Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
SURFACE PASSIVATION OF ALUMINIUM-CONTAINING POWDER
Document Type and Number:
WIPO Patent Application WO/2013/029589
Kind Code:
A1
Abstract:
The invention relates to a method for producing and conditioning a powder of aluminium or an aluminium alloy having passivated surface, characterised in that a melt of aluminium or the aluminium alloy is atomised to a powder in an atomising plant by means of an atomising gas that comprises approximately 1% by volume to 100% by volume of molecular nitrogen and approximately 99% by volume to 0% by volume of one or more noble gases. The specific aim of the invention is for the powder produced thereby to enable a more efficient (more cost-effective because reusable) and accurate (better strength and durability) composition of Al material by means of the use in an additive layer manufacturing method.

Inventors:
PALM FRANK (DE)
Application Number:
PCT/DE2012/000849
Publication Date:
March 07, 2013
Filing Date:
August 22, 2012
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
EADS DEUTSCHLAND GMBH (DE)
PALM FRANK (DE)
International Classes:
B22F9/08; B22F1/16
Domestic Patent References:
WO2003066640A12003-08-14
Foreign References:
US20100143185A12010-06-10
DE4412768A11994-10-20
DE102007018123A12008-10-30
DE102010053274A12012-06-21
EP1008407A22000-06-14
Other References:
SAVALANI ET AL: "Selective Laser Melting of Aluminum and its alloys", NZ RAPID PRODUCT DEVELOPMENT CONFERENCE, February 2011 (2011-02-01), Auckland, New Zeland, pages 1 - 5, XP002686966
A.J. BOSCH; R. SENDEN; W. ENTELMANN; M. KNÜWER; F. PALM: "Scalmalloy@: A unique high strength and corrosion insensitive AIMgScZr material concept", PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON ALUMINIUM ALLOYS
F. PALM; P. VERMEER; W. VON BESTENBOSTEL; D. ISHEIM; R. SCHNEIDER: "Metallurgical peculiarities in hyper-eutectic AlSc and AIMgSc engineering materials prepared by rapid solidification processing", PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON ALUMINIUM ALLOYS
JINWANG LI ET AL.: "Hydrolysis of Aluminum Nitride Powders in Moist Air", AZOJOMO (JOUMAL OF MATERIALS ONLINE, vol. 1, October 2005 (2005-10-01), pages 1 - 10
Download PDF:
Claims:
Patentansprüche

1. Verfahren zur Herstellung eines Pulvers aus Aluminium oder einer

Aluminiumlegierung mit inaktiver oder passivierter Oberfläche, dadurch gekennzeichnet, dass eine Schmelze von Aluminium oder der

Aluminiumlegierung mit Hilfe eines Verdüsungsgases, das aus etwa 1 Vol.- % bis 100 Vol.-% molekularen Stickstoff und etwa 99 Vol.-% bis 0 Vol.-% eines oder mehrerer Edelgase besteht, in einer Verdüsungsanlage zu einem Pulver verdüst wird.

2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Legierung eine AISc-Legierung ist.

3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Legierung eine Legierung der Summenformel AIScWXYZ ist, worin W aus Li, Mg und Ca oder einer Mischung derselben ausgewählt ist und X und/oder Y und/oder Z nicht anwesend sind oder aus der Gruppe Zr, Ti, Nb, Ta, Hf uns Y und/oder aus der Gruppe Be, Zn, Mn, Ag, Cu, Si, V, Ni, Co, Cr, Mo und Fe und/oder aus der Gruppe der Seltenerd-Elemente ausgewählt sind.

4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass

Legierungsbestandteile in den folgenden prozentualen Anteilen vorliegen, bezogen auf das Gesamtgewicht der Legierung:

- Sc-Gehalt 0,2 - 2 Gew.-%

- Mg-Gehalt 0,5 - 10 Gew.-%

- Li-Gehalt 0,2 - 3 Gew.-%

- Ca-Gehalt 0,2 - 2 Gew.%

- Gehalt der X-Elemente: 0,05 - 1 ,5 Gew.-%

- Gehalt der Y-Elemente: 0,2 - 8 Gew.%

- Gehalt zusätzlicher Seltenerd-Elemente: 0,2 - 3 Gew.-% oder das 0,25- bis 3-fache des Sc-Gehalts.

5. Vefahren nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, das die Legierung aus den folgenden Legierungen ausgewählt ist

- Mg(0,5-10)Sc(0,2-2,0)Zr(0,2-2,0) (Gew.-%) und AI und unvermeidliche

Verunreinigungen als Rest;

- Mg(0,5-10)Sc(0,2-2,0)Zr(0,2-2,0)Mn(0, 1-1 ,0) (Gew.-%)und AI und unvermeidliche Verunreinigungen als Rest;

- vorzugsweise Mg(2,5-5.0)Sc(0,3-1 ,0)Zr(0,2-0,5)Mn(0, 1-0,8) (Gew.%) und AI und unvermeidliche Verunreinigungen als Rest.

6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Verdüsungsgas > etwa 1 Vol.%, > etwa 10 Vol.-%, > etwa 20 Vol.-%, > etwa 50 Vol.-%, oder 100 Vol.-% Stickstoff enthält.

7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Pulver mit einer mittleren Teilchengröße im Bereich von etwa 5 μηι bis etwa 100 μιη, bevorzugt im Bereich von etwa 25 μηι bis etwa 65 μιη hergestellt wird.

8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Schmelze bei einer Temperatur von etwa 50°C oberhalb der Liquidus-Temperatur von Aluminium oder der Aluminiumlegierung in der Verdüsungsanlage gehalten wird.

9. Pulver aus Aluminium oder einer Aluminiumlegierung mit passivierter Oberflächenschicht, erhältlich durch das Verfahren nach einem der Ansprüche 1 bis 8.

10. Pulver nach Anspruch 9, dadurch gekennzeichnet, dass es in einem

versandfähigen geschlossenen Behälter unter Umgebungsatmosphäre abgepackt ist.

11. Verwendung des Pulvers nach Anspruch 8 oder 9 in einem Schichtfertigungsverfahren (Additive-Layer-Manufacturing- (ALM)Verfahren), ausgewählt aus einem Pulver-Bett-Verfahren und/oder Pulver-Düse-Verfahren zum Aufbau von Bauteilen.

12. Verwendung nach Anspruch 11 , bei der in einem direkten

Schichtfertigungsverfahren zur Herstellung von 3-dimensionalen Bauteilen das Pulver mittels Strahlschmelzen geschmolzen wird, wobei die erzeugte Oberfläche inaktiv oder passiviert ist.

13. Verwendung nach Anspruch 11 , wobei das Pulver aus einem zuvor

durchgeführten Additive-Layer-Manufacturing-Verfahren zurückgewonnen wurde.

Description:
OBERFLÄCHENPASSIVIERUNG VON ALUMINIUMHALTIGEM PULVER

Gebiet der Erfindung

Die Erfindung betrifft ein Verfahren zur Passivierung der Oberfläche von aluminiumhaltigem Pulver sowie das dadurch herstellbare passivierte Pulver und dessen Verwendung in einem Schichtfertigungsverfahren (Additive-Layer- Manufacturing-Verfahren (ALM-Verfahren)).

Hintergrund der Erfindung

Die Pulvermetallurgie und das Sintern von Metallen und Metalllegierungen sind bekannte Techniken zur Herstellung von Metallgegenständen. Wenn vorgepresste Formteile aus feinen Materialien (Pulver) gesintert werden, können feste

Metallteile mit genau definierten Maßen und Eigenschaften entstehen.

Gewöhnlich werden Pulver aus reinem Metall oder aus Metalllegierungen

(nachstehend gemeinsam als Metallpulver bezeichnet) in Korngrößen unter etwa 0,6 mm benötigt. Die Art der Pulverherstellung übt einen starken Einfluss auf die Eigenschaften der Pulver aus. Deshalb wurden sehr viele verschiedene Verfahren entwickelt, wie mechanische Verfahren, chemische Reduktionsverfahren, elektrolytische Verfahren, Carbonylverfahren sowie Schleuder- und

Verdüsungsverfahren.

Das Pulver wird dann üblicherweise in Presswerkzeugen unter hohem Druck (zwischen 1 und 10 t/cm 2 ) zu sogenannten Grünlingen verdichtet. Es gibt aber auch weitere Verfahren, z.B. das Verdichten durch Vibration, das

Schlickergießverfahren, Schüttverfahren und Verfahren mit Zusatz von

Bindemitteln.

|Bestätigungskopie| Bei der Wärmebehandlung (dem Sintern) werden die Pulverkörnchen an ihren Berührungsflächen durch Diffusion der Metallatome in einen festen Verbund gebracht. Die Sintertemperatur liegt bei einphasigen Pulvern, die aus

einheitlichem Material bestehen, im Allgemeinen zwischen 65 und 80 % der Solidustemperatur, während bei mehrphasigen Pulvern in der Nähe oder oberhalb der Solidustemperatur der am niedrigst schmelzenden Phase gesintert wird. Die Zwischenräume offenporiger Werkstücke können nach dem Sintern durch

Tauchen in eine Metallschmelze ausgefüllt werden. Die Sinterung erfolgt gewöhnlich unter Schutzgas oder im Vakuum.

Sintermetalle sind porös, wobei Dichtigkeiten bis 99 % erreichbar sind. Eine vollständige Verdichtung kann z.B. durch Warmwalzen erfolgen. Die Werkstücke weisen (bei geeigneter Kalibrierung) hohe Maßgenauigkeit und Oberflächengüte auf.

Beim isostatischen Heißpressen werden Metallpulver gleichzeitig

Sintertemperaturen und hohen Drücken ausgesetzt. Damit kann eine Verdichtung bis zu 100% der theoretischen Dichte erzielt werden.

Ein relativ neues pulvermetallurgisches Verfahren besteht darin, ein Bauteil aus Metall oder einer Metalllegierung im schichtweisen Aufbau aus einem Pulver herzustellen (auch bekannt als generatives Herstellungsverfahren, Rapid

Prototyping, Rapid Manufacturing oder Additive Layer Manufacturing (ALM)). Bei diesem Verfahren wird ein dreidimensionales CAD-Modell digital in dünne

Schichten geschnitten; diese digitalen Daten werden in eine Steuervorrichtung eingespeist, die wiederum eine Wärmequelle sowie das Bereitstellen des

Werkstoffpulvers steuert, aus dem das Bauteil Schicht für Schicht in

endkonturnaher Form (auf Englisch "near net shape") aufgebaut wird. Das Grundprinzip des Aufbaus einer Schicht beruht auf einer kontinuierlichen lokalen Ablagerung von Metall oder einer Metalllegierung in Form von Pulver oder durch Abschmelzen von einem Draht oder Stab aus dem Metall oder der

Metalllegierung, wobei das Metall oder die Metalllegierung durch eine bewegliche Wärmequelle (z.B. Laser- oder Elektronenstrahl oder Lichtbogen) geschmolzen, mit der darunter liegenden Schicht stoffschlüssig verbunden und anschließend wieder abgekühlt wird.

Verschiedene Ausführungsformen des Auftragens einer Schicht mit Hilfe eines Pulverbettanlagenkonzepts sind dem Fachmann in englischer Sprache als Direct Metal Laser Sintering (DMLS), Selective Laser Sintering (SLS), Selective Electron Beam Melting (SEBM), LaserCusing oder Selective Laser Melting (SLM) bekannt. Das Auftragen einer Schicht durch Auftragschweißen mittels Pulverzufuhr z.B. über eine Düse ist dem Fachmann in englischer Sprache als Direct Metal

Deposition (DMD), Laser Engineered Net Shaping (LENS), Laser Rapid Forming (LRF) oder Laser Cladding (LC) bekannt. Oft wird dabei auch von„nozzle feed" oder„powder feed" bzw.„blowing powder" gesprochen.

Aluminium wird wegen seiner geringen Dichte gerne als Konstruktionswerkstoff verwendet, insbesondere bei Anwendungen, bei denen eine geringe Masse erwünscht ist, wie dies bei Transportmitteln in der Luft- und Raumfahrt der Fall ist.

Aluminium ist allerdings relativ weich und hat eine geringe Zugfestigkeit. Diese Eigenschaften und auch andere lassen sich durch Legieren mit anderen Metallen wesentlich verbessern. Beispielsweise kann durch Zulegierung von Scandium eine erhöhte Festigkeit erzielt werden. Jedoch liegt die Dichte von Scandium mit 2,98 g/cm 3 über der von Aluminium mit 2,7 g/cm 3 . Deshalb werden häufig noch andere, leichte Metalle hinzulegiert, die das Gewicht der Legierung verringern.

Aluminium-Scandium-Legierungen sind gut bekannt und die Eigenschaften von einigen werden z.B. in den folgenden Veröffentlichungen beschrieben, die durch Bezugnahme Teil dieser Offenbarung bilden:

- A.J. Bosch, R. Senden, W. Entelmann, M. Knüwer, F. Palm„Scalmalloy®: A unique high strength and corrosion insensitive AlMgScZr material concept", Proceedings of the 11 th International Conference on Aluminium Alloys - F. Palm, P. Vermeer, W. von Bestenbostel, D. Isheim, R. Schneider

„Metallurgical peculiarities in hyper-eutectic AISc and AlMgSc engineering materials prepared by rapid solid ification processing", Proceedings of the 1 1 th International Conference on Aluminium Alloys.

Wenn allerdings Pulver aus Aluminium oder einer Aluminiumlegierung

(nachfolgend oft gemeinsam als aluminiumhaltiges Pulver bezeichnet) in der Pulvermetallurgie und insbesondere beim ALM verwendet werden, treten spezielle Schwierigkeiten auf.

Es ist bekannt, dass die Qualität von durch ALM aufgebauten Produkten aus Aluminium oder einer Aluminiumlegierung, z.B. einer AISc-Legierung, stark von der Menge der im Produkt vorhandenen (Rest)Porosität - sowohl bezüglich Volumenanteilen als auch bezüglich der Verteilung - abhängt. Ursachen für eine ungewollte Porosität sind einerseits ungeeignete Prozessparameter beim

Produktaufbau und andererseits mit Feuchtigkeit (H 2 O) verunreinigtes

aluminiumhaltiges Pulver. Beim Schmelzen des Pulvers, das meist bereits nominell immer etwas Wasserstoff enthält (wenn auch gewöhnlich nur in geringen Mengen < etwa 10 ppm) entsteht durch die Umsetzung von Aluminium und Wasser neben Aluminiumoxid weiterer Wasserstoff , der in Form von

wasserstoffhaltigen Poren im umgeschmolzenen Werkstoff zurückbleibt. Wenn unverbrauchtes, nicht geschmolzenes Pulver aus den Laser-Pulverbett- Schmelzanlagen aus Kostengründen ein- bis mehrmals wiederverwendet wir, nimmt die Kontamination des Pulvers mit Wasser durch die allgemeine

Handhabung immer weiter zu.

Die Ursache für die Kontamination des aluminiumhaltigen Pulvers mit Wasser ist die dünne AI 2 O3-Schicht, die sich wegen ihrer großen negativen Bildungsenthalpie (AHf° = 1676 kJ-mol "1 ) und einer geringen Aktivierungsenergie der Reaktion bereits bei extrem kleinen Sauerstoff-Partialdrücken (etwa > 10 ppb) auf Aluminium ausbildet. Die Oxidschicht adsorbiert und absorbiert sehr schnell in der Umgebung vorhandene Restfeuchtigkeit (H 2 O). Die entstandene AI2O3-H2O- (oder auch ΑΙΟ(ΟΗ)χ-) Schicht wächst wegen der Exothermie der Reaktion mit der Zeit parabolisch, gewöhnlich bis eine Schichtdicke von etwa 500 nm oder unter Umständen sogar von mehreren m erreicht wird.

Diese Reaktion von Aluminium mit Sauerstoff und anschließend Wasser kann nur unter Ultrahochvakuum-Bedingungen (< 10 "9 mbar) vermieden werden. In technischen Umgebungen (selbst in Vakuum- oder Schutzgaskammern) sind immer hinreichende Mengen an O2 und H 2 0 vorhanden, um eine Kontamination zu verursachen.

Das aluminiumhaltige Pulver, das in ALM-Verfahren eingesetzt wird, wird im Allgemeinen durch Verdüsung von flüssigem Aluminium oder flüssiger

Aluminiumlegierung mit Argon und/oder Helium einer Gasqualität von mindestens 4.0 (= 99,99 %-ig) gewonnen. Insbesondere darf der Restgehalt an H2O 25 ppm nicht übersteigen, sonst werden in dem Pulver durch Reaktion von H2O mit dem heißen Aluminium zu AI2O3 und H 2 bereits bei der Herstellung zu große Mengen von Letzterem eingeschlossen. Aber bereits durch die Handhabung des Pulvers beim Befüllen der Pulverbettmaschine einer Pulverbett-ALM-Vorrichtung entsteht soviel AIO(OH) x , dass sich beim Schmelzen und anschließendem Abkühlen des Pulvers unerwünscht viele Poren bilden können. Bei der Entnahme von

unverbrauchtem Pulver kommt dieses dann erneut mit der

Umgebungsatmosphäre (Laborluft) in Kontakt und ad-/absorbiert dabei zusätzlich bedeutende Mengen an O2 und H2O unter Bildung von Aluminiumoxiden- hydroxiden.

Durch Trocknen (50 - 100°C) ist die im aluminiumhaltigen Pulver vorhandene Feuchtigkeit nicht ausreichend zu entfernen, da physikalisch ad- oder absorbiertes H2O erst ab etwa 250°C aus Al 2 0 3 ver- bzw. abdampft. Das Aufbrechen der Aluminiumoxid-hydroxid-Bindung unter Freisetzung vom Wasser benötigt sogar Temperaturen von mindestens etwa 400°C. Wenn man statt in einer

Argonatmosphäre unter Hochvakuum arbeitet, was die Trocknung aufgrund der geringeren Partialdrücke verbessert würde, versintert das Pulver, unter dem Einfluss der Schwerkraft und verliert seine erforderliche Rieselfähigkeit.

Ziel der Erfindung war es somit, ein aluminiumhaltiges Pulver bereitzustellen, dessen Oberfläche so beschaffen ist, dass die Verarbeitung desselben in einer ALM-Anlage zu Aluminiummaterial ohne Wasserstoffporen uneingeschränkt möglich wird, selbst wenn das Pulver mehrfach benutzt wird. Voraussetzung dafür ist, dass zumindest über einen signifikanten Zeitraum keine wesentliche„feuchte" Oxidation zu AI 2 O 3 x H 2 O stattfindet, bzw. die Ad- oder Absorption von Wasser an der Oberfläche des Pulvers weitgehend verhindert wird.

Zusammenfassung der Erfindung

In einem ersten Aspekt betrifft die Erfindung ein Verfahren zur Herstellung eines Pulvers aus Aluminium oder einer Aluminiumlegierung mit passivierter

(physikalisch-chemisch inaktiver) Oberfläche, das dadurch gekennzeichnet ist, dass eine Schmelze von Aluminium oder der Aluminiumlegierung mit Hilfe eines Verdüsungsgases, das etwa 1 Vol.-% bis 100 Vol.-% molekularen Stickstoff und etwa 99 Vol.-% bis 0 Vol.-% eines oder mehrerer Edelgase umfasst, zu einem Pulver verdüst wird.

Ein zweiter Aspekt der Erfindung betrifft ein Pulver aus Aluminium oder einer Aluminiumlegierung, welches durch das Verfahren des ersten Aspekts erhältlich ist.

Schließlich betrifft die Erfindung die Verwendung des Pulvers, das durch das erfindungsgemäße Verfahren erhältlich ist, in einem Additive-Layer-Manufacturing- Verfahren zum Aufbau von Bauteilen.

Die Unteransprüche geben spezielle Ausführungsformen der Erfindung an. Detaillierte Beschreibung

Es wurde überraschend gefunden, dass ein aluminiumhaltiges Pulver, das auf die erfindungsgemäße Weise verdüst wird, keine oder nur minimale Mengen Wasser ad- oder absorbiert und deshalb bei der Verarbeitung mittels eines ALM- Verfahrens, insbesondere eines Pulverbett-ALM-Verfahrens, keine

wasserstoffhaltigen Poren erzeugt. Selbst wenn unverbrauchtes Pulver mehrfach, im Allgemeinen bis zu 5-mal, 7-mal oder sogar 10-mal, wiederverwendet wird und/oder über mehrere Monate, wie 3 Monate, 5 Monate, 8 Monate 12 Monate, 24 Monate 36 Monate und manchmal bis zu soviel wie etwa 4 oder 5 Jahre, in einem verschlossenen Gefäß mit normaler Umgebungsatmosphäre gelagert wird, behält es diese Eigenschaften bei.

Ohne durch eine Theorie gebunden sein zu wollen, werden die folgenden chemischen Vorgänge angenommen.

Durch den großen Überschuss an molekularem Stickstoff über Sauerstoff

(mindestens etwa 1 Vol.-% gegenüber einigen zehn ppm, d.h. mindestens ein etwa 100- bis etwa 1000-facher Überschuss) im Verdüsungsgas wird die Bildung von AI2O3 unterdrückt und stattdessen bildet sich einige Atomlagen einer Schicht aus Aluminiumnitrid (AIN).

Aluminiumnitrid ist eine seit langem bekannte Verbindung. Ihre Bildungsenthalpie (AH f ° = 318 kJ-mol "1 ) ist erheblich kleiner als die von AI 2 O 3 . AIN-Pulver hydrolysiert gewöhnlich in Anwesenheit von Wasser oder Atmosphärenfeuchtigkeit mehr oder weniger schnell in einer exothermen Reaktion zu AI 2 O 3 und NH 3 . Die Hydrolyse kann jedoch anfänglich gehemmt sein und ihre Geschwindigkeit hängt stark von der Art der Herstellung des Pulvers ab (siehe die Veröffentlichung: Jinwang Li et al., Hydrolysis of Aluminum Nitride Powders in Moist Air, AZojomo (Journal of Materials Online), October 2005, Vol. 1 , pages 1-10, die durch Bezugnahme Teil dieser Offenbarung bildet). Man würde erwarten, dass eine dünne AIN-Schicht auf der Oberfläche eines aluminiumhaltigen Pulverteilchens sehr schnell hydrolysiert wird. Dies ist jedoch, wie bereits oben erwähnt, überraschenderweise nicht der Fall, wenn das Pulver gemäß der Erfindung durch Verdüsen von geschmolzenem aluminium-haltigen Metallmaterial mit einem Edelgas, das mindestens 1 Vol.-% Stickstoff umfasst, hergestellt wird. Die Hydrolysereaktion ist bei derartigen Pulvern offensichtlich kinetisch stark gehemmt. Sie sind gegenüber einer Oxidation durch Sauerstoff und Hydrolyse durch Wasser weitgehend inert und bilden außerdem eine

Oberflächennitridschicht, die von diesen beiden Agenzien nicht permeiert wird. Die Ursache dafür wird nicht vollständig verstanden.

Im Fall von Legierungen kann Stickstoff unter den Bedingungen der Verdüsung auch mit anderen Bestandteilen der Legierung außer Aluminium, die an der Oberfläche der Legierung vorhanden sind, reagieren, sofern diese Nitridbildner sind, wie z.B. Scandium, Titan, Zirconium, Hafnium, Vanadium, Niob, Tantal, Chrom und Molybdän.

Scandiumnitrid (ScN) unterliegt gewöhnlich wie AIN im Lauf der Zeit einer

Hydrolysereaktion. Wiederum wurde überraschend beobachtet, dass dies im Fall von AISc- oder AIScWXYZ-Legierungen nicht der Fall ist, wenn deren Schmelze erfindungsgemäß mit (einem) mindestens 1 Vol.-% Stickstofff enthaltenden Edelgas(en) zu Pulver verdüst wird. Die dünne passivierende Oberflächen- Nitridschicht ist ebenfalls für Sauerstoff und Wasser undurchdringbar.

Titan, Zirconium, Hafnium, Vanadium, Niob, Tantal, Chrom und Molybdän bilden mit Stickstoff sogenannte Hartphasen, die äußerst reaktionsträge sind.

Als Ausgangsmaterial für das erfindungsgemäße Verfahren eignen sich eine Aluminiumschmelze und Schmelzen aller Legierungen auf Aluminiumbasis.

Besonders bevorzugt sind Schmelzen von AISc- und AIScWXYZ-Legierungen. Unter den Legierungen auf Aluminiumbasis, die kein Scandium enthalten, sind z.B. z.B. AISi7-12MgXYZ-Legierungen, AlZnMgXYZ-Legierungen und AICuXYZ- Legierungen.

Viele AISc-Legierungen sind, wie oben erwähnt, in A.J. Bosch, R. Senden, W. Entelmann, M. Knüwer und F. Palm, a.a.O. und in F. Palm, P. Vermeer, W. von Bestenbostel, D. Isheim, R. Schneider, a.a.O, ausführlich beschrieben. Wichtige AIScWXYZ-Legierungen sind AIScLiXYZ-Legierungen, AIScMgXYZ-Legierungen, die auch in der DE 10 2007 018 123 A1 beschrieben sind, welche durch

Bezugnahme Teil dieser Offenbarung bildet, und AIScCaXYZ-Legierungen, die in der mitanhängigen DE 102010053274 mit der Bezeichnung "Verfahren zur Herstellung eine AIScCa-Legierung sowie AIScCa-Legierung", welche durch Bezugnahme Teil dieser Offenbarung bildet, offenbart sind. Diese Legierungen, insbesondere die beiden letztgenannten, eignen sich besonders gut für die Verwendung in ALM-Verfahren, da sie dabei Bauteile mit hervorragenden

Materialeigenschaften, wie hoher Festigkeit, hoher Streckgrenzej hervorragendem Korrosionsverhalten und sehr guter Schweißbarkeit, liefern.

Die Legierungsbestandteile XYZ können z.B. aus der Gruppe Zr, Ti, Nb, Ta, Hf und Y und/oder aus der Gruppe Be, Zn, Mn, Ag, Cu, Si, V, Ni, Co, Cr, Mo und Fe und/oder aus der Gruppe der Seltenerd-Elemente ausgewählt sein.

Oben beschriebene Legierungsbestandteile können z.B. in den folgenden prozentualen Anteilen vorliegen, bezogen auf das Gesamtgewicht der Legierung:

- Sc-Gehalt 0,2 - 2 Gew.-%

- Mg-Gehalt 0,5 - 10 Gew.-%

- Li-Gehalt 0,2 - 3 Gew.-%

- Ca-Gehalt 0,2 - 2 Gew.%

- Gehalt der X-Elemente: 0,05 - 1 ,5 Gew.-%

- Gehalt der Y-Elemente: 0,2 - 8 Gew.%

- Gehalt zusätzlicher Seltenerd-Elemente: 0,2 - 3 Gew.-% oder das 0,25- bis 3- fache des Sc-Gehalts. Besonders bevorzugte Legierungen sind AI-Legierungen mit Mg(0,5-10)Sc(0,2- 2,0)Zr(0,2-2,0)(Gew.%) ohne bzw. mit Mn(0,1-1 ,0)(Gew.%) und AI und

unvermeidliche Verunreinigungen als Rest. Besonders bevorzugt wird Mg(2,5- 5.0)Sc(0,3-1 ,0)Zr(0,2-0,5)Mn(0,1-0,8)(Gew.%) und AI und unvermeidliche

Verunreinigungen als Rest.

Die Herstellung von Aluminium- und Aluminiumlegierungsschmelzen ist dem Fachmann bekannt. Die Elemente werden gegebenenfalls in Form einer oder mehrerer Vorlegierungen in der gewünschten Stöchiometrie in einen beheizten inerten Tiegel gegeben und für die erforderliche Zeit bei der erforderlichen

Temperatur erwärmt, bis alle Bestandteile in der Schmelze gelöst sind. Diese Parameter können mittels eines thermodynamischen Simulationsprogramms (z.B. PANDAT ® ) oder anhand binärer und ternärerer Zustandsdiagramme abgeschätzt werden. Wenn Legierungsbestandteile anwesen sind, die bei der erforderlichen Temperatur mehr oder weniger quantitativ mit Sauerstoff und/oder Wasser reagieren (z.B. die Alkalimetalle), muss die Legierungsbildung in

Edelgasatmosphäre vorgenommen werden, ansonsten wird in normaler

Umgebungsatmosphäre (Luft) gearbeitet.

Danach wird die Haltetemperatur auf einen Wert von etwa 30 - 50 °C oberhalb der nominellen Liquidus-Temperatur eingestellt und man bestimmt anhand einer Materialprobe die genauen Solidus-Liquidus-Temperaturen der Legierung mittels Differentialscanningkalorimeter (DSC) und die tatsächliche chemische

Zusammensetzung.

Falls die gewünschte Stöchiometrie z.B. durch Abbrand von Erdalkalimetallen nicht mehr vorliegt, muss gegebenenfalls nachlegiert werden. Erforderlichenfalls kann die Legierungsschmelze z.B. durch Zugabe von Chlorid-Tabletten von Alkalimetallverunreinigungen und durch Spülen mit Argon von Wasserstoff weitgehend befreit werden. Nun wird die Schmelze verdüst. Metallverdüsungsanlagen sind dem Fachmann bekannt (z.B. aus der WO 03/066640 A1 und der EP 1 008 407 A2, welche durch Bezugnahme Teil dieser Offenbarung bilden) und im Handel erhältlich.

Die Schmelze wird in die Verdüsungsanlage umgefüllt und dort bei einer

Temperatur von im Allgemeinen etwa 50°C über der Liquidus-Temperatur gehalten, um ein Einfrieren der Schmelze im Verdüsungsrohr zu verhindern.

Das zur Verdüsung verwendete Gas ist erfindungsgemäß eine Mischung aus Edelgas(en), bevorzugt Argon und/oder Helium, und mindestens etwa 1 Vol.-%, bevorzugter mindestes etwa 5 Vol.-%, z.B. etwa 10, etwa 20, etwa 30 oder etwa 40 Vol.-%, noch bevorzugter mindestens etwa 50, etwa 60, etwa 70, etwa 80, etwa 90 Vol.-% Stickstoff oder es besteht im Wesentlichen zu 100% aus Stickstoff.

Geeignete Prozessparameter, also Durchsatz, Druck und Temperatur des Gases, richten sich nach der Materialzusammensetzung der Schmelze und können vom Fachmann leicht ermittelt werden.

Die Teilchengröße des Pulvers wird durch die Größe und Form (z.B. Laval- Düse)der Austrittsöffnung der Düse und die Gas-Geschwindigkeit und

Gastemperatur sowie Gasdruck festgelegt, mit der die Teilchen aus der

Erstgenannten austreten.

Für ALM-Verfahren nützliche Teilchengrößen liegen im Bereich von etwa 0,5 [im bis etwa 150 μιη, bevorzugt im Bereich von etwa 25 μιη bis etwa 65 μιη. Sollen Bauteile mit feinsten Abmessungen hergestellt werden, ist das Feld für die

Teilchengröße 2 μιη bis etwas 15 μιη, was gleichzeitig eine Anpassung an die Fokussierbarkeit der verwendete Wärmequelle (Laser oder Elektronenstrahl) bedingt.

Mit den so hergestellten Aluminium- und Aluminiumlegierungspulvern ist es mittels eines ALM-Verfahrens möglich, porenfreie oder fast porenfreie endkonturnahe ("near net shape") Bauteile mit hervorragenden Materialeigenschaften

herzustellen. Durch die hohen Temperaturen in der Wärmequelle des ALM- Verfahrens, wie einem Laser, einem Elektronenstrahl oder einem Lichtbogen, erscheint es möglich, dass bestimmte Nitride, z.B. AIN oder ScN, in reines AI oder Sc und in der Schmelze gelöstes Stickstoff zurückverwandelt werden, da im Material bei Nachuntersuchungen bis jetzt keine primär ausgeschiedenen AI- oder Sc-Nitride gefunden werden konnten.

Aufbauversuche in einer Laser Pulver Bett ALM-Maschine haben gezeigt, dass unverbrauchtes Pulver im Allgemeinen bis zu 10-mal wiederverwendet werden kann.

Das gemäß der Erfindung modifizierte Pulver kann auch ohne Probleme bezüglich einer Verunreinigung mit Sauerstoff oder Wasser monatelang oder sogar jahrelang in einem geschlossenen Behälter unter Umgebungsatmosphäre (Luft) aufbewahrt werden und ist dann immer noch für eine Kommerzialisierung bzw. kommerzielle Anwendung brauchbar und zugänglich, was heißt das es

kostengünstig verwendbar ist und den Prozessführer nicht zum Kauf neuen Pulvers zwingt, was wiederum ein großer Vorteil gegenüber den heute

kommerziell verwendeten AI-Pulver klassischer Prägung bedeutet, welche bekanntermaßen sehr schnell verschmutzen und dann nicht mehr zu

einwandfreien Prozessergebnisse führen.

Die folgenden Beispiele erläutern die Erfindung, ohne sie einzuschränken.

BEISPIELE

A. Werkstoffgenerierung unter Verwendung eines AI-Pulvers nach bekannter Art

In einer Laser gestützten Pulverbett-Anlage der Marke EOS EOSINT M270 wurde ein Probekörper aus einer AI-Legierung mit der nominellen Zusammensetzung von Mg(4,3 Gew.-%), Sc(0,7 Gew.-%), Zr(0,3 Gew.-%), Mn(0,5 Gew.-%) und AI und unvermeidliche Verunreinigungen als Rest. Die Beschaffenheit des Probekörpers wurde unter dem Mikroskop untersucht, insbesondere wurde das Gefüge des Probekörpers untersucht.

Das in diesem Beispiel verwendete Pulver war unter Argon (Qualität 4.6) verdüst worden und war über mehrere Wochen im Labor in Verwendung. Das Pulver wurde für den schichtweisen Aufbau von fünf Probekörpern eingesetzt, also viermal wiederverwendet, wobei proprietäre Prozessparameter wie beispielsweise die Laserleistung und -fokus, die Scangeschwindigkeit des Lasers beim Aufbau des Probekörpers, das Laser-Beleuchtungsmuster Anwendung fanden.

Der schichtweise Aufbau (Laserschmelzen) wurde in einer Arbeitskammer unter Ar durchgeführt, sodass keine exotherme (oxidische) Reaktion während des Aufbauprozesses zu erwarten ist.

Die in den Figuren 1 und 2 gezeigten metallographischen Schliffe zeigen ein Gefüge und eine Vielzahl von Poren, welche aufgrund ihrer Rundheit unstreitbar als Wasserstoffporen zu deuten sind. Besonders die sehr gleichmäßige Verteilung der Poren ist ein deutliches Indiz für die ungewollte Belegung-Kontamination des AI-Pulvers mit Feuchtigkeit. Der so hergestellte Werkstoff hat somit eine

Vorschädigung, welcher seine Festigkeit (Dauerhaftigkeit) negativ beeinflussen kann. B. Werkstoffgenerierung unter Verwendung eines AI-Pulvers gemäß der Erfindung

In einer Laser gestützten Pulverbett-Anlage der Marke EOS EOSINT M270 wurde ein Probekörper aufgebaut, wobei das gemäß der Erfindung hergestellte Pulver verwendet wurde. Eine AI-Legierung mit der nominellen Zusammensetzung von Mg(4,3 Gew.-%), Sc(0,7 Gew.-%), Zr(0,3 Gew.-%), Mn(0,5 Gew.-%) und AI und unvermeidliche Verunreinigungen als Rest wurde in einem Tigel durch induktive Aufheizung erschmolzen, wobei das Material des Tigels sich gegenüber der Aluminiumschmelze inert verhält. Die dabei einzustellende Temperatur berücksichtigt, dass alle Legierungselemente insbesondere, hochschmelzendes Sc und Zr vollständig gelöst sind. Daraus resultiert eine Schmelztemperatur, die über der Solidus-Liquidus Temperatur der Legierung liegt.

Im Nachgang wird die Schmelze durch eine konische lavalförmig ausgebildete Düse gepresst, wobei die Schmelze in einem geschlossenen Tigel mit einem passenden Gasüberdruck von 10-20 mbar beaufschlagt wird.

Die Lavaldüse ist von einem zweiten Düsenring umgeben, durch den ein

Verdüsungsgas auf den geschmolzenen flüssigen Metallstrom trifft. Da das Verdüsungsgas unter Hochdruck von 5-10 bar und hoher Geschwindigkeit aus dem Düsenring auf den Metallstrom trifft, wird der Metallstrom in feinste

Pulverpartikel zerstäubt. Das Verdüsungsgas bestand aus reinem Stickstoff (Qualität 4.5).

Darüber hinaus wurden die gleichen Prozessparameter und -Randbedingungen wie beim Beispiel A verwendet, insbesondere wurde das Pulver viermal wiederverwendet. Die Figuren 3 und 4 zeigen die Gefügemerkmale des sich ergebenden Probekörpers. Dieses Gefüge weist nur sehr geringe Poren mit vernachlässigbarer Größe auf, ist somit leistungsfähiger, wobei seine Eigenschaften vergleichbar mit dem eines porenfreien Gefüges sind. Gleichzeitig zeigt die Wiederverwendbarkeit des erfindungsgemäßen Pulvers dessen ökonomische Vorteile.

Versuche mit anderen AI-Basis-Legierungen, die erfindungsgemäß verdüst wurden, wie z.B. AISiMg-Legierungen zeigen das gleiche vorteilhafte Verhalten, werden hier aber nicht explizit dargestellt.