pathway that is involved in cell proliferation or cell survival, comprising the steps of : (a) for each patient, determining the differentiation status of the patient's leukaemia; and

(b) identifying any one or more patients having leukaemia with an advanced differentiation status as having leukaemia suitable for effective treatment with the kinase pathway inhibitor. [0016] In a fourth aspect, the present invention provides a kinase pathway inhibitor, which kinase pathway inhibitor inhibits a kinase pathway that is involved in cell proliferation or cell survival, for use in a method of treating acute myeloid leukaemia in an individual patient, wherein the treatment comprises :

(a) determining the differentiation status of the patient's leukaemia; and (b) if the differentiation status of the leukaemia cells is advanced, treating the patient with said kinase pathway inhibitor.

[0017] The present invention further provides for computer implementation of the method of screening according to the third aspect of the invention and the method of predicting efficacy of kinase pathway inhibitor therapy according to the first aspect of the invention. The present invention also provides software for performing either or both of these computer-implemented methods.

[0018] These aspects of the present invention each comprise a step (a) of determining the differentiation status of a patient's leukaemia. As described above, AML involves proliferation of aberrant, partially-differentiated myeloblasts. The term "differentiation status of a patient's leukaemia" thus refers to the differentiation status of the patient's leukaemia cells. Suitably, therefore, step (a) may involve determining the differentiation status of leukaemia cells which have previously been obtained from the patient. Alternatively, step (a) may further involve obtaining leukaemia cells from the patient, prior to determining the differentiation status of said leukaemia cells. Said leukaemia cells may, for example, be obtained from peripheral blood samples or from bone marrow samples. This invention is applicable to all AML patients, including newly-diagnosed (untreated) AML patients, AML patients who have undergone or are undergoing other forms of treatment, and relapsed AML patients.

[0019] Suitably, the differentiation status of the leukaemia cells may be determined by analysing data relating to the leukaemia cells as described hereinbelow. In some embodiments, said data has previously been gathered and recorded and step (a) comprises obtaining or receiving said data for analysis. In other embodiments, step (a) further comprises gathering and recording said data for analysis, as described hereinbelow. In some embodiments, said step of determining the differentiation status of the patient's leukaemia may consist of determining whether or not the patient's leukaemia is advanced (a binary

(yes/no) determination).

[0020] The differentiation status of a patient's leukaemia may be determined by analysing data relating to morphological and/or cytochemical features of the leukaemia cells, and/or by analysing data relating to expression, activation and/or phosphorylation in the leukaemia cells of one or more differentiation markers such as cell surface differentiation markers and/or functional differentiation markers including kinase pathway activity markers, and/or by reference to data recording the classification of the leukaemia cells under the French- American-British (FAB) classification as described in Bennett et al, Proposed revised criteria for the classification of acute myeloid leukaemia, Ann Intern Med 1985; 103(4) : 620-625. The data may include any type of information concerning the cells, including without limit information regarding the appearance, properties, characteristics, genotype, phenotype, activity, classification and function of the cells, and including without limit images of the cells, written descriptions of the cells, and measurements of all types obtained from the cells.

[0021] Said data relating to morphological features of the leukaemia cells may include data recording the visual appearance of the cells under a light microscope, optionally using a stain such as Romanowsky's stain. Said data may, for example, include visual images of the cells and/or written descriptions of the cells. Step (a) may comprise analysing the data to determine if the cells satisfy the FAB criteria for identification of M4 cells as defined in Bennett et al, op. cit. In particular, an advanced differentiation status may be determined if the data indicates that at least 20% of the leukaemia cells have an appearance characteristic of granulocytic-monocytic cells, and/or if the data indicates that amongst the leukaemia cells, myeloblasts, monoblasts and promonocytes constitute 20% or more of nonerythroid cells, and myeloblasts and granulocytes constitute 80%> or less of nonerythroid cells. An advanced differentiation status may for example be determined if the data indicates that at least 20%> of the cells have lightly granulated, greyish cytoplasm and folded nuclei, characteristic of granulocytic-monocytic cells (M4 FAB). An advanced differentiation status may be determined if in a sample obtained from bone marrow, the blast cells (myeloblasts, promyelocytes, myelocytes and later granulocytes) constitute more than 30%> but less than 80% of the non-erythroid cells; and, preferably but not essentially, if in a sample obtained from peripheral blood, the monocyte count (monoblasts, promonocytes and monocytes) is 5 x 10 9 /L or more. See Bennett, op. cit, at page 622.

[0022] In some embodiments, said data relating to morphological features of the leukaemia cells has previously been recorded and step (a) comprises obtaining said data for analysis. In other embodiments, step (a) further comprises gathering and recording said data relating to morphological features of the leukaemia cells for analysis. Methods for collecting and recording said data relating to morphological features of the cells are conventional and well-known in the art, being described in Bennett et al (op cit) and elsewhere.

[0023] Said data relating to cytochemical features of the leukaemia cells may include data recording the response of the cells to reagents such as Sudan black B and/or peroxidase and/or specific or non-specific esterases. Said data may, for example, include visual images of the cells, written descriptions of the cells, flow cytometry data and other types of cytochemical data. Step (a) may comprise analysing the data to determine if the cells satisfy the FAB criteria for identification of M4 cells as defined in Bennett et al, op. cit. In particular, an advanced differentiation status may be determined if the data indicates that at least 20%) of the cells are responsive to Sudan black B and/or peroxidase and/or specific or non-specific esterase (M4 FAB).

[0024] In some embodiments, said data relating to cytochemical features of the leukaemia cells has previously been recorded and step (a) comprises obtaining said data for analysis. In other embodiments, step (a) further comprises gathering and recording said data relating to cytochemical features of the leukaemia cells for analysis. Methods for collecting and recording data relating to cytochemical features of cells are conventional and well-known in the art, being described in Bennett et al {op cit) and elsewhere. [0025] Said data relating to expression, activation and/or phosphorylation in the leukaemia cells of one or more differentiation markers such as cell surface differentiation markers and/or functional differentiation markers may include data recording the presence or absence or the level of expression on the surface of the leukaemia cells of one or more cell surface differentiation markers, such as signalling molecules, which cell surface

differentiation markers are typically expressed or over-expressed in healthy myelomonocytic cells and which cell surface differentiation markers are not typically expressed or over- expressed in undifferentiated myeloblasts; wherein the presence of said one or more cell surface differentiation markers on the leukaemia cells, or the expression of said one or more cell surface differentiation markers at a high level on the leukaemia cells indicates an advanced differentiation status. Said data may, for example, include a written description of the cells, or any type of data obtained from an assay measuring cell surface protein expression, such as by mass cytometry or any other technique or assay that is known in the art. In some embodiments, said data has previously been recorded and step (a) comprises obtaining said data for analysis. In other embodiments, step (a) further comprises collecting and recording said data for analysis, according to standard conventional methods and protocols known in the art, for example by mass cytometry.

[0026] Said cell surface differentiation markers may comprise a panel of cell surface marker proteins including one or more of CD3, CD7, CD1 lb, CD1 lc (integrin a-X, IT AX), CD14, CD15, CD16, CD18 (integrin β, ITB2), CD19, CD33, CD34, CD35 (CR1), CD38, CD44, CD45, CD64, CD97, CD117, CD123, CD180, CD184, HLA-C (1C02), APOBR, the platelet membrane receptor Gi24 (VSIR) and HLA-DR; and/or any cell surface proteins which are expressed in conjunction with said one or more cell surface marker proteins. CD markers, also known as cluster of differentiation markers, are a well-defined subset of cellular surface receptors (epitopes) that are specific as to cell type and stage of

differentiation, and which are recognized by antibodies. The cell surface marker proteins listed above are all known in the art and are well characterised - see, for example, Zola et al H, (2007). "CD molecules 2006— human cell differentiation molecules.". J Immunol Methods. 319 (1-2): 1-5. These cell surface marker proteins have been found to be typically expressed typically at a high level on the surface of leukaemia cells with an advanced differentiation status which are sensitive to kinase pathway inhibitors, but are not typically expressed in undifferentiated myeloblasts. Step (a) may therefore involve analysing the data to determine if the panel of cell surface marker proteins is expressed or is expressed at a high level by said leukaemia cells, where an advanced differentiation status is determined if the panel of cell surface marker proteins is expressed or is expressed at a high level. Preferably, the panel of cell surface marker proteins includes any two, or three, or four, or five, or six, or seven, or eight, or nine, or ten, or eleven, or twelve, or thirteen, or fourteen, or fifteen, or sixteen, or seventeen, or eighteen, or all of CDl lb, CDl lc (integrin a-X, ITAX), CD14, CD15, CD16, CD18 (integrin β, ITB2), CD33, CD35 (CR1), CD38, CD44, CD45, CD64, CD97, CD123,

CD 180, HLA-C (1C02), APOBR, the platelet membrane receptor Gi24 (VSIR) and HLA- DR.

[0027] References to expression of one or more cell surface proteins, such as cell surface marker proteins, at a "high level", as used here and elsewhere in the specification, denote a level of expression which is higher than the average level of expression of the relevant cell surface proteins. References to a "low level" of expression similarly denote a level of expression which is the same as or less than the average level of expression of the cell surface proteins. The average level of expression of the cell surface proteins is a standardised value which may be determined by reference to an average calculated across a plurality of samples, or by reference to the level of expression of the cell surface proteins in undifferentiated myeloblasts or other healthy cell types, which may be established either by laboratory analysis according to methods well known in the art (including LC-MS/MS), or by reference to information available in the art. Thus, for example, the average level of expression of the cell surface proteins may be determined by establishing the range of expression levels of the cell surface proteins in cell samples obtained from a large number of

AML patients, and calculating the mean level of expression across the samples. A "high level" of expression of the cell surface proteins is a level of expression which is higher than the calculated mean.

[0028] Optionally, the panel of cell surface marker proteins may further include one or more of CD19, CDl 17, CD7, CD34, CD3, and CD184. The panel of cell surface marker proteins may advantageously include CD45, and/or CDl lb, and/or CD44, and/or CD14, and/or CD 16, and/or CD64 and/or CD15. In particular, the panel of cell surface marker proteins may include any one of CD45, CDl lb, CD44, CD14, CD16, CD64 and CD15, or any two, three, four, five or six of CD45, CDl lb, CD44, CD14, CD16, CD64 and CD15. Suitably, the panel of cell surface marker proteins may consist of CD45, CDl lb, CD44, CD 14, CD 16, CD64 and CD15. In some preferred embodiments, the panel of cell surface markers consists of any one, two, three, four, five, six, seven, eight, nine, ten or all of CDl lb, CD14, CD15, CD16, CD33, CD38, CD44, CD45, CD64, CD123 and HLA-DR. In other preferred embodiments, the panel of cell surface marker proteins consists of any one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen or all of CD3, CD7, CDl lb, CD14, CD15, CD16, CD19, CD33, CD34, CD38, CD44, CD45, CD64, CDl 17, CD 123, CD 184, and HLA-DR. [0029] Said data relating to expression, activation and/or phosphorylation in the leukaemia cells of one or more differentiation markers such as cell surface differentiation markers and/or functional differentiation markers may, additionally or alternatively, comprise data recording the expression and/or activation and/or phosphorylation of one or more functional differentiation markers, which functional differentiation markers are typically expressed, over-expressed, activated and/or phosphorylated in healthy monomyelocytic cells, and which functional differentiation markers are not typically expressed, over-expressed, activated and/or phosphorylated in undifferentiated myeloblasts; wherein the expression, activation and/or phosphorylation of said one or more functional differentiation markers indicates an advanced differentiation status. Said data may, for example, include a written description of the cells, or any type of data obtained from an assay measuring expression, activation or phosphorylation of cellular proteins, according to any technique known in the art, such as LC-MS/MS analysis or immunochemical techniques including Western blotting, ELISA, and reversed phase protein assays. In some embodiments, said data has previously been recorded and step (a) comprises obtaining said data for analysis. In other embodiments, step (a) further comprises collecting and recording said data for analysis, according to standard conventional methods known in the art, such as by LC-MS/MS.

[0030] Said one or more functional differentiation markers may comprise a panel of protein markers including one or more enzymes, integrins, kinases, phosphatases, signal transduction regulators, cytoplasmic proteins and phosphoproteins, membrane proteins and phosphoproteins, including cytoplasmic and membrane phosphoproteins that are involved in

GTPase or other forms of cell signalling, which protein markers are typically expressed, over-expressed and/or activated in healthy monomyelocytic cells, and are not typically expressed, over-expressed and/or activated in undifferentiated myeloblasts. [0031] The panel of protein markers may include any one, two, three, four, five, six, seven, eight, nine, ten or more of lysozyme C (LYZ), neutrophil cytosol factor 2 (NCF2), myeloid cell nuclear differentiation antigen (MNDA), AK1C4, ERG, Nesprin 3, Voltage- gated hydrogen channel 1, Fructose- 1,6-bisphosphatase 1, Monocyte differentiation antigen CD 14, Thymidine phosphorylase, CD 180 antigen, Putative annexin A2-like protein,

Retinoid-inducible serine carboxypeptidase, Annexin A2, Golgi-associated plant

pathogenesis-related protein 1, Integrin beta-2, BTB/POZ domain-containing protein

KCTD12, Cytoskeleton-associated protein 4, Integrin alpha-X, Complement receptor type 1, Annexin A5, Uncharacterized protein FLJ45252, Galectin-3, Adenylate kinase isoenzyme 1, Protein S100-A10, Thiamine-triphosphatase, Deoxynucleoside triphosphate

triphosphohydrolase SAMHD1, Mitochondrial amidoxime-reducing component 1, Coronin- 1B, Arf-GAP with Rho-GAP domain, ANK repeat and PH domain-containing protein 1, Granulins, Ribonuclease inhibitor, Long-chain- fatty-acid~CoA ligase 1, Protein S100-A11, Pro-cathepsin H, Cathepsin S, Galectin-1, Transport and Golgi organization protein 2 homolog, Arf-GAP domain and FG repeat-containing protein 1, Long-chain-fatty-acid— CoA ligase 3, Ras GTPase-activating-like protein IQGAP1, Allograft inflammatory factor 1, Transcription intermediary factor 1-beta, Beta-arrestin-2, Dihydropyrimidine dehydrogenase [NADP(+)], Alpha-N-acetylgalactosaminidase, Cathepsin B, Aminopeptidase B, Lysosomal protective protein, Phosphoglycerate mutase 1, Polypeptide N- acetylgalactosaminyltransferase 2, Cytokine receptor- like factor 3, Calpastatin, EF-hand domain-containing protein D2, Dual specificity mitogen-activated protein kinase kinase 1, Major vault protein, Alpha-galactosidase A, Tyro sine-protein kinase SYK, Sister chromatid cohesion protein PDS5 homolog B, Calpain-2 catalytic subunit, FK506-binding protein 15, Protein disulfide-isomerase, Tensin-3, Apolipoprotein B receptor, Transforming protein RhoA, Plastin-2, Actin-related protein 2/3 complex subunit 2, CD97 antigen, Cathepsin Z, Neuroblast differentiation-associated protein AHNAK, Unconventional myosin-If, Pyruvate kinase PKM, Protein THEMIS2, Plastin-3, Tyrosine-protein phosphatase non-receptor type 6, Ezrin, Leucine-rich repeat-containing protein 59, Guanine nucleotide -binding protein

G(I)/G(S)/G(T) subunit beta-2, Coronin-1 A, Radixin, Transketolase, Growth factor receptor- bound protein 2, V-type proton ATPase subunit B (kidney isoform), Coatomer subunit epsilon, Alpha-soluble NSF attachment protein, Rho GDP-dissociation inhibitor 2, and/or Guanine nucleotide -binding protein subunit beta-4, and/or any proteins which are selectively expressed and/or activated therewith. These protein markers have been found to be typically expressed and/or activated in leukaemia cells with an advanced differentiation status which are sensitive to kinase pathway inhibitors, but are not typically expressed and/or activated in undifferentiated myeloblasts. Step (a) may therefore comprise analysing the data to determine if the panel of protein markers is expressed and/or activated in said leukaemia cells, where an advanced differentiation status is determined if the panel of protein markers is expressed and/or activated in the cells.

[0032] Advantageously, the panel of protein markers may include any one, two, three, four or five of lysozyme C (LYZ), neutrophil cytosol factor 2 (NCF2), myeloid cell nuclear differentiation antigen (MNDA), AK1C4, and ERG; and step (a) may comprise analysing the data to determine if this panel of protein markers is expressed in the leukaemia cells, where an advanced differentiation status is determined if the panel of protein markers is expressed in the cells.

[0033] Said one or more functional differentiation markers may additionally or alternatively comprise a panel of kinase pathway activity markers including one or more kinases, phosphatases, phospholipoases, integrins, signal transduction regulators, G proteins, transmembrane receptors, phosphopeptides and/or other kinase signalling molecules that are typically expressed and/or activated and/or phosphorylated in a kinase signalling pathway in healthy monomyelocytic cells but are not typically expressed and/or activated and/or phosphorylated in undifferentiated myeloblasts. Advantageously, the kinase signalling pathway may be a pathway that is inhibited by the kinase pathway inhibitor. Thus, for example, where the kinase pathway inhibitor is a RAS-RAF-MEK-ERK pathway inhibitor such as trametinib, the panel of kinase pathway activity markers may comprise markers of the RAS-RAF-MEK-ERK signalling pathway.

[0034] In particular, the panel of kinase pathway activity markers may include one or more kinases, phosphatases, phospholipoases, integrins, signal transduction regulators, G proteins, transmembrane receptors and/or other kinase signalling molecules that are expressed and/or activated in a kinase signalling pathway that is involved in cell proliferation or cell survival. In some embodiments, one or more of said kinases, phosphatases, phospholipoases, integrins, signal transduction regulators, G proteins, transmembrane receptors and/or other kinase signalling molecules may be expressed and/or activated in a kinase signalling pathway that is inhibited by said kinase pathway inhibitor. In some embodiments, one or more of said kinases, phosphatases, phospholipoases, integrins, signal transduction regulators, G proteins, transmembrane receptors and/or other kinase signalling molecules may be inhibited by said kinase pathway inhibitor.

[0035] The panel of kinase pathway activity markers may include any one, two, three, four, five, six, seven, eight, nine, ten or more of FES, PKC and protein kinase C isoforms including PKC5 (KPCD), PRKCA, PRKCB, and PRKCD, PKA, PAK including PAK1 and

PAK2, STK10, GSK3A, RSK2, RAS, RAF, MEK including MEK1 (MAP2K1), ERK including MAPK3 (ERK1) and MAPK1 (ERK2), PI3K, AKT including AKT1, MTOR, S6 kinase, STAT5, CAMKK, SYK (KSYK), LYN, P38A, CDK1, CK2A1, PKACA, IRAK4, PKCB iso2, Cot, PKCD, PKCA, PKCB, PKCG, PKCH, BRAF, MEK2, PDK1, CDK2, PTN6, D3 (PLD3), IQGAP 1 , GRB2, RHOA, RHOG and S 1 OAB, and any kinases, phosphatases, phospholipoases, integrins, signal transduction regulators, G proteins, transmembrane receptors and/or other kinase signalling molecules that are selectively expressed or activated therewith. These kinase pathway activity markers have been found to be typically expressed and/or activated and/or phosphorylated in leukaemia cells with an advanced differentiation status which are sensitive to kinase pathway inhibitors, but are not typically expressed and/or activated and/or phosphorylated in undifferentiated myeloblasts. Step (a) may therefore comprise analysing the data to determine if the panel of kinase pathway activity markers is expressed and/or activated and/or phosphorylated in said leukaemia cells, where an advanced differentiation status is determined if the panel of kinase pathway activity markers is expressed and/or activated and/or phosphorylated in the cells.

[0036] Advantageously, the panel of kinase pathway activity markers may include any one, two, three, or four of PKC, ERK, PAK1 and P38a and step (a) may include analysing the data to determine if this panel of kinase pathway activity markers is expressed and activated in the leukaemia cells, where an advanced differentiation status is determined if the panel of kinase pathway activity markers is expressed and activated in the cells.

[0037] Suitably, the panel of kinase pathway activity markers may include any one, two, three, four or five of PKCD, PKCA, PKACA, IRAK4 and CK2A1, and step (a) may include analysing the data to determine if this panel of kinase pathway activity markers is expressed and activated in the leukaemia cells, where an advanced differentiation status is determined if the panel of kinase pathway activity markers is expressed and activated in the cells. Alternatively, the panel of kinase pathway activity markers may include any one, two, three, four, five or six of MAPK1, MAPK2, AKT, AKT1S1, MAP2K1 and MAP2K2, and step (a) may include analysing the data to determine if this panel of kinase pathway activity markers is expressed and activated in the leukaemia cells, where an advanced differentiation status is determined if the panel of kinase pathway activity markers is expressed and activated in the cells. [0038] The panel of kinase pathway activity markers may additionally or alternatively comprise a panel of one or more phosphorylation sites which are typically phosphorylated or are typically phosphorylated at a high level in a kinase signalling pathway in healthy monomyelocytic cells but are not typically phosphorylated or not typically phosphorylated at a high level in undifferentiated myeloblasts Step (a) may comprise analysing the data to determine if the panel of phosphorylation sites is phosphorylated at a high level in said leukaemia cells, where an advanced differentiation status is determined if the panel of phosphorylation sites is phosphorylated at a high level in the leukaemia cells.

[0039] References to phosphorylation at a "high level", as used here and elsewhere in the specification, denote a level of phosphorylation which is higher than the average phosphorylation of the reference protein or at the reference phosphorylation site. References to a "low level" of phosphorylation similarly denote a level of phosphorylation which is the same as or less than the average phosphorylation of the reference protein or at the reference phosphorylation site. The average phosphorylation of the reference protein or the reference phosphorylation site is a standardised value which may be determined by reference to an average calculated across a plurality of samples, or by reference to the phosphorylation state of the reference protein or the reference phosphorylation site in undifferentiated myeloblasts or other healthy cell types, which may be established either by laboratory analysis according to methods well known in the art (including LC-MS/MS), or by reference to information available in the art. Thus, for example, the average level of phosphorylation at a particular phosphorylation site may be determined by establishing the range of phosphorylation at that site in cell samples obtained from a large number of AML patients, and calculating the mean phosphorylation across the samples. A "high level" of phosphorylation at that site is a level of phosphorylation which is higher than the calculated mean.

[0040] In particular, the panel of phosphorylation sites may include one or more phosphorylation sites that are phosphorylated at a high level in a kinase signalling pathway which is involved in cell proliferation or cell survival. In some embodiments, one or more of said phosphorylation sites may be phosphorylated at a high level in a kinase signalling pathway which is inhibited by said kinase pathway inhibitor.

[0041] The panel of phosphorylation sites may include any one, two, three, four, five, six, seven, eight, nine, ten or more than ten of the phosphorylation sites set out in Table 1 below.

Phosphoprotein Phosphorylation site

1-phosphatidylinositol 3 -phosphate 5 -kinase

PIKFYVE pS307

PIKFYVE

26S proteasome non-ATPase regulatory subunit 4

PSMD4 pS256

PSMD4

28 kDa heat- and acid-stable phosphoprotein

PDAP1 pS178

PDAP1

2-oxoisovalerate dehydrogenase subunit alpha,

BCKDHA pS347

mitochondrial BCKDHA

RPS14 seq: 129 - 141 +

40S ribosomal protein S14 RPS14 Phospho (ST)

RPS2 seq: 276 - 284 +

40S ribosomal protein S2 RPS2 Phospho (ST)

RPS6 seq: 233 - 243 + 2

40S ribosomal protein S6 RPS6 Phospho (ST)

5 '-3' exoribonuclease 2 XRN2 XRN2 pS448

5'-AMP-activated protein kinase catalytic subunit PRKAA1 seq: 3 - 8 +

alpha- 1 PRKAA1 Phospho (ST)

60S acidic ribosomal protein PI RPLP1 RPLP1 pS104

RPL23A seq: 40 - 47 +

60S ribosomal protein L23a RPL23A Phospho (ST)

7SK snRNA methylphosphate capping enzyme

MEPCE pS254

MEPCE

7SK snRNA methylphosphate capping enzyme

MEPCE pS60

MEPCE

AIM1 seq: 479 - 495 +

Absent in melanoma 1 prote Phospho (ST)

Acetyl-coenzyme A synthetase, cytoplasmic

ACSS2 pS267

ACSS2

Acetyl-coenzyme A synthetase, cytoplasmic

ACSS2 pS30

ACSS2 Phosphoprotein Phosphorylation site

Acetyl-coenzyme A synthetase, cytoplasmic ACSS2 seq: 256 - 272 + ACSS2 Phospho (ST)

Actin, alpha skeletal muscle ACTA1 ACTA1 pS54

Actin-related protein 2/3 complex subunit IB ARPClB seq: 309 - 326 + ARPC1B Phospho (ST)

Activating transcription factor 7-interacting protein

ATF7IP pS113

1 ATF7IP

Adaptin ear-binding coat-associated protein 2 NECAP2 seq: 177 - 195 + NECAP2 Phospho (ST)

ADP-ribosylation factor GTPase-activating protein ARFGAP2 seq: 314 - 336 + 2 ARFGAP2 Phospho (ST)

Aflatoxin Bl aldehyde reductase member 2

AKR7A2 pS255

AKR7A2

A-kinase anchor protein 11 AKAPl 1 AKAPl 1 pS1611

A-kinase anchor protein 13 AKAPl 3 AKAP13 pS1507

A-kinase anchor protein 13 AKAPl 3 AKAP13 pS1559

A-kinase anchor protein 13 AKAPl 3 AKAP13 pS1559

A-kinase anchor protein 13 AKAPl 3 AKAP13 pS1876

A-kinase anchor protein 13 AKAPl 3 AKAPl 3 pS2709

A-kinase anchor protein 13 AKAPl 3 AKAPl 3 pS983

AKAPl 3 seq: 1600 - 1631 +

A-kinase anchor protein 13 AKAPl 3 Phospho (ST)

AKAPl 3 seq: 1904 - 1924 +

A-kinase anchor protein 13 AKAPl 3 Phospho (ST)

AKAPl 3 seq: 2561 - 2573 +

A-kinase anchor protein 13 AKAPl 3 Phospho (ST)

AKAPl 3 seq: 330 - 367 +

A-kinase anchor protein 13 AKAPl 3 Phospho (ST)

AKAP13 seq: 647 - 681 +

A-kinase anchor protein 13 AKAPl 3 Phospho (ST)

AKAPl 3 seq: 939 - 966 +

A-kinase anchor protein 13 AKAPl 3 Phospho (ST)

AIF1 seq: 37 - 53 + Phospho

Allograft inflammatory factor 1 AIF1 (ST) Phosphoprotein Phosphorylation site

AMP deaminase 2 AMPD2 AMPD2 pSIOO

Amyloid beta A4 precursor protein-binding family

APBA3 pSl l

A member 3 APBA3

AP2-associated protein kinase 1 AAKl AAKl pT606

AP2-associated protein kinase 1 AAKl AAKl pT620

AAKl seq: 652 - 667 +

AP2-associated protein kinase 1 AAKl Phospho (ST)

AAKl seq: 9 - 37 + Phospho

AP2-associated protein kinase 1 AAKl (ST)

APOBR seq: 552 - 571 +

Apolipoprotein B recept Phospho (ST)

APOBR seq: 968 - 990 +

Apolipoprotein B recept Phospho (ST)

APOBR seq: 1004 - 1009 + 2

Apolipoprotein B receptor APOBR Phospho (ST)

APOOL seq: 201 - 212 +

Apolipoprotein O-like APOOL Phospho (ST)

Arf-GAP domain and FG repeat-containing protein AGFG1 seq: 291 - 313 + 1 AGFG1 Phospho (ST)

Arf-GAP with coiled-coil, ANK repeat and PH ACAP2 seq: 538 - 543 + domain-containing protein 2 ACAP2 Phospho (ST)

Arf-GAP with Rho-GAP domain, ANK repeat and

ARAP1 pS1435

PH domain-containing protein

Arf-GAP with Rho-GAP domain, ANK repeat and

ARAP1 pS1419

PH domain-containing protein 1 ARAP1

Arf-GAP with Rho-GAP domain, ANK repeat and

ARAP1 pS1435

PH domain-containing protein 1 ARAP1

Arf-GAP with Rho-GAP domain, ANK repeat and

ARAP1 pS229

PH domain-containing protein 1 ARAP1

Arf-GAP with Rho-GAP domain, ANK repeat and ARAP1 seq: 222 - 244 + PH domain-containing protein 1 ARAP1 Phospho (ST)

Arf-GAP with SH3 domain, ANK repeat and PH

ASAP1 pS839 pS843 domain-containing protein 1 ASAP1

Arf-GAP with SH3 domain, ANK repeat and PH ASAP1 seq: 733 - 750 + domain-containing protein 1 ASAP1 Phospho (ST) Phosphoprotein Phosphorylation site

Arf-GAP with SH3 domain, ANK repeat and PH ASAP1 seq: 837 - 852 + 2 domain-containing protein 1 ASAP1 Phospho (ST)

Arginine/serine-rich protein PNISR PNISR PNISR pS211

Astrocytic phosphoprotein PEA- 15 PEA 15 PEA15 pS116

ATXN1 seq: 230 - 259 +

Ataxin-1 ATXN1 Phospho (ST)

Ataxin-2-like protein ATXN2L ATXN2L pSl l l

Atherin SAMD1 SAMD1 pS161

ATPase WRNIPl WRNIP1 WRNIP1 pS153

ATP -binding cassette sub-family F member 1

ABCF1 pS140

ABCF1

ATP-citrate synthase ACLY ACLY pS455

ATP-dependent 6-phosphofructokinase, liver type

PFKL pS775

PFKL

ATP-dependent RNA helicase DDX3Y DDX3Y DDX3Y pS592

DHX29 seq: 66 - 83 +

ATP-dependent RNA helicase DHX Phospho (ST)

Band 4.1 -like protein 3 EPB41L3 EPB41L3 pS460

Band 4.1 -like protein 3 EPB41L3 EPB41L3 pS962

B-cell lymphoma/leukemia 11A BCL11A BCLl lA pS328

B-cell lymphoma/leukemia 11A BCL11A BCLl lA pS718

B-cell lymphoma/leukemia 11A BCL11A BCLl lA pS86

BCL11A seq: 321 - 341 + 2

B-cell lymphoma/leukemia 11A BCL11A Phospho (ST)

BCL2/adeno virus EIB 19 kDa protein-interacting

BNIP2 pS114

protein 2 BNIP2

SNTB1 seq: 222 - 239 +

Beta-l-syntrophin SNTB1 Phospho (ST)

Beta-adrenergic receptor kinase 1 ADRBK1 ADRBK1 pS670

Brain-specific angiogenesis inhibitor 1 -associated

BAIAP2 pS366

protein 2 BAIAP2

Breakpoint cluster region protein BCR BCR pS 122

Breakpoint cluster region protein BCR BCR pS459 Phosphoprotein Phosphorylation site

Bridging integrator 2 BIN2 BIN2 pS458

BIN2 seq: 355 - 390 + 2

Bridging integrator 2 BIN2 Phospho (ST)

BIN2 seq: 450 - 477 + 2

Bridging integrator 2 BIN2 Phospho (ST)

BIN2 seq: 461 - 477 +

Bridging integrator 2 BIN2 Phospho (ST)

BIN2 seq: 461 - 482 + 2

Bridging integrator 2 BIN2 Phospho (ST)

Bromodomain and PHD finger-containing protein 3

BRPF3 pS645

BRPF3

KCTD 12 seq: 185 - 206 + 2

BTB/POZ domain-containing protein KCTD Phospho (ST)

KCTD12 seq: 247 - 265 +

BTB/POZ domain-containing protein KCTD Phospho (ST)

BTB/POZ domain-containing protein KCTD 12

KCTD12 pS151

KCTD 12

BTB/POZ domain-containing protein KCTD 12

KCTD12 pS176

KCTD 12

BTB/POZ domain-containing protein KCTD 12 KCTD 12 seq: 185 - 205 + KCTD 12 Phospho (ST)

BUD 13 homolog BUD 13 BUD 13 pS271

Calmin CLMN CLMN pS419

Calmodulin-regulated spectrin-associated protein 1

CAMS API pS629

CAMS API

Calmodulin-regulated spectrin-associated protein 1 CAMS API seq: 498 - 523 + CAMS API Phospho (ST)

Calpastatin CAST CAST pS243

Calpastatin CAST CAST pS660

CAST seq: 212 - 249 +

Calpastatin CAST Phospho (ST)

cAMP-dependent protein kinase type II-alpha

PRKAR2A pS58 regulatory subunit PRKAR2A

CapZ-interacting protein RCSD1 RCSD1 pS68 Phosphoprotein Phosphorylation site

RCSD1 seq: 177 - 188 +

CapZ-interacting protein RCSD1 Phospho (ST)

Caspase recruitment domain-containing protein 9

CARD9 pS460

CARD9

Cation-independent mannose-6-phosphate recept IGF2R pS2409

Cation-independent mannose-6-phosphate receptor

IGF2R pS2409

IGF2R

Cation-independent mannose-6-phosphate receptor

IGF2R pS2484

IGF2R

Cation-independent mannose-6-phosphate receptor IGF2R seq: 2398 - 2420 + IGF2R Phospho (ST)

CCL13 seq: 42 - 47 +

C-C motif chemokine 13 CCL13 Phospho (ST)

CEBPB seq: 209 - 242 +

CCAAT/enhancer-binding protein beta CEBPB Phospho (ST)

CD2AP seq: 505 - 517 +

CD2-associated protein CD2AP Phospho (ST)

CD97 antigen CD97 CD97 pS831

Cdc42 effector protein 3 CDC42EP3 CDC42EP3 pS89

CDC42EP3 seq: 87 - 104 +

Cdc42 effector protein 3 CDC42EP3 Phospho (ST)

Chloride intracellular channel protein 1 CLIC1 CLIC1 pS156

Cho line-phosphate cytidylyltransferase A PCYTIA PCYTIA pS343

Chromatin target of PRMT1 protein CHTOP CHTOP pS40

Chromodomain-helicase-DNA-binding protein 4 CHD4 seq: 354 - 390 + CHD4 Phospho (ST)

Chromodomain-helicase-DNA-binding protein 4 CHD4 seq: 354 - 390 + CHD4 Phospho (Y)

C-Jun-amino-terminal kinase-interacting protein SPAG9 pS203 pT217

C-Jun-amino-terminal kinase-interacting protein 4

SPAG9 pS203 pT217 SPAG9

Cleavage and polyadenylation specificity factor

CPSF2 pS452

subunit 2 CPSF2

Cleavage stimulation factor subunit 2 tau variant CSTF2T seq: 554 - 576 + CSTF2T Phospho (ST) Phosphoprotein Phosphorylation site

Cleavage stimulation factor subunit 3 CSTF3 CSTF3 pS691

CLK4-associating serine/arginine rich protein

CLASRP pS547

CLASRP

DE ND4A seq: 1013 - 1030

C-myc promoter-binding protein DENND4A + Phospho (ST)

DE ND4A seq: 1149 - 1160

C-myc promoter-binding protein DENND4A + Phospho (ST)

DE ND4A seq: 1508 - 1526

C-myc promoter-binding protein DENND4A + Phospho (ST)

DE ND4A seq: 1587 - 1601

C-myc promoter-binding protein DENND4A + Phospho (ST)

Coiled-coil domain-containing protein 12 CCDC12 CCDC12 pS165

Coiled-coil domain-containing protein 6 CCDC6 CCDC6 pS240 pS244

Coiled-coil domain-containing protein 86 CCDC86 CCDC86 pS18

Coiled-coil domain-containing protein 88B

CCDC88B pS1379

CCDC88B

Coiled-coil domain-containing protein 88B

CCDC88B pS1408

CCDC88B

Coiled-coil domain-containing protein 88B CCDC88B seq: 429 - 454 + CCDC88B Phospho (ST)

Coiled-coil domain-containing protein 88B CCDC88B seq: 595 - 613 + CCDC88B 2 Phospho (ST)

Coiled-coil domain-containing protein 88B CCDC88B seq: 595 - 613 + CCDC88B Phospho (ST)

Coiled-coil-helix-coiled-coil-helix domain- CHCHD3 seq: 49 - 64 + containing protein 3, mitochondrial CHCHD3 Phospho (ST)

Collagen type IV alpha-3 -binding protein

COL4A3BP pS373

COL4A3BP

COPS7A seq: 222 - 243 +

COP9 signalosome complex subunit 7a COPS7A Phospho (ST)

Coronin-7 COR07 COR07 pS21

Coronin-7 COR07 COR07 pS465

CRKL seq: 105 - 129 +

Crk-like protein CRKL Phospho (ST)

Cyclin-dependent kinase 11 A CDK11 A CDKl lA pS271 Phosphoprotein Phosphorylation site

Cyclin-dependent kinase 13 CDK13 CDK13 pS437 pS439

Cyclin-dependent kinase 9 CDK9 CDK9 pS347

Cyclin-Ll CCNL1 CCNL1 pS352

Cyclin-Y-like protein 1 CCNYL1 CCNYL1 pS344

Cytohesin-4 CYTH4 CYTH4 pS215

Cytoplasmic dynein 1 heavy chain 1 DYNC1H1 DYNC1H1 pS4368

DYNC1H1 seq: 4366 - 4378

Cytoplasmic dynein 1 heavy chain 1 DYNC1H1 + Phospho (ST)

Cytoplasmic dynein 1 light intermediate chain 1 DYNC1LI1 seq: 412 - 428 + DYNC1LI1 Phospho (ST)

Death domain-associated protein 6 DAXX DAXX pS495

Death domain-associated protein 6 DAXX DAXX pS690

Dedicator of cytokinesis protein 10 DOCK10 DOCK10 pS12

Dedicator of cytokinesis protein 10 DOCK10 DOCK10 pT1440

Dedicator of cytokinesis protein 10 DOCK10 DOCK10 pT196

DOCKlO seq: 12 - 23 +

Dedicator of cytokinesis protein 10 DOCK10 Phospho (ST)

Dedicator of cytokinesis protein 11 DOCK11 DOCK11 pS12

Dedicator of cytokinesis protein 8 DOCK8 DOCK8 pS451

DOCK8 seq: 900 - 920 +

Dedicator of cytokinesis protein 8 DOCK8 Phospho (ST)

DENNDlA seq: 518 - 531 +

DENN domain-containing protein 1 A DENNDl A 2 Phospho (ST)

DENNDlA seq: 518 - 531 +

DENN domain-containing protein 1 A DENNDl A Phospho (ST)

DENN domain-containing protein 1C DENNDl C DENNDlC pS596

DENN domain-containing protein 1C DENNDl C DENNDlC pS619

DENN domain-containing protein 5 A DENND5 A DENND5A pS193

Deoxynucleoside triphosphate triphosphohydrolase

SAMHD1 pS102

SAMH

Deoxynucleoside triphosphate triphosphohydrolase

SAMHD1 pT592

SAMH Phosphoprotein Phosphorylation site

Deoxynucleoside triphosphate triphosphohydrolase

SAMHD1 pS33

SAMHD1 SAMHD1

Deoxynucleoside triphosphate triphosphohydrolase

SAMHD1 pT592

SAMHD1 SAMHD1

Deoxynucleoside triphosphate triphosphohydrolase SAMHD1 seq: 15 - 43 + 2 SAMHD1 SAMHD1 Phospho (ST)

Deoxynucleoside triphosphate triphosphohydrolase SAMHD1 seq: 21 - 43 + 2 SAMHD1 SAMHD1 Phospho (ST)

DEP domain-containing mTOR-interacting protein DEPTOR seq: 227 - 249 + DEPTOR Phospho (ST)

DPYSL2 seq: 533 - 552 +

Dihydropyrimidinase-related protein Phospho (ST)

DPYSL2 seq: 533 - 552 +

Dihydropyrimidinase-related protein 2 DPYSL2 Phospho (ST)

DLGAP4 seq: 971 - 991 + Gln->pyro-Glu (N-term Q);

Disks large-associated protein 4 DLGAP4 Phospho (ST)

DmX-like protein 2 DMXL2 DMXL2 pS1400

DMXL2 seq: 2397 - 2414 +

DmX-like protein 2 DMXL2 Phospho (ST)

DMXL2 seq: 941 - 969 +

DmX-like protein 2 DMXL2 Phospho (ST)

DNA replication complex GINS protein PSF2

GINS2 pS182

GINS2

DNA replication licensing factor MCM2 MCM2 MCM2 pS139

DNA replication licensing factor MCM3 MCM3 MCM3 pS711 pT722

MCM3 seq: 701 - 724 +

DNA replication licensing factor MCM3 MCM3 Phospho (ST); Phospho (Y)

TOP2A seq: 1374 - 1411 +

DNA topoisomerase 2-alpha TOP2A Phospho (ST)

DNA topoisomerase 2-beta TOP2B TOP2B pS 1400 pS 1424

DN A-binding protein SATB 1 SATB 1 SATB1 pS637

DNA-dependent protein kinase catalytic subunit

PRKDC pS2612

PRKDC

DNA-dependent protein kinase catalytic subunit

PRKDC pT2638

PRKDC Phosphoprotein Phosphorylation site

DNA-dependent protein kinase catalytic subunit PRKDC seq: 3197 - 3217 + PRKDC Phospho (ST)

DNA-directed RNA polymerase I subunit RPA43

TWISTNB pS304

TWISTNB

DNA-directed RNA polymerase I subunit RPA43

TWISTNB pS328

TWISTNB

Docking protein 3 DOK3 DOK3 pS483

DOK3 seq: 388 - 424 +

Docking protein 3 DOK3 Phospho (Y)

Double-strand break repair protein MREl 1A MREl 1 A seq: 674 - 682 + MRE11A Phospho (ST)

Drebrin-like protein DBNL DBNL pS 141

Drebrin-like protein DBNL DBNL pS232

Drebrin-like protein DBNL DBNL pS269

Drebrin-like protein DBNL DBNL pS283

DBNL seq: 149 - 164 +

Drebrin-like protein DBNL Phospho (Y)

DBNL seq: 267 - 280 + 2

Drebrin-like protein DBNL Phospho (ST)

Dual adapter for phospho tyrosine and 3- DAPPl seq: 274 - 280 + phosphotyrosine and 3-phosphoinositide DAPPl Phospho (ST)

Dual specificity mitogen-activated protein kinase MAP2K7 seq: 55 - 72 + kinase 7 MAP2K7 Phospho (ST)

Dual specificity protein kinase CLK1 CLK1 CLK1 pS140

E3 SUMO-protein ligase RanBP2 RANBP2 RANBP2 pS1509

RANBP2 seq: 1507 - 1522 +

E3 SUMO-protein ligase RanBP2 RANBP2 Phospho (ST)

E3 ubiquitin/ISG15 ligase TRIM25 TRIM25 TRIM25 pSIOO

E3 ubiquitin-protein ligase BREIA RNF20 RNF20 pS138

RNF20 seq: 125 - 142 +

E3 ubiquitin-protein ligase BREIA RNF20 Phospho (ST)

RNF20 seq: 515 - 551 +

E3 ubiquitin-protein ligase BREIA RNF20 Phospho (ST) Phosphoprotein Phosphorylation site

HECTD1 seq: 1382 - 1403 +

E3 ubiquitin-protein ligase HECTD1 HECTD1 Phospho (ST)

HUWE1 seq: 1084 - 1099 +

E3 ubiquitin-protein ligase HUWE1 HUWE1 Phospho (ST)

HUWE1 seq: 2522 - 2538 +

E3 ubiquitin-protein ligase HUWE1 HUWE1 Phospho (ST)

E3 ubiquitin-protein ligase MYCBP2 MYCBP2 MYCBP2 pS2833

E3 ubiquitin-protein ligase MYCBP2 MYCBP2 MYCBP2 pS3440

E3 ubiquitin-protein ligase MYCBP2 MYCBP2 MYCBP2 pS3467

MYCBP2 seq: 1584 - 1596 + Gln->pyro-Glu (N-term Q);

E3 ubiquitin-protein ligase MYCBP2 MYCBP2 Phospho (ST)

E3 ubiquitin-protein ligase RBBP6 RBBP6 RBBP6 pS1277

E3 ubiquitin-protein ligase R F213 R F213 RNF213 pS217

TRIM22 seq: 383 - 396 +

E3 ubiquitin-protein ligase TRIM22 TRIM22 Phospho (ST)

E3 ubiquitin-protein ligase TRIP 12 TRIP 12 TRIP12 pS1577

ZFP91 seq: 81 - 100 +

E3 ubiquitin-protein ligase ZFP91 ZFP91 Phospho (ST)

E3 ubiquitin-protein ligase ZNRF2 ZNRF2 ZNRF2 pS82

Echinoderm microtubule-associated protein-like 3 EML3 seq: 191 - 205 + EML3 Phospho (ST)

EF-hand domain-containing protein D2 EFHD2 EFHD2 pS74

EFHD2 seq: 62 - 77 +

EF-hand domain-containing protein D2 EFHD2 Phospho (ST)

EFHD2 seq: 63 - 78 +

EF-hand domain-containing protein D2 EFHD2 Phospho (ST)

EH domain-binding protein 1 - like protein 1

EHBP1L1 pS1257

EHBP1L1

EH domain-binding protein 1 - like protein 1

EHBP1L1 pS310

EHBP1L1

EH domain-binding protein 1 - like protein 1 EHBP1L1 seq: 1270 - 1278 EHBP1L1 + Phospho (ST)

EH domain-binding protein 1 - like protein 1 EHBP1L1 seq: 1270 - 1278 EHBP1L1 + Phospho (ST) Phosphoprotein Phosphorylation site

Elongation factor 1 -gamma EEF1G EEF1G pT46

EEFlG seq: 46 - 51 +

Elongation factor 1 -gamma EEF1G Phospho (ST)

EEFlG seq: 46 - 51 +

Elongation factor 1 -gamma EEF1G Phospho (ST)

EOMES seq: 105 - 133 +

Eomesodermin homolog EOMES Phospho (ST)

EPHB3 seq: 669 - 676 +

Ephrin type-B receptor 3 EPHB3 Phospho (ST)

Epidermal growth factor receptor substrate 15 EPS 15 seq: 562 - 584 + EPS 15 Phospho (ST)

EPN1 seq: 446 - 468 +

Epsin-1 EPN1 Phospho (ST)

Eukaryotic translation initiation factor 4 gamma EIF4G1 pS1092

Eukaryotic translation initiation factor 4 gamma 1

EIF4G1 pS1092

EIF4G1

Eukaryotic translation initiation factor 4 gamma 1

EIF4G1 pS1231

EIF4G1

Eukaryotic translation initiation factor 4B EIF4B EIF4B pS283

EIF4B seq: 280 - 287 +

Eukaryotic translation initiation factor 4B EIF4B Phospho (ST)

Eukaryotic translation initiation factor 4E-binding EIF4EBP1 seq: 64 - 99 + 2 protein 1 EIF4EBP1 Phospho (ST)

Eukaryotic translation initiation factor 4H EIF4H EIF4H pS21

FACT complex subunit SSRPl SSRP1 SSRP1 pS444

Far upstream element-binding protein 2 KHSRP KHSRP pS125

Far upstream element-binding protein 3 FUBP3 FUBP3 pS569

Fatty aldehyde dehydrogena ALDH3A2 pS293

Fatty aldehyde dehydrogenase ALDH3A2 ALDH3A2 pS293

FLNA seq: 1072 - 1087 +

Filamin-A FLNA Phospho (ST)

FLNA seq: 2521 - 2540 +

Filamin-A FLNA Phospho (ST)

Filamin-B FLNB FLNB pS2107 Phosphoprotein Phosphorylation site

Filamin-B FLNB FLNB pS2481

FLNB seq: 2476 - 2495 +

Filamin-B FLNB Phospho (ST)

FKBP 15 seq: 1009 - 1036 +

FK506-binding protein 15 FKBP 15 Phospho (ST)

FKBP 15 seq: 344 - 361 +

FK506-binding protein 15 FKBP 15 Phospho (ST)

FKBP 15 seq: 954 - 974 +

FK506-binding protein 15 FKBP 15 Phospho (ST)

Forkhead box protein Kl FOXK1 FOXK1 pS441

FOXK2 seq: 369 - 395 +

Forkhead box protein K2 FOXK2 Phospho (ST)

Formin-binding protein 4 FNBP4 FNBP4 pS18

FNBP4 seq: 448 - 453 +

Formin-binding protein 4 FNBP4 Oxidation (M); Phospho (ST)

Friend leukemia integration 1 transcription factor

FLU pS241

FLU

FYN-binding protein FYB FYB pS46

FYVE, RhoGEF and PH domain-containing protein

FGD3 pS547

3 FGD3

FYVE, RhoGEF and PH domain-containing protein FGD3 seq: 540 - 550 + 3 FGD3 Phospho (ST)

GA-binding protein alpha chain GABPA GABPA pS62

Gamma-enolase EN02 EN02 pY44

GEM-interacting protein GMIP GMIP pS437

GEM-interacting protein GMIP GMIP pS914

GMIP seq: 231 - 248 +

GEM-interacting protein GMIP Phospho (ST)

GTF2F1 seq: 425 - 435 +

General transcription factor IIF subunit 1 GTF2F1 Phospho (ST)

Genetic suppressor element 1 GSE1 GSE1 pS909

Girdin CCDC88A CCDC88A pS1417

CCDC88A seq: 1417 - 1424

Girdin CCDC88A + Phospho (ST) Phosphoprotein Phosphorylation site

Glycerol-3 -phosphate acyltransferase 3 AGPAT9 AGPAT9 pS68

GYS1 seq: 709 - 737 +

Glycogen [starch] synthase, muscle GYS 1 Phospho (ST)

GSK3A seq: 19 - 50 +

Glycogen synthase kinase-3 alpha GSK3 A Phospho (ST)

Golgin subfamily A member 4 GOLGA4 GOLGA4 pS71

GOLGB1 seq: 3008 - 3031 +

Golgin subfamily B member 1 GOLGB1 Phospho (ST)

GPALPP motifs-containing protein 1 GPALPP1 GPALPP 1 pS105

G-protein-signaling modulator 3 GPSM3 GPSM3 pS39

GRIP API seq: 688 - 714 +

GRIP 1 -associated protein 1 GRIP API Phospho (ST)

GTPase-activating protein and VPS9 domain- GAPVD1 seq: 900 - 910 + containing protein 1 GAPVD1 Phospho (ST)

GTPase-activating protein and VPS9 domain- GAPVD1 seq: 902 - 910 + containing protein 1 GAPVD1 Phospho (ST)

H(+)/Cl(-) exchange transporter 7 CLCN7 CLCN7 pS9

Hamartin TSC1 TSC1 pS505

HEATR5B seq: 1562 - 1578

HEAT repeat-containing protein 5B HEATR5B + Phospho (ST)

Hematopoietic lineage cell-specific protein HCLS 1 HCLS1 pS275

Hematopoietic lineage cell-specific protein HCLS 1 HCLS1 pT308

Hematopoietic lineage cell-specific protein HCLS 1 HCLS1 pT333

Hematopoietic lineage cell-specific protein HCLS 1 HCLS1 pY198

Heme oxygenase 1 HMOX1 HMOX1 pS229

HEMGN seq: 190 - 217 +

Hemogen HEMGN Phospho (ST)

Hepatoma-derived growth factor-related protein 2

HDGFRP2 pS454

HDGFRP2

Heterochromatin protein 1 -binding protein 3

HP1BP3 pS142

HP1BP3

Heterochromatin protein 1 -binding protein 3

HP1BP3 pS156

HP1BP3 Phosphoprotein Phosphorylation site

Heterogeneous nuclear ribonucleoprotein A/B

HNRNPAB pS242

HNR PAB

Heterogeneous nuclear ribonucleoprotein Al HNRNPA1 seq: 337 - 352 + HNR PA1 Phospho (ST)

Heterogeneous nuclear ribonucleoprotein A3

HNRNPA3 pS112 pS116 HNR PA3

Heterogeneous nuclear ribonucleoprotein A3 HNRNPA3 seq: 110 - 126 + HNR PA3 Phospho (ST)

Heterogeneous nuclear ribonucleoprotein F HNRNPF seq: 180 - 192 + HNR PF Phospho (ST)

Heterogeneous nuclear ribonucleoprotein H

HNRNPHl pS23

HNR PH1

Heterogeneous nuclear ribonucleoprotein K

HNRNPK pS77

HNR PK

Heterogeneous nuclear ribonucleoprotein M

HNRNPM pS633

HNR PM

Heterogeneous nuclear ribonucleoprotein U

HNRNPU pS271

HNR PU

Heterogeneous nuclear ribonucleoprotein U

HNRNPU pS59

HNRNPU

Heterogeneous nuclear ribonucleoproteins C1/C2

HNRNPC pS138

HNRNPC

Heterogeneous nuclear ribonucleoproteins C1/C2

HNRNPC pS299

HNRNPC

Heterogeneous nuclear ribonucleoproteins C1/C2 HNRNPC seq: 251 - 288 + HNRNPC Phospho (ST)

HK3 seq: 11 - 41 + Phospho

Hexokinase-3 HK3 (ST)

High affinity immunoglobulin epsilon receptor

FCERlG pT78

subunit gamma FCER1G

High mobility group protein 20A HMG20A HMG20A pS105

Histone deacetylase 1 HDAC 1 HDAC1 pS393

HDAC1 seq: 405 - 413 +

Histone deacetylase 1 HDAC 1 Phospho (ST)

Histone deacetylase 2 HDAC2 HDAC2 pS394 Phosphoprotein Phosphorylation site

HDAC4 seq: 465 - 492 +

Histone deacetylase 4 HDAC4 Phospho (ST)

HDAC4 seq: 630 - 651 +

Histone deacetylase 4 HDAC4 Phospho (ST)

Histone HI .1 HIST1H1A HISTlHlA pS107

Histone HI .5 HIST1H1B HISTlHlB pS81

HIST1H1B seq: 101 - 109 +

Histone HI .5 HIST1H1B Phospho (ST)

KMT2A seq: 504 - 527 +

Histone-lysine N-methyltransferase 2A KMT2A Phospho (ST)

KMT2D seq: 6 - 50 +

Histone-lysine N-methyltransferase 2D KMT2D Phospho (ST)

HMG box transcription factor BBX BBX BBX pS844

Huntingtin HTT HTT pS 1874

HTT seq: 417 - 437 + 2

Huntingtin HTT Phospho (ST)

Hyaluronan and proteoglycan link protein 4

HAPLN4 pSl l l

HAPLN4

RHBDF2 seq: 88 - 95 +

Inactive rhomboid protein Phospho (ST)

Inactive rhomboid protein 2 RHBDF2 RHBDF2 pS113

RHBDF2 seq: 88 - 95 +

Inactive rhomboid protein 2 RHBDF2 Phospho (ST)

Inhibitor of nuclear factor kappa-B kinase subunit

IKBKB pS672

beta IKBKB

Inhibitor of nuclear factor kappa-B kinase subunit IKBKB seq: 681 - 704 + beta IKBKB Phospho (ST)

Inositol hexakisphosphate and diphosphoinositol-

PPIP5K2 pS1006 pentakisphosphate kinase 2 PPIP5K2

Insulin receptor substrate 2 IRS2 IRS2 pS577

Insulin receptor substrate 2 IRS2 IRS2 pS594

IRS2 seq: 603 - 611 +

Insulin receptor substrate 2 IRS2 Phospho (ST)

Interferon regulatory factor 2-binding protein 2 IRF2BP2 seq: 237 - 252 + IRF2BP2 Phospho (ST) Phosphoprotein Phosphorylation site

Interleukin enhancer-binding factor 3 ILF3 ILF3 pS190

ILF3 seq: 183 - 200 +

Interleukin enhancer-binding factor 3 ILF3 Phospho (ST)

ILF3 seq: 475 - 523 +

Interleukin enhancer-binding factor 3 ILF3 Phospho (ST)

Interleukin- 1 receptor-associated kinase 3 IRAK3 IRAK3 pSl lO

IRAK3 seq: 505 - 526 +

Interleukin- 1 receptor-associated kinase 3 IRAK3 Phospho (ST)

Interleukin- 17 receptor A IL 17RA IL17RA pS708

Intersectin-2 ITSN2 ITSN2 pY968

IQ motif and SEC7 domain-containing protein 1

IQSEC1 pS512

IQSEC1

IQ motif and SEC7 domain-containing protein 2

IQSEC2 pS1133

IQSEC2

IQ motif and SEC7 domain-containing protein 2 IQSEC2 seq: 212 - 235 + IQSEC2 Phospho (ST)

KH domain-containing, R A-binding, signal KHDRBS1 seq: 18 - 31 + transduction-associated protein 1 KHDRBS1 Oxidation (M); Phospho (ST)

KH domain-containing, RNA-binding, signal KHDRBS1 seq: 18 - 31 + transduction-associated protein 1 KHDRBS1 Phospho (ST)

KLF4 seq: 315 - 328 +

Krueppel-like factor Phospho (ST)

KLF4 seq: 315 - 328 +

Krueppel-like factor 4 KLF4 Phospho (ST)

Lamina-associated polypeptide 2, isoform alpha TMPO seq: 291 - 315 + TMPO Phospho (ST)

Lamina-associated polypeptide 2, isoforms TMPO seq: 216 - 239 + beta/gamma TMPO Phospho (ST)

Lamin-B receptor LBR LBR pS99

Lamin-Bl LMNB1 LMNB1 pS200

Lamin-B 1 LMNB1 LMNB1 pS52

Lamin-Bl LMNB1 LMNB1 pT575

LMNB1 seq: 15 - 26 +

Lamin-Bl LMNB1 Phospho (ST) Phosphoprotein Phosphorylation site

LMNB1 seq: 272 - 290 +

Lamin-Bl LMNB1 Phospho (ST)

LMNB1 seq: 277 - 290 +

Lamin-Bl LMNB1 Phospho (ST)

LMNB1 seq: 52 - 67 +

Lamin-Bl LMNB1 Phospho (ST)

Lamin-B2 LMNB2 LMNB2 pS17

Lamin-B2 LMNB2 LMNB2 pS296

La-related protein 1 LARP1 LARP1 pS75

La-related protein 1 LARP1 LARP1 pS90

La-related protein 1 LARP1 LARP1 pT526

LARP1 seq: 822 - 839 +

La-related protein 1 LARP1 Phospho (ST)

La-related protein 4B LARP4B LARP4B pS498

Late secretory pathway protein AVL9 homolog AVL9 seq: 243 - 278 + AVL9 Phospho (ST)

Leucine-rich repeat and calponin homology

LRCH4 pS432

domain-containing protein 4 LRCH4

Leucine-rich repeat and calponin homology LRCH4 seq: 266 - 293 + domain-containing protein 4 LRCH4 Phospho (ST)

Leucine-rich repeat and calponin homology LRCH4 seq: 311 - 327 + domain-containing protein 4 LRCH4 Phospho (ST)

Leucine-rich repeat flightless-interacting protein 1

LRRFIP1 pS768

LRRFIP1

Leucine-rich repeat flightless-interacting protein 1 LRRFIP1 seq: 762 - 789 + LRRFIP1 Phospho (ST)

Leucine-rich repeat flightless-interacting protein 1 LRRFIP1 seq: 763 - 789 + LRRFIP1 Phospho (ST)

Leukocyte immunoglobulin-like receptor subfamily

LILRB1 pS579

B member 1 LILRB1

Leukocyte immunoglobulin-like receptor subfamily LILRB2 seq: 521 - 537 + B member Phospho (ST)

Leukocyte immunoglobulin-like receptor subfamily LILRB2 seq: 521 - 537 + B member 2 LILRB2 Phospho (ST) Phosphoprotein Phosphorylation site

Leukocyte immunoglobulin-like receptor subfamily LILRB3 seq: 501 - 518 + B member 3 LILRB3 Phospho (ST)

Leukocyte immunoglobulin-like receptor subfamily LILRB3 seq: 502 - 518 + B member 3 LILRB3 Phospho (ST)

Leukocyte immunoglobulin-like receptor subfamily LILRB4 seq: 317 - 334 + B member 4 LILRB4 Phospho (ST)

Leukocyte immunoglobulin-like receptor subfamily

LILRB5 pS559

B member 5 LILRB5

LTB4R seq: 304 - 316 +

Leukotriene B4 receptor 1 LTB4R Phospho (ST)

LIM domain-binding protein 1 LDB1 LDB1 pS302

LDB1 seq: 300 - 320 +

LIM domain-binding protein 1 LDB1 Oxidation (M); Phospho (ST)

LDB1 seq: 300 - 320 +

LIM domain-binding protein 1 LDB1 Phospho (ST)

Linker for activation of T-cells family member 1

LAT pS224

LAT

Liprin-alpha-1 PPFIA1 PPFIA1 pS763

Liprin-beta-2 PPFIBP2 PPFIBP2 pS387

PPFIBP2 seq: 383 - 392 +

Liprin-beta-2 PPFIBP2 Phospho (ST)

Lymphoid-restricted membrane protein LRMP LRMP pS363

LRMP seq: 361 - 372 + 2

Lymphoid-restricted membrane protein LRMP Phospho (ST)

Lysine-specific demethylase 2B KDM2B KDM2B pS1031

Lysine-specific histone demethylase 1A KDM1A KDMlA pS166

Lysosomal-trafficking regulator LYST LYST pS2105

Lysosomal-trafficking regulator LYST LYST pS2124

Lysosomal-trafficking regulator LYST LYST pS2149

Lysosomal-trafficking regulator LYST LYST pS2264

LYST seq: 2103 - 2120 +

Lysosomal-trafficking regulator LYST Phospho (ST)

Major vault protein MVP MVP pS445 Phosphoprotein Phosphorylation site

MVP seq: 862 - 893 +

Major vault protein MVP Phospho (ST)

Manganese-transporting ATPase 13A1 ATP13A1 ATP13A1 pS935

MAP kinase-activating death domain protein MADD seq: 1236 - 1255 + MADD Phospho (ST)

MAP7 domain-containing protein 1 MAP7D1 MAP7D1 pS442

Mediator of DNA damage checkpoint protein 1 MDC1 seq: 1563 - 1584 + 2 MDC1 Phospho (ST)

Mediator of DNA damage checkpoint protein 1 MDC1 seq: 360 - 393 + MDC1 Phospho (ST)

MMGT1 seq: 99 - 122 +

Membrane magnesium transporter 1 MMGT1 Phospho (ST)

Membrane-associated phosphatidylinositol transfer PITPNM1 seq: 662 - 685 + protein 1 PITPNM1 Phospho (ST)

Microtubule-actin cross-linking factor 1 , isoforms MACF1 seq: 7328 - 7360 + 1/2/3/5 MACF1 Phospho (ST)

Microtubule-associated protein 1A MAPI A MAPlA pS1069

Microtubule-associated protein 1A MAPI A MAPlA pS1776

Microtubule-associated protein IS MAP IS MAPlS pS546

Microtubule-associated protein 4 MAP4 MAP4 pS1073

Microtubule-associated protein 4 MAP4 MAP4 pS928

Microtubule-associated serine/threonine-protein MAST2 seq: 1254 - 1274 + kinase 2 MAST2 Phospho (ST)

Mini-chromosome maintenance complex-binding

MCMBP pS154

protein MCMBP

Mini-chromosome maintenance complex-binding

MCMBP pS298

protein MCMBP

Minor histocompatibility protein HA- 1 HMH A 1 HMHA1 pS23

Minor histocompatibility protein HA- 1 HMH A 1 HMHA1 pS619

Minor histocompatibility protein HA- 1 HMH A 1 HMHA1 pS619

Minor histocompatibility protein HA- 1 HMH A 1 HMHA1 pS73

Minor histocompatibility protein HA- 1 HMH A 1 HMHA1 pS73

HMHA1 seq: 576 - 606 + 2

Minor histocompatibility protein HA- 1 HMH A 1 Phospho (ST) Phosphoprotein Phosphorylation site

HMHA1 seq: 576 - 606 +

Minor histocompatibility protein HA- 1 HMH A 1 Phospho (ST)

HMHA1 seq: 619 - 641 +

Minor histocompatibility protein HA- 1 HMH A 1 Phospho (ST)

Mitochondrial inner membrane protein IMMT IMMT pS 113

Mitogen-activated protein kinase 1 MAPK1 MAPK1 pY187

MAPK1 seq: 173 - 191 +

Mitogen-activated protein kinase 1 MAPK1 Phospho (ST)

Mitogen-activated protein kinase kinase kinase 2

MAP3K2 pS153

MAP3K2

Mitogen-activated protein kinase kinase kinase 2

MAP3K2 pS239

MAP3K2

Mitogen-activated protein kinase kinase kinase 2 MAP3K2 seq: 161 - 179 + MAP3K2 Phospho (ST)

Mitogen-activated protein kinase kinase kinase 2 MAP3K2 seq: 329 - 348 + MAP3K2 Phospho (ST)

Mitogen-activated protein kinase kinase kinase 3

MAP3K3 pS166

MAP3K3

Mitogen-activated protein kinase kinase kinase 3 MAP3K3 seq: 144 - 161 + MAP3K3 Phospho (ST)

Mitogen-activated protein kinase kinase kinase 3 MAP3K3 seq: 164 - 185 + 2 MAP3K3 Phospho (ST)

MKL/myocardin-like protein 1 MKL1 MKL1 pS385

MKL1 seq: 331 - 351 + Gln- >pyro-Glu (N-term Q);

MKL/myocardin-like protein 1 MKL1 Phospho (ST)

MKL1 seq: 331 - 351 +

MKL/myocardin-like protein 1 MKL1 Phospho (ST)

Moesin MSN MSN pS576

Monocarboxylate transporter 4 SLC 16A3 SLC16A3 pS436

Myb-binding protein 1 A MYBBP1A MYBBPlA pS1267

MYBBP1A seq: 1255 - 1275

Myb-binding protein 1 A MYBBP1A + Phospho (ST)

MBP seq: 109 - 138 +

Myelin basic protein MBP Phospho (ST) Phosphoprotein Phosphorylation site

MNDA seq: 149 - 198 +

Myeloid cell nuclear differentiation antigen MNDA Phospho (ST)

MNDA seq: 151 - 198 +

Myeloid cell nuclear differentiation antigen MNDA Phospho (ST)

Myotubularin-related protein 3 MTMR3 MTMR3 pS647

MTMR3 seq: 613 - 630 +

Myotubularin-related protein 3 MTMR3 Phospho (ST)

MTMR3 seq: 613 - 630 +

Myotubularin-related protein 3 MTMR3 Phospho (Y)

Myristoylated alanine-rich C-kinase substrate

MARCKS pS170 MARCKS

Na(+)/H(+) exchange regulatory cofactor NHE-RFl

SLC9A3R1 pS280 SLC9A3R1

N-acetyl-D-glucosamine kinase NAGK NAGK pS76

NAD kinase NADK NADK pS46

NAD kinase NADK NADK pS64

NADK seq: 44 - 57 +

NAD kinase NADK Phospho (ST)

NAD-dependent protein deacetylase sirtuin-2 SIRT2 seq: 347 - 370 + SIRT2 Phospho (ST)

Nascent polypeptide-associated complex subunit

NACA pS 166

alpha NACA

Nascent polypeptide-associated complex subunit

NACA pT161 alpha NACA

Nascent polypeptide-associated complex subunit NACA seq: 143 - 179 + alpha NACA Phospho (ST)

Natural killer cell receptor 2B4 CD244 CD244 pS334

NEDD4-binding protein 1 N4BP1 N4BP1 pS300

Negative elongation factor E NELFE NELFE pS 131

PPP1R9B seq: 98 - 112 +

Neurabin-2 PPP1R9B Phospho (ST)

Neurobeachin-like protein 2 NBEAL2 NBEAL2 pS2739

Neurobeachin-like protein 2 NBEAL2 NBEAL2 pT1867

Neurobeachin-like protein 2 NBEAL2 NBEAL2 pT1869 Phosphoprotein Phosphorylation site

Neuroblast differentiation-associated protein AHN AHNAK pS570

AHNAK seq: 204 - 225 + 2

Neuroblast differentiation-associated protein AHN Phospho (ST)

AHNAK seq: 9 - 28 +

Neuroblast differentiation-associated protein AHN Phospho (ST)

Neuroblast differentiation-associated protein

AHNAK pS 115

AHNAK AHNAK

Neuroblast differentiation-associated protein

AHNAK pS 135

AHNAK AHNAK

Neuroblast differentiation-associated protein

AHNAK pS 177

AHNAK AHNAK

Neuroblast differentiation-associated protein

AHNAK pS210

AHNAK AHNAK

Neuroblast differentiation-associated protein

AHNAK pS210 pS216 AHNAK AHNAK

Neuroblast differentiation-associated protein

AHNAK pS3360

AHNAK AHNAK

Neuroblast differentiation-associated protein

AHNAK pS3426

AHNAK AHNAK

Neuroblast differentiation-associated protein

AHNAK pS41

AHNAK AHNAK

Neuroblast differentiation-associated protein

AHNAK pS4520

AHNAK AHNAK

Neuroblast differentiation-associated protein

AHNAK pS4986

AHNAK AHNAK

Neuroblast differentiation-associated protein

AHNAK pS5031

AHNAK AHNAK

Neuroblast differentiation-associated protein

AHNAK pS511

AHNAK AHNAK

Neuroblast differentiation-associated protein

AHNAK pS5110

AHNAK AHNAK

Neuroblast differentiation-associated protein

AHNAK pS5400

AHNAK AHNAK

Neuroblast differentiation-associated protein

AHNAK pS5448

AHNAK AHNAK Phosphoprotein Phosphorylation site

Neuroblast differentiation-associated protein

AHNAK pS5552

AHNAK AHNAK

Neuroblast differentiation-associated protein

AHNAK pS570

AHNAK AHNAK

Neuroblast differentiation-associated protein

AHNAK pS5720

AHNAK AHNAK

Neuroblast differentiation-associated protein

AHNAK pS5731

AHNAK AHNAK

Neuroblast differentiation-associated protein

AHNAK pS5739

AHNAK AHNAK

Neuroblast differentiation-associated protein

AHNAK pS5830

AHNAK AHNAK

Neuroblast differentiation-associated protein

AHNAK pS93

AHNAK AHNAK

Neuroblast differentiation-associated protein

AHNAK pS93

AHNAK AHNAK

Neuroblast differentiation-associated protein

AHNAK pT 158

AHNAK AHNAK

Neuroblast differentiation-associated protein

AHNAK pT3716

AHNAK AHNAK

Neuroblast differentiation-associated protein

AHNAK pT4430

AHNAK AHNAK

Neuroblast differentiation-associated protein

AHNAK pT4564

AHNAK AHNAK

Neuroblast differentiation-associated protein

AHNAK pT4766

AHNAK AHNAK

Neuroblast differentiation-associated protein

AHNAK pT490

AHNAK AHNAK

Neuroblast differentiation-associated protein

AHNAK pY121

AHNAK AHNAK

Neuroblast differentiation-associated protein AHNAK seq: 103 - 123 + AHNAK AHNAK Phospho (Y)

Neuroblast differentiation-associated protein AHNAK seq: 204 - 225 + 2 AHNAK AHNAK Phospho (ST)

Neuroblast differentiation-associated protein AHNAK seq: 208 - 225 + 2 AHNAK AHNAK Phospho (ST) Phosphoprotein Phosphorylation site

Neuroblast differentiation-associated protein AHNAK seq: 4516 - 4532 + AHNAK AHNAK Phospho (ST)

Neuroblast differentiation-associated protein AHNAK seq: 4899 - 4905 + AHNAK AHNAK Phospho (ST)

Neuroblast differentiation-associated protein AHNAK seq: 5385 - 5405 + AHNAK AHNAK Phospho (ST)

Neuroblast differentiation-associated protein AHNAK seq: 5630 - 5655 + AHNAK AHNAK Phospho (ST)

Neuroblast differentiation-associated protein AHNAK seq: 5788 - 5812 + AHNAK AHNAK Phospho (ST)

Neuroblast differentiation-associated protein AHNAK seq: 9 - 28 + AHNAK AHNAK Phospho (ST)

NF1 seq: 1137 - 1142 +

Neurofibromin NF1 Phospho (ST)

Neuropathy target esterase PNPLA6 PNPLA6 pS411

NPB seq: 49 - 54 + Phospho

Neuropeptide B NPB (ST)

Neutrophil cytosol factor NCF1 pS348

Neutrophil cytosol factor 1 NCF1 NCF1 pS320

Neutrophil cytosol factor 1 NCF1 NCF1 pS348

NCF1 seq: 338 - 354 + Gln- >pyro-Glu (N-term Q);

Neutrophil cytosol factor 1 NCF1 Phospho (ST)

Neutrophil cytosol factor 2 NCF2 NCF2 pS332

Neutrophil cytosol factor 2 NCF2 NCF2 pS332

Neutrophil cytosol factor 2 NCF2 NCF2 pT233

NCF2 seq: 233 - 238 +

Neutrophil cytosol factor 2 NCF2 Phospho (ST)

NCF2 seq: 301 - 324 +

Neutrophil cytosol factor 2 NCF2 Phospho (ST)

NHSL2 seq: 190 - 196 +

NHS-like protein 2 NHSL2 Phospho (ST)

NHSL2 seq: 208 - 228 +

NHS-like protein 2 NHSL2 Phospho (ST) Phosphoprotein Phosphorylation site

NHSL2 seq: 318 - 331 +

NHS-like protein 2 NHSL2 Phospho (ST)

Niban-like protein FAM129B pS692 pS696

Niban-like protein 1 FAM129B FAM129B pS665

Niban-like protein 1 FAM129B FAM129B pS692 pS696

FAM129B seq: 567 - 615 +

Niban-like protein 1 FAM129B Phospho (ST)

FAM129B seq: 686 - 705 + 2

Niban-like protein 1 FAM129B Phospho (ST)

FAM129B seq: 686 - 705 +

Niban-like protein 1 FAM129B Phospho (ST)

Nibrin NBN NBN pS397

Non-POU domain-containing octamer-binding

NONO pS 147

protein NONO

NSFL1C seq: 174 - 185 + Gln->pyro-Glu (N-term Q);

NSFL1 cofactor p47 NSFL1C Phospho (ST)

Nuclear distribution protein nudE homolog 1

NDE1 pS231

NDE1

Nuclear factor of activated T-cells, cytoplasmic 2 NFATC2 seq: 216 - 223 + NFATC2 Phospho (ST)

Nuclear factor of activated T-cells, cytoplasmic 2 NFATC2 seq: 325 - 338 + NFATC2 Phospho (ST)

Nuclear fragile X mental retardation-interacting

NUFIP2 pS629

protein 2 NUFIP2

Nuclear fragile X mental retardation-interacting

NUFIP2 pS652

protein 2 NUFIP2

Nuclear pore complex protein Nup214 NUP214 NUP214 pS657

Nuclear pore complex protein Nup50 NUP50 NUP50 pS221

Nuclear speckle splicing regulatory protein 1 NSRP1 seq: 15 - 47 + NSRP1 Phospho (ST)

Nuclear ubiquitous casein and cyclin-dependent

NUCKS1 pS19

kinase substrate 1 NUCKS1

Nuclear-interacting partner of ALK ZC3HC1 ZC3HC1 pS321 Phosphoprotein Phosphorylation site

Nucleolar and coiled-body phosphoprotein 1

NOLC1 pS698

NOLC1

Nucleolar protein 56 NOP56 NOP56 pS520

Nucleolar protein 56 NOP56 NOP56 pS570

NOP56 seq: 511 - 533 +

Nucleolar protein 56 NOP56 Oxidation (M); Phospho (ST)

NOP56 seq: 511 - 533 +

Nucleolar protein 56 NOP56 Phospho (ST)

Nucleolar protein 58 NOP58 NOP58 pS502

Nucleolar protein 58 NOP58 NOP58 pS502 pS514

DDX21 seq: 114 - 131 +

Nucleolar RNA helicase 2 DDX21 Phospho (ST)

Nucleolin NCL NCL pS619

Nucleophosmin NPM1 NPM1 pS125

TPR seq: 2133 - 2145 +

Nucleoprotein TPR TPR Phospho (ST)

Nucleosome assembly protein 1-like 4 NAP1L4 NAPlL4 pS125

Opioid growth factor receptor OGFR OGFR pS484

OTU domain-containing protein 4 OTUD4 OTUD4 pS416

Oxysterol-binding protein-related protein 11

OSBPL11 pS172

OSBPL11

Oxysterol-binding protein-related protein 3

OSBPL3 pS437

OSBPL3

SIN3A seq: 277 - 313 +

Paired amphipathic helix protein Sin3a SIN3A Phospho (ST)

Palmitoyltransferase ZDHHC5 ZDHHC5 ZDHHC5 pS621

ZDHHC5 seq: 296 - 322 +

Palmitoyltransferase ZDHHC5 ZDHHC5 Phospho (ST)

Pantothenate kinase 2, mitochondrial PANK2 PANK2 pS189

PANK2 seq: 166 - 183 +

Pantothenate kinase 2, mitochondrial PANK2 Phospho (ST)

PAS domain-containing serine/threonine -protein PASK seq: 113 - 132 + kinase PASK Phospho (ST)

Paxillin PXN PXN pS 106 Phosphoprotein Phosphorylation site

PXN seq: 76 - 93 + Phospho

Paxillin PXN (ST)

PDZ and LIM domain protein 2 PDLIM2 PDLIM2 pS129

PDZ and LIM domain protein 2 PDLIM2 PDLIM2 pS161

PDZ and LIM domain protein 2 PDLIM2 PDLIM2 pS197

PDLIM5 seq: 305 - 324 +

PDZ and LIM domain protein 5 PDLIM5 Phospho (ST)

Peptidyl-prolyl cis-trans isomerase FKBP3 FKBP3 FKBP3 pS163

Perilipin-5 PLIN5 PLIN5 pS203

Periphilin-1 PPHLN1 PPHLN1 pS133

PEST proteolytic signal-containing nuclear protein

PCNP pS119

PCNP

PHF6 seq: 134 - 157 +

PHD finger protein 6 PHF6 Phospho (ST)

PHIP seq: 1554 - 1571 +

PH-interacting protein PHIP Phospho (ST)

Phosphatase and actin regulator 2 PHACTR2 PHACTR2 pS522

Phosphatidylinositol 3,4,5-trisphosphate 5-

INPP5D pS1085

phosphatase 1 INPP5D

Phosphatidylinositol 3,4,5-trisphosphate 5-

INPP5D pY1022

phosphatase 1 INPP5D

Phosphatidylinositol 3,4,5-trisphosphate 5- INPP5D seq: 1085 - 1095 + phosphatase 1 INPP5D Phospho (ST)

Phosphatidylinositol 3,4,5-trisphosphate 5- INPP5D seq: 883 - 891 + phosphatase 1 INPP5D Phospho (ST)

Phosphatidylinositol 3,4,5-trisphosphate 5- INPP5D seq: 883 - 898 + phosphatase 1 INPP5D Phospho (ST)

Phosphatidylinositol 3,4,5-trisphosphate 5- INPP5D seq: 931 - 957 + phosphatase 1 INPP5D Phospho (ST)

Phosphatidylinositol 3,4,5-trisphosphate-dependent

PREX1 pS319

Rac exchanger 1 protein PREX1

Phosphatidylinositol 4-kinase alpha PI4KA PI4KA pS198

PI4KA seq: 196 - 210 +

Phosphatidylinositol 4-kinase alpha PI4KA Phospho (ST) Phosphoprotein Phosphorylation site

PI4K2A seq: 460 - 472 +

Phosphatidylinositol 4-kinase type 2-alpha PI4K2A Phospho (ST)

Phosphofurin acidic cluster sorting protein 1 PACS1 seq: 399 - 421 + PACS1 Phospho (ST)

Phosphoglycerate mutase 1 PGAM1 PGAM1 pS14

Phosphoinositide 3 -kinase adapter protein 1

PIK3AP1 pS656

PIK3AP1

Phosphoinositide 3 -kinase adapter protein 1

PIK3AP1 pY694

PIK3AP1

Phosphorylase b kinase regulatory subunit alpha,

PHKA2 pS1015

liver isoform PHKA2

Phosphorylase b kinase regulatory subunit alpha, PHKA2 seq: 1039 - 1063 + 2 liver isoform PHKA2 Phospho (ST)

Phosphorylase b kinase regulatory subunit beta

PHKB pS27

PHKB

Phosphorylase b kinase regulatory subunit beta PHKB seq: 699 - 720 + PHKB Phospho (ST)

Phostensin PPP1R18 PPPlR18 pS224

Phostensin PPP1R18 PPPlR18 pS368

Phostensin PPP1R18 PPPlR18 pS468

PPP1R18 seq: 468 - 477 +

Phostensin PPP1R18 Phospho (ST)

Pinin PNN PNN pS 100

Pituitary tumor-transforming gene 1 protein-

PTTG1IP pY174

interacting protein PTTG1IP

Plakophilin-2 PKP2 PKP2 pS870

Plastin-2 LCP1 LCP1 pS5

Plastin-2 LCP1 LCP1 pT114

Platelet receptor Gi C10orf54 pS235 pS248

Platelet receptor Gi C10orf54 pS264

Platelet receptor Gi24 C10orf54 C10orf54 pS235

Platelet receptor Gi24 C10orf54 C10or£54 pS264

Plectin PLEC PLEC pS4384 pS4400 Phosphoprotein Phosphorylation site

Plectin PLEC PLEC pS4406

PLEC seq: 4384 - 4401 +

Plectin PLEC Phospho (ST)

Pogo transposable element with ZNF domain POGZ seq: 1322 - 1341 + POGZ Phospho (ST)

PARP1 seq: 356 - 394 +

Poly [ADP-ribose] polymerase 1 PARP1 Phospho (ST)

Poly [ADP-ribose] polymerase 4 PARP4 PARP4 pS1335

Poly(rC)-binding protein 1 PCBP1 PCBP1 pS264

PCBP1 seq: 244 - 268 + Gln- >pyro-Glu (N-term Q);

Poly(rC)-binding protein 1 PCBP1 Oxidation (M); Phospho (ST)

PCBP2 seq: 177 - 199 +

Poly(rC)-binding protein 2 PCBP2 Phospho (ST)

POTEE seq: 916 - 938 +

POTE ankyrin domain family member E POTEE Oxidation (M); Phospho (ST)

POTE ankyrin domain family member J POTEJ POTEJ pT729

POU domain, class 2, transcription factor 2

POU2F2 pS55

POU2F2

Pre-B-cell leukemia transcription factor 2 PBX2 PBX2 pS330

Prelamin-A/C LMNA LMNA pS 12

Prelamin-A/C LMNA LMNA pS636

Prelamin-A/C LMNA LMNA pS636

LMNA seq: 645 - 654 +

Prelamin-A/C LMNA Phospho (ST)

Pre-mRNA 3 '-end-processing factor FIP 1 FIP 1 L 1 FIP 1 LI pS492

FIP1L1 seq: 490 - 504 +

Pre-mRNA 3 '-end-processing factor FIP 1 FIP 1 L 1 Phospho (ST)

Prickle-like protein 1 PRICKLE 1 PRICKLE 1 pS683

Probable ATP-dependent RNA helicase DDX17 DDX17 seq: 569 - 587 + DDX17 Phospho (ST)

Probable ATP-dependent RNA helicase DDX17 DDX17 seq: 671 - 684 + DDX17 Phospho (ST) Phosphoprotein Phosphorylation site

Probable global transcription activator SNF2L2

SMARCA2 pS666

SMARCA2

Probable global transcription activator SNF2L2 SMARCA2 seq: 697 - 711 + SMARCA2 Phospho (ST)

PGAM4 seq: 118 - 138 +

Probable phosphoglycerate mutase 4 PGAM4 Phospho (ST)

Probable phospholipid-transporting ATPase IF

ATPl lB pS1154

ATP11B

Pro-interleukin-16 IL16 IL16 pS845

Pro-interleukin-16 IL16 IL16 pS908

Pro-interleukin-16 IL16 IL16 pS946

IL16 seq: 843 - 861 +

Pro-interleukin-16 IL16 Phospho (ST)

PRCC seq: 147 - 166 +

Proline-rich protein PRCC PRCC Phospho (ST)

Proline-serine-threonine phosphatase-interacting

PSTPIP1 pS312

protein 1 PSTPIP1

Protein AATF AATF AATF pS203

CBFA2T3 seq: 327 - 343 +

Protein CBFA2T3 CBFA2T3 Phospho (ST)

Protein ELYS AHCTF1 AHCTF1 pS1541

Protein EVI2B EVI2B EVI2B pS294

EVI2B seq: 266 - 279 + 2

Protein EVI2B EVI2B Phospho (ST)

EVI2B seq: 266 - 279 +

Protein EVI2B EVI2B Phospho (ST)

Protein F AM 102B FAM102B FAM102B pS228

Protein FAM117A FAM117A FAM117A pS29

Protein FAM117A FAM117A FAM117A pS67

FAM122A seq: 187 - 203 +

Protein F AM 122 A FAM122A Phospho (ST)

Protein FAM65B FAM65B FAM65B pS21

Protein FAM65B FAM65B FAM65B pS37

Protein FAM65B FAM65B FAM65B pS573 Phosphoprotein Phosphorylation site

FAM65B seq: 19 - 31 +

Protein FAM65B FAM65B Phospho (ST)

Protein FAM76B FAM76B FAM76B pS193

Protein FAM83B FAM83B FAM83B pS766

Protein flightless- 1 homo log FLU FLU pS856

HEXIM1 seq: 51 - 86 +

Protein HEXIM1 HEXIM1 Phospho (ST)

HIDE1 seq: 209 - 227 + 2

Protein HIDE 1 HIDE1 Phospho (ST)

Protein Hook homolog 3 HOOK3 HOOK3 pS707

Protein kinase C delta type PRKCD PRKCD pS645

Protein kinase C delta type PRKCD PRKCD pS664

Protein kinase C delta type PRKCD PRKCD pY313

PRKCD seq: 208 - 222 +

Protein kinase C delta type PRKCD Phospho (ST)

PRKCD seq: 301 - 318 +

Protein kinase C delta type PRKCD Phospho (ST)

PRKCD seq: 302 - 318 +

Protein kinase C delta type PRKCD Phospho (ST)

PRKCD seq: 302 - 318 +

Protein kinase C delta type PRKCD Phospho (ST)

Protein LSM14 homolog A LSM14A LSM14A pS216

LSM14A seq: 182 - 214 + 2

Protein LSM14 homolog A LSM14A Phospho (ST)

LSM14A seq: 216 - 229 +

Protein LSM14 homolog A LSM14A Phospho (ST)

Protein lyl-1 LYL1 LYL1 pS260

Protein lyl-1 LYL1 LYL1 pS36

MTDH seq: 293 - 314 +

Protein LYRIC MTDH Phospho (ST)

Protein NDRG1 NDRG1 NDRG1 pT328 pS330

NDRG1 seq: 362 - 388 + 2

Protein NDRG1 NDRG1 Phospho (ST) Phosphoprotein Phosphorylation site

NDRG1 seq: 362 - 388 +

Protein NDRG1 NDRG1 Phospho (ST)

NDRG1 seq: 364 - 388 +

Protein NDRG1 NDRG1 Phospho (ST)

NDRG3 seq: 329 - 345 +

Protein NDRG3 NDRG3 Phospho (ST)

NUMB seq: 224 - 263 +

Protein numb homolog NUMB Phospho (ST)

Protein phosphatase 1 regulatory subunit 12A

PPP1R12A pS299

PPP1R12A

Protein phosphatase 1 regulatory subunit 12A

PPP1R12A pS445

PPP1R12A

Protein phosphatase 1 regulatory subunit 12A PPPlR12A seq: 442 - 456 + PPP1R12A Phospho (ST)

Protein phosphatase 1 regulatory subunit 12A PPPlR12A seq: 443 - 456 + PPP1R12A Phospho (ST)

Protein phosphatase 1 regulatory subunit 12C

PPP1R12C pS407

PPP1R12C

Protein phosphatase 1 regulatory subunit 12C PPPlR12C seq: 450 - 464 + PPP1R12C Phospho (ST)

Protein phosphatase 1 regulatory subunit 3D PPP1R3D seq: 23 - 39 + PPP1R3D Phospho (ST)

Protein phosphatase 1 regulatory subunit 7 PPP1R7 PPPlR7 pS12

Protein PML PML PML pS403

PML seq: 401 - 424 +

Protein PML PML Phospho (ST)

PBRM1 seq: 7 - 33 +

Protein polybromo- 1 PBRM 1 Phospho (ST)

Protein PRRC2A PRRC2A PRRC2A pS383

Protein RICl homolog KIAA1432 KIAA1432 pS1037

SCAF 11 seq: 329 - 366 +

Protein SCAF 11 SCAF11 Phospho (ST)

Protein scribble homolog SCRIB SCRIB pS 1448

Protein SD A 1 homolog SDAD1 SDAD1 pS585

Protein SET SET SET pS7 Phosphoprotein Phosphorylation site

Protein transport protein Sec61 subunit alpha

SEC61A1 pS408

isoform l SEC61A1

Protein transport protein Sec61 subunit beta SEC61B seq: 2 - 16 + SEC61B Phospho (ST)

MICALl seq: 816 - 835 +

Protein-methionine sulfoxide oxidase MICA Phospho (ST)

Protein-methionine sulfoxide oxidase MICALl MICALl seq: 613 - 637 + MICALl Oxidation (M); Phospho (ST)

Protein-methionine sulfoxide oxidase MICALl MICALl seq: 613 - 637 + MICALl Phospho (ST)

Protein-methionine sulfoxide oxidase MICALl MICALl seq: 816 - 835 + MICALl Phospho (ST)

Putative 3-phosphoinositide-dependent protein

PDPK2 pS214

kinase 2 PDPK2

Putative annexin A2-like prote ANXA2P2 pY24

Putative annexin A2-like protein ANXA2P2 ANXA2P2 pY24

ASXL2 seq: 569 - 583 +

Putative Polycomb group protein ASXL2 ASXL2 Phospho (ST)

RBM15 seq: 123 - 132 +

Putative R A-binding protein 15 RBM15 Phospho (ST)

RBM15 seq: 666 - 681 + 2

Putative RNA-binding protein 15 RBM15 Phospho (ST)

Putative uncharacterized protein LOCI 00996504 pS263

Pyrin MEFV MEFV pS 179

Pyrin MEFV MEFV pS242

MEFV seq: 177 - 186 +

Pyrin MEFV Phospho (ST)

RAB11FIP1 seq: 353 - 379 +

Rabl 1 family-interacting protein 1 RABl 1FIP1 Phospho (ST)

RAB11FIP1 seq: 498 - 520 + Gln->pyro-Glu (N-term Q);

Rabl 1 family-interacting protein 1 RABl 1FIP1 Phospho (ST)

RAB11FIP1 seq: 498 - 520 +

Rabl 1 family-interacting protein 1 RABl 1FIP1 Phospho (ST)

Rabl 1 family-interacting protein RAB11FIP5 pS176 Phosphoprotein Phosphorylation site

RAB11FIP5 seq: 354 - 374 +

Rabl 1 family-interacting protein 5 RAB11FIP5 Phospho (ST)

RAB11FIP5 seq: 393 - 411 +

Rabl 1 family-interacting protein 5 RAB11FIP5 Phospho (ST)

Rab3 GTPase-activating protein catalytic subunit RAB3GAP1 seq: 535 - 551 + RAB3GAP1 Phospho (ST)

AKTl seq: 122 - 142 +

RAC-alpha serine/threonine-protein kinase AKTl Phospho (ST)

Ral GTPase-activating protein subunit alpha- 1 RALGAPA1 seq: 771 - 794 RALGAPA1 + Phospho (ST)

Ral GTPase-activating protein subunit alpha-2 RALGAPA2 seq: 818 - 837 RALGAPA2 + Phospho (ST)

Ral GTPase-activating protein subunit beta RALGAPB seq: 718 - 746 + RALGAPB Phospho (ST)

Ran-specific GTPase-activating protein RANBPl RANBPl pS60

Rap guanine nucleotide exchange factor 1

RAPGEF1 pS311

RAPGEF1

Ras and Rab interactor 1 RIN1 RIN1 pS333

RIN2 seq: 484 - 491 +

Ras and Rab interactor 2 RIN2 Phospho (ST)

Ras-related protein Rab-44 RAB44 RAB44 pT188

Ras-related protein Rab-7a RAB7A RAB7A pS72

Receptor expression-enhancing protein 4 REEP4 REEP4 pS152

Receptor-interacting serine/threonine-protein kinase

RIPK3 pS410

3 RIPK3

Receptor-interacting serine/threonine-protein kinase RIPK3 seq: 219 - 236 + 3 RIPK3 Phospho (ST)

Receptor-type tyrosine-protein phosphatase epsilon

PTPRE pY696

PTPRE

Regulator of G-protein signaling 14 RGS14 RGS14 pS218

RPTOR seq: 850 - 867 +

Regulatory-associated protein of mTOR RPTOR Phospho (ST)

Remodeling and spacing factor 1 RSF1 RSF1 pS748

RTN4 seq: 178 - 201 +

Reticulon-4 RTN4 Phospho (ST) Phosphoprotein Phosphorylation site

RXRA seq: 5 - 25 + Phospho

Retinoic acid receptor RXR-alpha RXRA (ST)

ARHGAP12 seq: 229 - 250

Rho GTPase-activating protein 12 ARHGAP12 + 2 Phospho (ST)

Rho GTPase-activating protein 15 ARHGAP15 ARHGAP15 pS43

ARHGAP17 seq: 161 - 172

Rho GTPase-activating protein 17 ARHGAP17 + Phospho (ST)

ARHGAP9 seq: 279 - 298 +

Rho GTPase-activating protein 9 ARHGAP9 Phospho (ST)

Rho guanine nucleotide exchange factor 11 ARHGEF11 seq: 1452 - 1473 ARHGEF11 + Phospho (ST)

Rho guanine nucleotide exchange factor 2

ARHGEF2 pS174

ARHGEF2

Rho guanine nucleotide exchange factor 2

ARHGEF2 pT679

ARHGEF2

Rho guanine nucleotide exchange factor 2 ARHGEF2 seq: 118 - 131 + ARHGEF2 Phospho (ST)

Rho guanine nucleotide exchange factor 2 ARHGEF2 seq: 132 - 138 + ARHGEF2 Phospho (ST)

Rho guanine nucleotide exchange factor 2 ARHGEF2 seq: 140 - 148 + ARHGEF2 Phospho (ST)

Rho guanine nucleotide exchange factor 2 ARHGEF2 seq: 149 - 168 + ARHGEF2 Phospho (ST)

Rho guanine nucleotide exchange factor 6 ARHGEF6 seq: 122 - 148 + ARHGEF6 Phospho (ST)

Rho guanine nucleotide exchange factor 7

ARHGEF7 pS518

ARHGEF7

Ribosomal biogenesis protein LAS 1 L LAS 1 L LASlL pS617

Ribosomal LI domain-containing protein 1

RSL1D1 pS361

RSL1D1

Ribosomal LI domain-containing protein 1 RSL1D1 seq: 357 - 373 + RSL1D1 Phospho (ST)

Ribosomal protein S6 kinase alpha- 1 RPS6KA1 RPS6KA1 pS380

Ribosomal protein S6 kinase alpha-3 RPS6KA3 RPS6KA3 pS369

Ribosomal protein S6 kinase alpha-4 RPS6KA4 RPS6KA4 pS678 Phosphoprotein Phosphorylation site

RPS6KA4 seq: 681 - 699 + 2

Ribosomal protein S6 kinase alpha-4 RPS6KA4 Phospho (ST)

Ribosomal RNA processing protein 1 homolog B RRPlB seq: 443 - 472 + RRP1B Phospho (ST)

RNA binding motif protein, X-linked-like-1

RBMXL1 pS208

RBMXL1

RNA polymerase II subunit A C-terminal domain CTDP1 seq: 405 - 434 + phosphatase CTDP1 Phospho (ST)

RNA polymerase II-associated protein 3 RPAP3 RPAP3 pS481

RPAP3 seq: 478 - 493 +

RNA polymerase II-associated protein 3 RPAP3 Phospho (ST)

RNA polymerase-associated protein CTR9 homolog

CTR9 pT925

CTR9

LEOl seq: 543 - 548 +

RNA polymerase-associated protein LEO 1 LEO 1 Phospho (ST)

RNA-binding protein 14 RBM14 RBM14 pS256

RNA-binding protein 14 RBM14 RBM14 pS278

RNA-binding protein 14 RBM14 RBM14 pS620

RNA-binding protein 14 RBM14 RBM14 pT206

RBM14 seq: 518 - 541 +

RNA-binding protein 14 RBM14 Phospho (ST)

RNA-binding protein 39 RBM39 RBM39 pS136

RNA-binding protein Raly RALY RALY pT84

RRP12-like protein RRP12 RRP12 pS66

SAM and SH3 domain-containing protein 3

SASH3 pS243

SASH3

SAM and SH3 domain-containing protein 3 SASH3 seq: 34 - 67 + 2 SASH3 Phospho (ST)

SAM and SH3 domain-containing protein 3 SASH3 seq: 34 - 67 + SASH3 Phospho (ST)

SAM domain-containing protein SAMSN-1

SAMSN1 pS23

SAMSN1

SAM domain-containing protein SAMSN-1 SAMSN1 seq: 122 - 149 + SAMSN1 Phospho (ST) Phosphoprotein Phosphorylation site

SAM domain-containing protein SAMSN-1 SAMSN1 seq: 20 - 29 + SAMSN1 Phospho (ST)

SAP domain-containing ribonucleoprotein SARNP SARNP pS163

Scaffold attachment factor Bl SAFB SAFB pS601 pS604

Scaffold attachment factor Bl SAFB SAFB pS604

SAFB2 seq: 226 - 252 +

Scaffold attachment factor B2 SAFB2 Phospho (ST)

Secretory carrier-associated membrane protein 2 SCAMP2 seq: 317 - 329 + SCAMP2 Phospho (ST)

SNTN seq: 37 - 42 +

Sentan SNTN Phospho (ST)

Septin-2 SEPT2 SEPT2 pS218

Serine/arginine repetitive matrix protein 1 SRRM1 SRRM1 pS769

Serine/arginine repetitive matrix protein 1 SRRM1 SRRM1 pS769 pS773 pS781

Serine/arginine repetitive matrix protein 1 SRRM1 SRRM1 pT220

SRRM1 seq: 711 - 722 + 2

Serine/arginine repetitive matrix protein 1 SRRM1 Phospho (ST)

SRRM1 seq: 763 - 788 + 2

Serine/arginine repetitive matrix protein 1 SRRM1 Phospho (ST)

SRRM2 pS2100 pS2102

Serine/arginine repetitive matrix protein 2 SRRM2 pT2104

Serine/arginine repetitive matrix protein 2 SRRM2 SRRM2 pS295 pS297

Serine/arginine repetitive matrix protein 2 SRRM2 SRRM2 pS876

Serine/arginine repetitive matrix protein 2 SRRM2 SRRM2 pS994

Serine/arginine repetitive matrix protein 2 SRRM2 SRRM2 pT2289

SRRM2 seq: 1527 - 1536 +

Serine/arginine repetitive matrix protein 2 SRRM2 Phospho (ST)

SRRM2 seq: 852 - 870 + 2

Serine/arginine repetitive matrix protein 2 SRRM2 Phospho (ST)

Serine/arginine-rich splicing factor 1 SRSF1 SRSF1 pS199 pS201

Serine/arginine-rich splicing factor 9 SRSF9 SRSF9 pS211

SRSF9 seq: 210 - 221 +

Serine/arginine-rich splicing factor 9 SRSF9 Phospho (Y) Phosphoprotein Phosphorylation site

STK10 seq: 20 - 27 +

Serine/threonine-protein kinase 10 STK10 Phospho (ST)

STK10 seq: 447 - 464 + 2

Serine/threonine-protein kinase 10 STK10 Phospho (ST)

STK10 seq: 447 - 464 +

Serine/threonine-protein kinase 10 STK10 Phospho (ST)

STK10 seq: 9 - 17 + Phospho

Serine/threonine-protein kinase 10 STK10 (ST)

STK10 seq: 9 - 17 + Phospho

Serine/threonine-protein kinase 10 STK10 (ST)

Serine/threonine-protein kinase 11 -interacting

STKl lIP pS772

protein STK11IP

Serine/threonine-protein kinase 4 STK4 STK4 pT177

PRKD2 seq: 710 - 730 +

Serine/threonine-protein kinase D2 PRKD2 Phospho (Y)

Serine/threonine-protein kinase LATS 1 LATS 1 LATS1 pS464

Serine/threonine-protein kinase MARK2 MARK2 MARK2 pS535

PKN1 seq: 379 - 396 +

Serine/threonine-protein kinase Nl PKN1 Phospho (ST)

NEK9 seq: 10 - 39 +

Serine/threonine-protein kinase Nek9 NEK9 Phospho (ST)

NEK9 seq: 735 - 779 +

Serine/threonine-protein kinase Nek9 NEK9 Phospho (ST)

Serine/threonine-protein kinase PAK 1 PAK1 PAK1 pS144

PAK1 seq: 204 - 237 + 2

Serine/threonine-protein kinase PAK 1 PAK1 Phospho (ST)

PAK1 seq: 216 - 237 +

Serine/threonine-protein kinase PAK 1 PAK1 Phospho (ST)

Serine/threonine-protein kinase PAK 2 PAK2 PAK2 pS141

PAK2 seq: 139 - 160 +

Serine/threonine-protein kinase PAK 2 PAK2 Phospho (ST)

PAK2 seq: 53 - 62 +

Serine/threonine-protein kinase PAK 2 PAK2 Phospho (ST)

Serine/threonine-protein kinase SIK3 SIK3 SIK3 pS808 Phosphoprotein Phosphorylation site

WNK1 seq: 1996 - 2021 +

Serine/threonine-protein kinase WNK1 WNK1 Phospho (ST)

Serine/threonine-protein phosphatase 2B catalytic

PPP3CB pS471

subunit beta isoform PPP3CB

Serologically defined colon cancer antigen 3

SDCCAG3 pS247

SDCCAG3

SH3 domain-binding protein 1 SH3BP1 SH3BP1 pS262

SH3 domain-binding protein 1 SH3BP1 SH3BP1 pS544

SH3 domain-binding protein 1 SH3BP1 SH3BP1 pS613

SH3BP1 seq: 608 - 615 +

SH3 domain-binding protein 1 SH3BP1 Phospho (ST)

SH3 domain-binding protein 5-like SH3BP5L SH3BP5L pS343 pS350

SH3 domain-containing kinase-binding protein 1

SH3KBP1 pS108

SH3KBP1

SH3 domain-containing kinase-binding protein 1

SH3KBP1 pS230

SH3KBP1

SH3 domain-containing kinase-binding protein 1

SH3KBP1 pS410

SH3KBP1

SHC -transforming protein 1 SHC1 SHC1 pS139

SHC1 seq: 420 - 435 +

SHC -transforming protein 1 SHC1 Phospho (Y)

KIAA1598 seq: 485 - 505 +

Shootin- Phospho (ST)

Shootin-1 KIAA1598 KIAA1598 pS506

SIGLEC7 seq: 403 - 420 +

Sialic acid-binding Ig-like lectin 7 SIGLEC7 Phospho (ST)

CD 164 seq: 1 - 6 + Phospho

Sialomucin core protein 24 CD 164 (ST)

Signal transducer and activator of transcription 3

STAT3 pS691

STAT3

Signal transducer and activator of transcription 5B STAT5B seq: 122 - 140 + STAT5B Phospho (ST)

Signal-induced proliferation-associated protein 1

SIPA1 pS74

SIPA1

Small acidic protein SMAP SMAP pS 17 Phosphoprotein Phosphorylation site

Small acidic protein SMAP SMAP pS93

SMAP seq: 15 - 37 +

Small acidic protein SMAP Phospho (ST)

SMAP seq: 15 - 38 +

Small acidic protein SMAP Phospho (ST)

Smith-Magenis syndrome chromosomal region

SMCR8 pS417

candidate gene 8 protein SMCR8

SMTN seq: 30 - 35 +

Smoothelin SMTN Phospho (ST)

Sodium/hydrogen exchanger 1 SLC9A1 SLC9A1 pS703

UTP3 seq: 20 - 55 + Phospho

Something about silencing protein 10 UTP3 (ST)

Sorting nexin- 17 SNX17 SNX17 pS437 pS440

SNX18 seq: 193 - 198 +

Sorting nexin- 18 SNX18 Phospho (ST)

Sorting nexin-2 SNX2 SNX2 pS119

Sorting nexin-27 SNX27 SNX27 pS51

SPTBNl seq: 2159 - 2174 +

Spectrin beta chain, non-erythrocytic 1 SPTBNl Phospho (ST)

Spermatogenesis-defective protein 39 homo log VIPAS39 seq: 117 - 135 + VIPAS39 Phospho (ST)

Splicing factor 3A subunit 3 SF3A3 SF3A3 pS295

Splicing factor, arginine/serine-rich 19 SCAF1 SCAF1 pS498 pS500

Splicing factor, arginine/serine-rich 19 SCAF1 SCAF1 pS874

Src kinase-associated phosphoprotein 2 SKAP2 SKAP2 pS6

SKAP2 seq: 2 - 18 + 2

Src kinase-associated phosphoprotein 2 SKAP2 Phospho (ST)

Src-like-adapter SLA SLA pS 190

Stathmin STMN1 STMN1 pS16

Stathmin STMN1 STMN1 pS16 pS25

Stathmin STMN1 STMN1 pS25

TMEM173 seq: 348 - 375 +

Stimulator of interferon genes protein TMEM173 Phospho (ST) Phosphoprotein Phosphorylation site

SMAP2 seq: 227 - 254 +

Stromal membrane-associated protein 2 SMAP2 Oxidation (M); Phospho (ST)

SMAP2 seq: 227 - 254 +

Stromal membrane-associated protein 2 SMAP2 Phospho (ST)

Structural maintenance of chromosomes protein 3 SMC3 seq: 1080 - 1099 + SMC3 Phospho (ST)

Sulfotransferase 1A4 SULT1A4 SULT1A4 pS288

UBA2 seq: 277 - 308 +

SUMO-activating enzyme subunit 2 UBA2 Phospho (ST)

SWI/SNF complex subunit SMARCC1 SMARCC1 SMARCC1 pS328 pS330

SMARCC1 seq: 326 - 340 +

SWI/SNF complex subunit SMARCC1 SMARCC1 Phospho (ST)

SWI/SNF complex subunit SMARCC2 SMARCC2 SMARCC2 pS302 pS304

SWI/SNF complex subunit SMARCC2 SMARCC2 SMARCC2 pS347

SWI/SNF-related matrix-associated actin-dependent

regulator of chromatin subfamily A-like protein 1 SMARCAL1 pS112

SMARCAL1

Synaptojanin-1 SYNJ1 SYNJ1 pS1049 pS1053

Synaptotagmin-like protein 2 SYTL2 SYTL2 pT711

SYNRG seq: 467 - 485 +

Synergin gamma SYNRG Phospho (ST)

SYNRG seq: 750 - 771 + Gln->pyro-Glu (N-term Q);

Synergin gamma SYNRG Phospho (ST)

STX7 seq: 124 - 138 +

Syntaxin-7 STX7 Phospho (ST)

TAR DNA-binding protein 43 TARDBP TARDBP pS292

TOE1 seq: 418 - 439 +

Target of EGR1 protein 1 TOE1 Phospho (ST)

TOM1 seq: 453 - 478 +

Target of Myb protein 1 TOM1 Phospho (ST)

TATA-binding protein-associated factor 2N TAF15 TAF15 pS97

TBC1 domain family member 1 TBC1D1 TBC1D1 pS627

TBC1D1 seq: 562 - 591 +

TBC1 domain family member 1 TBC1D1 Phospho (ST) Phosphoprotein Phosphorylation site

TBC1D22A seq: 143 - 164 +

TBCl domain family member 22 A TBC1D22A Phospho (ST)

TBC1D22A seq: 165 - 193 +

TBCl domain family member 22 A TBC1D22A Phospho (ST)

TBCl domain family member 5 TBC1D5 TBC1D5 pS522

TBCl domain family member 5 TBC1D5 TBC1D5 pS539

TBCl domain family member 5 TBC1D5 TBC1D5 pS554

TBCl domain family member 5 TBC1D5 TBC1D5 pS730

TBClD8 seq: 445 - 468 +

TBCl domain family member 8 TBC1D8 Phospho (ST)

TBCl domain family member 9B TBC1D9B TBClD9B pS275

TCF3 fusion partner TFPT TFPT pS 180

Telomerase Cajal body protein 1 WRAP53 WRAP53 pS54

Telomerase protein component 1 TEP1 TEP1 pS397

Tensin-3 TNS3 TNS3 pS776

TNS3 seq: 330 - 356 +

Tensin-3 TNS3 Phospho (ST)

TNS3 seq: 361 - 401 +

Tensin-3 TNS3 Phospho (ST)

TNS3 seq: 646 - 663 +

Tensin-3 TNS3 Phospho (ST)

TNS3 seq: 646 - 663 +

Tensin-3 TNS3 Phospho (ST)

TNS3 seq: 669 - 704 +

Tensin-3 TNS3 Phospho (ST)

Tether containing UBX domain for GLUT4

ASPSCR1 pS500

ASPSCR1

Tetratricopeptide repeat protein 7A TTC7A TTC7A pS182

TTC7A seq: 49 - 66 +

Tetratricopeptide repeat protein 7A TTC7A Phospho (ST)

TGFBR2 seq: 350 - 356 +

TGF-beta receptor type-2 TGFBR2 Phospho (ST)

THOC1 seq: 2 - 14 +

THO complex subunit 1 THOC1 Phospho (ST) Phosphoprotein Phosphorylation site

Thromboxane A2 receptor TBXA2R TBXA2R pS331

Thyroid hormone receptor-associated protein 3

THRAP3 pS377

THRAP3

Thyroid hormone receptor-associated protein 3

THRAP3 pS379

THRAP3

Thyroid hormone receptor-associated protein 3 THRAP3 seq: 559 - 565 + THRAP3 Phospho (ST)

TOR1AIP1 seq: 252 - 274 +

Torsin-lA-interacting protein 1 TOR1AIP1 Phospho (ST)

TOR4A seq: 99 - 107 +

Torsin-4A TOR4A Phospho (ST)

TRAF family member-associated NF-kappa-B

TANK pS208

activator TANK

TRAF2 and NCK-interacting protein kinase TNIK TNIK pS640

Transcription activator BRG1 SMARCA4 SMARCA4 pS1452

Transcription elongation factor A protein 1 TCEAl TCEAl pSIOO

TCF12 seq: 75 - 90 +

Transcription factor 12 TCF12 Phospho (Y)

Transcription factor E2-alpha TCF3 TCF3 pS379

Transcription factor E3 TFE3 TFE3 pS548

SUPT20H seq: 507 - 531 +

Transcription factor SPT20 homolog SUPT20H Phospho (ST)

Transcription intermediary factor 1 -alpha TRIM24 TRIM24 pS811

TRIM28 seq: 747 - 767 +

Transcription intermediary factor 1-beta TRIM28 Phospho (Y)

Transcriptional regulator ATRX ATRX ATRX pS 1527

Transcriptional repressor p66-alpha GATAD2A GATAD2A pS100 pS114

Transcriptional repressor p66-beta GATAD2B GATAD2B pT120 pS122

Transformer-2 protein homolog alpha TRA2A TRA2A pS260 pS262

TRA2B seq: 198 - 217 + 2

Transformer-2 protein homolog beta TRA2B Phospho (ST)

Transgelin-2 TAGLN2 TAGLN2 pS163

Transgelin-3 TAGLN3 TAGLN3 pS185 Phosphoprotein Phosphorylation site

TMEM132A seq: 482 - 487

Transmembrane protein 132 A TMEM132A + Phospho (ST)

Transmembrane protein 201 TMEM201 TMEM201 pS454

Transmembrane protein C 16orf54 C 16orf54 C16orf54 pS194

Treacle protein TCOF1 TCOF1 pS1350

Treacle protein TCOF1 TCOF1 pS1378

Treacle protein TCOF1 TCOF1 pS381

Tristetraprolin ZFP36 ZFP36 pS60

Tubulin-folding cofactor B TBCB TBCB pS 110

Tumor necrosis factor alpha-induced protein 3

TNFAIP3 pS220

TNFAIP3

Tumor suppressor p53 -binding protein 1 TP53BP1 TP53BP1 pS1362

Tumor suppressor p53 -binding protein 1 TP53BP1 TP53BP1 pS265

Tumor suppressor p53 -binding protein 1 TP53BP1 TP53BP1 pS727

TP53BP1 seq: 1459 - 1490 +

Tumor suppressor p53 -binding protein 1 TP53BP1 Phospho (ST)

TP53BP1 seq: 1460 - 1490 +

Tumor suppressor p53 -binding protein 1 TP53BP1 Phospho (ST)

TP53BP1 seq: 372 - 387 +

Tumor suppressor p53 -binding protein 1 TP53BP1 Phospho (ST)

TP53BP1 seq: 528 - 558 +

Tumor suppressor p53 -binding protein 1 TP53BP1 Phospho (ST)

Type 2 phosphatidylinositol 4,5-bisphosphate 4- TMEM55A seq: 10 - 35 + phosphatase TMEM55A Phospho (ST)

Type-1 angiotensin II receptor-associated protein AGTRAP seq: 131 - 152 + AGTRAP Phospho (ST)

ABL1 seq: 716 - 727 +

Tyrosine -protein kinase ABL1 ABL1 Phospho (ST)

Tyrosine -protein kinase Fes/Fps FES FES pY713

Tyrosine -protein kinase Fgr FGR FGR pY412

Tyrosine -protein kinase HCK HCK HCK pT36

Tyrosine -protein kinase SYK SYK SYK pS295 pS297

Tyrosine -protein kinase SYK SYK SYK pS297 Phosphoprotein Phosphorylation site

Tyrosine -protein phosphatase non-receptor type 11

PTPN11 pY584

PTPN11

Tyrosine -protein phosphatase non-receptor type 12

PTPN12 pS435

PTPN12

Tyrosine -protein phosphatase non-receptor type 2 PTPN2 seq: 291 - 307 + PTPN2 Phospho (ST)

Tyrosine -protein phosphatase non-receptor type 6

PTPN6 pSIO

PTPN6

Tyrosine -protein phosphatase non-receptor type 6

PTPN6 pY536

PTPN6

Tyrosine -protein phosphatase non-receptor type 7

PTPN7 pS143

PTPN7

Tyrosine -protein phosphatase non-receptor type 7

PTPN7 pS44

PTPN7

SNRPA1 seq: 178 - 191 +

U2 small nuclear ribonucleoprotein A' SNRPA1 Phospho (ST)

SNRPA1 seq: 178 - 192 +

U2 small nuclear ribonucleoprotein A' SNRPA1 Phospho (ST)

U4/U6 small nuclear ribonucleoprotein Prp31

PRPF31 pS439 pT440 PRPF31

Ubiquitin carboxyl-terminal hydrolase 14 USP14 USP14 pS143

USP20 seq: 121 - 142 +

Ubiquitin carboxyl-terminal hydrolase 20 USP20 Phospho (ST)

USP24 seq: 1370 - 1395 +

Ubiquitin carboxyl-terminal hydrolase 24 USP24 Phospho (ST)

UBAP2L seq: 601 - 612 +

Ubiquitin-associated protein 2-like UBAP2L Phospho (ST)

Ubiquitin-conjugating enzyme E2 variant 1

UBE2V1 pS146

UBE2V1

Ubiquitin- like modifier-activating enzyme 1 UBAl UBAl pS820

UBXN1 seq: 178 - 209 +

UBX domain-containing protein 1 UBXN1 Phospho (ST)

C12orf43 seq: 163 - 185 +

Uncharacterized protein C 12orf43 C 12orf43 Phospho (ST)

Uncharacterized protein C7orf43 C7orf43 C7orf43 pS517 Phosphoprotein Phosphorylation site

C7orf43 seq: 515 - 525 +

Uncharacterized protein C7orf43 C7orf43 Phospho (ST)

Uncharacterized protein C9orfl42 C9orfl42 C9orfl42 pT145

Uncharacterized protein KIAA0930 KIAA0930 KIAA0930 pS306

Uncharacterized protein KIAA0930 KIAA0930 KIAA0930 pS362

KIAA0930 seq: 261 - 284 +

Uncharacterized protein KIAA0930 KIAA0930 Phospho (ST)

KIAA0930 seq: 285 - 296 +

Uncharacterized protein KIAA0930 KIAA0930 Phospho (ST)

Uncharacterized protein KIAA 1143 KIAA 1143 KIAA1143 pS50

Unconventional myosin-IXb MY09B MY09B pT1271

MY09B seq: 712 - 729 +

Unconventional myosin-IXb MY09B Phospho (ST)

MY05A seq: 1650 - 1666 +

Unconventional myosin- Va MY05A Phospho (ST)

Unconventional myosin-XVIIIa MY018A MYO18A pS2020

Unconventional myosin-XVIIIa MY018A MYO18A pS2043

MY018A seq: 2035 - 2048 +

Unconventional myosin-XVIIIa MY018A Phospho (ST)

UPF0688 protein Clorfl 74 Clorfl74 Clorfl74 pS189

VASP seq: 308 - 319 +

Vasodilator-stimulated phosphoprotein VASP Phospho (ST)

VASP seq: 320 - 346 +

Vasodilator-stimulated phosphoprotein VASP Oxidation (M); Phospho (ST)

VASP seq: 320 - 346 +

Vasodilator-stimulated phosphoprotein VASP Phospho (ST)

VASP seq: 322 - 346 +

Vasodilator-stimulated phosphoprotein VASP Phospho (ST)

VIM seq: 322 - 342 + Gln- >pyro-Glu (N-term Q);

Viment Phospho (ST)

Vimentin VIM VIM pS325

Vimentin VIM VIM pS34

Vimentin VIM VIM pS39 Phosphoprotein Phosphorylation site

Vimentin VIM VIM pS419

Vimentin VIM VIM pS420

Vimentin VIM VIM pS430

Vimentin VIM VIM pS49

Vimentin VIM VIM pS51

Vimentin VIM VIM pT426

VIM seq: 14 - 28 + 2

Vimentin VIM Phospho (ST)

VIM seq: 14 - 28 +

Vimentin VIM Oxidation (M); Phospho (ST)

VIM seq: 14 - 28 + Phospho

Vimentin VIM (ST)

VIM seq: 322 - 342 + Gln- >pyro-Glu (N-term Q);

Vimentin VIM Phospho (ST)

VIM seq: 37 - 50 + 2

Vimentin VIM Phospho (ST)

VIM seq: 425 - 439 +

Vimentin VIM Phospho (ST)

VIM seq: 51 - 64 + Phospho

Vimentin VIM (Y)

WAS/WASL-interacting protein family member 1

WIPF1 pS234

WIPF1

WAS/WASL-interacting protein family member 1

WIPF1 pS340

WIPF1

WASH complex subunit FAM21B FAM21B FAM21B pS264

WASH complex subunit FAM21C FAM21C FAM21C pS288

WD repeat and FYVE domain-containing protein 3

WDFY3 pS2278

WDFY3

WDRJ seq: 1152 - 1173 +

WD repeat-containing protein 7 WDR7 Phospho (ST)

X-ray repair cross-complementing protein 5 XRCC5 seq: 569 - 599 + XRCC5 Phospho (ST)

X-ray repair cross-complementing protein 6 XRCC6 seq: 475 - 488 + XRCC6 Phospho (ST) Phosphoprotein Phosphorylation site

YLPM1 seq: 887 - 895 +

YLP motif-containing protein 1 YLPM1 Phospho (ST)

Zinc finger CCCH domain-containing protein 13

ZC3H13 pS242

ZC3H13

Zinc finger CCCH domain-containing protein 13

ZC3H13 pS877

ZC3H13

Zinc finger CCCH domain-containing protein 13

ZC3H13 pT263 pS265

ZC3H13

Zinc finger CCCH domain-containing protein 14 ZC3H14 seq: 387 - 404 +

ZC3H14 Phospho (ST)

Zinc finger CCHC domain-containing protein 8

ZCCHC8 pS658

ZCCHC8

Zinc finger CCHC domain-containing protein 8 ZCCHC8 seq: 590 - 609 +

ZCCHC8 Phospho (ST)

ZNF185 seq: 463 - 482 +

Zinc finger protein 185 ZNF185 Phospho (ST)

ZNF609 seq: 571 - 582 +

Zinc finger protein 609 ZNF609 Phospho (ST)

Zinc finger protein ubi-d4 DPF2 DPF2 pS142

Zinc finger protein with KRAB and SCAN domains ZKSCAN8 seq: 7 - 26 +

8 ZKSCAN8 Phospho (ST)

Zinc finger Ran-binding domain-containing protein

ZRANB2 pS120

2 ZRANB2

Zinc finger SWIM domain-containing protein 1 ZSWIM1 seq: 465 - 470 +

ZSWIM1 Phospho (ST)

Zyxin ZYX ZYX pS281

ZYX seq: 296 - 320 +

Zyxin ZYX Phospho (ST)

TABLE 1

[0042] Suitably, the panel of phosphorylation sites may include any one, two, three, four, five, six, seven, eight, nine, ten or more than ten of the phosphorylation sites set out in

Table 2 below.

Neuroblast differentiation-associated protein AHNAK AHNAK pT4430 Phosphoprotein Phosphopeptide

EVI2B seq: 266 - 279 + 2 Phospho

Protein EVI2B (ST)

Protein EVI2B EVI2B pS294

HMHA1 seq: 619 - 641 + Phospho

Minor histocompatibility protein HA-1 (ST)

Coiled-coil domain-containing protein 88B CCDC88B pS1408

Coiled-coil domain-containing protein 88B CCDC88B pS1379

Tyrosine -protein kinase SYK SYK pS297

AKAP13 seq: 647 - 681 + Phospho

A-kinase anchor protein 13 (ST)

Calmodulin-regulated spectrin-associated protein 1 CAMS API pS629

Dedicator of cytokinesis protein 10 DOCK10 pT196

DENND1A seq: 518 - 531 + 2

DENN domain-containing protein 1 A Phospho (ST)

MAP3K3 seq: 164 - 185 + 2

Mitogen-activated protein kinase kinase kinase 3 Phospho (ST)

FAM129B seq: 686 - 705 + Phospho

Niban-like protein 1 (ST)

Minor histocompatibility protein HA-1 HMHA1 pS619

E3 ubiquitin-protein ligase TRIP 12 TRIP12 pS1577

Oxysterol-binding protein-related protein 11 OSBPL11 pS172

COPS7A seq: 222 - 243 + Phospho

COP9 signalosome complex subunit 7a (ST)

Vimentin VIM pS39

Ribosomal protein S6 kinase alpha- 1 RPS6KA1 pS380

Dedicator of cytokinesis protein 10 DOCK10 pT1406

EH domain-binding protein 1 - like protein 1 EHBP1L1 pS1257

Coronin-7 COR07 pS465

Drebrin-like protein DBNL pS141

KIAA0930 seq: 285 - 296 +

Uncharacterized protein KIAA0930 Phospho (ST)

NAD kinase NADK seq: 44 - 57 + Phospho (ST)

PDZ and LIM domain protein 2 PDLIM2 pS197

EVI2B seq: 266 - 279 + 2 Phospho

Protein EVI2B (ST)

SH3 domain-containing kinase-binding protein 1 SH3KBP1 pS230

Transgelin-3 TAGLN3 pS185

EHBP1L1 seq: 1270 - 1278 +

EH domain-binding protein 1 - like protein 1 Phospho (ST)

Protein FAM65B FAM65B pS21

Protein phosphatase 1 regulatory subunit 12A PPPlR12A pS445

Neuroblast differentiation-associated protein AHNAK AHNAK pT4766

BIN2 seq: 450 - 477 + 2 Phospho

Bridging integrator 2 (ST)

Neurobeachin-like protein 2 NBEAL2 pS2739 Phosphoprotein Phosphopeptide

Hematopoietic lineage cell-specific protein HCLS1 pT308

Platelet receptor Gi24 C10orf54 pS235

BIN2 seq: 450 - 477 + 2 Phospho

Bridging integrator 2 (ST)

Neuroblast differentiation-associated protein AHNAK AHNAK pS3426

Drebrin-like protein DBNL pS269

Vimentin VIM pS325

Phosphoglycerate mutase 1 PGAM1 pS14

Serine/threonine-protein kinase PAK 2 PAK2 seq: 53 - 62 + Phospho (ST)

Arf-GAP with Rho-GAP domain, ANK repeat and PH ARAP1 seq: 222 - 244 + Phospho domain-containing protein 1 (Y)

Arf-GAP with Rho-GAP domain, ANK repeat and PH ARAP1 seq: 222 - 244 + Phospho domain-containing protein 1 (ST)

Dedicator of cytokinesis protein 10 DOCK10 pT1440

PGAM4 seq: 118 - 138 + Phospho

Probable phosphoglycerate mutase 4 (ST)

Platelet receptor Gi24 C10orf54 pS235

Bridging integrator 2 BIN2 seq: 461 - 477 + Phospho (ST)

Receptor-interacting serine/threonine-protein kinase 3 RIPK3 pS410

Cytohesin-4 CYTH4 pS215

Neuroblast differentiation-associated protein AHNAK AHNAK pT4766

Ras and Rab interactor 1 RIN1 pS333

Lysosomal-trafficking regulator LYST pS2149

SUPT20H seq: 507 - 531 + Phospho

Transcription factor SPT20 homolog (ST)

Lysosomal-trafficking regulator LYST pS2105

Brain-specific angiogenesis inhibitor 1 -associated

protein 2 BAIAP2 pS366

Serine/threonine-protein phosphatase 2B catalytic

subunit beta isoform PPP3CB pS471

TNS3 seq: 361 - 401 + Phospho

Tensin-3 (ST)

PLEC seq: 4384 - 4401 + Phospho

Plectin (ST)

GMIP seq: 231 - 248 + Phospho

GEM-interacting protein (ST)

Bridging integrator 2 BIN2 seq: 461 - 477 + Phospho (ST)

CCDC88B seq: 595 - 613 + Phospho

Coiled-coil domain-containing protein 88B (ST)

CCDC88B seq: 429 - 454 + Phospho

Coiled-coil domain-containing protein 88B (ST)

Band 4.1 -like protein 3 EPB41L3 pS962

Tetratricopeptide repeat protein 7A TTC7A seq: 49 - 66 + Phospho (ST)

G-protein-signaling modulator 3 GPSM3 pS39

Mitogen-activated protein kinase kinase kinase 2 MAP3K2 pS153 Phosphoprotein Phosphopeptide

Remodeling and spacing factor 1 RSF1 pS748

Zinc finger protein 768 ZNF768 pS125

ZNF609 seq: 571 - 582 + Phospho

Zinc finger protein 609 (ST)

Tumor suppressor p53 -binding protein 1 TP53BP1 pS1362

Cyclin-dependent kinase 13 CDK13 pS437 pS439

Activity-dependent neuroprotector homeobox protein ADNP pS953

Mediator of DNA damage checkpoint protein 1 MDC1 pS780

Transcription elongation factor A protein 1 TCEA1 pSIOO

Msx2-interacting protein SPEN pS1062

ATPase family AAA domain-containing protein 2B ATAD2B pS81

DNA-directed RNA polymerase I subunit RPA43 TWISTNB pS316

Tumor suppressor p53 -binding protein 1 TP53BP1 pS265

TP53BP1 seq: 372 - 387 + Phospho

Tumor suppressor p53 -binding protein 1 (ST)

RCOR3 seq: 366 - 389 + Phospho

REST corepressor 3 (ST)

Protein lyl-1 LYL1 pS36

SRRM2 seq: 1457 - 1467 +

Serine/arginine repetitive matrix protein 2 Oxidation (M); Phospho (ST)

RANBP2 seq: 1507 - 1522 +

E3 SUMO-protein ligase RanBP2 Phospho (ST)

Transcription factor 12 TCF12 seq: 75 - 90 + Phospho (ST)

Transcription factor 12 TCF12 seq: 75 - 90 + Phospho (Y)

Lysine-specific histone demethylase 1 A KDMlA pS166

DNA-directed RNA polymerase I subunit RPA43 TWISTNB pS328

TABLE 2

[0043] Advantageously, the panel of phosphorylation sites may comprise one or more phosphorylation sites in kinases, including one, two, three, four, five, six, seven, eight, nine, ten or more than ten of PAK1 at S144, PAK2 at S141, MAPK1 at Y187, MAPK1 at T185,

RPS6KA1 at S380, MAPK3 at T202, MAPK3 at Y204, MAP3K3 at S166, SYK at S295 and S297, IRAK3 at SI 10, PKN1 (379-396 + phospho ST), STK10 (447-464 + phospho ST), RIPK3 at S410, PRKCD at T218, PRKCD at T295, PRKCD at Y313, PRKCD at T507, PRKCD at T645, PRKCD at S664, PRKCD atT2638, MARK2 at S535, MAP3K2 at S535, PRKD2 (710-730 + phospho Y), NRK at s805, PRKAR2A at S58, ZAK (591-616 + phospho

ST), MAP4K4 at S900, CDK9 at S347, RPS6KA4 (681-699 + 2 phospho ST), MAST3 (1254-1274 + phospho ST), NEK9 (10-39 + phospho ST), GSK3A (19-50 + phospho ST), RPS6KA3 at S369, RIPK2 at S531, AAK1 at T606, TYK2 at Y292, PDPK2 at S214, PRKAAl (3-8 + phospho ST), STKl IP at S772, BAZIB at S1468, CLKl at S140, MAP4K2 at S328, WNK1 (1996-2021 + phospho ST), CDK11A at S271, FES at Y713, and/or TNIK at S769, and step (a) may comprise analysing the data to determine if the panel of phosphopeptides is phosphorylated at a high level in the leukaemia cells, where an advanced differentiation status is determined if the panel of phosphopeptides is phosphorylated at a high level in the cells

[0044] Preferably, the panel of phosphorylation sites may comprise regulatory phosphorylation sites in kinases, such as PAKl at S144, PAK2 at S141, MAPK1 at Y187 and/or T185, and RPS6KA1 at S380, and step (a) may comprise analysing the data to determine if the panel of phosphopeptides is phosphorylated at a high level in the leukaemia cells, where an advanced differentiation status is determined if the panel of phosphopeptides is phosphorylated at a high level in the cells.

[0045] Suitably, the panel of phosphorylation sites may include MAPK1 at Y187,

PAK2 at S 141 and PRKCD at Y313, and step (a) may comprise analysing the data to determine if the panel of phosphopeptides is phosphorylated in the leukaemia cells, where an advanced differentiation status is determined if the panel of phosphopeptides is

phosphorylated in the cells.

[0046] Optionally, the panel of phosphorylation sites may include FES at Y713,

MAPK3 at T202/Y204, MAPK1 at T185/Y187, PAKl at S144, MEK1 at S222, PAK2 at S141 and PRKCD at S645, and step (a) may comprise analysing the data to determine if the panel of phosphopeptides is phosphorylated in the leukaemia cells, where an advanced differentiation status is determined if the panel of phosphopeptides is phosphorylated in the cells.

[0047] The panel of phosphorylation sites may, for example, include one or more phosphorylation sites on one or more PKC isoforms including PRKCA, PRKCB and/or

PRKCD), and/or one or more phosphorylation sites on one or more of STK10, GSK3A, PAKl, PAK2 and Gi24 (VSIR), as indicated in Table 1. For example, the panel of phosphorylation sites may include S21 of GSK3A and/or T507, T295, T218, Y313, T507, and/or S664 of PRKCD, and/or S20 of STK10, and/or S13 of STK10, and/or S144 of PAKl, and/or S141 of PAK2. [0048] Suitably, the panel of phosphorylation sites may consist of phosphorylation sites on MAPK1, including at Y187 and/or T185 of MAPK1, and/or at T202 or Y204 of MAPK3, and/or at S21 of GSK3A, and step (a) may comprise analysing the data to determine if the panel of phosphopeptides is phosphorylated in the leukaemia cells, where an advanced differentiation status is determined if the panel of phosphopeptides is phosphorylated in the cells.

[0049] Said data recording the classification of the leukaemia cells under the French-

American-British (FAB) classification system may comprise data of any kind which indicates the FAB classification of the leukaemia cells. An advanced differentiation status may be determined if the leukaemia cells are classified as M4, M4 eos or M5, preferably if the leukaemia cells are classified as M4.

[0050] The methods of the invention enable the effective identification of AML patients who are suitable for kinase inhibitor therapy, based on the differentiation status of the patients' leukaemia. Whilst kinase inhibitors of various types have previously been suggested as candidates for use in AML therapy, there has been no previous disclosure or suggestion that the differentiation status of a patient's leukaemia may in any way indicate suitability for kinase inhibitor therapy. The present invention therefore provides a new and non-obvious grouping of AML patients who are suitable for kinase inhibitor therapy. As proved by the specific examples, this grouping is highly selective for AML patients who will respond to kinase inhibitor therapy.

[0051] According to yet another aspect, therefore, the invention provides a kinase pathway inhibitor, which kinase pathway inhibitor inhibits a kinase signalling pathway that is involved in cell proliferation or cell survival, for use in a method of treating acute myeloid leukaemia in a patient, wherein the patient has leukaemia cells with an advanced

differentiation status. Preferably, the differentiation status of the leukaemia cells may be determined according to the methods of the invention as described herein.

[0052] A kinase pathway inhibitor is an agent such as a small molecule or antibody which blocks the activity of a kinase pathway. Kinase pathway inhibitors may include inhibitors of enzyme and kinase pathway signalling molecules, including kinases, phosphatases, and G proteins. Suitably, the kinase pathway inhibitor may be a kinase inhibitor. A kinase inhibitor is an agent which blocks the kinase activity of a protein kinase. Such agents are well known and are widely available in the art. The inhibitory capability of a kinase inhibitor can be assessed by determining the activity of a kinase before and after incubation with the candidate compound. Kinase profiling methods for identifying kinase inhibitors are also widely available in the art, thus putting a large range of kinase inhibitors for use in the present invention at the disposal of the skilled person. One assay which may be used for the identification of agents capable of inhibiting specific kinases is a radioactive filter binding assay using 33P ATP, described in Hastie, et al 2006. Nat Protoc.

2006;1(2):968-71; Bain, et al 2007. Biochem J. 2007 Dec 15;408(3):297-315. This method is sensitive, accurate and provides a direct measure of activity. Thus results are directly comparable between samples. [0053] Preferably, the kinase pathway inhibitor may inhibit any one or more of the

FLT3 pathway, the PKC pathway, the RAS-RAF-MEK-ERK pathway, the PI3K-AKT- MTOR-S6K pathway, the PAK pathway, the JAK-STAT pathway, the CAMKK pathway, or any kinase signalling pathway parallel thereto. The kinase pathway inhibitor may, for example, be a kinase inhibitor which inhibits one or more of PKC, PAK, RAF, MEK, ERK, P13K, AKT, MTOR, S6K, STAT5, CAMKK, SYK, LYN, JAK, RTK, ALK, CDK, and

BTK.

[0054] In some embodiments, the kinase pathway inhibitor may be a kinase inhibitor which is :

(a) a MEK inhibitor selected from APS-2-79, AZ 628, AZD8330, BI-847325, Binimetinib, BIX 02188, CEP-32496, Cobimetinib, Dabrafenib, DEL-22379, ERK5-IN-1,

FR 180204, GDC-0623, GDC-0994, HA15, Honokiol, PD0325901, PD184352, PD318088, PD98059, Pimasertib, PLX7904, Refametinib, R05126766, SCI, SCH772984, SCH772984, Selumetinib, SGX-523, SL-327, Sorafenib, TAK733, Trametinib, U0126, U0126,

Ulixertinib, Vandetanib, Vemurafenib, VX-1 le, and XMD8-92; or (b) a FLT3 inhibitor selected from AMG 925, Amuvatinib, AZD2932, Cabozantinib,

Dovitinib, ENMD-2076, ENMD-2076 L-(+)-Tartaric acid, G-749, KW-2449, Midostaurin, Pacritinib, Quizartinib, R406, Tandutinib, TCS 359, TG101209, and UNC2025; or an RTK inhibitor selected from Imatinib, Lenvatinib, Lucitanib, Sunitinib, Osimertinib, Erlotinib, Gefitinib, Dasatinib, Nilotinib, Lapatinib, Pazopanib, Ruxolitinib, Ponatinib, Cabozantinib, Regorafenib, Bosutinib, Axitinib, Afatinib, and Nintedanib; or (c) a PKC inhibitor selected from Enzastaurin, Bisindolylmaleimide I , Daphnetin, Dequalinium Chloride, Go 6983, Go6976, LY333531 HC1, Ro 31-8220 Mesylate,

Sotrastaurin, and Staurosporine; or

(d) a PAK inhibitor selected from FRAX1013, FRAX486, FRAX597, IPA-3, and PF3758309; or

(e) a PI3K/AKT/MTOR inhibitor selected from 3-Methyladenine, A66, A-674563, Afuresertib, Akti-1/2, Alpelisib, AMG319, Apitolisib , AS-252424, AS-604850, AS-605240, AT13148, AT7867, AZD1208, AZD5363, AZD6482, AZD8055, AZD8186, AZD8835, BGT226, BI-78D3, Buparlisib, CAY10505, CC-223, CCT128930, CH5132799, Copanlisib, CP-466722, CPI-360, CUDC-907, CX-6258 HC1, CZ415, CZC24832, Dactolisib, Duvelisib,

ETP-46464, Everolimus, GDC-0084, GDC-0349, Gedatolisib, GNE-317, GSK1059615, GSK2269557, GSK2292767, GSK2636771, GSK690693, HS-173, IC-87114, Idelalisib, INK 128, Ipatasertib, KU-0060648, KU-0063794, KU-55933, LTURM34, LY294002,

LY3023414, MHY1485, Miltefosine, Miransertib, MK-2206, NU7026, NU7441, Omipalisib, OSI-027, Palomid 529, Perifosine, PF-04691502, PF-4989216, PHT-427, PI- 103, PI-3065,

Pictilisib, PIK-293, PIK-294, PIK-90, PIK-93, Pilaralisib, PIM447, Piperlongumine, PKI- 402, PP121, Rapamycin, Ridaforolimus, SAR405, SC79, SGI- 1776, SIS3, SKI II,

SRPIN340, Tacrolimus, Taselisib, Temsirolimus, TG100-115, TG100713, TGR-1202, TIC 10, TIC 10 Analogue, Torin 1, Torin 2, Torkinib, Triciribine, Uprosertib, VE-821, Vistusertib, Voxtalisib, VPS34-IN1, VS-5584, WAY-600, Wortmannin, WYE-125132,

WYE-354, WYE-687, XL147 analogue, XL388, Zotarolimus and ZSTK474; or

(f) an ALK inhibitor selected from Ceritinib, Brigatinib, Crizotinib, and Alecitinib; or

(g) a CDK inhibitor selected from Palbociclib and Ribociclib; or

(h) a JAK inhibitor such as Tofacitinib; or (i) a BTK inhibitor such as Ibrutinib.

[0055] The kinase pathway inhibitor may, for example, be one of afatinib, alecitinib, alpelisib, axitinib, bosutinib, brigatinib, buparlisib, cabozantinib, ceritinib, cobimetinib, copanlisib, crizotinib, dabrafenib, dasatinib, dequalinium chloride, duvelisib, erlotinib, everolimus, gefitinib, ibrutinib, idelalisib, imatinib, lapatinib, lenvatinib, miltefosin, nilotinib, nintedanib, osimertinib, pacritinib, palbociclib, pazopanib, ponatinib, quizartinib, radaforolimus, rapamycin, regorafenib, ribociclib, ruxolitinib, selumetinib, sorafenib, sunitinib, temsirolimus, tofacitinib, vandetanib, vemurafenib and zotarolimus.

[0056] In some preferred embodiments, the kinase pathway inhibitor may be a MEK inhibitorsuch as APS-2-79, AZ 628, AZD8330, BI-847325, Binimetinib, BIX 02188, CEP- 32496, Cobimetinib, Dabrafenib, DEL-22379, ERK5-IN-1, FR 180204, GDC-0623, GDC-

0994, HA15, Honokiol, PD0325901, PD184352, PD318088, PD98059, Pimasertib,

PLX7904, Refametinib, R05126766, SCI, SCH772984, SCH772984, Selumetinib, SGX- 523, SL-327, Sorafenib, TAK733, Trametinib, U0126, U0126, Ulixertinib, Vandetanib, Vemurafenib, VX-1 le, or XMD8-92; or a FLT3/PKC inhibitor such as midostaurin; or a PAK inhibitor such as FRAX1013, FRAX486, FRAX597, IPA-3, and PF3758309; or a

PI3K/AKT/MTOR inhibitor selected from 3-Methyladenine, A66, A-674563, Afuresertib, Akti-1/2, Alpelisib, AMG319, Apitolisib , AS-252424, AS-604850, AS-605240, AT13148, AT7867, AZD1208, AZD5363, AZD6482, AZD8055, AZD8186, AZD8835, BGT226, BI- 78D3, Buparlisib, CAY10505, CC-223, CCT128930, CH5132799, Copanlisib, CP-466722, CPI-360, CUDC-907, CX-6258 HCl, CZ415, CZC24832, Dactolisib, Duvelisib, ETP-46464,

Everolimus, GDC-0084, GDC-0349, Gedatolisib, GNE-317, GSK1059615, GSK2269557, GSK2292767, GSK2636771, GSK690693, HS-173, IC-87114, Idelalisib, INK 128,

Ipatasertib, KU-0060648, KU-0063794, KU-55933, LTURM34, LY294002, LY3023414, MHY1485, Miltefosine, Miransertib, MK-2206, NU7026, NU7441, Omipalisib, OSI-027, Palomid 529, Perifosine, PF-04691502, PF-4989216, PHT-427, PI-103, PI-3065, Pictilisib,

PIK-293, PIK-294, PIK-90, PIK-93, Pilaralisib, PIM447, Piperlongumine, PKI-402, PP121, Rapamycin, Ridaforolimus, SAR405, SC79, SGI- 1776, SIS3, SKI II, SRPIN340, Tacrolimus, Taselisib, Temsirolimus, TG100-115, TG100713, TGR-1202, TICIO, TICIO Analogue, Torin 1, Torin 2, Torkinib, Triciribine, Uprosertib, VE-821, Vistusertib, Voxtalisib, VPS34-IN1, VS-5584, WAY-600, Wortmannin, WYE-125132, WYE-354, WYE-687, XL147 analogue,

XL388, Zotarolimus or ZSTK474 . Suitably, the kinase pathway inhibitor may be trametinib, or midostaurin, or PF 3758309.

[0057] In particularly preferred embodiments of the present invention, the kinase pathway inhibitor is a MEK inhibitor, a FLT3/PKC inhibitor or a PAK inhibitor, and step (a) involves : (i) determining the differentiation status of the patient's leukaemia by analysing data relating to the phosphorylation of one or more phosphorylation sites in MAPK1 and/or MAPK3 in leukaemia cells obtained from the patient; and/or

(ii) determining the differentiation status of the patient's leukaemia by analysing data relating to the surface expression on leukaemia cells obtained from said patient of a group of CD markers consisting of CDl lb, CD14, CD15, CD16, CD33, CD38, CD44, CD45, CD64, CD 123 and HLA-DR; wherein a high level of phosphorylation of the one or more phosphorylation sites and/or the presence of said group of CD markers on said leukaemia cells indicates an advanced differentiation status.

[0058] Said one or more phosphorylation sites in MAPK1 may include Y187 and/or

T185. Said one or more phosphorylation sites in MAPK3 may include T202 and/or Y204.

[0059] As demonstrated by the experimental data provided herein, the inventors have found that the present invention provides an accurate test for identifying AML patients who will be responsive to treatment with FLT3/PKC pathway inhibitors such as midostaurin.

[0060] In preferred embodiments, therefore, the kinase pathway inhibitor is a

FLT3/PKC pathway inhibitor such as midostaurin, and step (a) involves determining the differentiation status of the patient's leukaemia by :

(i) analysing data relating to the phosphorylation of phosphorylation sites in one or more of GSK3A, PRKCA, PRKCB, PRKCD, STK10, PAKl, PAK2MAPK1 and/or MAPK3 in leukaemia cells obtained from the patient; and/or

(ii) analysing data relating to the surface expression on leukaemia cells obtained from said patient of a group of CD markers consisting of CD1 lb, CD14, CD15, CD16, CD33, CD38, CD44, CD4PKC5, CD64, CD123 and HLA-DR; wherein either : a high level of phosphorylation in the leukaemia cells of GSK3A, PRKCA, PRKCB, PRKCD, STK10, PAKl, PAK2MAPK1 and/or MAPK3; or expression by the leukaemia cells of said group of CD markers; indicates an advanced differentiation status.

[0061] In these embodiments, said data relating to the phosphorylation of one or more phosphorylation sites in GSK3A, PRKCA, PRKCB, PRKCD, STK10, PAKl, PAK2MAPK1 and/or MAPK3 may comprise data relating to : the phosphorylation of GSK3A at pS21 and/or the phosphorylation of PRKCD at Y313, pT507, pT295, pT218, and/or pS664 and/or the phosphorylation of STK10 at pS20 and/or pS13, and/or the phosphorylation of PAK1 at pS144 and/or the phosphorylation of PAK2 at pS141, and/or the phosphorylation of MAPK1 at Y187 and/or T185, and/or the phosphorylation of MAPK3 at T202 and/or Y204. [0062] The present invention also provides a highly accurate protocol for identifying AML patients who will respond to treatment with RAS-RAF-MEK-ERK pathway inhibitors, such as trametinib. The inventors have found that leukaemia cells with an advanced differentiation status are highly sensitive to treatment with such inhibitors. Such cells frequently have activating mutations in NRAS, KRAS, HRAS and/or BRAF. Testing for the presence of such activating mutations therefore supplements the protocol of the present invention.

[0063] In some preferred embodiments of the first aspect of the invention, therefore, the kinase pathway inhibitor is a RAS-RAF-MEK-ERK inhibitor such as trametinib; step (a) further comprises determining the mutational status of NRAS, KRAS, HRAS or BRAF in leukaemia cells obtained from the patient by analysing data relating to the genotype of the leukaemia cells; and step (b) comprises predicting that the acute myeloid leukaemia of the patient may be effectively treated with the kinase pathway inhibitor if the differentiation status of the leukaemia is advanced or if any one of NRAS, KRAS, HRAS or BRAF in the leukaemia cells has an activating mutation.

.[0064] In some preferred embodiments of the second aspect of the invention, the kinase pathway inhibitor is a RAS-RAF-MEK-ERK inhibitor such as trametinib; step (a) further comprises determining the mutational status of NRAS, KRAS, HRAS or BRAF in leukaemia cells obtained from the patient by analysing data relating to the genotype of the leukaemia cells; and step (b) comprises treating the patient with the kinase pathway inhibitor if the differentiation status of the leukaemia is advanced or if any one of NRAS, KRAS, HRAS or BRAF in the leukaemia cells has an activating mutation.

[0065] In some preferred embodiments of the third aspect of the invention, the kinase pathway inhibitor is a RAS-RAF-MEK-ERK inhibitor such as trametinib; step (a) further comprises determining the mutational status of NRAS, KRAS, HRAS or BRAF in leukaemia cells obtained from the patient by analysing data relating to the genotype of the leukaemia cells; and step (b) comprises identifying any one or more patients who have leukaemia with an advanced differentiation status and/or who have leukaemia with an activating mutation in any one of NRAS, KRAS, HRAS or BRAF, and determining that said one or more patients may be suitable for effective treatment with the kinase pathway inhibitor.

[0066] In some preferred embodiments of the fourth aspect of the invention, the kinase pathway inhibitor is a RAS-RAF-MEK-ERK inhibitor such as trametinib; step (a) further comprises determining the mutational status of NRAS, KRAS, HRAS or BRAF in leukaemia cells obtained from the patient by analysing data relating to the genotype of the leukaemia cells; and step (b) comprises treating the patient with the kinase pathway inhibitor if the differentiation status of the leukaemia is advanced or if any one of NRAS, KRAS, HRAS or BRAF in the leukaemia cells has an activating mutation. [0067] In these preferred embodiments, an activating mutation of NRAS, KRAS,

HRAS or BRAF is a mutation which has the effect of constitutively switching the protein "on". Such mutations may, for example, include :

NRAS.

G12S (c.34G>A) G12C (c.34G>T) G12R (c.34G>C) G12V (c.35G>A) G12A (c.35G>C) G12D (c.35G>A) G13A (c.38G>C) G13V (c.38G>T)

G13R (c.37G>C) G13C (c.37G>T) G13S (c.37G>A) G13D (c.38G>A) Q61E (C.1810G) Q61H (c.l83A>T) Q61H (c.l83A>C) Q61L (c.l82A>T) Q61L (c.l82_183AA>TG) Q61K (c.l81C>A) Q61P (c.l82A>C)

Q61R (c.l82A>G) Q61R (c.l82_183AA>GG) Q61Q (c.l83A>G)

BRAF :

V600E (c.l 799T>A) V600K (c.l 798_1799GT>AA) V600M (c.l 798G>A)

V600D (c. 1799_1800TG>AT) V600R (c. 1798_1799GT>AG)

V600G (c.l 799T>G) V600E'(c. 1799J800TOAA) V600A (c. 1799 _T>C) G469A (c. 1406OA) G469V (c. 1406OT) D594G (c. 1781 A>G)

Ό594Υ (c. 34G>A) L597 (c.l 789C) L597 (c.l 790T)

KRAS :

G12D (c.34G) G12 (c.35G) G13 (c.57G) G12 (c.JSG)

Q61 (C.181Q Q61 (c.iS2_4) Q61 (cJSJ^) A146 (c.4J6G) A146 (c.437

II HAS

G12V (c.34G) G12 (c.35G) G13 (c.37G) G13 (c.38G)

Q61 (c. 7S7C) Q61 (c.iS2_4) Q61 (c.

[0068] In these embodiments, said data relating to the genotype of the leukaemia cells may comprise any information from which a skilled person could deduce the presence or absence of an activating mutation in NRAS, KRAS, HRAS and/or BRAF. The data may include, without limitation, the sequence of the NRAS, KRAS, HRAS and/or BRAF genes in the leukaemia cells, the sequence of the or each encoded protein expressed by the leukaemia cells, or data recording the presence or absence of an activating mutation in NRAS, KRAS, HRAS and/or BRAF in the leukaemia cells. In some embodiments, said data has previously been gathered and recorded and step (a) comprises obtaining said data for analysis. In other embodiments, step (a) further comprises gathering and recording said data for analysis. Said data may be gathered and recorded without difficulty according to techniques and protocols well known in the art and as exemplified herein.

[0069] In these embodiments, step (a) may comprise :

(i) determining the differentiation status of the patient's leukaemia by analysing data relating to the phosphorylation of one or more phosphorylation sites in MAPK1 or MAPK3 in leukaemia cells obtained from the patient; and/or

(ii) determining the differentiation status of the patient's leukaemia by analysing data relating to the surface expression on leukaemia cells obtained from said patient of a group of CD markers consisting of CDl lb, CD14, CD15, CD16, CD33, CD38, CD44, CD45, CD64, CD 123 and HLA-DR; wherein a high level of phosphorylation of the one or more phosphorylation sites and/or the presence of said group of CD markers on said leukaemia cells indicates an advanced differentiation status.

[0070] The present inventors have also found that leukaemia cells possessing an activating mutation in FLT3, or displaying activation of a FLT3-driven pro-survival kinase signalling pathway operating in parallel to the RAS-RAF-MEK-ERK pathway, or having a high level of phosphorylation on certain phosphomarkers as identified below, can show resistance to treatment with MEK pathway inhibitors. It is thought that mutation of FLT3 and/or activation of parallel FLT3-driven pro-survival signalling pathways may provide the cells with alternative survival mechanisms notwithstanding the inhibition of the RAS-RAF- MEK-ERK pathway.

[0071] In some preferred embodiments of the invention, the kinase pathway inhibitor is a RAS-RAF-MEK-ERK pathway inhibitor such as a MEK inhibitor, such as trametinib, and step (a) further comprises :

(i) determining the mutational status of FLT3 in leukaemia cells obtained from the patient by analysing data relating to the genotype of said leukaemia cells and/or

(ii) determining the activation in the leukaemia cells of a FLT-3 driven kinase signalling pathway that is involved in cell proliferation or cell survival other than the RAS- RAF-MEK-ERK pathway, such as the PKC pathway, the PI3K-AKT-MTOR-S6K pathway, the PAK pathway, the JAK-STAT pathway, or the CAMKK pathway, by analysing data relating to kinase pathway activity markers in said leukaemia cells; and/or

(iii) determining the level of phosphorylation of one or both of TOP2A and/or KDM5C in the leukaemia cells, by analysing data relating to the phosphorylation of TOP2A and/or KDM5C in the leukaemia cells.

[0072] In such embodiments according to the first aspect of the invention, step (b) may comprise predicting that the acute myeloid leukaemia of the patient may be effectively treated with the RAS-RAF-MEK-ERK pathway inhibitor if : (i) the differentiation status of the leukaemia is advanced and (ii) if FLT3 in the leukaemia cells does not have an activating mutation or if the FLT3 -driven kinase signalling pathway is not activated in the leukaemia cells or if TOP2A and/or KDM5C are phosphorylated at a low level in the leukaemia cells. In such embodiments according to the second aspect of the invention, step (b) may comprise treating the patient with the RAS-RAF-MEK-ERK pathway inhibitor if : (i) the

differentiation status of the leukaemia is advanced and (ii) if FLT3 in the leukaemia cells does not have an activating mutation or if the FLT3 -driven kinase signalling pathway is not activated in the leukaemia cells or if TOP2A and/or KDM5C are phosphorylated at a low level in the leukaemia cells. In such embodiments according to the third aspect of the invention, step (b) may comprise identifying as suitable for effective treatment with the RAS- RAF-MEK-ERK inhibitor any one or more patients for whom : (i) the leukaemia cells have an advanced differentiation status and (ii) the leukaemia cells have no activating mutation in FLT3 or the FLT3 -driven kinase signalling pathway is not activated in the leukaemia cells or if TOP2A and/or KDM5C are phosphorylated at a low level in the leukaemia cells. In such embodiments according to the fourth aspect of the invention, step (b) may comprise treating the patient with the RAS-RAF-MEK-ERK inhibitor if : (i) the differentiation status of the leukaemia is advanced and (ii) if FLT3 in the leukaemia cells does not have an activating mutation or if the FLT3 -driven kinase signalling pathway is not activated in the leukaemia cells or if TOP2A and/or KDM5C are phosphorylated at a low level in the leukaemia cells.

[0073] Some preferred related embodiments of the first aspect of the invention may accordingly comprise :

(a) (i) determining the differentiation status of the patient's leukaemia and/or determining the mutational status of NRAS, KRAS, HRAS or BRAF in leukaemia cells obtained from the patient by analysing data relating to the genotype of the leukaemia cells; and

(ii) determining the mutational status of FLT3 in leukaemia cells obtained from the patient by analysing data relating to the genotype of said leukaemia cells and/or determining the activation in the leukaemia cells of a FLT-3 driven kinase signalling pathway that is involved in cell proliferation or cell survival other than the RAS-RAF-MEK-ERK pathway, by analysing data relating to activity markers of the FLT3-driven kinase signalling pathway in said leukaemia cells; and/or determining the level of phosphorylation of one or both of TOP2A and/or KDM5C in the leukaemia cells, by analysing data relating to the phosphorylation of TOP2A and/or KDM5C in the leukaemia cells and

(b) where : (i) the differentiation status of the leukaemia is advanced or any one of NRAS, KRAS, HRAS or BRAF in the leukaemia cells has an activating mutation, and

(ii) FLT3 in the leukaemia cells does not have an activating mutation or the FLT3 -driven kinase signalling pathway is not activated or TOP2A and/or KDM5C are phosphorylated at a low level in the

leukaemia cells; predicting that the acute myeloid leukaemia in the patient may be effectively treated with said RAS-RAF-MEK-ERK pathway inhibitor.

[0074] Some preferred embodiments of the second aspect of the invention may accordingly comprise :

(a) (i) determining the differentiation status of the patient's leukaemia and/or determining the mutational status of NRAS, KRAS, HRAS or BRAF in leukaemia cells obtained from the patient by analysing data relating to the genotype of the leukaemia cells; and

(ii) determining the mutational status of FLT3 in leukaemia cells obtained from the patient by analysing data relating to the genotype of said leukaemia cells and/or determining the activation in the leukaemia cells of a FLT-3 driven kinase signalling pathway that is involved in cell proliferation or cell survival other than the RAS-RAF-MEK-ERK pathway, by analysing data relating to activity markers of the FLT3-driven kinase signalling pathway in said leukaemia cells; and/or determining the level of phosphorylation of one or both of TOP2A and/or KDM5C in the leukaemia cells, by analysing data relating to the phosphorylation of TOP2A and/or KDM5C in the leukaemia cells and

(b) where : (i) the differentiation status of the leukaemia is advanced or any one of NRAS, KRAS, HRAS or BRAF in the leukaemia cells has an activating mutation, and

(ii) FLT3 in the leukaemia cells does not have an activating mutation or the FLT3 -driven kinase signalling pathway is not activated or TOP2A and/or KDM5C are phosphorylated at a low level in the leukaemia cells; treating the patient with said RAS-RAF-MEK-ERK pathway inhibitor.

[0075] Some preferred embodiments of the third aspect of the invention may accordingly comprise : (a) for each patient :

(i) determining the differentiation status of the patient's leukaemia and/or determining the mutational status of NRAS, KRAS, HRAS or BRAF in leukaemia cells obtained from the patient by analysing data relating to the genotype of the leukaemia cells; and

(ii) determining the mutational status of FLT3 in leukaemia cells obtained from the patient by analysing data relating to the genotype of said leukaemia cells and/or determining the activation in the leukaemia cells of a FLT-3 driven kinase signalling pathway that is involved in cell proliferation or cell survival other than the RAS-RAF-MEK-ERK pathway, by analysing data relating to activity markers of the FLT3-driven kinase signalling pathway in said leukaemia cells; and/or determining the level of phosphorylation of one or both of TOP2A and/or KDM5C in the leukaemia cells, by analysing data relating to the phosphorylation of TOP2A and/or KDM5C in the leukaemia cells; and

(b) for any one or more patients where :

(i) the differentiation status of the leukaemia is advanced or any one of NRAS, KRAS, HRAS or BRAF in the leukaemia cells has an activating mutation, and

(ii) FLT3 in the leukaemia cells does not have an activating mutation or the FLT3 -driven kinase signalling pathway is not activated or TOP2A and/or KDM5C are phosphorylated at a low level in the leukaemia cells; identifying the patient or patients as having leukaemia suitable for effective treatment with said RAS-RAF-MEK-ERK pathway inhibitor.

[0076] Some preferred embodiments of the fourth aspect of the invention may accordingly comprise :

(a) (i) determining the differentiation status of the patient's leukaemia and/or determining the mutational status of NRAS, KRAS, HRAS or BRAF in leukaemia cells obtained from the patient by analysing data relating to the genotype of the leukaemia cells; and

(ii) determining the mutational status of FLT3 in leukaemia cells obtained from the patient by analysing data relating to the genotype of said leukaemia cells and/or determining the activation in the leukaemia cells of a FLT-3 driven kinase signalling pathway that is involved in cell proliferation or cell survival other than the RAS-RAF-MEK-ERK pathway, by analysing data relating to activity markers of the FLT3-driven kinase signalling pathway in said leukaemia cells; and/or determining the phosphorylation at one or more phosphorylation sites in one or both of TOP2A and/or KDM5C in the leukaemia cells, by analysing data relating to the phosphorylation of TOP2A and/or KDM5C in the leukaemia cells; and

(b) where : (i) the differentiation status of the leukaemia is advanced or any one of NRAS, KRAS, HRAS or BRAF in the leukaemia cells has an activating mutation, and

(ii) FLT3 in the leukaemia cells does not have an activating mutation or the FLT3 -driven kinase signalling pathway is not activated or TOP2A and/or KDM5C are phosphorylated at a low level in the leukaemia cells; treating the patient with said RAS-RAF-MEK-ERK pathway inhibitor.

[0077] In these preferred embodiments, an activating mutation of FLT3 is a mutation which has the effect of constitutively switching the FLT3 protein "on". Such mutations may, for example, include internal tandem duplications (ITD) of the juxtamembrane domain or point mutations usually involving the tyrosine kinase domain, such as at D835. Said data relating to the genotype of the leukaemia cells may comprise any information from which a skilled person could deduce the presence or absence of an activating mutation in FLT3. The data may include, without limitation, the sequence of the FLT3 gene in the leukaemia cells, the sequence of the FLT3 protein expressed by the leukaemia cells, or data recording the presence or absence of an activating mutation in FLT3 in the leukaemia cells. Said data may be gathered and interpreted by the skilled person without difficulty according to techniques and protocols well known in the art. [0078] In these preferred embodiments, said step of determining the activation in the leukaemia cells of a FLT3 -driven kinase signalling pathway that is involved in cell proliferation or cell survival other than the RAS-RAF-MEK-ERK pathway may comprise determining the activation of more than one FLT3 -driven kinase signalling pathway. The or each FLT3 -driven kinase signalling pathway may preferably be selected from the PKC pathway, the PI3K-AKT-MTOR-S6K pathway, the PAK pathway, the JAK-STAT pathway, or the CAMKK pathway. Preferably, the FLT3 -driven kinase signalling pathway may be the JAK-STAT pathway, the PI3K-AKT-MTOR-S6K pathway or the CAMKK pathway.

Suitably, the FLT3 -driven kinase signalling pathway may be the JAK-STAT (STAT5) pathway.

[0079] Said activity markers of the FLT3-driven kinase signalling pathway may include any markers which can be used to identify the activation of the FLT3-driven kinase signalling pathway. These may include any kinases, phosphatases, phospholipoases, integrins, signal transduction regulators, G proteins, transmembrane receptors, phosphopeptides and/or other kinase signalling molecules which are selectively activated in the FLT3 -driven kinase signalling pathway, or any molecules which are selectively phosphorylated in the FLT3- driven kinase signalling pathway (phosphomarkers). Conveniently, the activity markers of the FLT3 -driven kinase signalling pathway may include one or more phosphomarkers, and the data relating to the activity markers may comprise data relating to the phosphorylation of the one or more phosphomarkers, where a high level of phosphorylation of the one or more phosphomarkers indicates that the FLT3-driven kinase signalling pathway is activated.

[0080] Said one or more phosphomarkers may, for example, include phosphorylation sites in one or more of the proteins STAT5A and/or CAMKK1, for example phosphorylation sites at S780 and/or S128 of STAT5A, and phosphorylation sites at S548 of CAMKK1. These phosphorylation sites are selectively phosphorylated in FLT3 -driven kinase signalling pathways. The data relating to the activity markers may thus comprise data relating to the level of phosphorylation of either or both of STAT5A and CAMKK1, such as the phosphorylation of STAT5A at S780 and/or S128, and/or the level of phosphorylation of CAMKK1 at S548, where a high level of phosphorylation indicates activation of the FLT3- driven kinase signalling pathway.

[0081] In these preferred embodiments, said data relating to the phosphorylation of

TOP2A and/or KDM5C in the leukaemia cells may comprise data relating to the phosphorylation of TOP2A and/or KDM5C, such as data relating to the phosphorylation of TOP2A at S1213 and/or the phosphorylation of KDM5C at S317.

[0082] The present invention also envisages the use of alternative phosphomarkers of the FLT3-driven kinase signalling pathway, including the STAT5 pathway and/or the CAMKK pathway, which may equally be used for determining the activation of the FLT3- driven kinase signalling pathway.

[0083] The data relating to the activity markers may comprise any information from which a skilled person could deduce the activation of the activity markers, such as the expression or activation of the activity markers, such as the level of phosphorylation of the activity markers. Such data may include, for example, LC -MS/MS data. In some

embodiments, said data has previously been gathered and recorded and step (a)(ii) comprises obtaining said data for analysis. In other embodiments, step (a)(ii) further comprises gathering and recording said data for analysis. Said data may be gathered and recorded without difficulty according to techniques and protocols well known in the art and as exemplified herein, for example by LC-MS/MS or by immunochemical techniques.

[0084] In these embodiments, the differentiation status of the leukaemia cells may be determined according to any of the method steps described herein. Preferably, however, said step of determining the differentiation status of the leukaemia cells may comprise :

(i) analysing data relating to the phosphorylation of one or more phosphorylation sites in MAPK1 or MAPK3 in leukaemia cells obtained from the patient; and/or

(ii) determining the differentiation status of the patient's leukaemia by analysing data relating to the surface expression on leukaemia cells obtained from said patient of a group of CD markers consisting of CDl lb, CD14, CD15, CD16, CD33, CD38, CD44, CD45, CD64, CD 123 and HLA-DR; wherein a high level of phosphorylation of the one or more phosphorylation sites and/or the presence of said group of CD markers on said leukaemia cells indicates an advanced differentiation status.

[0085] The present invention is of particular interest in respect of kinase pathway inhibitors which have been approved for treatment of AML or may shortly be approved for treatment of AML. These include the FLT3/PKC pathway inhibitor midostaurin, and the RAS-RAF-MEK-ERK pathway inhibitor trametinib. As demonstrated herein, the present invention provides a significantly improved protocol for identifying patients who will respond to treatment with these kinase pathway inhibitors. The availability of an accurate companion diagnostic test for identifying potentially responsive patients is of significant therapeutic and clinical benefit, as it will aid in ensuring that patients who will respond to treatment are identified as such and can benefit from this treatment, whilst patients who will not respond are not unnecessarily subjected to treatment.

[0086] The present invention accordingly provides midostaurin for use in a method of treating acute myeloid leukaemia in a patient, wherein the patient has leukaemia with an advanced differentiation status, defined by :

(i) surface expression on the leukaemia cells of the patient of a group of CD markers consisting of CDl lb, CD14, CD15, CD16, CD33, CD38, CD44, CD45, CD64, CD123 and HLA-DR; and/or

(ii) a high level of phosphorylation of phosphorylation sites on any one or more of GSK3A, PRKCA, PRKCB, PRKCD, STK10, PAKl, PAK2, MAPKl and/or MAPK3 in the leukaemia cells of the patient.

[0087] In particular, the present invention provides midostaurin for use in a method of treating acute myeloid leukaemia in a patient, wherein the patient has leukaemia with an advanced differentiation status, defined by :

(i) surface expression on the leukaemia cells of the patient of a group of CD markers consisting of CDl lb, CD14, CD15, CD16, CD33, CD38, CD44, CD45, CD64, CD123 and HLA-DR; and/or

(ii) a high level of phosphorylation in the leukaemia cells of the patient of any one or more of : pS21 of GSK3A; pY313, pT507, pT295, pT218, and/or pS664 of PRKCD; pS20 and/or pS 13 of STK10; pS144 of PAKl; pS141 of PAK2;

Y187 and/or T185 of MAPKl; and T202 and/or Y204 of MAPK3..

[0088] The present invention further provides trametinib for use in a method of treating acute myeloid leukaemia in a patient, wherein the patient has leukaemia with an advanced differentiation status and with low activation of FLT3 -driven survival pathways, defined by :

(a) (i) a high level of phosphorylation of one or more phosphorylation sites in

MAPK1 and/or MAPK3 in the leukaemia cells of the patient;

and/or

(ii) surface expression on the leukaemia cells of the patient of a group of CD markers consisting of CDl lb, CD14, CD15, CD16, CD33, CD38,

CD44, CD45, CD64, CD 123 and HLA-DR; and/or

(iii) activating mutations in any one of NRAS, KRAS, HRAS or BRAF in the leukaemia cells of the patient; and (b) (i) a high level of phosphorylation of one or more of STAT5 A, TOP2A,

KDM5C and CAMKK1 in the leukaemia cells; and/or

(ii) the absence of any activating mutations in FLT3 in the leukaemia cells of the patient.

[0089] In particular, the present invention provides trametinib for use in a method of treating acute myeloid leukaemia in a patient, wherein the patient has leukaemia with an advanced differentiation status, defined by :

(a) (i) surface expression on the leukaemia cells of the patient of a group of CD markers consisting of CDl lb, CD14, CD15, CD16, CD33, CD38, CD44, CD45, CD64, CD 123 and HLA-DR; and/or (ii) a high level of phosphorylation in the leukaemia cells of the patient of any one or more of Y187 and/or T185 of MAPK1; and T202 and/or Y204 of MAPK3;

(iii) activating mutations in any one or more of NRAS, KRAS, HRAS or BRAF in the leukaemia cells of the patient; and (b) (i) a high level of phosphorylation at one or more of pS780 and pS 128 of STAT5A, pS548 of CAMKK1, pS1213 of TOP2A and pS317 of KDM5C; and/or

(ii) the absence of any activating mutations in FLT3 in the leukaemia cells of the patient.

[0090] The invention further provides a method of treating acute myeloid leukaemia in an individual patient suffering from acute myeloid leukaemia, comprising the steps of :

(a) obtaining a biological sample comprising leukaemia cells from the patient;

(b) determining by in vitro laboratory testing that the differentiation status of the leukaemia cells in the sample obtained in (a) is advanced; and

(c) where the differentiation status of the leukaemia cells is advanced, administering a kinase pathway inhibitor to the patient, which kinase pathway inhibitor inhibits a signalling pathway that is involved in cell proliferation or cell survival.

[0091] The biological sample may be a peripheral blood sample or a bone marrow sample. The kinase pathway inhibitor may be selected from a MEK pathway inhibitor, a FLT3/PKC pathway inhibitor and a PAK pathway inhibitor.

[0092] In this aspect of the invention, step (b) may comprise detecting morphological and/or cytochemical features of the leukaemia cells in the sample obtained from the patient, where an M4 classification under the French- American-British (FAB) classification system indicates an advanced differentiation status.

[0093] Said step of detecting morphological and/or cytochemical features of the leukaemia cells may include preparing the cells for microscopical analysis and visually observing the cells under a light microscope to detect morphological signs of differentiation; and/or assaying the behaviour, activity or response of the cells to specific conditions or test reagents such as such as Sudan black B and/or peroxidase and/or specific or non-specific esterases.

[0094] Optionally, step (b) may comprise performing an in vitro assay to detect the expression level of one or more cell surface differentiation markers on the surface of the leukaemia cells in the sample obtained from the patient, which cell surface differentiation markers are typically expressed or over-expressed in healthy myelomonocytic cells and which cell surface differentiation markers are not typically expressed or over-expressed in undifferentiated myeloblasts, where the expression of said one or more cell surface differentiation markers at a high level on the surface of the leukaemia cells indicates an advanced differentiation status. Said assay may be an LC-MS/MS assay or an

immunochemical assay such as a Western blot assay, an ELISA assay or a reversed phase protein assay.

[0095] The cell surface differentiation markers may comprise a panel of cell surface marker proteins including one or more of CD3, CD7, CD1 lb, CD1 lc (integrin a-X, IT AX), CD14, CD15, CD16, CD18 (integrin β, ITB2), CD19, CD33, CD34, CD35 (CR1), CD38, CD44, CD45, CD64, CD97, CD117, CD123, CD180, CD184, HLA-C (1C02), APOBR, the platelet membrane receptor Gi24 (VSIR) and HLA-DR; and/or any cell surface proteins which are expressed in conjunction with said one or more cell surface marker proteins.

[0096] Suitably, the panel of cell surface marker proteins may comprise :

(i) any one, two, or three, or four, or five, or six, or seven, or eight, or nine, or ten, or eleven, or twelve, or thirteen, or fourteen, or fifteen, or sixteen, or seventeen, or eighteen, or all of CDl lb, CDl lc (integrin a-X, ITAX), CD14, CD15, CD16, CD18 (integrin β, ITB2), CD33, CD35 (CR1), CD38, CD44, CD45, CD64, CD97, CD123, CD180, HLA-C (1C02), APOBR, the platelet membrane receptor Gi24 (VSIR) and HLA-DR; or

(ii) any one, two, three, four, five, six, seven, eight, nine, ten or all of CD1 lb, CD14, CD15, CD16, CD33, CD38, CD44, CD45, CD64, CD123 and HLA-DR; or

(iii) any one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen or all of CD3, CD7, CDl lb, CD14, CD15, CD16, CD19, CD33, CD34, CD38, CD44, CD45, CD64, CD117, CD123, CD184, and HLA-DR.

[0097] In methods of treatment according to this aspect of the invention, step (b) may comprise performing an in vitro assay to detect the expression and/or activation and/or phosphorylation of one or more functional differentiation markers in the leukaemia cells in the sample obtained from the patient, which functional differentiation markers are typically expressed, over-expressed, activated and/or phosphorylated in healthy monomyelocytic cells, and which functional differentiation markers are not typically expressed, over-expressed, activated and/or phosphorylated in undifferentiated myeloblasts; wherein the expression, activation and/or phosphorylation of said one or more functional differentiation markers in the leukaemia cells indicates an advanced differentiation status. Said assay may be an LC- MS/MS assay or an immunochemical assay such as a Western blot assay, an ELISA assay or a reversed phase protein assay. The one or more functional differentiation markers may comprise a panel of protein markers including one or more enzymes, integrins, kinases, phosphatases, signal transduction regulators, cytoplasmic proteins and phosphoproteins, membrane proteins and phosphoproteins, including cytoplasmic and membrane

phosphoproteins that are involved in GTPase or other forms of cell signalling, which protein markers are typically expressed, over-expressed and/or activated in healthy monomyelocytic cells, and are not typically expressed, over-expressed and/or activated in undifferentiated myeloblasts; and wherein the expression and/or activation of said panel of protein markers in the leukaemia cells indicates an advanced differentiation status.

[0098] Optionally, the panel of protein markers may include any one, two, three, four or five of lysozyme C (LYZ), neutrophil cytosol factor 2 (NCF2), myeloid cell nuclear differentiation antigen (MNDA), AK1C4, and ERG. [0099] Suitably, the one or more functional differentiation markers may comprise a panel of kinase pathway activity markers including one or more kinases, phosphatases, phospholipoases, integrins, signal transduction regulators, G proteins, transmembrane receptors, phosphopeptides and/or other kinase signalling molecules that are typically expressed and/or activated and/or phosphorylated in a kinase signalling pathway in healthy monomyelocytic cells but are not typically expressed and/or activated and/or phosphorylated in undifferentiated myeloblasts; and wherein the expression and/or activation and/or phosphorylation of the panel of kinase pathway activity markers in the leukaemia cells indicates an advanced differentiation status. In particular, the panel of kinase pathway activity markers may comprise markers of a kinase signalling pathway that is inhibited by the kinase pathway inhibitor.

[0100] The panel of kinase pathway activity markers may, for example, comprise any one, two, three, four, five, six, seven, eight, nine, ten or more of FES, PKC and protein kinase C isoforms including PKC5 (KPCD), PRKCA, PRKCB, and PRKCD, PKA, PAK including PAK1 and PAK2, STK10, GSK3A, RSK2, RAS, RAF, MEK including MEK1 (MAP2K1), ERK including MAPK3 (ERK1) and MAPK1 (ERK2), PI3K, AKT including AKT1 ,

MTOR, S6 kinase, STAT5, CAMKK, SYK (KSYK), LYN, P38A, CDKl , CK2A1, PKACA, IRAK4, PKCB iso2, Cot, PKCD, PKC A, PKCB, PKCG, PKCH, BRAF, MEK2, PDK1, CDK2, PTN6, D3 (PLD3), IQGAP1, GRB2, RHOA, RHOG and S10AB, and any kinases, phosphatases, phospholipoases, integrins, signal transduction regulators, G proteins, transmembrane receptors and/or other kinase signalling molecules that are selectively expressed or activated therewith.

[0101] In some embodiments, the panel of kinase pathway activity markers may comprise :

(i) any one, two, three, or four of PKC, ERK, PAK1 and P38a;

(ii) any one, two, three, four or five of PKCD, PKC A, PKACA, IRAK4 and CK2A1; or

(iii) any one, two, three, four, five or six of MAPK1, MAPK2, AKT, AKT1S1, MAP2K1 and MAP2K2.

[0102] In some embodiments, the panel of kinase pathway activity markers may comprise a panel of one or more phosphorylation sites which are typically phosphorylated or are typically phosphorylated at a high level in a kinase signalling pathway in healthy monomyelocytic cells but are not typically phosphorylated or are not typically

phosphorylated at a high level in undifferentiated myeloblasts; and wherein phosphorylation or a high level of phosphorylation at the panel of phosphorylation sites in the leukaemia cells indicates an advanced differentiation status.

[0103] In such embodiments, the panel of phosphorylation sites may comprise :

(i) any one, two, three, four, five, six, seven, eight, nine, ten or more than ten of the phosphorylation sites set out in Table 1 ; or

(ii) any one, two, three, four, five, six, seven, eight, nine, ten or more than ten of the phosphorylation sites set out in Table 2; or

(iii) any one, two, three, four, five, six, seven, eight, nine, ten or more than ten of PAK1 at S144, PAK2 at S141, MAPK1 at Y187, MAPK1 at T185, RPS6KA1 at S380, MAPK3 at T202, MAPK3 at Y204, MAP3K3 at SI 66, SYK at S295 and S297, IRAK3 at SI 10, PKN1 (379-396 + phospho ST), STK10 (447-464 + phospho ST), RIPK3 at S410, PRKCD at T218, PRKCD at T295, PRKCD at Y313, PRKCD at T507, PRKCD at T645, PRKCD at S664, PRKCD atT2638, MARK2 at S535, MAP3K2 at S535, PRKD2 (710-730 + phospho Y), NRK at s805, PRKAR2A at S58, ZAK (591-616 + phospho ST), MAP4K4 at S900, CDK9 at S347, RPS6KA4 (681-699 + 2 phospho ST), MAST3 (1254-1274 + phospho ST), NEK9 (10-39 + phospho ST), GSK3A (19-50 + phospho ST), RPS6KA3 at S369, RIPK2 at S531, AAK1 at T606, TYK2 at Y292, PDPK2 at S214, PRKAA1 (3-8 + phospho ST), STK11P at S772, BAZ1B at S1468, CLK1 at S140, MAP4K2 at S328, WNK1 (1996- 2021 + phospho ST), CDK11A at S271, FES at Y713, and/or TNIK at S769; or

(iv) PAK1 at S144, PAK2 at S141, MAPK1 at Y187 and/or T185, and RPS6KA1 at S380; or

(v) MAPK1 at Y187, PAK2 at S141 and PRKCD at Y313; or

(vi) FES at Y713, MAPK3 at T202/Y204, MAPK1 at T185/Y187, PAK1 at S144, MEK1 at S222, PAK2 at S141 and PRKCD at S645; or

(vii) GSK3A at S21 and/or PRKCD at T507, T295, T218, Y313, T507, and/or S664 and/or STK10 at S20 and/or S13, and/or PAK1 at S144, and/or PAK2 at S141.

(viii) one or more phosphorylation sites on MAPK1 including MAPK1 at Y 187 and/or T185, and MAPK3 at T202 and/or Y204, and GSK3A at S21.

[0104] In methods of treating acute myeloid leukaemia according to the invention, the kinase pathway inhibitor may inhibit any one or more of the FLT3 pathway, the PKC pathway, the RAS-RAF-MEK-ERK pathway, the PI3K-AKT-MTOR-S6K pathway, the PAK pathway, the JAK-STAT pathway, the CAMKK pathway, or any kinase signalling pathway parallel thereto. Suitably, the kinase pathway inhibitor may be a MEK inhibitor, or a

FLT3/PKC inhibitor, or a PAK inhibitor.

[0105] In such embodiments, step (b) may comprise :

(i) performing an in vitro assay to detect and/or quantify the phosphorylation of one or more phosphorylation sites in MAPK1 and/or MAPK3 in the leukaemia cells in the sample obtained from the patient; and/or

(ii) performing an in vitro assay to detect and/or quantify the surface expression on the leukaemia cells in the sample obtained from said patient of a group of CD markers consisting of CDl lb, CD14, CD15, CD16, CD33, CD38, CD44, CD45, CD64, CD123 and HLA-DR; wherein phosphorylation or phosphorylation at a high level of the one or more phosphorylation sites and/or the expression of said group of CD markers at a high level on said leukaemia cells indicates an advanced differentiation status.

[0106] In methods of treating acute myeloid leukaemia according to the present invention wherein the kinase pathway inhibitor is a FLT3/PKC pathway inhibitor such as midostaurin, step (b) may comprise :

(i) performing an in vitro assay to detect and/or quantify the phosphorylation of phosphorylation sites in one or more of GSK3A, PRKCA, PRKCB, PRKCD, STK10, PAKl, PAK2MAPK1 and/or MAPK3 in the leukaemia cells in the sample obtained from the patient; and/or

(ii) performing an in vitro assay to detect and/or quantify the surface expression of a group of CD markers consisting of CDl lb, CD14, CD15, CD16, CD33, CD38, CD44, CD4PKC5, CD64, CD 123 and HLA-DR on the surface of the leukaemia cells in the sample obtained from the patient; wherein either : phosphorylation or a high level of phosphorylation in the leukaemia cells of any one or more of GSK3A, PRKCA, PRKCB, PRKCD, STK10, PAKl, PAK2, MAPK1 and/or MAPK3; or expression at a high level by the leukaemia cells of said group of CD markers; indicates an advanced differentiation status.

[0107] In methods of treating acute myeloid leukaemia according to the invention wherein the kinase pathway inhibitor is a MEK inhibitor such as trametinib, step (b) may further comprise performing an in vitro assay to detect the genotype of the leukaemia cells obtained from the patient and determining that any one of NRAS, KRAS, HRAS or BRAF in the leukaemia cells in the sample obtained from the patient has an activating mutation.

Suitably, said assay may involve sequencing NRAS, KRAS, HRAS or BRAF in the leukaemia cells in the sample obtained from the patient, and identifying an activating mutation in the sequence data thereby obtained.

[0108] In these embodiments, step (b) may comprise :

(i) performing an in vitro assay to detect the phosphorylation of one or more phosphorylation sites in MAPK1 or MAPK3 in the leukaemia cells in the sample obtained from the patient; and/or (ii) performing an in vitro assay to detect the surface expression of a group of CD markers consisting of CDl lb, CD14, CD15, CD16, CD33, CD38, CD44, CD45, CD64, CD 123 and HLA-DR on the leukaemia cells in the sample obtained from the patient; wherein phosphorylation or a high level of phosphorylation of the one or more

phosphorylation sites and/or the expression of said group of CD markers at a high level on said leukaemia cells indicates an advanced differentiation status.

[0109] In methods of treating acute myeloid leukaemia according to the invention wherein the kinase pathway inhibitor is a MEK inhibitor such as trametinib, step (b) may further comprise :

(i) performing an in vitro assay to detect the genotype of the leukaemia cells in the sample obtained from the patient and determining that FLT3 in the leukaemia cells does not have an activating mutation; and/or

(ii) performing an in vitro assay to detect the expression or activation in the leukaemia cells in the sample obtained from the patient of one or more activity markers of a FLT-3 driven signalling pathway that is involved in cell proliferation or cell survival other than the RAS-RAF-MEK-ERK pathway, such as the PKC pathway, the PI3K-AKT-MTOR-S6K pathway, the PAK pathway, the JAK-STAT pathway, or the CAMKK pathway, and determining that the FLT3 -driven kinase signalling pathway is not activated in the leukaemia cells; and/or

(iii) performing an in vitro assay to detect the level of phosphorylation of one or both of TOP2A and/or KDM5C in the leukaemia cells in the sample obtained from the patient and determining that TOP2A and/or KDM5C are not phosphorylated or are phosphorylated at a low level in the leukaemia cells.

[0110] In methods of treating acute myeloid leukaemia according to the invention wherein the kinase pathway inhibitor is a MEK inhibitor such as trametinib, step (b) may comprise :

(i) performing an in vitro assay to detect the genotype of the leukaemia cells in the sample obtained from the patient and determining that any one of NRAS, KRAS, HRAS or BRAF in the leukaemia cells has an activating mutation; and/or determining that the differentiation status of the leukaemia cells in the sample obtained from the patient is advanced; and (ii) performing an in vitro assay to detect the genotype of the leukaemia cells in the sample obtained from the patient and determining that FLT3 in the leukaemia cells does not have an activating mutation; and/or performing an assay to detect the expression or activation in the leukaemia cells in the sample obtained from the patient of one or more activity markers of a FLT-3 driven signalling pathway that is involved in cell proliferation or cell survival other than the RAS-RAF-MEK-ERK pathway, such as the PKC pathway, the PI3K-AKT-MTOR-S6K pathway, the PAK pathway, the JAK-STAT pathway, or the CAMKK pathway, and determining that the FLT3 -driven kinase signalling pathway is not activated in the leukaemia cells; and/or performing an assay to detect the level of phosphorylation of one or both of TOP2A and/or KDM5C in the leukaemia cells in the sample obtained from the patient and determining that TOP2A and/or KDM5C are not phosphorylated or are phosphorylated at a low level in the leukaemia cells.

[0111] Suitably, said activity markers of the FLT3 -driven kinase signalling pathway may include one or more phosphorylation sites which are selectively phosphorylated by the FLT3 -driven kinase signalling pathway. In these embodiments, phosphorylation or a high level of phosphorylation of the one or more phosphorylation sites indicates that the FLT3- driven kinase signalling pathway is activated. Said one or more phosphorylation sites may include phosphorylation sites in one or both of STAT5A and CAMKKl, such as STAT5A at S780 and/or S128, and/or CAMKKl at S548.

[0112] Optionally, said step of detecting the level of phosphorylation of one or both of TOP2A and/or KCM5C in the leukaemia cells may comprise detecting the

phosphorylation of TOP2A at S1213 and/or the phosphorylation of KDM5C at S317.

[0113] In a particular aspect, the present invention provides a method of treating acute myeloid leukaemia in an individual patient suffering from acute myeloid leukaemia, comprising the steps of :

(a) obtaining a biological sample comprising leukaemia cells from the patient;

(b) (i) performing an in vitro assay to detect the expression on the surface of the leukaemia cells in the sample obtained from the patient of a group of CD markers consisting of CDl lb, CD14, CD15, CD16, CD33, CD38, CD44, CD45, CD64, CD 123 and HLA-DR; and/or (ii) performing an in vitro assay to detect the phosphorylation in the leukaemia cells of one or more phosphorylation sites selected from : GSK3A at pS21; PRKCD at Y313, pT507, pT295, pT218, and/or pS664 of PRKCD; STK10 at pS20 and/or pS13 of STK10; PAK1 at pS144 of PAK1; PAK2 at pS141 of PAK2; MAPK1 at

Y187 and/or T185; and MAPK3 at T202 and/or Y204; and

(c) where said group of CD markers is expressed at a high level on the surface of the patient's leukaemia cells, and/or one or more of said phosphorylation sites in the leukaemia cells is phosphorylated or is phosphorylated at a high level, administering midostaurin to the patient for treatment of acute myeloid leukaemia.

[0114] In another particular aspect, the invention provides a method of treating acute myeloid leukaemia in an individual patient suffering from acute myeloid leukaemia, comprising the steps of :

(a) obtaining a biological sample comprising leukaemia cells from the patient;

(b) (i) performing an in vitro assay to detect the expression on the surface of the leukaemia cells in the sample obtained from the patient of a group of CD markers consisting of CDl lb, CD14, CD15, CD16, CD33, CD38, CD44, CD45, CD64, CD 123 and HLA-DR; and/or

(ii) performing an in vitro assay to detect the phosphorylation in the leukaemia cells of one or more MEK-related phosphorylation sites selected from MAPK1 at Y187 and/or T185 and MAPK3 at T202 and/or Y204; and/or

(iii) performing an in vitro assay to detect the genotype of the leukaemia cells to determine whether there is an activating mutation in any one or more of NRAS, KRAS, HRAS or BRAF in the patient's leukaemia cells;

(c) (i) performing an in vitro assay to detect the phosphorylation in the leukaemia cells at one or more marker sites selected from STAT5A at pS780 and/or pS128, CAMKK1 at pS548, TOP2A at pS1213 and KDM5C at pS317 of KDM5C; and/or

(ii) performing an in vitro assay to detect the genotype of the leukaemia cells to determine whether there is an activating mutation in FLT3 in the patient's leukaemia cells; and (d) where : (A) said group of CD markers is expressed at a high level on the surface of the patient's leukaemia cells, and/or one or more of said MEK-related

phosphorylation sites in the leukaemia cells is phosphorylated or is phosphorylated at a high level, and/or there is an activating mutation in any one or more of NRAS, KRAS, HRAS or BRAF in the leukaemia cells of the patient; and

(B) said marker site is not phosphorylated or is not phosphorylated at a high level in the patient's leukaemia cells, and/or there is no activating mutation in FLT3 in the patient's leukaemia cells, administering trametinib to the patient for treatment of acute myeloid leukaemia.

[0115] The present invention is illustrated with reference to the specific examples provided below, and to the figures, in which :

[0116] Figure 1 shows heterogeneous sensitivity of AML primary cells to kinase inhibitors. (A) Cell viability of 36 AML cases as a function of ex vivo treatment with the indicated kinase inhibitors at the concentrations shown. (B) Clustering analysis of AML primary cells based on their sensitivity to ΙμΜ treatment with the named compounds. (C) Correlation analysis for the sensitivities of AML primary cells to treatment. (D) Sensitivity to ΙμΜ MEKi treatment of AML primary cells as a function of their FAB subtype. Unpaired, two-tailed Student's t-test was used to assess p-values. In (C), critical values for significant correlation in a two tailed test were r > 0.329 for p < 0.05(*), r > 0.428 for p < 0.01(**), r > 0.526 for p < 0.001 (***). All experiments were done with n=36 AML cases.

[0117] Figure 2 shows the phosphoproteomes of FAB-MI and FAB-M4 classify

AML primary cells into groups with specific patterns of protein phosphorylation and kinase activities. (A) Hierarchical cluster analysis of the 150 phosphopeptides showing greater significant differences between FAB-MI and FAB-M4 cases. (B) Overview of phosphopeptides significantly increased in the Ml -Like and M4-Like groups. (C) KSEA inferred activity for the indicated kinases using the phosphorylation sites shown in (B). In all analysis, n=36 primary AML samples. In B, unpaired, two-tailed Student's t-test was used to calculate p-values that were adjusted using the Benjamini-Hochberg procedure (FDR). In C, hypergeometrics test was used to assess the significance of enrichment. [0118] Figure 3 shows surface expression of differentiation markers stratifies AML patients and correlates with specific patterns of protein phosphorylation. (A) Average surface expression of the indicated differentiation markers for the Ml -Like and M4-Like groups. (B) Frequency of correlation between differentiation marker expression and phosphopeptide abundance. (C-E) Correlation between the phosphorylation of MAPKl at Y187, PAK2 at S141 and PRKCD at Y313 and the surface expression of the indicated differentiation markers. (F) Pearson correlation coefficients for the expression of each differentiation marker. In all analyses, n=30 primary AML samples. In (A) p-values were assessed using unpaired, two-tailed Student's t-test. In (F), critical values for significant correlation in a two tailed test were r > 0.361 for p < 0.05(*), r > 0.463 for p < 0.01(**), r > 0.571 for p < 0.001(***).

[0119] Figure 4 shows AML cases of distinct differentiation stage present specific patterns of protein expression, protein phosphorylation and kinase activities. (A) Hierarchical clustering analysis of 30 AML cases based on the indicated differentiation markers. (B) Overview of proteins overexpression across the CDs groups. (C) Overview of phophopeptides abundances across the CDs groups. (D) Gene ontologies associated to proteins differentially phosphorylated across the CDs+ and CDs- groups. (E) KSEA estimation of average kinase activity in the CDs+ and CDs- groups. In B and C, p-values were calculated using an unpaired, two-tailed Student's t-test analysis and adjusted using Benjamini-Hochberg correction. In D and E, p-values were assessed using the hypergeometric test.

[0120] Figure 5 shows sensitivity to kinase inhibitors as a function of AML blast differentiation. (A) Viability of primary AML samples classified as M4-Like or Ml -Like (n=36) after 72h treatment with the indicated inhibitors. (B) Viability of primary AML samples classified as CDs+ or CDs- (n=30) after 72h treatment with the indicated inhibitors. Two-tailed Mann Whitney test was used to assess statistical significance.

[0121] Figure 6 shows mutation in genes linked to kinase signaling are associated to differentiation stage and to specific phosphorylation patterns. (A) Mutations for the indicated genes across the analyzed AML primary samples. Kinase sig. stands for any activating mutations in either FLT3, NRAS or BRAF. (B-G) Phosphorylation of MAPKl and cell viability after ΙμΜ treatment with MEKi as a function of the indicated genotypes or phenotypes. Unpaired, two-tailed Student's t-test and one-way ANOVA followed by Tukey test was used to calculate p-values in B-C and D-E, respectively.

[0122] Figure 7 shows integration of genomic, phosphoproteomics and mass cytometry data to rationalize kinase inhibitors sensitivity. (A) Viability of AML primary cells after 1 μΜ treatment with MEKi as a function of the indicated combinations of genotypes and phenotypes. MAPK1 phosphorylation is denoted as high (hi) and low (lo) based on having a phosphorylation greater or lower than the median phosphorylation across all cases, respectively. (B) Mann Whitney p-values obtained for the comparisons performed in (A). (C) Viability of AML cells with the NRAS/BRAF/CDs+ genotype/phenotype and the indicated factor as a function of ΙμΜ treatment with MEKi. (D) Viability of AML primary cells after ΙμΜ treatment with MEKi as a function of the indicated combinations of genotypes and phenotypes. (E) Mann Whitney p-values for the viability after treatment of AML cells with ΙμΜ of the indicated inhibitor as a function of the presence/absence of the indicated genotype/phenotype. (F) Viability of AML cells with the indicated phenotype/genotype as a function of FLT3/PKCi treatment. Two tailed Mann Whitney test was used to assess statistical significance in (C-D, F). When numerical p-values not stated; * p < 0.05; ** p < 0.01; *** p < 0.001.

[0123] Figure 8 shows dose response curves for cell viability of primary AML cells treated with a panel of kinase inhibitors. (A) Dose response curves to kinase inhibitors for each AML primary sample. (B) Dose response curves to kinase inhibitors for AML primary samples clustered based on the FAB subtype. Data points are mean ± SD (n=3). Patient biopsies were obtained by the Barts Cancer Institute biobank with ethical consent.

[0124] Figure 9 shows that differentiation signature based on peptide phosphorylation stratifies AML patients into groups with different patterns of phosphorylation. (A) Heatmap showing the phosphorylation of the 150 peptides used to define the M4-Like and Ml -Like groups across 36 AML primary samples sorted based on FAB classification clusters. (B) Samples classified as M4-Like overphosphorylate membrane and cytoplasmic proteins liked to GTPase signaling, while Ml -Like samples overphosphorylate nuclear proteins with DNA and RNA binding properties. Hypergeometric test was used to assess p-values. [0125] Figure 10 shows a differentiation phosphoproteomics signature classified

AML primary cells in groups that present defined patterns of kinase phosphorylation and surface expression of differentiation markers. Hierarchical cluster analysis based on the 150 phosphopeptides more differentially expressed between AML cases classified as Ml or M4 FAB subtypes were used to define the Ml-Like and M4-Like groups. (A) Phosphorylation sites in kinases significantly regulated (p-value < 0.05) between Ml-like and M4-Like groups (n=36). (B) List of surface markers quantified by mass cytometry. (C) Differentiation markers dissimilarly expressed between Ml-like and M4-Like groups (n=30). Unpaired, two- tailed Student's t-test was used to assess p-values.

[0126] Figure 11 shows significance of association between phosphomarkers and CD marker surface expression across 30 AML cases.

[0127] Figure 12 shows differential protein expression and kinases differentially phosphorylated in the CDs+ and CDs- groups. Heatmaps showing proteins (A) or peptides comprised in kinases (B) whose expression or phosphorylation is significantly increased (p- value < 0.05) in any of the CDs groups. Unpaired, two-tailed Student's t-test was used to assess p-values.

[0128] Figure 13 shows dose response curves to kinase inhibitors for AML primary samples clustered into CDs groups. Viability of primary AML samples classified as CDs + (n=12) or CDs - (n=18) after 72h treatment with indicated inhibitors. Unpaired, two-tailed Student's t-test was used to assess p-values; * p < 0.05; ** p < 0.01; *** p < 0.001

[0129] Figure 14 shows viability of AML cells with the indicated genotype/phenotype as a function of MEKi treatment. (A) Viability of AML primary cells after treatment with MEKi. (B) Viability of AML cells after treatment with FLT3/PKCL (C) Viability of AML primary cells after treatment with CK2i. Two tailed Mann Whitney test was used to assess p-values; * p < 0.05; ** p < 0.01; *** p < 0.001. EXAMPLES

Study overview

[0130] The study was performed in 36 randomly selected primary samples of mononuclear cells extracted from the peripheral blood of AML patients at diagnosis. Experiments were performed as described below to determine the in vitro viability of the cells in response to treatment with inhibitors of the kinases FLT3/PKC (midostaurin, FLT3/PKCi), PAK (PF-3758309 PAKi), CK2 (silmitasertib CK2i) and MEK (trametinib, MEKi) The P38 inhibitor (P38i) TAK-715 was included as a negative control. Cells obtained from of 36 AML patients with well annotated clinical data were treated with these compounds for 72h.

[0131] Dose response curves showed that, as expected, the 36 tested samples presented heterogeneous responses to all compounds (Figure 1A-B and Figure 8A). As drug response curves are difficult to interpret when treatments do not reduce viability by >50%, we used the ΙμΜ dose (which is expected to inhibit the intended kinase based on the compounds' reported in vitro IC50s) to define sensitivity to treatment. At the ΙμΜ dose,

PAKi was the most potent of all the compounds tested, as it reduced the viability of 18/36 (50%) AML cases by >50% relative to DMSO control, followed by FLT3/PKCi (9/36, 25%), MEKi (8/36, 22%) and CK2i (8/36, 22%). At the same threshold, P38i treatment only reduced the viability of 3 AML cases (8%). [0132] Clustering analysis of the cell sensitivity data showed a tendency of PAKi sensitive cells to also be sensitive to MEKi and FLT3/PKCi (Figure 1B-C). In contrast, the response rates to MEKi, PAKi or FLT3/PKCi were very different to those to CK2i and P38i, suggesting that PAKi, MEKi and FLT3/PKCi have very similar, albeit non-identical, modes of action, which are different from those of CK2i and P38i. Example 1 - AML cells with a more advanced differentiation status are more responsive to kinase inhibitor treatment than less differentiated cells.

[0133] We found that M4 cells responded significantly better than Ml cells to MEKi

(Figure ID), suggesting that AML cases of the M4 subtype were more sensitive to MEKi than those categorized as Ml . This indicates that the differentiation status of the leukaemia cells may be a marker for sensitivity to kinase inhibitor therapy. Example 2 - Identification of a phosphoproteomic signature that is characteristic of differentiated cells

[0134] We investigated differences in kinase signaling between these AML subtypes.

Using a mass spectrometry method as described below we identified and quantified 9,534 phosphopeptide ions in these experiments. Of these, we selected the 150 phosphorylation sites showing the most significant differences (based on Student's t-test p-values) across groups as a phosphoproteomics signature that discriminated M4 from Ml AML subtypes (Figure 9A). Since M4 cells are more differentiated than Ml, we hypothesized that this signature may be linked to the differentiation stage of the analyzed blasts. In a hierarchical clustering analysis, this phosphoproteomics signature subdivided our cohort of 36 patients into two defined groups (Figure 2A). We termed "Ml -Like" the group that included 10 of the 12 cases of the Ml subtype, and "M4-Like" the group that comprised all M4 cases (Figure 2 A and 2B). The Ml -Like and M4-Like groups consisted of 16 and 20 cases respectively.

[0135] We used ontology enrichment analysis and kinase substrate enrichment analysis (KSEA) to investigate the biological processes and signaling pathways enriched in the different groups. Analysis of phosphoproteomic differences between cases (Figure 2B), showed that M4-Like cases had an increase in cytoplasm and membrane phosphoproteins involved in GTPase signaling, while Ml -Like increased nuclear phosphoproteins with DNA and RNA binding properties. KSEA, a computational procedure that estimates individual kinase activity based on the phosphorylation of their known substrates, showed that the activities of PKC, ERK, PAKl and P38a were enriched in the cells of the M4-Like group, whereas the activities of CDK7, CK1A and AurB were enriched in Mi-Like cells (Figure 2C). Some increased phosphorylation sites in the M4-Like group were in kinases at regulatory sites including PAKl at S144, PAK2 at S141, MAPKl at Y187 and RPS6KA1 at S380 (Figure 10A). These data indicate that M4-Like cells activate kinase signaling pathways, such as PKCs, MAPK and PAK kinases, which are known to act downstream of cell surface receptors, to a greater extent than Ml -Like cells. Example 3 - Identification of a cell surface marker protein signature that is characteristic of differentiated cells and correlates with the phosphoproteomic signature

[0136] To measure differentiation status with precision, we used mass cytometry to immunophenotype 30 cases of the 36 AML cohort (for which we had available material) by measuring the surface expression of 17 differentiation markers (Figure 10B). We found that

M4-Like cases had a greater expression of myelomonocytic differentiation markers than Ml- Like cases (Figure 3 A and Figure IOC). We next investigated if the presence of specific differentiation markers was linked to the activation of kinase signaling pathways. We found that the surface expression of CD45, CDl lb, CD44, CD14, CD16, CD64 and CD15 was statistically associated (r > 0.7, p < 0.001) with the phosphorylation patterns of 80 to 219 sites per marker (Figure 3B). Examples include the phosphorylation of ERK2 (MAPK1 gene) at Y187, PAK2 at S 141 and PKC5 (gene PRKCD) at Y313, which were statistically associated with the expression of several differentiation markers (scatter plots for MAPK1 , PAK2 and PKC5 phosphorylation sites are shown in Figure 3C-E and p-values of association in Figure 1 1). We found the CD markers to be co-expressed (Figure 3F). Hierarchical clustering subdivided our cohort of 30 patients in two groups, which we named CDs+ and CDs- (Figure 4 A) and which comprised of 12 and 18 cases, respectively, and which overlapped with M4-Like and Ml -Like groups. In this example and in the examples below, the CDs + cells were characterized by the surface expression of a panel of cell surface markers consisting of CD33, CD123, HLA-DR, CD44, CD38, CD15, CD45, CD16, CD64, CDl lb, and CD14.

Example 4 - Identification of a protein marker signature that is characteristic of differentiated cells

[0137] To investigate the biochemical differences of AML blast as a function of cell differentiation status in more detail, we compared differences in the proteomes, phosphoproteomes and kinase activities of CDs+ and CDs- AML cases. The proteomic analysis identified 2,391 proteins (Figure 4B) and uncovered a set of proteins, previously linked to differentiation, showing greater expression in the CDs+ group relative to CDs-; including integrins, lysozyme C and other proteins linked to myeloid differentiation (Figure 12A). Of interest, several kinases, phosphatases and signal transduction regulators were also expressed at higher levels in the CDs+ relative to CDs- cases (Figure 12A). [0138] As for the results of the phosphoproteomic analysis, CDs+ cases had an increase in the phosphorylation of ~3 times more sites than CDs- cases (Figure 4C). Ontology enrichment analysis highlighted the expression of phosphoproteins linked to immune, GTPase and kinase signaling in CDs+, with CDs- cases showing an increase in the amounts of nuclear phosphoproteins and those linked to the regulation of transcription (Figure 4D). Kinases with increased phosphorylation in the CDs+ group relative to the CDs- cases included FES at Y713, ERK1 (MAPK3) at T202/Y204, ERK2 (MAPK1) at T185/Y187, PAK1 at S144, MEK 1 (M AP2K 1 ) at S222, PAK2 at S141 and PKC-δ (PRKCD) at S645 (Figure 12B). In line with these observations, the CDs+ group enriched the activities of several kinases relative to CDs- cells, including PKA, several isoforms of PKC, BRAF, MEK and ERK (Figure 4E). The increased expression of integrins, survival kinases and other signaling regulators in CDs+ cells relative to CDs- cells (Figure 12 A) suggests that an increase in kinase pathway activation in more differentiated cells (Figure 4E) is due, at least in part, to a higher expression of these signaling molecules.

Example 5 - M4-like cells and CDs+ cells are more sensitive to kinase inhibitor therapy

[0139] Since M4-Like and CDs+ cases activated kinase survival pathways to a greater extent than Ml -Like and CDs- cases, respectively, we hypothesized that there may be a difference in how the cells from these patient groups may respond to kinase inhibitors. Consistently, cell viability analysis as a function of treatment with kinase inhibitors showed that M4-Like and CDs+ cases were more sensitive than Ml -Like and CDs- to 1 μΜ PAKi, ΙμΜ MEKi, and 10 μΜ FLT3/PKCi (Figure 5A-B), which is a concentration that can inhibit PKC5, a kinase found to be highly active in our assays (Figure 2C, 3E, 4E). The same trends of responses were observed after treatment with other compound concentrations (Figure 13). There were no differences between the responses to the CK2i or P38i across groups (Figure 5A-B). Together, phosphoproteomics and differentiation marker expression stratified AML patients into groups with markedly different patterns of kinase activities and sensitivities to FLT3/PKC, PAK and MEK inhibitors. These results therefore suggest the existence of a link between differentiation, kinase-driven survival pathway activity, and the sensitivity of AML cells to kinase inhibitors. Example 6 - Mutational status as a marker of kinase inhibitor sensitivity

[0140] To investigate the mechanisms that could contribute to the pharmacological and biochemical differences observed in AML of dissimilar differentiation phenotypes, we sequenced in our sample cohort the 25 most frequently mutated genes in AML. We found that 15 of these genes were mutated in at least 1 of the 27 cases included in the analysis (Figure 6A). Interestingly, genes with roles in kinase signaling, including NBAS, BRAF and FLT3, were more frequently mutated in cells of the CDs+ group (Figure 6A, p = 0.008 by hypergeometric test).

[0141] We found that cells with mutated NRAS or BRAF increased the phosphorylation of MAPK1 (ERK2) at T185 and Y187, an activity marker for the RAS/MEK/ERK pathway (Figure 6B). Consistent with published studies, we found that mutations on those genes were also significantly associated with the sensitivity of the cells to MEKi (Figure 6C). Cells with FLT3 mutations (in a NRAS/BRAF WT background) also showed relatively high RAS/MEK/ERK pathway activity (as assessed by MAPK1 phosphorylation - Figure 6D), although these were not more sensitive to MEKi than cells WT for FTL3, NRAS and BRAF (Figure 6E), suggesting that the genetic background associated to pathway activation influences responses to pathway inhibition. Also of interest, CDs+ cases negative for NRAS/BRAF mutations showed high RAS/MEK/ERK pathway activation relative to CDs- samples (Figure 6F) and were more sensitive to MEKi than the undifferentiated cases of the same NRAS/BRAF genotype (Figure 6G).

Example 7 - Mutational status and differentiation status as a combined marker of kinase inhibitor sensitivity

[0142] In order to rationalize responses further, we performed a systematic analysis integrating the cells' mutational profiles with the mass spectrometry and mass cytometry data. Cells with mutated NRAS, high MAPK1 phosphorylation or positive for CDs+ were more sensitive to MEKi than cells WT for NRAS, low for MAPK1 phosphorylation or negative for the CDs phenotype, respectively (Figure 7A(i-iv)). Cells with the NRAS/BRAF /FLT 3 -1ΤΌ genotypes were not more sensitive to MEKi than cells with just either NRAS or BRAF mutations (Figure 7A(v)). In contrast, the 15 cases positive for either NRAS/BRAF/COs+ were on average more sensitive to MEKi than cells without this molecular signature (Figure 7A(vi-ix)). [0143] To assess the significance of the differences in MEKi sensitivities as a function of the different molecular markers, we plotted the p-values of the comparisons illustrated in Figure 7 A. Combining the NRAS/BRAF/COs+ signature produced the most significant difference with a logio p-value of -5.7, followed by the NRAS/BRAF/M APK 1 hi/CDs+ signature whose logio p-value was -5.0 (Figure 7B). These results suggest that AML cells can activate the MEK/ERK pathway by either mutations on NRAS/BRAF or by the surface expression of CD markers, consequently rendering them more sensitive to MEKi treatment than cells with WT genes or low differentiation status.

[0144] Although cases with either NRAS/BRAF mutations or the CDs+ phenotype

(NRAS/BRAF/COs+ cases) were highly sensitive to MEKi, 8 out of 15 cases with this signature demonstrated a viability >50% after treatment (Figure 7A(viii)). To investigate the reasons for these differences in responses within the NRAS/BRAF/CDs+ cases, we compared mutation status and the phosphoproteome in the 15 cases positive for NRAS/BRAF I Ds+. Within these 15 cases, we found that FLT3-YTO positive cells were significantly more resistant to MEKi than cells without this mutation (p = 0.012, Figure 7C). Several phosphorylation markers were also found to be associated with responses to MEKi within the NRAS/BRAF/ CDs+ cases, including those at STAT5A S780, STAT5A SI 28, TOP2A S1213, KDM5C S317 and CAMKK1 S458 (Figure 7C), suggesting that cells with the NRAS/BRAF/CDs+ signature but relatively resistant to MEKi use FLT3 -driven pathways to proliferate, which include STAT5 29 . Accordingly, samples that were positive for NRAS/BRAF/COs+ and negative for FLT3-TTO or with low STAT5A or KDM5C phosphorylation were more sensitive to ΙμΜ MEKi than the other cells (Figure 7D), with essentially all NRAS/BRAF ) 'CDs+ cases that presented low KDM5C phosphorylation being sensitive (viability < 50%) to MEKi treatment (Figure 7D, middle panel). In addition, we found that NRAS/BRAF/ CDs+ cases that were negative for FLT3-YTO or low for KDM5C phosphorylation were also more sensitive to other concentrations of MEKi, and this difference was greater than when considering NRAS/BRAF of CDs status alone (Figure 14A).

[0145] To identify determinants of sensitivity to inhibitors other than MEKi, we compared sensitivity to the compounds as a function of mutational status, phosphorylation marker expression, or a combination of the two (Figure 7E). We found that NRAS mutation was the only strong genomic determinant of sensitivity to MEKi with IDH2 mutations showing a small (p ~ 0.03) effect on responses to CK2i (Figure 7E left panel). Surprisingly, FLT3-TTO status did not have an effect on the responses of cells to the FLT3/PKCi (Figure 7F and Figure 14B). In contrast, several phosphorylation markers including, those on protein kinases C isoforms (gene names PRKCA, PRKCB and PRKCD), STK10, GSK3A and PAK1/2 and on the platelet membrane receptor Gi24 (C10orf54), were found to be associated with responses to PAKi, FLT3/PKCi and MEKi (Figure 7E middle panel). Integration of genomic or CDs markers with phosphorylation data increased the significance (decreased p- values) of the associations (Figure 7 right panel). For example, samples positive for either CDs or phosphorylation on GSK3A or PCK5 were more sensitive to FLT3/PKCi than other cases (Figure 7F and Figure 14B). As for CK2i, there was a small association between CD34 expression or IDH2 mutation and sensitivity to this compound, although the effect was small

(Figure 14C). Taken together, our results suggest that integration of differentiation status (as defined by CD marker expression) with genomic and phosphoproteomics signatures produces groups of AML cases characterized by their degree of sensitivity to MEKi and FLT3/PKCL

Example 8 - a companion diagnostic test for assessing suitability of AML patients for treatment with midostaurin.

[0146] Peripheral blood or bone marrow samples were obtained from patients suffering from acute myeloid leukaemia. Mononuclear leukaemia cells were extracted from these samples and assays were performed on the cells as described herein in order to detect :

(i) surface expression of a group of CD markers consisting of CD1 lb, CD14, CD15, CD16, CD33, CD38, CD44, CD45, CD64, CD123 and HLA-DR; and/or

(ii) a high level of phosphorylation in the leukaemia cells of the patient at any one or more of pS21 of GSK3A; pY313, pT507, pT295, pT218, and/or pS664 of PRKCD; pS20 and/or pS13 of STK10; pS144 of PAKI; pS141 of PAK2; Y187 and/or T185 of MAPK1; and T202 and/or Y204 of MAPK3. In step (ii), a high level of phosphorylation was identified where the phosphorylation at the reference site was higher than the average phosphorylation at that site, calculated across a plurality of patient samples.

Patients whose cells were positive for either (i) or (ii) were identified as suitable for treatment with midostaurin. Example 9 - a companion diagnostic test for assessing suitability of AML patients for treatment with trametinib.

[0147] Peripheral blood or bone marrow samples were obtained from patients suffering from acute myeloid leukaemia. Mononuclear leukaemia cells were extracted from these samples and assays were performed on the cells as described herein in order to detect :

(a) (i) surface expression on the leukaemia cells of the patient of a group of CD markers consisting of CDl lb, CD14, CD15, CD16, CD33, CD38, CD44, CD45, CD64, CD 123 and HLA-DR; and/or

(ii) a high level of phosphorylation in the leukaemia cells of the patient at any one or more of Y187 and/or T185 of MAPK1; and T202 and/or Y204 of MAPK3;

(iii) activating mutations in any one or more of NRAS, KRAS, HRAS or BRAF in the leukaemia cells of the patient; and

(b) (i) a high level of phosphorylation at one or more of pS780 and pS 128 of

STAT5A, pS548 of CAMKK1, pS1213 of TOP2A and pS317 of KDM5C; and/or

(ii) the absence of any activating mutations in FLT3 in the leukaemia cells of the patient.

In steps (a)(ii) and (b)(i), a high level of phosphorylation was identified where the phosphorylation at the reference site was higher than the average phosphorylation at that site, calculated across a plurality of patient samples.

Patients whose cells were positive for both (a) and (b) were identified as suitable for treatment with trametinib.

Discussion

[0148] A central goal of targeted therapy is to identify actionable patient-specific pathways that can direct effective personalized treatments. In this study, we found that differentiation status determined the extent and/or nature of kinase pathway activation across AML samples. Some of the surface differentiation markers (e.g., CD45, and CD123) are membrane receptors or have roles in the recognition of extracellular signals, which are transduced and propagated intracellularly by protein kinase cascades. Cells positive for these CD markers had higher expression of proteins associated with myelomonocytic differentiation and kinase signaling relative to CDs- cells, and consequently presented an increase in the phosphorylation and activation of pro-survival kinases (Figs. 2 to 4), which was translated into an increased sensitivity in how these cells responded to treatments with PAKi, midostaurin and trametinib (Figure 5).

[0149] The integration of mass spectrometry and cytometry data with recurrent mutations present AML showed that, consistent with other studies 14 , activating mutations in NRAS were linked to a higher ERK (MAPK) activity and conferred sensitivity MEKi (Figure 6C-D). In our patient cohort, NRAS mutations seemed to be the only clear genomic determinant of responses when considered in isolation, and surprisingly, neither FL Τ3-ΥΤΌ nor FL Τ3-ΎΚΌ mutations were associated with the responses to midostaurin (Figure 7F). Our data suggest that the RAS/MEK/ERK pathway may be activated in AML by either the presence of NRAS/BRAF activating mutations or by signals emanating from upstream cell surface CD markers or associated receptors. Thus MEKi treatment was more likely to reduce AML cell viability in cases positive for at least one of these markers (Figure 7B).

[0150] However, despite the clear contribution of RAS/MEK/ERK activation to the extent of responses to MEKi, only -50% (7/15) of cases positive for RAS/MEK/ERK activation showed high responses to MEKi. We found that cases that were relatively resistant to MEKi, despite activating the RAS/MEK/ERK pathway, possessed the FL Τ3-ΤΤΌ genotype and had high levels of phosphorylated regulatory proteins, including STAT5A, KDM5C and the topoisomerase 2 A at S1213, a site that regulates the activity of the enzyme (Figure 7). Thus, AML cell populations that responded well to MEKi showed a high activity of the target pathway (RAS/MEK/ERK) together with a low activity of the FLT3/STAT pathway (Figure 7D), which is known to sustain viability and proliferation of primary AML cells by acting in parallel to RAS/MEK/ERK signaling.

[0151] Our results therefore suggest two distinct mechanisms of intrinsic resistance to

MEK inhibition. The first one occurs in cells that are not addicted to the pro-survival actions of MEK because these have low RAS/MEK/ERK pathway activity. The second mechanism occurs in cells which, albeit having a highly active RAS/MEK/ERK, bypass MEK inhibition because the FLT3/STAT5 axis acts as a compensatory mechanism. [0152] Pemovska et al. observed that 36% of AML patient samples were more sensitive to trametinib than mononuclear cells from healthy donors, and we found that 22% of our cases showed >50%> reduction in viability as a result of treatment with this drug (Figure 1). Thus, trametinib, a drug already approved by the FDA for the treatment of melanoma, is worth consideration for repurposing to treat the 20-35% of AML cases predicted to respond to such treatment.

[0153] As for the PAKi and FLT3/PKCi, we did not find an association between genetic alterations and responses to these compounds (Figure 7). We observed, however, that cells with a more differentiated phenotype and those with high phosphorylation of GSK3A and PKC5 responded better to midostaurin than cells with low phosphorylation on these markers (note that PKC5 is upstream of GSK3A [Ref 38 ]). Our results therefore suggest that the mode of action of midostaurin (the FLT3/PKCi used in this work), which is in later stages of clinical development 39 ' 40 , involves the inhibition of PKC5, a known target of this drug.

[0154] In conclusion, we found that AML cells activate the receptor tyrosine kinase signaling network during differentiation, resulting in a marked increase in the activity of pro- survival pathways regulated by MEK and PKC isoforms. The combination of target and parallel kinase pathway activation (caused by genetic and non-genetic events) determined the extent by which AML cells respond to treatments with trametinib or midostaurin.

Methods

Study Design

[0155] The study was performed in 36 primary samples of mononuclear cells extracted from the peripheral blood of AML patients at diagnosis. Samples were randomly selected from the BCI tissue bank collection. Initially, 45 samples were included in the study but nine were later excluded because these were not viable in the ex-vivo experiments. Material availability allowed proteomics and mass cytometry analysis of 30 samples and DNA sequencing of 27 samples. Ex-vivo drug testing was performed in quadruplicate sampling replicates and viability values averaged and expressed relative to vehicle control.

[0156] Patients gave informed consent for the storage and use of their blood cells for research purposes. Experiments were performed in accordance with the Local Research

Ethics Committee. Mass Spectrometry

[0157] Cells were lysed and proteins digested using trypsin as previously described in

Wilkes EH, Terfve C, Gribben JG, Saez-Rodriguez J, Cutillas PR. Empirical inference of circuitry and plasticity in a kinase signaling network. Proc Natl Acad Sci U S A. 2015;112(25):7719-7724.

[0158] LC-MS/MS identification and quantification of peptides and phosphopeptides was performed in an orbitrap mass spectrometer (Q-Exactive Plus). Normalized quantitative data were used to calculate fold changes between groups and statistical significance (assessed by Student's t-test). The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD005978 and DOI 10.6019/PXD005978. See Vizcaino JA, Csordas A, Del-Toro N, et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 2016;44(22): 11033.

Bioinformatics

[0159] Inference of kinase activities from the phosphoproteomics data was performed using Kinase substrate enrichment analysis (KSEA) as described in Casado P, Rodriguez- Prados JC, Cosulich SC, et al. Kinase-substrate enrichment analysis provides insights into the heterogeneity of signaling pathway activation in leukemia cells. Sci Signal. 2013;6(268):rs6.

[0160] DAVID software (https://david.ncifcrf.gov/) was used to determine the enrichment of gene ontologies (GO), which were considered enriched when the Bonferroni's corrected p-values were < 0.05. Hierarchical clusters were constructed within the R statistical computing environment (3.2.3) using the Euclidean distance metric in the heatmap2 function.

Mass cytometry

[0161] Primary cells were coated with metal conjugated antibodies, as indicated by the manufacturer, and analyzed on a CyTOF2 mass cytometer (Fluidigm). Data were normalized using the normalizer within the DVS Sciences CyTOF Instrument Control Software (v 6.0.626) Viability assay

[0162] Ex -vivo drug testing of AML primary cells was as previously described in

Casado P, Rodriguez-Prados JC, Cosulich SC, et al. Kinase-substrate enrichment analysis provides insights into the heterogeneity of signaling pathway activation in leukemia cells. Sci Signal. 2013;6(268):rs6. Briefly, cells were re-suspended in MS-5 conditioned IMDM medium, seeded in 96 well plates and treated with vehicle or 1 to 10000 nM of the indicated inhibitors for 72h. Cells were stained with Guava ViaCount reagent and cell number and viability was measured. Flow cytometry data were analyzed using CytoSoft (v2.5.7).

Panel Sequencing

[0163] Target enrichment of a 25 gene myeloid panel was achieved using an in-house

True SeqCustom Amplicon (TSCA) design (Illumina, San Diego, USA).

Statistical analysis

[0164] Statistical anlaysis was performed in R (version 3.2.3), Micorsoft Excel 2013 or Prism (version 5.4). The p-values returned from Mann Witney, Anova or Student's t-test, as indicated in the figures, were adjusted for multiple testing using the Tukey or Benjamini- Hochberg procedures as required.

Mass Spectrometry, Proteomics and Phosphoproteomics

[0165] Cell were harvested by centrifugation at 500xg at 4 °C for 5 min, washed twice with cold PBS supplemented with ImM Na 3 V0 4 and 1 mM NaF, snap frozen and stored at -80C until further processing. Cell pellets were lysed in urea buffer (8M urea in 20 mM in HEPES pH 8.0 supplemented with 1 mM Na 3 V0 4 , 1 mM NaF, ImM Na 4 P20 7 and 1 mM sodium β-glycerophosphate) for 30 min and further homogenized by sonication (60 cycles of 30s on 40s off; Diagenode Bioruptor® Plus, Liege, Belgium). Insoluble material was removed by centrifugation at 20.000 x g for 10 min at 5 °C and protein in the cell extracts was quantified by bicinchoninic acid (BCA) analysis.

[0166] For phosphoproteome analyses, we used published methods with some modifications. See : Gruhler A, Olsen JV, Mohammed S, Mortensen P, Faergeman NJ, Mann M, et al.

Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway.

Molecular & cellular proteomics : MCP 2005;4(3):310-27 doi

10.1074/mcp.M400219-MCP200.

Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jorgensen TJ. Highly selective

enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Molecular & cellular proteomics : MCP 2005;4(7):873-86 doi

10.1074/mcp.T500007-MCP200.

Montoya A, Beltran L, Casado P, Rodriguez -Prados JC, Cutillas PR. Characterization of a

TiO(2) enrichment method for label-free quantitative phosphoproteomics. Methods

2011;54(4):370-8 doi 10.1016/j.ymeth.2011.02.004

[0167] Briefly, 250 μg of protein were reduced and alkylated by sequential incubation with 10 mM DTT and 16.6 mM iodoacetamyde for lh. The urea concentration was diluted to 2M with 20 mM HEPES (pH 8.0) and 80 μΕ of conditioned trypsin beads [(50% slurry of TLCK-trypsin (Thermo-Fisher Scientific; Cat. #20230)] conditioned with 3 washes of 20 mM HEPES (pH 8.0)) were added and the samples incubated for 16h at 37 °C with agitation. Trypsin beads were removed by centrifugation at 2,000 x g for 5 min at 5 °C. For phosphoproteomics analyses, 100 μg of protein were used.

[0168] Following trypsin digestion, peptide solutions were desalted using 10 mg

OASIS-HLB cartridges (Waters, Manchester, UK). Briefly, OASIS cartridges were accommodated in a vacuum manifold (-5 mmHg), activated with 1 mL ACN and equilibrated with 1.5 mL washing solution (1% ACN, 0.1 % TFA). After loading the samples, cartridges were washed with 1 mL of washing solution. For phosphoproteomics analyses, peptides were eluted with 500 iL of glycolic acid buffer 1 (1 M glycolic acid, 50% ACN, 5% TFA) and subjected to phosphoenrichment. For proteomics analyses peptides were eluted with 500 μΐ, of ACN solution (30% ACN, 0.1% TFA), dried in a speed vac (RVC 2-25, Martin Christ Gefriertrocknungsanlagen GmbH, Osterode am Harz, Germany) and stored at -80 °C.

[0169] Phosphopeptides were enriched using T1O2 (GL Sciences) as previously described with some modifications (4). Sample volumes were normalized to 1 mL using glycolic acid buffer 2 (1 M glycolic acid, 80% ACN, 5% TFA), 50 μΐ, of Ti0 2 beads (50% slurry in 1% TFA) were added to the peptide mixture, incubated for 5 min at room temperature with agitation and centrifuged for 30s at 1500xg. For each sample, 80% of the supernatant was transfer to fresh tubes and stored in ice and the remaining 20% used to resuspend the bead pellets that were loaded into an empty prewashed PE-filtered spin-tips (Glygen, MD, USA) and packed by centrifugation at 1500 x g for 3 min. After loading the remaining volume of the supernatant by centrifugation at 1500xg for 3 mim, spin tips were sequentially washed with 100 μΐ, of glycolic acid buffer 2, ammonium acetate buffer (100 mM ammonium acetate in 25% ACN) and 10% ACN by RT centrifugation for 3 min at 1500xg. For phosphopeptide recovery, the addition 50 μΐ, of 5% ammonium water followed by centrifugation for 5 min at 1500 x g was repeated 4 times. Eluents were snap frozen in dry ice, dried in a speed vac and peptide pellets stored at -80 °C.

[0170] For phosphoproteomics, peptide pellets were resuspended in 12 μΐ, of reconstitution buffer (20 ίηιοΐ/μΐ, enolase in 3% ACN, 0.1 % TFA) and 5.0 μί were loaded onto an LC-MS/MS system consisting of a Dionex UltiMate 3000 RSLC directly coupled to an Orbitrap Q-Exactive Plus mass spectrometer (Thermo Fisher Scientific). For proteomics, pellets were resuspended in reconstitution buffer (0.5 μg/μL) and 2 μΕ were injected. The LC system used mobile phases A (3% ACN: 0.1% FA) and B (100% ACN; 0.1% FA). Peptides were trap in a μ-pre-column (catalog no 160454) and separated in an analytical column (Acclaim PepMap 100 ;catalog no 164569). The following parameters were used: 3% to 23% B gradient for 120 min and a flow rate of 0.3 μΏπάα.

[0171] As they eluted from the nano-LC system, peptides were infused into the online connected Q-Exactive Plus system operating with a 2.1s duty cycle. Acquisition of full scan survey spectra (m/z 375-1,500) with a 70,000 FWHM resolution was followed by, data- dependent acquisition in which the 20 most intense ions were selected for HCD (higher energy collisional dissociation) and MS/MS scanning (200-2,000 m/z) with a resolution of 17,500 FWHM. A 30 s dynamic exclusion period was enabled with an exclusion list with 10 ppm mass window. Overall duty cycle generated chromatographic peaks of approximately 30 s at the base, which allowed the construction of extracted ion chromatograms (XICs) with at least 10 data points. The raw files for the extra samples were also uploaded into PRIDE. Peptide identification and quantification

[0172] Mascot Daemon 2.5.0 was used to automate peptide identification from MS data. Peak list files (MGFs) from RAW data were generated with Mascot Distiller v2.5.1.0 and loaded into the Mascot search engine (v2.5) in order to match MS/MS data to peptides (Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 1999;20(18):3551-67). The searches were performed against the SwissProt Database (SwissProt_2012Oct.fasta for proteomics or uniprot_sprot_2014_08.fasta for phosphoproteomics analysis) with a FDR of ~1% and the following parameters: 2 trypsin missed cleavages, mass tolerance of ±10 ppm for the MS scans and ±25 mmu for the MS/MS scans, carbamidomethyl Cys as a fixed modification, PyroGlu on N-terminal Gin and oxidation of Met as variable modifications. For phosphoproteomics experiments Phosphorylation on Ser, Thr, and Tyr was also included as variable modifications. The in- house developed Pescal software was used for label-free peptide quantification (6), XICs for all the peptides identified across all samples were constructed with ±7 ppm and ±2 min mass and retention time windows, respectively. Peak areas from all XICs were calculated. Undetectable peptides were given an intensity value of 0. Values of 2 technical replicates per sample were averaged and intensity values for each peptide were normalized to total sample intensity. Mass Cytometry

[0173] Mass cytometry was used to characterize CD markers in AML cells (Bandura

DR, Baranov I, Ornatsky OI, Antonov A, Kinach R, Lou X, et al. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time- of-flight mass spectrometry. Analytical chemistry 2009;81(16):6813-22). Cells (4xl0 6 ) were transfered to fresh tubes, washed twice with PBS and incubated with lx Cell-ID™ Cisplatin solution (Fluidigm; Cat. 201064) for 5 min at RT. Cells were washed with Maxpar Cell Staining buffer and pellets were resuspended and incubated with 50 μΙ_, of 20 μg/mL HAG (human γ-Globulins, Sigma-Aldrich; Cat. G4386-1G) for 20 min at RT. After adding 50 of antibody mix (1/50 dilution of each antibody; Suplemental Tablel), samples were incubated for 30 min at RT. The cells were then washed twice with Maxpar Cell Staining buffer, pellets were resuspended in Fix and Perm Buffer and left overnight at 4 °C. Next day, Ir intercalator was added to a final concentration of lx and samples were incubated for 20 min at RT. Permeabilized cells were washed twice with Maxpar Cell Staining buffer and twice with Maxpar water.

[0174] The following antibodies were used in mass cytometry assays as described below :

Antigen Determinant Clone Metal

CD19 Co-receptor for CD21 HIB19 142Nd

CD117 Receptor Tyrosine Kinase /SCF 104D2 143Nd

CDl lb Fibrinogen Receptor ICRF44 144Nd

CD64 Fc Receptor 10.1 146Nd

CD7 CD7-6B7 147Sm

CD123 Inter leukin 3 Receptor 6H6 151Eu

CD45 Receptor Tyrosine Phosphatase HI30 154Sm

CD33 Sialic Acid Receptor WM53 158Gd

CD15 Carbohydrate W6D3 164Dy

CD34 Cell-Cell Adhesion Factor 581 166Er

CD3 TCR Co-receptor UCHT1 170Er

CD44 Hyaluronic Acid Receptor IM7 171Yb

CD38 Synthesis of Cyclic ADP HIT2 172Yb

HLA-DR Antigen Presentation L243 174Yb

CD 184 Chemokine Receptor /PSD-1 12G5 175Lu

CD14 Co-activator of TLR4 M5E2 160Gd CD16 Fc Receptor 3G8 148Nd

Sanger Sequencing

[0175] Primers for BRAF V600 PCR were forward 5'-

TCTTCATGAAGACCTCAC AGT-3 ' and reverse 5 ' -CCAGACAACTGTTCAAACTGA-3 ' . 20-50 ng of DNA was used as template and the thermal conditions were as follows: initial heating period for 15 min at 95°C, 36 cycles at 95°C for 1 min, 55°C for 1 min and 72°C for 1 min, and finally 10 min at 72°C. Amplicones were sequenced by GATC Biotech (Constanza, Germany) using the forward primer. Positive cases were validated using the reverse primer.

Mass cytometry

[0176] Mass cytometry was used to simultaneously measure the surface expression of

17 differentiation markers (CD3, CD7, CDl lb, CD14, CD15, CD16, CD19, CD33, CD34, CD38, CD44, CD45, CD64, CD117, CD123, CD184, HLA-DR) in mononuclear cells extracted from the peripheral blood of 30 AML patients. Label free quantitative phosphoproteomics based on T1O2 phosphoenrichment was used to quantify > 5,000 phosphorylation sites in the same AML primary samples and KSEA technology was applied to infer kinase activity from the phosphoproteomics data. Gene ontology enrichment was calculated based on the genes that code for the proteins where the phosphorylation sites were detected using DAVID software. Guava EasyCyte Flow Cytometry was used to determine cell viability after the treatment of the same patient samples with 5 kinase inhibitors (PF- 3758309, Midostaurin, silmitasertib, trametinib and TAK715 aiming to target the kinases PAK, Flt-3, Casein Kinase 2, MEK and P38, respectively).